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Abstract 

The pig is an important source of meat production and provides a valuable model for 

certain human diseases. MicroRNA (miRNA), which is non-coding RNA and regulates 

gene expression at the posttranscriptional level, plays a critical role in various biological 

processes. Studies on identification and function of mature miRNAs in multiple pig tissues 

are increasing, yet the literature is limited. Therefore, we reviewed current research to 

determine the miRNAs expressed in specific pig tissues that are involved in carcass values 

(including muscle and adipocytes), reproduction (including pituitary, testis, and ovary), and 

development of some solid organs (e.g., brain, lung, kidney, and liver). We also discuss the 

possible regulating mechanisms of miRNA. Finally, as pig organs are suitable candidates 

for xenotransplantation, biomarkers of their miRNA in xenotransplantation were evaluated. 
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Introduction 

The pig is one of the most widespread livestock species in the world, providing meat 

production [1]. Although relatively expensive to breed and with a relatively long gestation 

period (about 114 days) [2], the pig is still an ideal animal model for biomedical research 

because of its close phylogenetic proximity and similarities with humans, such as organ 

size, anatomical features, physiology, and organ development, compared with the mouse [3]. 

The pig has been used as a model to study various issues, such as reproduction [4], and the 

neuronal system [5], and is employed as a source of organs and cells in xenotransplantation 

[6]. 

 

Despite its apparent importance, knowledge about the pig is still much less than has been 

accumulated for the mouse and rat, such as genome organization and gene expression 

regulation. The latest porcine genome reference (Sscrofa 11.1) was shared in the NCBI 

website (https://www.ncbi.nlm.nih.gov/genome/?term=pig) by the Swine Genome 

Sequencing Consortium (SGSC) in 2017. 

 

When compared with the human, the pig’s genome is of comparable size and contains a 

similar number of protein-coding genes [7]. One might think that the pig should also have a 

similar number of microRNAs (miRNAs). However, the number of porcine miRNAs 

available in public databases is still limited, with only 411 mature miRNAs in the miRBase 

(v21) compared to human (2,588) and mouse (1,982) [8], partly because only part of the 

porcine genome is available for study [9]. The common research strategy on miRNA may 

include three aims: (i) characterization of miRNAs (including identification of novel 
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miRNAs), (ii) determination of target genes, and (iii) illumination of function of miRNAs 

and target genes. These strategies have been widely used to describe the miRNAome in 

various pig tissues, such as muscle [9-12], brain [13], fat [14], embryo [3], pituitary [15], 

intestine [16], ovary [17] and testes [4].  

 

This review is focused on the possible functions and regulating mechanisms of miRNAs in 

pigs, aiming towards a better understanding of the miRNAome in various tissues. Because 

of many similarities in morphology and physiology between pig and human, we also 

evaluate biomarker values of pig miRNA in pig-to-human xenotransplantation. 

 

Origins and mechanisms of miRNAs 

The miRNAs, which are typical transcripts of RNA polymerase II, are small non-coding 

RNAs in animals and plants [18]. They are transcribed from genomic DNA as long hairpins 

(pri-miRNA) with an imperfectly paired stem of ~33 bp [19]. The pri-miRNA is excised by 

Drosha to generate a pre-miRNA species in the nucleus, which is the first processing step. 

In the second processing step, pre-miRNA is exported from the nucleus and processed by 

Dicer to form the mature miRNA/miRNA* duplex of ~22bp length. The miRNA is then 

assembled into RISC (RNA-induced silencing complexes). Generally, only one strand of 

the duplex is stably associated with an RISC [20] (Fig 1). 
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Figure 1. Biogenesis of miRNA and assembly into miRISC, and possible mechanisms of 

miRISC-mediated repression. In animals, the pri-miRNA is transcribed by RNA 

polymerase II from genomic DNA, and is processed by Drosha with the aid of DGCR8 to 

generate a pre-miRNA species, which is exported from the nucleus and processed by Dicer 

to form the mature miRNA/miRNA* duplex. Generally, only one strand of the duplex is 

then assembled into miRISC. When RISCs bind to mRNAs, they can repress initiation of 

translation at the stage of cap recognition (I) or 60S recruitment (II). Alternatively, they can 

induce mRNA deadenylation and thereby inhibit its circularization (III). They can also 

repress translation at the post-initiation stage through inducing ribosomes to dissociate 

prematurely (IV). They can also induce deadenylation followed by decapping to facilitate 

mRNA degradation (V). Without repression, mRNAs recruit initiation factors and 

ribosomal subunits and form circularized structures (VI). 
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The miRNA acts as an adaptor for RISC to specifically recognize and regulate particular 

target mRNAs (Fig 1). Recognition involves Watson-Crick base pairing of the 2-8th 

miRNA nucleotides, which is the so-called seed region [21]. The binding sites of miRNA to 

mRNAs are located in the 3’ UTR (un-translated region) and usually exist in multiple 

copies. Most animal miRNAs bind imperfectly with mismatches. When RISCs bind to 

mRNAs, they can repress initiation of translation at the stage of cap recognition or 60S 

recruitment [22,23]. Alternatively, they can induce mRNA deadenylation and thereby 

inhibit its circularization [24]. They can also repress translation at post-initiation stage 

through inducing ribosomes to drop off prematurely [25]. They can also induce 

deadenylation followed by decapping to facilitate mRNA degradation [26,27] (Fig 1). 

 

miRNAs in pig skeletal muscle (Table 1) 

As the pig is an agriculturally important species, miRNAs that affect development and 

growth of economically important skeletal muscle are of interest. Several miRNAs may 

promote myogenesis [28-35] (Table 1). Several others have potential function during 

muscle development [35-51]. Others are involved in the development of the longissimus 

doris and psoas major muscles [46-51], whereas others [9,52-55] are expressed in a 

stage-specific manner across muscle development periods. Among them, the miR-1, 

miR-133, and miR-206, which are specifically expressed in cardiac and skeletal muscle 

[32], are frequently listed as the highest expressed miRNAs in porcine muscle 

[9,10,41,56,57]. These multiple above-mentioned miRNAs provide insights into the 

regulation of muscle growth, and are potential candidates for further improvement of meat 

quality and production using molecular approaches. 
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Table 1: miRNAs in pig skeletal muscle 
 

miRNA Target Function Reference 
 

miR-1a HDAC4 promotes myogenesis during embryonic 
development and muscle cell differentiation 

28,29,46-4
8 

miR-133 SRF enhances the proliferation of myoblasts 29,46-48 
miR-27b  involved in myogenic differentiation, 

fast-specific and glucocorticoid-dependent 
myostatin expression 

30-32 

miR-148a ROCK1 a novel myogenic miRNA that mediates 
myogenic differentiation 

33 

miR-143  controls performance of different fiber types 34,35 
miR-378 BMP2 

MAPK1 
a candidate for myogenesis 36,37 

miR-128  regulates adipogenesis, osteogenesis, and 
myogenesis 

38 

miR-126  attenuates insulin signaling and governs 
vascular integrity and angiogenesis 

39,40 

miR-92a  regulates skeletal muscle growth 35 
miR-127 
miR-432 
miR-136 

 regulate the callipyge muscular hypertrophy 
phenotype 

41,42 

miR-10b  regulates myogenesis and muscle 
development 

41,43 

let-7 
family 

 key miRNA regulators of development 44,45 

miR-103 
miR-107 

 involved in cellular Acetyl-CoA and lipid 
levels 

46,49 

miR-23 PGC-1α affects the ratio of oxidative red muscle and 
oxidative white muscle fibers 

46,50,51 

miR-181 Hox-A11 barely detectable in resting muscle, 
establishes the muscle phenotype 

52,53 

miR-206 Cx43 only highly-expressed in newly-formed 
muscle fibers, promotes myoblast 
differentiation and development 

32,54,55 

miR-486  Expressed postnatally, 
acts as an inhibitor of myogenesis 

9 

miR-376b  expressed prenatally, 
plays a role in promotion of myogenesis 

9 

miR-363 
miR-365 
miR-422b 

 differentially expressed between 33 days 
post-gestation and adult life, long-term 
regulation of muscle growth and development 

9 
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miRNAs in pig adipose tissue (Table 2) 

In addition to skeletal muscle, adipose also affects the carcass value of a pig, including 

meat quality grade and yield. It also plays an important role in metabolic health. miR-143 

was the first miRNA reported to be involved in adipose cell biology [58-60] (Table 2). The 

miR-210 [14,61] and the miR-27 family [14,62] are involved in adipogenesis. Several are 

abundant in both visceral and subcutaneous adipose tissues [60,61,63,64], whereas others 

are subcutaneous adipose tissue-specific enriched miRNAs [64-67]. Some are specifically 

expressed in the greater omentum [64,68,69]. Research into pig adipose tissue miRNAs 

may be beneficial in meeting the increasing demand of consumers for improved pork 

quality, which is a topic of worldwide concern [14]. 

Table 2: miRNAs in pig adipose tissue 

miRNA Target Function Reference 
 

miR-143 ERK5 promotes adipocyte differentiation 58-60,63 
miR-210  promotes adipogenesis 14,61 
miR-27 family INSR 

IRS1-4 
PDK1/2 
CREB 
S6K1 

inhibit adipogenesis 14,62 

miR-148a-3p  involved in differentiation of 3T3-L1 pre-adipocytes 61 
let-7a-1-5p 
let-7f-5p 

 play potential housekeeping roles in adipocytes 64 

miR-155-5p C/EBP-b inhibits adipogenesis 64-67 
miR-193b-3p 
miR-365 

 act as central regulators of brown fat differentiation 
and adipogenesis 

64 

miR-374b-5p C/EBP-b involved in the effect of maternal dietary protein on 
lipid metabolism 

64 

miR-18a-3p 
miR-20-3p 
miR-19b-1-5p 
miR-181a-2-3p 
miR-181b-2-3p 

 involved in development and production of 
pro-inflammatory B cells and T cells 

64,68,69 
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miRNAs in other pig tissues (Table 3) 

Although most research has hitherto been dedicated to miRNA’s roles in meat quality, 

emerging research has evaluated miRNA in other solid tissues in pigs, including, but not 

limited to, reproduction. Many miRNAs are enriched in reproductive tissues [4,15,17,44] 

(Table 3). Others may play a role in differentiating neurons in brain development 

[3,13,70-73]. Several are highly-expressed in big solid organs [1,44,74-76]. The miR-200b 

and miR-214 are key miRNAs in tooth development [77,78].  

When a miRNA is predominant, this suggests that it could have a significant role in the 

tissue, and that it could govern or be implicated in the major constitutive functions carried 

out by this tissue. 

Table 3: miRNAs in other pig tissues 

 

miRNA Tissue Function Reference
 

miR-7 pituitary  15 
miR-760 
miR-1296 
miR-137 
miR-362 

pituitary  44 

miR-153 
miR-205 

mature testis  4 

miR-196 
miR-149* 
miR-485-3p 

immature 
testis 

 4 

miR-21-5p ovary, testis  17 
miR-9 
miR-30a 

head region miR-9 regulates proliferation and 
migration of human neural 
progenitor cells 

3,70 

miR-17 
miR-106a 

neurons and 
brain 

involved in neurons 
differentiation and brain 
development by regulating APP 

13,71 

miR-29c adult cortex, an effective biomarker of 72,73 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 September 2017                   doi:10.20944/preprints201709.0057.v1

http://dx.doi.org/10.20944/preprints201709.0057.v1


10 
 

cerebellum radiation-induced brain response 
miR-320 lung  74 
miR-375 stomach and 

lymph nodes 
 74 

miR-23a 
miR-125b 
miR-23b 
miR-126 
miR-200b-3p 

kidney  1 

miR-122-5p liver plays a role in cholesterol, fatty 
acid, and lipid metabolism 

44,75,76 

miR-200b 
miR-214 

teeth miR-200b is key in tooth 
development 

77,78 

 

 

Biomarker values of miRNA in xenotransplantation 

The pig has become the most suitable candidate as a source organ for xenotransplantation 

to overcome the growing gap between the need and availability of human donor organs [6]. 

Detailed genome information and emerging gene-editing technologies increase the 

possibility of producing pigs specific for this purpose. The xenotransplantation of organs 

from gene-modified pigs is associated with longer survival and less rejection [6]. Biopsy is 

the gold standard for diagnosis of conditions such as acute rejection (AR), disease 

recurrence, and drug toxicity [79]. However, biopsy often relies on ‘subjective’ measures, 

with some variability in results and reporting methods among pathologists, or limited 

diagnostic accuracy associated with sampling error [80]. There is a critical need for 

biomarkers for early diagnosis, treatment response, and outcome prediction in organ 

transplantation, with the final goal of an individualized treatment to prevent or reverse graft 

injury [81]. 
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The miRNAs may be ideal candidates as biomarkers of disease [82-86]. Several factors (the 

relatively consistent changes seen in diseases, reliable analysis methods, tissue-specific 

expression patterns, less complexity than mRNAs, no post-processing modification, and 

amplifiable signals) contribute to making miRNAs ideal candidates, especially in the cancer 

diagnostic field [87-91]. Profiling miRNAs can be used as markers of organ donor 

quality/ischemia reperfusion injury [92]. The strong association between miRNA 

expression and allograft function or acute rejection demonstrates that miRNAs may be 

excellent biomarkers of human allograft status [81,93]. For example, levels of miR-142-5p, 

miR-155 and miR-223 can each predict acute rejection with >90% sensitivity and 

specificity in human renal allografts [94,95]. Because miRNAs are stably expressed in 

serum, plasma, urine, saliva, and other body fluids, this makes them ideal non-invasive 

biomarkers [83] to accurately monitor graft function in xenotransplantation. There are 

minor differences in the nucleotide composition of miRNAs among species [74]. Therefore, 

the circulating pig-specific miRNAs in human body fluids have vast potential to be 

biomarkers after pig-to-human xenotransplantation. Graft tissue and/or circulating miRNA 

profiles may be used as new biomarkers in guiding the diagnostic, therapeutic, and 

prognostic strategies that are associated with over-immunosuppression, organ toxicity, and 

graft rejection or loss. 

 

Discussion 

Knowledge of human development, physiology, and pathology can be obtained from 

suitable animal models, especially the mouse and rat, but many of their physiological 

parameters (e.g., size, respiratory rate) are significantly different from those in humans [2]. 
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Rodent genomes also have a faster rate of evolution than the human genome [96]. The pig 

is not only of significant agricultural value, but is also considered a good model for 

biomedical research [97]. Furthermore, pigs have been identified as the most promising 

source of organs for xenotransplantation to counteract the shortage of human organs for 

transplantation [98].  

 

Many miRNAs are highly-conserved among related species [99]. Studies on miRNAs in the 

pig will be beneficial in understanding their key regulatory roles in humans. To obtain a 

better insight into the biological functions of miRNAs, it is imperative to identify all 

miRNAs expressed in the pig genome and their potential mRNA targets [100,101], which is 

becoming easier using bioinformatic methods, with a growing number of excellent tools 

becoming available [8,102]. However, the false discovery rate in predictive-results remains 

high, and experimental validation will be needed after bioinformatic prediction. We suggest, 

however, that pig miRNA profiles will be used as new biomarkers in pig-to-human 

xenotransplantation. 
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