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Abstract

Had magnetic monopoles been ubiquitous as electrons do, we would have probably had a different

form of matter, and power plants based on currents of these magnetic charges would have been a

familiar scene of modern technology. Magnetic dipoles do exist however, and in principle one could

wonder if we can use them to generate magnetic currents. In the present work, we discuss the

issue of generating magnetic currents and magnetic thermal currents in electrically-insulating low-

dimensional Heisenberg antiferromagnets by invoking the (broken) electricity-magnetism duality

symmetry. The ground state of these materials is a spin-liquid state that can be described well via

the Jordan-Wigner fermions, which permit an easy definition of the magnetic particle and thermal

currents. The spin-liquid states in these antiferromagnets are either gapless or gapped liquids of

spinless fermions whose flow defines a current just as the one defined for electrons in a Fermi liquid.

The driving force for the magnetic current is a magnetic field with a gradient along the magnetic

conductor. The present work is about claiming that what the experiments in spintronics attempt

to do is trying to treat the magnetic degrees of freedoms on the same footing as the electronic ones.

PACS numbers: 75.76.+j, 72.25.-b, 85.75.-d
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I. INTRODUCTION

The issue of the adequate definition of spin current had attracted significant interest

because of its importance in spintronics’ applications1–3. Z. An et al.4 used the relativistic

Dirac equation in order to define such a current. Also many other authors argued that

spin transport includes both linear displacement of spins as well as angular motion due

to the rotation of the spins. One of the earliest problems encountered in the definition

of the spin current is the satisfaction of the continuity equation5,6. It is interesting that

spintronics experiments attempt to marry in practice between spin currents and electric

currents, and create one current from the other and vice-versa. It is as if these experiments

are trying to prove in a practical manner some sort of symmetry between electricity and

magnetism. We propose that, at a more fundamental level, these experiments attempt to

prove the dual electricity-magnetism symmetry, which is missing from the Maxwell equa-

tions in the presence of matter (Maxwell equations are symmetric under the dual symmetry

transformation in vacuum). While this symmetry is broken at the monopole level, it could

approximately hold at the dipole level in materials where the charge degrees of freedom

are completely frozen due to a large energy gap in their excitations. In such materials, the

magnetic degrees of freedom carried by magnetic dipoles are responsible for the low-lying

energy excitations. The low-dimensional (chains and ladders) Heisenberg antiferromagnets

constitute a good example of these materials.

For these low-dimensional antiferromagnets, a natural way to deal with the difficulties

associated with the definition of the magnetic particle and heat currents is the usage of the

duality symmetry of electromagnetism. It is well known that the Maxwell equations would

have been fully symmetric under the duality transformation if magnetic monopoles existed.

If they did, magnetic currents would have been defined in the same way as electric currents.

In the present real situation where the dual symmetry between electricity and magnetism

is broken, the magnetic dipoles resulting from the spins’ degrees of freedom of electrons

do exist, however. In the Heisenberg antiferromagnets, these magnetic dipoles interact and

form the so-called spin liquids that bear interesting similarities with the Fermi liquid states

of electrons in conventional metals.

We define the magnetic current and magnetic thermal current after transforming the spin

degrees of freedom using the Jordan-Wigner (JW) transformation in one-dimension (1D),
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or its generalized sisters in the case of ladders7,8. This approach is well suited for insulating

antiferromagnets, like the linear-chain compound Sr2CuO3. Such materials are electrically

insulating because the electric charge degrees of freedom are suppressed by large excitation

energy gaps, and are characterized by spin-1/2 moments that are arranged on chains or

ladders. Due to their strong spatial anisotropic magnetic exchange interactions and large

quantum fluctuations, they do not magnetically order even at very low temperatures. One of

the interesting consequences of using the JW transformation is the definition of a magnetic

current rather than a spin current because such a transformation puts the treatment of the

spin degrees of freedom on the same footing as the electronic charge degrees of freedom

in metals. We claim that this one-to-one correspondence between the magnetic moments

(spins) in the Heisenberg antiferromagnets and electrons (charges) in metals is reminiscent

of the duality symmetry of electricity and magnetism in vacuum, or even in matter had the

magnetic monopoles9 been ubiquitous as electrons do. That is to say that the original 1D

JW and its higher dimension generalized sisters transform the spins into spinless fermions

that behave exactly like electrons as far as Fermi statistics and transport properties are

concerned.

The Heisenberg quantum antiferromagnets are modeled with the Heisenberg Hamiltonian

that consists of exchange interactions between spins on adjacent sites. The 1D case relevant

for Sr2CuO3 for example is simpler to analyze, and will be used throughout this paper. Note

however that the results of this work can be generalized to three-leg ladder systems, which

behave as effective single Heisenberg chains especially when the interchain interaction is

much greater than the intrachain one10. The two-leg Heisenberg ladder is however gapped11,

and an approach will be developed in the near future by taking into account this gap. Upon

using the JW transformation, the 1D Hamiltonian maps into that of spinless fermions with a

tight-binding kinetic energy term corresponding to the XY part of the spin Hamiltonian, and

a repulsive interaction between JW fermions on adjacent sites resulting from the Ising term

of the Hamiltonian. Afterward, we define particle and thermal currents for these spinless

fermions in the same way as for electrons in a metal, and use all the techniques of transport

theory including the Kubo formula for calculating the conductivity and the Green-Kubo

formula for the magnetic thermal conductivity.

The driving force for the magnetic current of the spinless fermions can be provided by

an external magnetic field with a gradient along the chain of spins. The reason for this is
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that the JW transformation maps the magnetic field in the Zeeman-coupling term onto the

chemical potential for the spinless JW fermions, as is well known. Thus a gradient in the

magnetic field forces the spinless fermions to flow along the chain in order to lower their

energy, just as electrons do in order to lower their energy when a gradient in the chemical

potential is applied to them. Note that a magnetic field with a gradient, rather than a

uniform magnetic field alone, is needed for the present case of a magnetic current because

this magnetic current is not that of magnetic monopoles, but that of magnetic dipoles. This

is similar to the fact that a gradient in the electric field can be the driving force for an electric

dipole. The experimental work by Hirobe et al.12 reported the observation of spin current in

Sr2CuO3, which resulted from a temperature gradient. Indeed a temperature gradient ∇T

can generate a flow of the JW fermions just as it does for electrons in metals. We however

argue for and support the more convenient utilization of a magnetic field gradient. It is

worth mentioning that we think that the Heisenberg antiferromagnets can be incorporated

into spiontronics devices without using electric contacts. The magnetic fields generated by

circulating electric currents in the regular electric circuits of a given device can be taken

advantage of to induce a magnetic current in the Heisenberg antiferromagnet part of the

device.

The present paper is organized as follows. In Sec. II, the nature of the JW fermions

is discussed in connection with the (broken) electricity-magnetism dual symmetry. In Sec.

III, a review of the bond-mean-field theory (BMFT) applied to the Heisenberg chain in a

magnetic field is presented. In Sec. IV, the particle current density, the Green’s and spectral

functions are calculated for the JW fermions. In Sec. V, the current-current correlation

function is calculated and used to derive the conductivity of the JW fermions. Sec. VI deals

with the calculation of the magnetic thermal conductivity. Conclusions are drawn in Sec.

VII.

II. THE JW TRANSFORMATION AND DUALITY SYMMETRY

In addition to the fact that the JW transformation preserves the spin commutation

relation as required, we think that a more profound aspect is related to the electricity-

magnetism duality (broken) symmetry as explained in the introduction. This transformation

maps magnetic dipoles (magnetic degrees of freedom) onto spinless fermions whose statistics
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and physics are similar to the ones of electrons, except for the electric charge. The 1D JW

transformation13 reads as

S−
i = cie

i
∑i−1

j=1 c
†
jcj

Sz
i = c†ici − 1/2, (1)

where i or j labels the chain sites, S−
i is the spin ladder operator, and Sz

i is the z-component

of the spin operator. ci (c
†
i ) is the JW annihilation (creation) operator. We believe that

there is a profound reason behind the fact that the JW fermions satisfy the same statistics as

the original electrons that carry the spin (thus magnetic) degrees of freedom, and that this

is not a mere accident. The JW transformation bears in it the footprint of the electricity-

magnetism duality symmetry of the Maxwell equations in the vacuum. The rational for

this proposal is that if the Maxwell equations included magnetic monopoles, one could have

had a transformation between electrons and magnetic monopoles in any given study of the

electronic and magnetic properties of any material, and that the magnetic and electronic

properties would have been transformed naturally into each other as a consequence of this

duality symmetry. For example, we could have had defined easily the magnetic current of

magnetic monopoles. However, since the dual symmetry does not apply in the presence of

matter, the magnetic degrees of freedom, which derive their meaning only from the elec-

tronic ones (electrons’ spin here), are transformed into the JW fermions for the Heisenberg

antiferromagnets. This transformation tells us that the magnetic dipoles are fermions that

do not carry a spin. In the next section, we will use this symmetry to predict and argue that

it is possible to construct magnetic generators and magnetic circuits made of Heisenberg

antiferromagnets. This constitutes the central finding of the present work.

III. THE MAGNETIC CURRENT IN THE BOND-MEAN FIELD THEORY

In the presence of a magnetic field gradient along the chain, the Heisenberg model assumes

the form

H1D = J
∑
i

Si · Si+1 − gµB

∑
i

Bex
i S

z
i , (2)

where J is the exchange coupling constant and Bex
i is a position dependent magnetic field

that can be taken to vary linearly with position along the chain; i.e., Bex
i = Bex

0 x with Bex
0
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a field per unit length. In terms of the JW fermions, Eq. (1), this Hamiltonian maps onto

H1D =
J

2

∑
i

c†ici+1 +H.C.+ J
∑
i

(
c†ici −

1

2

)(
c†i+1ci+1 −

1

2

)
−

∑
i

hic
†
ici +

∑
i

hi
2
, (3)

where hi = gµBB
ex
i , with g being the Landé factor and µB the Bohr magneton. As well

known, a constant magnetic field hi ≡ h plays the role of the chemical potential for the

JW fermions. Such a constant magnetic field is also known to polarize the spins along

its direction, with the magnetization Mz = χh for h ≪ J , where χ is the uniform spin

susceptibility. A gradient in the magnetic field along the chain is equivalent to tilting the

chemical potential. Such tilting causes the JW fermions to flow, thus creating a current

of these fermionic particles. For the spin degrees of freedom, the flow of the JW fermions

occurs with hopping amplitude J/2 and results in the flow of spin flip fluctuations, since

the presence of a JW fermion at a given site is a spin up and its absence is identified with

a spin down; Eq. (1).

The need for a gradient in the magnetic field to drag the magnetic excitations resulting

from the magnetic dipoles is similar to the fact that a gradient in an electric field is needed

in order to drag electric dipoles; a uniform electric field alone does not act on the dipoles,

except by a force couple. We think that this similarity is a consequence of the duality

symmetry between electricity and magnetism. This in turn supports our claim that the JW

transformation bears a signature of this symmetry.

As far as potential practical applications are concerned, we predict that a magneto-motive

force (mmf) can be realized using a magnetic battery made of a sample of a Heisenberg

antiferromagnet in the presence of a magnetic field with a gradient. Then a magnetic

current can be generated in a circuit connected to this magnetic battery and also made

of the same Heisenberg antiferromagnet in the presence of a uniform magnetic field. The

magnetic fields involved need not be large, and can be chosen to be much smaller than the

saturation field hc = 2J . The magnetic current carries obviously energy, and can be used

in spintronics applications. Note that the magnetic circuits need not be coupled through

interfaces to the electric circuits providing the magnetic fields. If the predictions of this paper

are observed experimentally, then we will have achieved some sort of practical realization

and extension in matter of the symmetry of Maxwell equations in vacuum under the duality

transformation E → B and B → −E, where E and B are the electric and magnetic fields,

respectively. The present proposal for generating spin currents is more practical to realize
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than the other proposed or used methods that consist of selecting polarized spin-up or spin-

down electrons. Because the Heisenberg antiferromagnets are insulators, the spin current is

not accompanied by a charge current at all. As mentioned above, the spins in the Heisenberg

chain are polarized along any applied uniform magnetic field however small it is. Using an

interface with a metal, the spin current in a Heisenberg antiferromagnet gives rise to an

electromotive force by taking advantage of the inverse spin Hall effect (ISHE)14. Also, by

switching the magnetic current on and off in a Heisenberg antiferromagnet, the variation in

the magnetic field in these antiferromagnets may be used to induce an electromotive force

in an ordinary circuit in a contact-less manner contrary to ISHE.

We assume that the gradient in the magnetic field is much smaller than the spin exchange

coupling. We thus calculate the magnetic conductivity and magnetic thermal conductivity

using the (Green-)Kubo formula in the linear response approximation. The current of the

JW fermions is readily defined as the magnetic current, and the current-current correlation

function is evaluated in the limit of a uniform magnetic field to get this conductivity.

In Ref. 11, the effect of a uniform field on the Heisenberg chain was investigated in the

framework of the BMFT7. In brief, the Hamiltonian in the presence of the Zeeman coupling

term gµBB
∑

i S
z
i with a uniform magnetic field B along the z-axis, takes on the form

H1D = NJQ2 +Nh/2−NMz(Mz + 1)J +
∑
k

Ψ†
kH1D(h)Ψk, (4)

where N is the total number of sites, and Mz = ⟨Sz
i ⟩ is the magnetization per site. The

two-component spinor Ψk is given by

Ψk =

 cAk

cBk

 , (5)

and the Hamiltonian density matrix by

H1D(h) = (2MzJ − h)σ0 − (J1 sin k)σ2 (6)

where σ0 is the 2× 2 identity matrix and σ2 the second Pauli matrix. Here, J1 = J(1 + 2Q)

with Q = |⟨cic†i+1⟩|, and h = gµBB. The chain is subdivided into two sublattices A and B as

a consequence of the strong antiferromagnetic correlations that decay only algebraically with

distance because the correlation length is infinite. Locally, the spins maintain a staggered

orientation that justifies the use of the bipartite character. This gives rise to two types of

JW fermions at the mean-field level, and the creation and annihilation operators are labeled
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by the two sublattice indexes. At the mean-field level, the chemical potential renormalizes

to h′ = h− 2MzJ = h(1− 2Jχ) if h ≪ J , or to h′ = h− J if h > hc in the fully saturated

state. χ is the uniform spin susceptibility, and hc = 2J is the magnetic field above which

the magnetization saturates.15,16

Diagonalizing (6) yields the following energy eigenvalues

Ep(k) = −h′ + pJ1| sin k|; p = ±.

The magnetization per site, Mz and bond parameter Q are given by11

Q = −1

2

∫
dk

2π
| sin k|

∑
p=±

pnF [Ep(k)],

Mz =
1

2

∫
dk

2π

∑
p=±

nF [Ep(k)]−
1

2
. (7)

In order to calculate the thermal and spin conductivities, we will next calculate the current

density, Green’s function and spectral function for the JW fermions within the BMFT. We

start first by the spin conductivity.

IV. CURRENT DENSITY, GREEN’S AND SPECTRAL FUNCTIONS

A. Current density operator

Because every spin is carried by a localized electron on the chain, the spins cannot displace

and thus cannot create a spin current in the same way when electrons are mobile. The spin

fluctuations can however propagate along the chain, creating the magnetic current we seek

to calculate. The spin fluctuations’ propagation is caused by the kinetic energy of the JW

fermions in Hamiltonian (3), and this magnetic current’s density operator is therefore given

within the tight-binding approach by:

j = −iJ
2

∑
i

{
(cB†

2i+1c
A
2i − cA†

2i c
B
2i+1) + (cA†

2i c
B
2i−1 − cB†

2i−1c
A
2i)

}
x̂, (8)

where x̂ is a unit vector along the chain direction. Using the phase configuration ...π−0−π...

on the intersite bonds along the chain, which is utilized to write the mean-field Hamiltonian

(4),11 and the Fourier transform cαi = 1√
N

∑
k e

ikricαk where α = A,B, the operator j takes

on the from

j =
∑
k

iv(k)(cA†
k cBk − cB†

k cAk ) =
∑
k

v(k)Ψ†
kσ2Ψk, (9)
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with v(k) = J cos kx̂ is the spin velocity along the chain. Note the cosine function in this

spin velocity instead of sine because of the above phase configuration. This spin velocity

being in cosine is in agreement with the exact result for the energy spectrum π
2
J sin k.15

B. Green’s and spectral functions

The single-particle Green’s function is defined by G = (iωn−H1D)
−1. Within the BMFT

the latter takes on the 2× 2 matrix form

G(k, ωn) =
1

2

∑
p=±

σ0 − pσ2 sin k/| sin k|
iωn − Ep(k)

. (10)

The retarded Green’s function is Gret(k, ω) = G(k, iωn → ω+iη), with η a very small positive

number.

The spectral function A(k, ω) = −2ImGret(k, ω) assumes the following expression:

A(k, ω) =
∑
p=±

[
ησ0 + p

(
ω − Ep(k)

)
σ′
2

sin k

| sin k|

]
ap(k, ω), (11)

with ap(k, ω) = [
(
ω − Ep(k)

)2
+ η2]−1, and the matrix σ′

2 = −iσ2 =

 0 −1

1 0

 .

V. THE J-J CORRELATION FUNCTION AND MAGNETIC CONDUCTIVITY

A. Kubo formula

The Kubo formula for the current-current correlation function, Π(q, τ) = − 1
V
⟨j†(q, τ)j(q, 0)⟩,

where V is the volume of the sample, yields in the long-wavelength (q = 0):

Π(iωm) =
1

V

∫ β

0

dτeiωmτ
∑
k,k′

v(k′)v(k)⟨TτΨ†
k′(τ)σ2Ψk′(τ)Ψ

†
k(0)σ2Ψk(0)⟩

=

∫ β

0

dτeiωmτ

∫
dk

2π
v2(k)Tr[G(k, τ)σ2G(k,−τ)σ2]

=

∫
RBZ

dk

2π

∫
dϵ

2π

dϵ′

2π

nF (ϵ)− nF (ϵ
′)

ϵ− ϵ′ + iωm

v2(k)Tr[A(k, ϵ′)σ2A(k, ϵ)σ2] (12)

with ψ1
k = cAk and ψ2

k = cBk . In going from the first line to the second in Eq. (12), the

summation over the 3D wavevector reduces to only the 1D component, with the summation

over the transverse components, ky and kz, yielding an overall factor 1/bc where b and c are

9
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the lattice parameters in the y and z directions, respectively. Note that the sum over the

x-component of k, labeled k, divided by the length of the sample L is replaced by
∫

dk
2π

in

the limit L/a→ ∞ where a is the lattice parameter in the x direction. For convenience we

set a = b = c = 1, and will reinstate these parameters in the final results of conductivities.

The integral in the last line of Eq. (12) is over the reduced Brillouin zone (RBZ).

B. The real part of the magnetic conductivity

We next use the analytical limit iωn → ω + iη to obtain the retarded conductivity, and

write 1
x+iη

= P (x) − iπδ(x), where P (x) is the principal part of x, and δ(x) is the Dirac

delta distribution, in order to cast the conductivity in the following from

σ(ω) =

∫
RBZ

dk

2π

∫
dϵ

4π

nF (ϵ)− nF (ϵ+ ω)

ω
v2(k)Tr[A(k, ϵ+ ω)σ2A(k, ϵ)σ2]

=

∫
RBZ

dk

2π

∫
dϵ

2π

nF (ϵ)− nF (ϵ+ ω)

ω
v2(k)

∑
p=±

∑
p′=±[

η2 − pp′
(
ϵ+ ω − Ep′(k)

)(
ϵ− Ep(k)

)]
ap′(k, ϵ+ ω)ap(k, ϵ). (13)

The contribution to σ(ω) in η2 gives the usual Drude term. The term in pp′ is however

negligibly small because the main contribution to the integral comes from ϵ = Ep(k). Indeed,

using the representation

δ(x) =
1

π

η

x2 + η2
; η → 0+

for the delta distribution, we write ηap(k, ϵ) ≈ πδ
(
ϵ−Ep(k)

)
. Then, the conductivity reduces

to the same form as in the semi-classical approximation17:

σ(ω) =
∑

p′,p=±

∫
RBZ

dk

2π

∫
dϵ

2

nF (ϵ)− nF (ϵ+ ω)

ω
v2(k)[

η − pp′
(
ϵ+ ω − Ep′(k)

)(
ϵ− Ep(k)

)
/η

]
ap′(k, ϵ+ ω)δ

(
ϵ− Ep(k)

)
=

∑
p′,p=±

∫
RBZ

dk

4π
v2(k)

η

[ω + Ep(k)− Ep′(k)]2 + η2

(
− ∂nF

∂ϵ

)
ϵ=Ep(k)

. (14)

The DC conductivity is obtained by letting ω → 0: This gives, after taking into account the

doubling of the unit cell due to the bipartite character of the Brillouin zone (BZ)

σDC =
1

2

∑
p=±

∫ π

−π

dk

4π
v2(k)τ

(
Ep(k)

)(
− ∂nF

∂ϵ

)
ϵ=Ep(k)

, (15)

when we assume that the main contribution comes from the region of the BZ with Ep−Ep′ =

0; i. e., near the Fermi energy of the JW fermions since the two bands E+ and E− touch
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at the Fermi energy when the external magnetic field is zero. Here η−1 ≡ τ
(
Ep(k)

)
is

identified with an energy-dependent relaxation time. So, the spin conductivity (14) and DC

conductivity (15) have the same form as conductivities of real electrons, with the electronic

group velocity and energy spectra replaced by those corresponding to the JW fermions.

In principle, one could have predicted this result by using the (broken) dual symmetry of

electricity and magnetism and stating that the JW transformation is a consequence of this

symmetry. For the present case of spin currents and conductivities, the energy spectra

result from the dispersion of the spin fluctuations. For this reason, it is legitimate to label

the current of these magnetic dipoles as magnetic current because the spins do not move

contrary to the (spintronics) experiments where two opposite currents of spin-up and spin-

down electrons flow.

In the case of a constant relaxation time τmag = 1/η, the integral in (15) is simple to

evaluate, and one finds

σDC ≈ τJ1a

πh̄2bc
=

lmag

πh̄bc
, (16)

where lmag = J1aτmag/h̄ is the magnetic mean-free path. The physical unit of this conduc-

tivity is s−1J−1m−1 because the JW fermions do not carry an electric charge.

The results of the present work tell us that all the methods and techniques developed for

the electronic transport can be implemented in the case of the Heisenberg antiferromagnets

once the JW transformation is used to transform the spin degrees of freedom to spinless

fermions. In general, for any Heisenberg quantum antiferromagnets in higher dimensions,

the 2D and 3D JW transformations7,8 can be used, but one has to deal with the occurrence

of long-range antiferromagnetic order below finite critical temperatures for the 3D systems.

VI. THE MAGNETIC THERMAL CONDUCTIVITY

Using the definition of the the energy current operator jE by Zotos, Naef, and Prelovsek18

for the Hamiltonian (2) one gets

jE =
J2

4

∑
i

(
ic†i+1ci−1 +H.c.

)
+
J2

2

∑
i

(
− ic†i+1ci +H.c.

)(
ni−1 + ni+2 − 1

)
. (17)
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In the absence of magnetic field, ⟨ni⟩ = 1/2 because the magnetizationMz = ⟨ni⟩−1/2 = 0.

If we replace ni by ⟨ni⟩ in (17), the energy current density simplifies to

jE ≈ J2

4

∑
i

(
ic†i+1ci−1 +H.c.

)
+ J2Mz

∑
i

(
− ic†i+1ci +H.c.

)
(18)

when an external magnetic field is applied along the z-axis. The magnetic thermal current

jQ is obtained by subtracting hj, where h is the chemical potential of the JW fermions, and

j = J
2

∑
i

(
− ic†i+1ci +H.c.

)
is the particle current density. This gives

jQ ≈ jEMF − h′j (19)

where

jEMF =
J2

4

∑
i

(
ic†i+1ci−1 +H.c.

)
plays the role of the energy current at the mean-field level. Interestingly, the expression

(19) for the thermal current is the same as that obtained using the mean-field Hamiltonian

with the renormalized chemical potential h′ = h− 2MzJ . Taking into account the bipartite

character of the lattice and transforming into Fourier space yield

jQ ≈
∑
k

Ψ†
kQΨk (20)

where the 2 × 2 matrix Q =
∑1

i=0Miσi with M0 = J2

2
sin(2k) and M1 = Jh′ cos k. In the

limit of a weak magnetic field; i.e., h ≪ J , which is realized for most real 1D Heisenberg

antiferromagnets, h′ ≪ J because JMz = Jχh≪ J ; χ ∼ 1/J . In this caseQ ≈ J2

2
sin(2k)σ0.

The magnetic thermal conductivity within the linear response is given by the Green-Kubo

formalism

κmag =
1

kBT 2

[
L22 − (L12)2

L11

]
(21)

with

L22 =
1

ωβ
Im

∫ β

0

⟨Tτ jQ
†
(τ)jQ(0)⟩dτ,

L11 =
1

ωβ
Im

∫ β

0

⟨Tτ j†(τ)j(0)⟩dτ,

L12 =
1

ωβ
Im

∫ β

0

⟨Tτ jQ
†
(τ)j(0)⟩dτ. (22)

Here, β = 1/kBT . We find that L12 = h′L11; ⟨Tτ jQ
†
(τ)j(0)⟩ = h′⟨Tτ j†(τ)j(0)⟩ because the

cross term ⟨Tτ jE
†
(τ)j(0)⟩ = 0. we note that the main contribution to the thermal current

12
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comes from the effective hopping of the JW fermions between sites belonging in the same

sublattice, which is of order J2. In zero field where h′ = 0 becauseMz = 0, only L22 survives,

giving the following contributions:

Tκmag(ω) =

∫
RBZ

dk

2π

∫
dϵ

4π

nF (ϵ)− nF (ϵ+ ω)

ω
M2

0Tr[A(k, ϵ+ ω)σ0A(k, ϵ)σ0]

=

∫
RBZ

dk

2π

∫
dϵ

4π

nF (ϵ)− nF (ϵ+ ω)

ω
M2

0

∑
p=±

∑
p′=±[

η2 − pp′
(
ϵ+ ω − Ep′(k)

)(
ϵ− Ep(k)

)]
ap′(k, ϵ+ ω)ap(k, ϵ). (23)

As we did for the magnetic conductivity, we will derive a semi-classical expression for κmag.

Hlubek et al.19,20 reported that κmag is only limited by extrinsic scattering processes in the

low-T regime. We therefore use a constant imaginary part for self-energy; i.e., ImΣ = −η,

and write for the term ηap(k, ϵ) ≈ πδ
(
ϵ − Ep(k)

)
in the spectral function as was done for

the magnetic conductivity. The result is

Tκmag =
∑

p′,p=±

∫
RBZ

dk

4π
M2

0 (k)
η

[ω + Ep(k)− Ep′(k)]2 + η2

(
− ∂nF

∂ϵ

)
ϵ=Ep(k)

≈ 1

2

∑
p=±

∫ π

−π

dk

4π
M2

0 (k)τ
(
Ep(k)

)(
− ∂nF

∂ϵ

)
ϵ=Ep(k)

, (24)

if the main contribution comes from Ep = Ep′ , which means that the summation over index

p′ = p contributes only one term. In the low-T limit with T ≪ J , Eq. (24) can be evaluated

yielding κmag linear in temperature. We assume the scattering processes, represented here

by the scattering rate τ(Ep), to be constant. In the absence of an external magnetic field,

that is when h′ = 0, one finds

κmag =
π

3

k2B
h̄

J1a

h̄
τ
1

bc
T

=
π

3

k2B
h̄
lmag

1

bc
T. (25)

This result is the same as the one found using the kinetic estimate in Ref. 21, namely

κmag =
∫

dk
2π
ckvklk where ck = dϵknk/dT is the specific heat (ϵk and nk are the energy and

the statistical occupation function of the state k), vk the velocity and lk the mean free path

of a particle with wavevector k. In Eq. (25), lmag = J1a
h̄
τ is the magnetic mean-free path,

which is assumed to be the same as the mean-free path for the magnetic conductivity.

A magnetic Wiedemann-Franz law can be defined as κmag

σDC
= LT with L =

π2k2B
3

. Here L

differs from that in the Wiedemann-Franz law for true electrons by the absence of the factor

e2 in the denominator; e being the electron charge. When the same self-energy is used for
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thermal and particle transport in the Heisenberg antiferromagnets, the Wiedemann-Franz

law is satisfied, implying that both transport phenomena are due to the spin fluctuations

represented here by the motion of the JW fermions.

VII. CONCLUSION

In this work we used the Jordan-Wigner transformation to argue in favor of the applica-

bility of the so-called low-dimensional Heisenberg antiferromagnets in the area of spintronics.

We propose that this transformation is a consequence of the duality symmetry that exists

between magnetism and electricity in these materials whose charge (electrons) degrees are

frozen and their excitations are gapped by a large energy. The dominating lowest-energy

excitations are due to the electronic spins (magnetic dipoles), which are transformed into

spinless fermions by the JW transformation. This transformation tells us that the spin mag-

netic moments turn into particles of spin zero. The spins in the Heisenberg antiferromagnets

form spin liquid states, which are gapless for the Heisenberg chain or ladders with an odd

number of legs, and gapped for ladders with an even numbers of legs. There is an interesting

similarity between the gapless spin liquid states and the Fermi liquid states formed by elec-

trons in conventional metals. This led us to argue that the spin current of the JW fermions

may rather be called a magnetic current, since there is not any displacement of actual spins

but motion occurs for their fluctuations only.

Given that the JW fermions behave like electrons as far as Fermi statistics is concerned,

they are convenient for defining and calculating the magnetic current and thermal mag-

netic current for the spin-1/2 Heisenberg antiferromagnets. The magnetic conductivity and

magnetic thermal conductivity are calculated for the Heisenberg chain within the bond-

mean-field theory, and are found to agree exactly with existing results in literature.
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