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Abstract: The bottleneck in creating dynamic models of biological networks and processes often
lies in estimating unknown kinetic model parameters from experimental data. In this regard,
experimental conditions have a strong influence on parameter identifiability and should therefore
be optimized to give the maximum information for parameter estimation. Existing model-based
design of experiment (MBDOE) methods commonly rely on the Fisher Information Matrix (FIM) for
defining a metric of data informativeness. When the model behavior is highly nonlinear, FIM-based
criteria may lead to suboptimal designs since the FIM only accounts for the linear variation of
the model outputs with respect to the parameters. In this work, we developed a multi-objective
optimization (MOO) MBDOE, where model nonlinearity was taken into consideration through the
use of curvature. The proposed MOO MBDOE involved maximizing data informativeness using
a FIM-based metric and at the same time minimizing the model curvature. We demonstrated the
advantages of the MOO MBDOE over existing FIM-based and other curvature-based MBDOEs in
an application to the kinetic modeling of fed-batch fermentation of Baker’s yeast.

Keywords: design of experiments; multi-objective optimization; Fisher information matrix;
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1. Introduction

Dynamic models of biological networks and processes are often created to gain a better
understanding of the system behavior. The creation of dynamic biological models requires the values
of kinetic parameters, many of which are system specific and typically not known a priori. These
parameters are commonly estimated by calibrating model simulations to the available experimental
data. Such parameter fitting is known to be challenging, where there often exist multiple parameter
combinations that fit the available data equally well, i.e. the model parameters are not identifiable
[1–5]. While there exist a number of reasons for such lack of parameter identifiability, experimental
conditions have a strong influence on this issue and thus should be carefully designed. In addition,
biological experiments and data collection are often costly and time-consuming, further motivating
the need for well-planned experiments that would give the maximum information when given finite
resources.

Model-based design of experiment offers a means for integrating kinetic modeling with
experimental efforts, as illustrated by the iterative procedure in Fig. 1. The role of the model here is to
capture the knowledge and information about the system up to a given iteration. By using MBDOE,
one could harness this knowledge to guide experiments in the next iteration. MBDOE techniques
have been used extensively for chemical process modeling, and a review of the state of the art can
be found for example in the article of Franceschini and Macchietto [6]. For the purpose of parameter
estimation, experiments are generally designed to generate the richest information. In this regard, the
FIM whose inverse provides an estimate of the lower bound of parameter variance-covariance [7], has
been commonly used to quantify data informativeness [8–14]. In the past decade, FIM-based MBDOE
methods have newfound applications in emerging areas such as systems biology [11,15–17].
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Figure 1. Iterative model identification cycle. The model building process involves the following
key steps: experimental design, model structure formulation, parameter estimation, and model
validation.

The FIM relies on a linear approximation of the model behavior as a function of the parameters.
More precisely, the FIM is computed as a function of the first-order parametric sensitivity coefficients
(Jacobian matrix) of model outputs. For systems with high degree of nonlinearity, the optimal
experimental design using the FIM may perform poorly [18]. For this reason, Bates and Watts
proposed a MBDOE based on minimizing model curvature by using the second-order parametric
sensitivities (Hessian matrix) [19]. Hamilton and Watts further introduced a design criterion, called
Q-optimality, based on a quadratic approximation of the volume of the parameter confidence region
[20]. More recently, Benabbas et al. proposed two curvature-based MBDOEs [22]. In one design,
the authors used a minimization of the root mean square (RMS) of the Hessian matrix, while in
another design, they employed a constrained optimization guaranteeing the RMS to be lower than a
given level. While the second strategy using a curvature threshold was demonstrated to give more
informative experiments, how to set the appropriate RMS threshold value in a particular application
was not described.

Recently, Maheshwari et al. described a MOO formulation for optimizing design of experiment
using a combination of FIM-based metric and parameter correlation [17]. Since parameter correlations
could not account for model nonlinearity, the strategy has the same drawback as FIM-based methods
when applied to nonlinear models. In this work, we proposed a MOO MBDOE method using a
combination of FIM criterion and model curvature. We demonstrated the advantages of the proposed
MOO MBDOE over FIM-based and other curvature-based methods in an application to the kinetic
modeling of fed-batch fermentation of Baker’s yeast [21,22].
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2. Model-based optimal design of experiments

We assume that the experimental data y ∈ IRn are contaminated by additive random noise, as
follows:

y = µ + ε (1)

where µ and ε denote the mean of the measurement data and the random noise, respectively. When
the total number of data points n is larger than the number of parameters p, µ spans a p-dimensional
space Ω ⊂ IRn where:

Ω = {µ : µ = F(x, u, θ), θ ∈ Θ ⊂ IRp} (2)

Here, x ∈ IRn denotes the state vector, θ ∈ IRp denotes the parameter vector, u ∈ IRm denotes the
input and F(x, u, θ) denotes the vector of non-linear model equations. The subspace Ω is also called
the expectation surface or the solution locus. For a dynamic system, the state x is often described by a
set of ordinary differential equations (ODEs):

dx(θ, t)
dt

= g(x(θ, t), u, θ), x(θ, 0) = x0 (3)

The estimation of model parameters θ from a given set of data y is typically formulated as a
minimization of the weighted sum squares of the difference between the model prediction F(x, u, θ)

and the measurement data y. For example, the maximum likelihood estimator (MLE) of the model
parameters for normally distributed data with known variance V, is given by the minimum of the
following objective function:

Φ(θ) = [y− F(x, u, θ)]T V−1 [y− F(x, u, θ)] (4)

When the model is a linear function of the parameters: F(x, u, θ) = Xθ, X ∈ IRn×p, then the parameter
estimates are given by θ̂ = (XTV−1X)−1XTV−1y. In this case, the MLE is the minimum variance
unbiased estimator of θ, where the covariance matrix of the parameter estimates is given by Vθ =

(XTV−1X)−1. When the model is nonlinear (with respect to the parameters), the parameter estimates
θ̂ = arg min Φ(θ) does not necessarily correspond to the minimum variance estimator. According to
the Cramér-Rao inequality [7], the inverse of the Fisher Information Matrix provides a lower bound
for the covariance of the parameter estimates θ̂, that is:

Vθ ≥ FIM−1 = ( ˆ̇FTV−1 ˆ̇F)−1 (5)

where ˆ̇F = Ḟ(θ̂, x) = ∂F(x,u,θ)
∂θ |θ=θ̂ is the first order sensitivity matrix of F(x, u, θ) with respect to the

parameters θ.
Based on the Cramér-Rao inequality, the FIM has been commonly used as a criterion of data

informativeness in MBDOE. Many methods for MBDOE such as those listed in Table 1, are based on
finding experimental conditions that optimize a FIM-based information metric. As shown in Eq. (5),
the FIM relies on a linearization of the model behavior with respect to the parameters. Essentially,
the linearization replaces the expectation surface Ω by its tangent plane at θ̂. The performance
of the experimental design using a FIM-based criterion would therefore depend on whether: (1)
the model outputs vary proportionaly with the parameter values (planar assumption); and (2) this
proportionality is constant (uniform coordinate assumption) [23]. When the model is highly nonlinear
with respect to the parameters, FIM-based MBDOE may produce suboptimal designs [24,25]. A recent
MOO MBDOE using a combination of FIM criterion and parameter correlation, has been shown to
provide improvement over FIM-based MBDOE methods[17]. But, this method also relies on the
first-order parametric sensitivity matrix, and thus could not account for model nonlinearity.
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Table 1. Model-based designs of experiments using the Fisher Information Matrix (FIM).

FIM-based MBDOE Criterion
D-optimal max ∏i λi
A-optimal max ∑i λi
E-optimal max min(λi)

modified E-optimal max min(λi)
max(λi)

Curvature-based design of experiment methods such as the Q-optimality have been introduced
to account for model nonlinearity by employing a second order approximation of the model output.
Here, the curvature of the expectation surface Ω is captured using the second order sensitivities of
F(x, u, θ) based on the Taylor series expansion:

F(x, u, θ) = F(x, u, θ̂) + ˆ̇F(θ− θ̂) +
1
2
(θ− θ̂)T ˆ̈F(θ− θ̂) + O((θ− θ̂)3) (6)

where ˆ̈Fijk = ∂2Fi(x,u,θ)
∂θj∂θk

|θ=θ̂ is the n × p × p Hessian matrix. As mentioned in Introduction, several
curvature-based MBDOE methods are available, for example by minimizing curvature or using
curvature threshold[22]. In this work, we employed a MOO approach based on curvatures for
designing optimal experiments. The basic premise of our MBDOE is to select experimental conditions
which maximize the informativeness of data and ensure that the model behaves relatively linear with
respect to the parameters. More specifically, our MBDOE uses two objective functions, where the first
involves maximization of a FIM-based information metric, and the second involves the minimization
of relative curvature measures [19]. The second objective function ensures that the FIM can provide a
reliable measure of data informativeness.

2.1. Multi-objective design of experiments based on curvatures

In this section, we derive the relative curvature measures by following the work of Bates and
Watts[19]. Let us consider an arbitrary straight line in the parameter space passing through θ̂:

θ(b) = θ̂+ bh (7)

where h = [h1, h2, . . . , hp] is a non-zero vector. As the scalar parameter b is varied, a curve is traced
through the expectation surface, also referred to as the lifted line, according to:

µh(b) = µ(θ̂+ bh) (8)

The tangent line of this curve at b=0 is given by:

µh =

[
dµh(b)

db

]
θ=θ̂,b=0

=

[
p

∑
r=1

∂F(x, u, θ)

∂θr

∂θr(b)
∂b

]
θ=θ̂,b=0

= ˆ̇Fh

(9)

The set of all such tangent lines, i.e. the column space of ˆ̇F, describes the tangent (hyper)plane at µ(θ̂).
Meanwhile, the curvature measures come from a quadratic approximation of µ. In this case, the

acceleration of µ(b) at b = 0 can be written as follows:

µ̈h = hT ˆ̈Fh =
p

∑
i=1

p

∑
j=1

∂2F(x, u, θ)

∂θi∂θj
hihj (10)
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The acceleration vector µ̈h can be subsequently decomposed into two components:

µ̈h = µ̈t
h + µ̈n

h (11)

where at µ(θ̂), µ̈t
h is tangential to the tangent plane and µ̈n

h is normal to the tangent plane. The
tangential acceleration µ̈t

h is also called the parameter-effect curvature[19], which provides a measure
of nonlinearity along the parameter vector h. The degree of the parameter-effect curvature can change
upon reparameterization of the model. Meanwhile, the normal acceleration µ̈n

h does not vary with
model parameterization, and hence is called the intrinsic curvature. Finally, the relative curvature
measures in the direction of h are given by [19,23]:

Kt
h =

‖µ̈t
h‖

‖µ̈t
h‖2 (12)

Kn
h =

‖µ̈n
h‖

‖µ̈n
h‖2 (13)

Below, we describe the decomposition of the Hessian into the tangential and the normal

component. Consider the QR factorization of the Jacobian ˆ̇F, that is ˆ̇F = QR = Q

[
R̃
0

]
. By rotating

the parameter axes (θ− θ̂) into ϕ = R̃(θ− θ̂), a new Jacobian matrix U̇ = dF(x,u,ϕ)
dϕ |ϕ=0 can be

computed as U̇ = ˆ̇FR̃−1, which comprises the first p column vectors of Q (i.e. Q =
[
U̇ N

]
). The

remaining column vectors of Q (i.e. N) are orthonormal to the tangent surface at ϕ=0. In the same
manner, the Hessian matrix in the rotated axes can be written as Ü = LT ˆ̈FL, where L = R̃−1 and
Üijk = ∂2Fi(x,u,ϕ)

∂ϕj ϕk
|ϕ=0. The decomposition of the Hessian into the tangential and normal components

is given by the following equation[19]:

Ä = QTÜ =
[
U̇ N

]T
Ü =

[
Ät Än

]
(14)

The matrices Ät and Än respectively correspond to the parameter-effect and intrinsic curvature
components of the Hessian.

To normalize the relative curvatures in Eqs. 12 and 13, Bates and Watts[19] used the scaling factor

ρ, where ρ = s
√

p and s2 = (y−µ̂)T(y−µ̂)
n−p . Following the same procedure, we define the normalized

relative curvatures as follows:
γt

h = ρKt
h (15)

γn
h = ρKn

h (16)

In addition, recasting h in the rotated axes as h = Ld, the tangent line µ̇Ld will have a unit norm (i.e.
‖µ̇Ld‖ = 1) when d is a unit vector. The computation of γt

h and γn
h is thus simplified into:

γt
Ld = ρ‖dTÄtd‖, ∀d : ‖d‖ = 1 (17)

γn
Ld = ρ‖dTÄnd‖, ∀d : ‖d‖ = 1 (18)

In the proposed experimental design, the maximum of these curvature measures are used, where:

γt
max = max

‖d‖=1
γt

Ld (19)

γn
max = max

‖d‖=1
γn

Ld (20)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 September 2017                   doi:10.20944/preprints201709.0063.v1

Peer-reviewed version available at Processes 2017, 5, 63; doi:10.3390/pr5040063

http://dx.doi.org/10.20944/preprints201709.0063.v1
http://dx.doi.org/10.3390/pr5040063


6 of 14

As mentioned above, in formulating the MOO for the design of experiments, two design criteria
have been taken into account. The first is that the experiment should be designed to maximize the
informativeness of the data for parameter estimation. In this case, we employ an information metric
based on the FIM. Meanwhile, the second design criterion in the MOO aims to minimize both the
parameter-effect and intrinsic curvatures. The multi-objective optimization formulation offers certain
advantages that there is no need to prioritize any one of the criteria beforehand. Instead, we generate
the Pareto set or Pareto frontier representing the set of solutions for which we can not improve the
value of one objective function without negatively affecting the other(s) [26].

Considering the kinetic ODE model given in Eq. 3, our multi-objective formulation using the
D-optimal criterion is given by:

max
x0 ,tsp ,u(t)

∏
i

λi

min
x0 ,tsp ,u(t)

γt
max + γn

max

(21)

subject to:

dx(θ̂, t)
dt

= g(x(θ̂, t), u, θ̂)

x(θ̂, 0) = x0

xL
0 ≤ x0 ≤ xU

0

uL
j ≤ uj ≤ uU

j

(22)

where λi is the i-th eigenvalue of FIM (Eq. 5). The first objective function can be substituted with other
FIM-based metrics (see Table 1). The parameter vector θ̂ is either an initial guess of the parameter
values or the parameter estimates from the current iteration of an iterative model identification
procedure [6]. The decision variables may include the initial condition of the states x0, the sampling
time points of measurements tsp, and the dynamic input u(t). In the case study below, we considered
control vector parametrization (CVP) of the input ui(t) as illustrated in Fig. 2.
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Figure 2. Control vector parametrization of input profiles. In the Baker yeast case study, we
implemented piecewise constant input profiles with ui=[ui,1, ui,2, ui,3, ui,4, ui,5] and 4 switching times:
tsw1, tsw2, tsw3, and tsw4.
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2.2. Numerical implementation of the curvature-based MOO design

As described in the previous section, the parameter-effect and intrinsic curvatures require the
computation of the first and second-order model sensitivities. For the ODE model in Eq. 3, the
first-order sensitivities can be calculated according to:

ˆ̇F = Ḟ(θ̂; x) =
∂F(x(t, u, θ))

∂x
∂x(t, u, θ)

∂θ/θ

∣∣∣∣
θ̂

(23)

The sensitivities in the above equation are normalized with respect to the parameter values. The last
term on the right hand side is the first-order sensitivities of the ODE model, which obey the following
differential equation:

d
dt

∂x
∂θ

=
∂g
∂x

∂x
∂θ

+
∂g
∂θ

,
∂x
∂θ

∣∣∣∣
t=0

= 0 (24)

Here, we have assumed that x0 is not part of the parameter estimation, but such assumption can
be easily relaxed. In the case study, the sensitivities ∂x

∂θ were computed by solving the ODE in
Eq. 24 simultaneously with Eq. 3, following a procedure known as the direct differential method
[27]. Meanwhile, the Hessian matrix was approximated using a finite difference method, as follows:

ˆ̈Fijk =


Fi(θ+∆θjej)−2Fi(θ)+Fi(θ−∆θjej)

∆θ2
j /θ2

j
, for j = k

Fi(θ+∆θjej+∆θkek)−Fi(θ+∆θjej−∆θkek)−Fi(θ−∆θjej+∆θkek)+Fi(θ−∆θjej−∆θkek)
(∆θj/θj)(∆θk/θk)

, for j 6= k
(25)

where ej is the j-th elementary vector and using 1% parameter perturbations (i.e. ∆θj/θj=0.01). The
second order sensitivities above are also normalized with respect to the parameter values.

Meanwhile, the curvature measures γt
max and γn

max in Eqs. 19 and 20 were calculated from the
Hessian matrix using the alternating least squares (ALS) method [28], an algorithm created to find
the maximum singular value σmax of a three-dimensional matrix. Based on the definitions in Eqs. 19
and 20, the maximum curvature measures can be determined by computing the maximum singular
values of the matrices ρÄt and ρÄn, respectively. More specifically, we implemented the ALS method
to solve for:

σmax(B) = max
‖r‖=‖s‖=1

m

∑
i=1

ri sTBis (26)

where B is either ρÄt and ρÄn. The ALS algorithm started with initial guess values of the vectors r
and s, and used the above equation to solve for one variable while fixing the other in an alternating
manner. Zhang and Golub showed that the method linearly converges in a neighbourhood of the
optimal solution [28].

In the case study, the MOO problem was solved using the non-dominated sorting genetic
algorithm II (NSGAII) in MATLAB, producing a Pareto frontier in the space of the objective
functions [29]. We employed a population size of 300 and set the number of generations to 50 times
the number of parameters (i.e. 1450). We recasted a maximization of an objective function as the
minimization of its negative counterpart. The optimal design was selected from the Pareto frontier
by balancing the trade-offs among the objective functions. More specifically, we first normalized the
objective functions such that their values on the Pareto frontier ranged between 0 and 1. Finally, we
chose among the solutions on the Pareto frontier, the one which minimizes the Euclidean distance of
all (normalized) objective functions as the final design.

3. Results

3.1. MBDOEs of Baker yeast fermentation model

We evaluated the performance of the proposed MBDOE in an application to a kinetic model
of fed-batch fermentation of Baker’s yeast [21,22]. In addition to D-optimal criterion, we also
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implemented A-optimal, E-optimal and modified E-optimal criteria (see Table 1) with our MOO
MBDOE. We compared the performance of our method to other MBDOEs, including (a) FIM-based
MBDOEs, i.e. D-optimal, A-optimal, E-optimal and modified E-optimal designs; (b) D-optimal design
with a curvature threshold [22]; (c) Q-optimal MBDOE [20]; and (d) MOO MBDOE using parameter
correlation [17]. In total, we applied and compared 14 MBDOE methods. For the optimizations in (a),
(b) and (c), we employed the enhanced scatter search metaheuristic (eSSm) algorithm [30–32]. For the
MOO in (d), we used the optimization algorithm and optimal Pareto point selection as described in
the previous section.

In the fed-batch fermenter model, cellular growth and product formation are captured by the
biomass variable x1, which is assumed to rely on a single substrate variable x2. The fermenter operates
at a constant temperature and the feed is free from product. The model equations are given by:

dx1

dt
= (r− u1 − θ4)x1, x1(0) = x10

dx2

dt
= − rx1

θ3
+ u1(u2 − x2), x2(0) = 0.01

r =
θ1x2

θ2 + x2

(27)

where the input u1 is the dilution factor (in the range of 0.05 to 0.20 hour−1) and the input u2 is the
substrate concentration in the feed (in the range of 5 to 35 g/L). In the model, the biomass growth
follows a Monod-type kinetics. The parameters θ1 and θ2 are the Monod kinetic parameters, θ3 is the
yield coefficient, and θ4 is the cell death rate constant.

In the MBDOE, the design variables consisted of the initial condition of the biomass x1(0) in the
range between 1 and 10 g/L, 10 measurement sampling times (tsp), and the inputs u1(t) and u2(t).
The piecewise-constant dynamic inputs were each parametrized using the CVP as shown in Fig. 2.
Thus, the MOO was performed with 29 design parameters (x1(0), 10 tsp’s, 10 ui,j’s, and 8 tsw’s). The
length of the time interval between two successive measurement sampling points was constrained
to between 1 and 20 hours, while that between two input switching times was bounded between 2
and 20 hours. The calculations of the Jacobian and Hessian matrices in MBDOEs were done using
parameter values θd = [θ1, θ2, θ3, θ4]=[0.5, 0.5, 0.5, 0.5] [17,33], which were different from the “true”
parameter values used for noisy data generation in the next section. The reason for using a different
parameter set in the MBDOE from the true values is to emulate the typical scenario in practice where
one would start only with an estimate or guess of the model parameters. Fig. 3 and 4 and show
the optimal dynamic inputs and data sampling times resulting from all MBDOE methods mentioned
above (see also the Pareto frontiers in Supplementary Information). Meanwhile, Table 2 gives the
optimal initial biomass concentration x1(0).
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Figure 3. Optimal dilution factor and feed substrate concentration. Optimal dilution factor (u1 in
hour−1, left panels) and feed substrate concentration (u2 in g/L, right panels). (A-B) D-optimal (blue).
(C-D) A-optimal (red). (E-F) E-optimal (green). (G-H) modified E-optimal (black). On panels (A-H),
the optimal u1 and u2 using FIM-based criteria are shown in solid line. Those using FIM-based criteria
combined with curvatures are shown in dashed line, while those using FIM-based criteria combined
with parameter correlation are drawn in dashed-dot line. (I-J) threshold curvature (magenta, solid
line), and Q-optimal design (magenta, dashed line).
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Figure 4. Optimal sampling grid from MBDOEs. Simple FIM-based criteria in continuous line,
FIM-based criteria combined with curvatures in dashed line, FIM-based criteria combined with
parameter correlation in dashed-pointed line. Dots indicate the sampling times.

Table 2. Optimal initial condition of biomass x1(0) (g/L) from MBDOEs.

Design criterion x1(0)
D-optimal 10.0

MOO D-optimal and curvatures 10.0
MOO D-optimal and correlation 10.0

A-optimal 10.0
MOO A-optimal and curvatures 9.9
MOO A-optimal and correlation 10.0

E-optimal 10.0
MOO E-optimal and curvatures 10.0
MOO E-optimal and correlation 10.0

modified E-optimal 10.0
MOO modified E-optimal and curvatures 10.0
MOO modified E-optimal and correlation 10.0

threshold curvature 8.2
Q-optimal 5.5

3.2. Performance evaluation

For each of the optimal experimental designs above, we generated in silico datasets by simulating
the ODE model using the parameter values θ∗=[0.31, 0.18, 0.55, 0.05], as reported in previous
publications [17,33]. We subsequently added independent and identically distributed (i.i.d.) Gaussian
random white noise to the model simulations using a variance σ2 of 0.04 for both x1(t) and
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x2(t) [17,33]. For each in silico dataset, we then performed a parameter estimation using the resulting
data (y1 and y2) by maximum likelihood estimation, i.e. by minimizing:

Φ(θ) =
1
σ2

10

∑
i=1

[y1(ti)− x1(ti, θ)]2 + [y2(ti)− x2(ti, θ)]2 (28)

We also employed the following constraints for θ in the optimization above:

0.05 ≤ θ1, θ2, θ3 ≤ 0.98

and
0.01 ≤ θ4 ≤ 0.98.

Finding the globally optimal solution to the parameter estimation in Eq. (4) is challenging. Here,
we solved the constrained parameter optimization problem using the interior-point algorithm
(implemented by the subroutine fmincon function in MATLAB) with the true parameter values θ∗

as the initial guess. By employing the true values as the initial starting point of the optimization, we
expect that the parameter accuracy would mainly be affected by the experimental design and not by
the ability of the parameter optimization algorithm to find the globally optimal solution.

We repeated the in silico data generation and parameter estimation as described above for
100 times, which resulted in a set of 100 parameter estimates. The performance of each MBDOE
was assessed by the average accuracy of the parameter estimates, measured by the average of the
normalized Mean Squared Error (nMSE):

nMSE =
1
4

4

∑
i=1

nMSEi (29)

where:

nMSEi =
variance(θ̂i)− bias2(θ̂i)

(θ∗i )
2 , i = 1, 2, 3, 4 (30)

The variance of θ̂i was computed using the set of 100 parameter estimates, while the bias was
calculated as the difference between the average of θ̂i and θ∗i . Table 3 gives the average nMSE of
the parameter estimates from each MBDOE under consideration.
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Table 3. MBDOE performance on the fed-batch fermentation of Baker’s yeast model. The overall
parameter accuracy is represented by the average of nMSE. The reported parameter values and
errors are the averages and standard deviations from 100 repeated runs of parameter estimation.

Design criterion nMSE θ1 ± SDθ1 θ2 ± SDθ2 θ3 ± SDθ3 θ4 ± SDθ4

D-optimal 7.06 × 10−3 0.3107 ± 0.0102 0.1831 ± 0.0276 0.5505 ± 0.0125 0.0502 ± 0.0026
MOO D-optimal and curvatures 4.71 × 10−3 0.3099 ± 0.0056 0.1825 ± 0.0233 0.5496 ± 0.0099 0.0499 ± 0.0018
MOO D-optimal and correlation 5.36 × 10−3 0.3117 ± 0.0134 0.1781 ± 0.0151 0.5543 ± 0.0270 0.0508 ± 0.0049

A-optimal 2.35 × 10−1 0.3294 ± 0.0659 0.2399 ± 0.1387 0.5841 ± 0.1083 0.0558 ± 0.0181
MOO A-optimal and curvatures 1.42 0.3669 ± 0.0947 0.5267 ± 0.2230 0.5548 ± 0.1333 0.0510 ± 0.0244
MOO A-optimal and correlation 4.82 0.0863 ± 0.0499 0.8927 ± 0.2555 0.2879 ± 0.1928 0.0177 ± 0.0263

E-optimal 8.01 × 10−2 0.3180 ± 0.0420 0.2026 ± 0.0956 0.5473 ± 0.0159 0.0496 ± 0.0026
MOO E-optimal and curvatures 3.33 × 10−3 0.3083 ± 0.0095 0.1829 ± 0.0164 0.5502 ± 0.0183 0.0500 ± 0.0026
MOO E-optimal and correlation 8.19 × 10−3 0.3108 ± 0.0164 0.1824 ± 0.0213 0.5552 ± 0.0304 0.0509 ± 0.0055

modified E-optimal 6.99 × 10−2 0.3137 ± 0.0165 0.1986 ± 0.0920 0.5498 ± 0.0144 0.0502 ± 0.0033
MOO modified E-optimal and curvatures 3.44 × 10−4 0.3095 ± 0.0036 0.1789 ± 0.0034 0.5491 ± 0.0073 0.0500 ± 0.0013
MOO modified E-optimal and correlation 2.27 × 10−3 0.3088 ± 0.0048 0.1820 ± 0.0160 0.5486 ± 0.0047 0.0496 ± 0.0013

threshold curvature 1.29 × 10−2 0.3144 ± 0.0307 0.1857 ± 0.0339 0.5500 ± 0.0155 0.0502 ± 0.0032
Q-optimal 1.91 × 10−2 0.3085 ± 0.0178 0.1757 ± 0.0216 0.5514 ± 0.0236 0.0504 ± 0.0119

4. Discussion

As shown in Fig. 3, the MBDOEs prescribed manipulating the input u1(t) mostly at the beginning
of the experiment and the input u2(t) for the entire duration of the experiment. For the majority of
the MBDOEs in this study, the optimal sampling times spread unevenly over the duration of the
experiment (see Fig. 4). A more detailed comparison between Fig. 3 and 4 showed that the optimal
sampling points were typically placed before and after a change in the dynamic inputs u1(t) and
u2(t). The exception to this observation was for the optimal design using A-optimal criterion, which
gave the worst parameter accuracy among the MBDOEs considered.

The consideration of model curvature using the proposed MOO MBDOE generally led to
improved parameter accuracy over using only model curvature (i.e. Q-optimal and threshold
curvature) or using only FIM-based criteria. The lowest nMSE came from the MOO MBDOE
design using modified E-optimal with model curvature. In comparison to MOO MBDOE using
parameter correlation, employing model curvature in the MOO framework gave better experimental
designs with lower average nMSEs. Meanwhile, Q-optimality and curvature thresholding strategies
provided better nMSEs than the majority of the FIM-based criteria, except the D-optimal design.
Finally, the optimal experiments based on A-optimal criterion, either alone or in MOO MBDOE,
performed poorly. The poor performance of A-optimal design has also been reported in a previous
publication [17].

The obvious drawback of curvature-based MBDOEs in comparison to FIM-based strategies is
the higher computational cost associated with computing the Hessian matrix. While the number of
first-order sensitivities (Jacobian) increases linearly with the number of parameters p, the number of
second-order sensitivities scales with p2. Fortunately, the calculation of the Hessian matrix can be
easily parallelized and implemented using multiple computing cores. In practice, one often focuses
on only a subset of the model parameters, and therefore the MBDOE is typically done for a handful
of parameters.

5. Conclusions

Existing MBDOE methods mostly rely on the FIM to define information criteria. Since the FIM
is based on first-order sensitivities with respect to the model parameters, the related MBDOEs may
perform poorly for highly nonlinear models. Here, a new model-based design of experiment using
multi-objective optimization framework was presented, employing the maximization of a FIM-based
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information metric and the minimization of model curvatures. The application to a model of the
fermentation of Baker’s yeast demonstrated that accounting model nonlinearity through model
curvatures in designing experiment could lead to improved parameter accuracy over using only a
FIM-based criterion. The proposed MOO MBDOE also outperformed other curvature-based designs,
including the Q-optimality and curvature thresholding, and another MOO MBDOE strategy using
parameter correlation. The use of the MOO framework further gives flexibility to accommodate other
criteria that may arise in a particular application, in the design of experiments.

Supplementary Materials: The following are available online at www.mdpi.com/link, Supplementary
Information.
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