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Abstract: Markov chain Monte Carlo sampling propagators, including numerical integrators for1

stochastic dynamics, are central to the calculation of thermodynamic quantities and determination of2

structure for molecular systems. Efficiency is paramount, and to a great extent, this is determined by the3

integrated autocorrelation time (IAcT). This quantity varies depending on the observable that is being4

estimated. It is suggested that it is the maximum of the IAcT over all observables that is the relevant5

metric. Reviewed here is a method for estimating this quantity. For reversible propagators (which are6

those that satisfy detailed balance), the maximum IAcT is determined by the spectral gap in the forward7

transfer operator, but for irreversible propagators, the maximum IAcT can be far less than or greater8

than what might be inferred from the spectral gap. This is consistent with recent theoretical results9

(not to mention past practical experience) suggesting that irreversible propagators generally perform10

better if not much better than reversible ones. Typical irreversible propagators involve a parameter11

controlling the mix of ballistic and diffusive movement. To gain insight into the effect of the damping12

parameter for Langevin dynamics, its optimal value is obtained here for a multidimensional quadratic13

potential energy function.14

Keywords: Markov chain Monte Carlo; stochastic dynamics integrators; decorrelation time; integrated15

autocorrelation time.16

1. Summary17

Thermodynamic and structural properties of a molecular system can be precisely defined as18

expectations of ensemble-dependent functions of its configurations. The calculation of such expectations19

is feasible only with the use of Markov chain Monte Carlo (MCMC) methods or approximations thereof.20

Considered here are sampling propagators that do not compromise the Markov property. Included are21

unbiased samplers that conditionally accept proposed moves and biased samplers that unconditionally22

accept such moves, in particular, discretized stochastic dynamics. Many such sampling propagators23

are proposed in the literature, and, in virtually all cases, experiments are conducted to substantiate24

claims of superiority. Too often though, a good metric is not used to measure the computational cost of a25

propagator. The aim of this article is threefold: First, to explore some practicalities related to measuring26

the efficiency of a propagator. Second, to highlight the superior efficiency of irreversible propagators,27

namely, those that do not satisfy detailed balance. Third, to provide some insight into the optimal mix of28

diffusive and ballistic movement for Langevin dynamics.29

Let ρQ(q), q = [q1, q2, . . . , qν]T, denote the probability density function corresponding to the30

ensemble of interest. This function is assumed to be known only up to a multiplicative factor. An31
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observable is an expectation E[u(Q)] =
∫

u(q)ρQ(q)dq for some “preobservable” u(q). This can be32

estimated by the mean ŪN = (1/N)∑N−1
n=0 u(Qn), where the random values Qn are obtained from a33

Markov chain Q0 → Q1 → · · · → QN−1 that samples from ρQ(q). Note the use here of upper case to34

denote random variables.35

In practice, sampling performance is improved if the configuration variables q are augmented with
auxiliary variables p, e.g., momenta, yielding phase space variables z = (q, p). The probablity density is
extended to ρ(q, p) so that ∫

ρ(q, p)dp = ρQ(q),

and an MCMC scheme is constructed to produce a chain Z0 → Z1 → · · · → ZN−1 where Z = (Q, P).36

The samples from the chain tend to be highly correlated, and this greatly reduces the convergence
rate as N → +∞. As explained in Sec. 2, the variance of an estimate for E[u(Z)] is

Var[ŪN ] =
τ

N
Var[u(Z)] +O( 1

N2 ) (1)

where τ is the integrated autocorrelation time (IAcT) for u(z). The effective sample size is therefore N/τ, and37

the appropriate metric for evaluating a propagator is the effective sample size divided by the computing38

time.39

In a great many practical simulations, the effective sample size is probably close to zero. One40

can disagree on the significance of such simulations [1]. In any case, for the comparison of sampling41

algorithms, it is possible to choose molecular systems, restrained if necessary, for which it is feasible to42

attain a decent effective sample size.43

Often the spectral gap is cited as the relevant quantity. To understand its role, it is helpful to express44

ideas in a direct way as in Ref. [2]. As detailed in Sec. 2, introduce a forward transfer operator F to45

express the ratio ρn/ρ in terms of ρn−1/ρ, where ρn(z) is the probablity density for Zn. Let F0 = F − E46

where Eu denote the function with constant value E[u(Z)], Assume that the operator F0 has its spectrum47

strictly inside the unit circle, as it does in practice. The error in (1/N)∑N−1
n=0 ρn(z) can be shown [1] to be48

“proportional to” (1−F0)
−1 and therefore to the reciprocal of the spectral gap |1− λ2|, where λ2 is a49

nonunit eigenvalue of F nearest 1.50

Estimates of the IAcT are obtained by summing the terms of the autocorrelation function, which51

is constructed from autocovariances of increasing time lags normalized by the (lag zero) covariance.52

Each term contributes a roughly equal statistical error but a signal that decays as the lag time increases.53

Therefore, in practice, the terms are weighted by a function called a lag window. The lag window must54

be tailored to the autocorrelation function, and choosing a suitable lag window is very difficult, as55

mentioned in Sec. 2.1.56

Reliable estimates of the IAcT are impractical in general. Sec. 3 introduces the concept of
quasi-reliability, which aims to enforce a necessary condition for reliable estimates. Informally, the
goal is to ensure good coverage of those “parts” of phase space that has been explored, to reduce the
possibility of missing an opening to an unexplored part of phase space. More precisely, for an arbitrary
subset of phase space, we ask that the proportion of samples in that subset differ from its expectation by
no more than some tolerance tol, with, say, 95% confidence. This is shown to be true if the IAcT τ for any
preobservable u(z) satisfies τ ≤ tol2N. The maximum IAcT τmax is the greatest eigenvalue of

G = 1− E +F0(1−F0)
−1 +F †

0 (1−F †
0 )
−1, (2)

where † denotes the adjoint with respect to the inner product

〈v, u〉 =
∫

v(z)u(z)ρ(z)dz.
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For a reversible propagator, where F † = F , τmax is 1 less than twice the reciprocal of the spectral gap.57

However, for an irreversible propagator, it can be much smaller, as demonstrated by a simple example in58

Sec. 4.1, or larger as in Sec. 5. As a practical algorithm, it is suggested to obtain the maximum IAcT by59

first discretizing the space of preobservables. Consideration of a quadratic energy potential suggests60

using a linear combination of phase space variables (and possibly quadratic terms in these variables).61

The idea of seeking the preobservable that maximizes the IAcT is suggested already in Ref. [3],62

which considers a set of indicator functions as preobservables and uses the greatest IAcT of these to63

assess sampling thoroughness. In general, maximizing over a linear combination of preobservables64

can lead to a much larger result than taking the maximum of them individually, due to correlations65

that might exist between different preobservables. This does not necessarily apply, however, to those66

considered in Refs. [1,3].67

Sec. 3.1 notes that that typical irreversible propagators, termed “quasi-reversible” here, have a68

forward transfer operator F = RF̄ where each of F̄ and R is reversible and R2 = 1. For such69

propagators, the estimation of τmax simplifies somewhat.70

Theoretical results [4] indicate that adding irreversibility reduces the autocorrelation times of71

observables. Sec. 4 gives a couple of very elementary examples illustrating the dramatic increase in τmax72

if an irreversible propagator F is replaced by its reversible “counterpart” 1
2 (F +F †).73

Discretized Langevin dynamics is a particularly effective general-purpose propagator.74

Unfortunately, one must specify a value for the damping coefficient γ. Sec. 5 analyzes τmax for a quadratic75

potential and obtains an optimal value for the coefficient, namely, the value (3/8)1/2 = 0.612 · · · times76

the critical damping coefficent for lowest frequency ω1. This value is such that the lowest frequency77

mode is moderately underdamped, with higher frequencies increasingly underdamped.78

2. Preliminaries79

Assuming that Z0 has probability density ρ(z), the variance of the estimate UN is exactly

Var[UN ] =
1
N

Var[u(Z)]

(
1 + 2

N−1

∑
k=1

(
1− k

N

)
C(k)
C(0)

)

where the autocovariances

C(k) = E [(u(Z0)−E[u(Z0)]) (u(Zk)−E[u(Zk)])] .

The limit N → +∞ gives Eq, (1) where the integrated autocorrelation time

τ = 1 + 2
+∞

∑
k=1

C(k)
C(0)

. (3)

As an example of augmenting configuration space, consider ρ(q, p) ∝ exp(−β(V(q))+ 1
2 pTM−1p))

where p = [p1, p2, . . . , pν]T. A good propagator for this is the BAOAB integrator [5] for Langevin
dynamics, whose equations are

dQt = M−1Pt dt, dPt = F(Qt)dt− γPt dt +

√
2γ

β
M1/2 dWt, (4)

where M is a matrix chosen to compress the range of vibrational frequencies, F(q) = −∇V(q),80

M1/2MT
1/2 = M, and Wt is a vector of independent standard Wiener processes. Each step of the81

integrator consists of the following substeps:82

B: P′n = Pn−1 +
1
2 ∆tF(Qn−1),83

A: Q′n = Qn−1 +
1
2 ∆tM−1P′n,84
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O: P′′n = exp(−γ∆t)P′n +
√

1− exp(−2γ∆t)β−1/2M1/2Rn,85

A: Qn = Q′n +
1
2 ∆tM−1P′′n ,86

B: Pn = P′′n + 1
2 ∆tF(Qn),87

where Rn is a vector of independent standard Gaussian random variables. The samples generated from88

this process are shown [6] to be those from a distribution that differs from the correct one by onlyO(∆t2).89

The special choice γ = 1/(2∆t) is the Euler-Leimkuhler-Matthews integrator [5] for Brownian dynamics90

with step size δt = ∆t2/2. Remarkably, the invariant density of this integrator differs from the correct91

one by only O(δt2). This integrator can be expressed as a Markov chain Q′1 → Q′2 → · · · → Q′N−1 in92

configuration space, with propagator93

Qn = Q′n +
1
2

√
2δtβ−1/2M−T1/2Rn,94

Q′n+1 = Qn + δtM−1F(Qn) +
1
2

√
2δtβ−1/2M−T1/2Rn,95

which is a discretization of Brownian dynamics

dQt = M−1F(Qt)dt +

√
2
β

M−T1/2 dWt. (5)

The desired samples {Qn} are available as part of the process (and, as a theoretical observation, they96

can be recovered from the Markov chain {Q′n} alone, by eliminating Rn in the two equations above and97

solving for Qn).98

For any MCMC propagator, the forward transfer operator is defined so that

un = Fun−1

where un(z) = ρn(z)/ρ(z) and ρn(z) is the probability density for Zn. In particular,

Fun−1(z) =
1

ρ(z)

∫
ρ(z|z′)un−1(z′)ρ(z′)dz′

where ρ(z|z′) is the transition probablity for the chain. The operator F has an eigenfunction ϕ1(z) ≡ 199

for eigenvalue λ1 = 1.100

A reversible propagator is one that satisfies detailed balance, which means that

ρ(z′|z) ρ(z) = ρ(z|z′) ρ(z′).

Detailed balance is equivalent to F † = F , where the adjoint F † is defined by the condition that101

〈Fv, u〉 = 〈v,F †u〉 for arbitrary u(z) and v(z). The BAOAB integrator is not reversible as a sampling102

propagator, except for the special case γ = 1/(2∆t); but a scheme consisting of a fixed number of BAOAB103

steps followed by a momenta flip is reversible. The unmodified BAOAB integrator is, however, in a class104

of “quasi-reversible” integrators introduced in Sec. 3.1.105

As a model problem for Brownian dynamics, given by Eq. (5), consider F(q) = −mω2q. Changing
variables Qt = (mβ)−1/2Q′t and dropping the prime gives the simple stochastic differential equation

dQt = −ω2Qt dt +
√

2 dWt, (6)

where W(t) denotes a standard Wiener process. A perfect realization of Q(t) at discrete points is obtained
by the reversible propagator

Qn = exp(−ω2δt)Qn−1 +
√

1− exp(−2ω2δt)
1
ω

Rn. (7)
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The probablity density ρ(q, t) for Q(t) satisfies the Fokker-Planck equation (∂/∂t)ρ = (∂/∂a)(ω2qρ) +

(∂2/∂q2)ρ. Writing ρ(q, t) = u(q, t)ρ(q) gives (∂/∂t)u = −ω2q(∂/∂q)u + (∂2/∂q2)u. The operator
on the right-hand side has eigenfunctions u(q) = Hek(ωq) with eigenvalues −kω2 for k =

0, 1, . . .. The modified version of the Hermite polynomial of degree k is given by Hek(x) =

(−1)k exp(x2/2)(dn/dxn) exp(−x2/2). The forward transfer operator F for the propagator defined
by Eq. (7) has these same eigenfunctions and has eigenvalues λk+1 = exp(−kω2δt) for k = 1, 2, . . ..
The spectral gap is 1 − exp(−ω2δt). In the multidimensional case with normal mode frequencies
0 < ω1 ≤ ω2 ≤ · · · ≤ ων, the time step δt is some fraction, say 1

2 , of 1/ω2
ν and the spectral

gap is very nearly 1
2 ω2

1/ω2
ν. To see the applicability to practical numerical integrators, consider the

Euler-Leimkuhler-Matthews discretization of Eq. (6):

Q′n = (1−ω2δt)Q′n−1 + (1− 1
2

ω2δt)
√

2ω2δt
1
ω

Rn. (8)

Comparing Eqs. (8) and (7) and equating the coefficients of the two terms on their right-hand sides106

enables Eq. (8) to be written in the form of Eq. (7) with modified values for ω and δt. In particular,107

the modified value of exp(−ω2δt) is 1−ω2δt, so spectral gap is exactly ω2δt. In the multidimensional108

case, where ω2
1δt� 1, the spectral gap for the discrete stochastics is very nearly that of the continuous109

stochastics.110

2.1. Estimating integrated autocorrelation time111

Suggested [7] as a covariance estimate is the quantity

CN(k) =
1
N

N−k−1

∑
n=0

(u(zn)−UN)(u(zn+k)−UN),

with justification in Ref. [8, pp. 323–324].112

The use of all possible terms CN(k)/CN(0) in Eq. (3) to estimate the IAcT does not converge in the
limit N → +∞, so, in practice, a lag window w(k) is used to increasingly damp terms as the noise to
signal ratio increases:

τ ≈ 1 +
N−1

∑
k=1

w(k)
CN(k)
CN(0)

.

An interesting algorithm called acor for estimating the IAcT is available on the web [9]. Estimating113

the IAcT can be quite difficult, and acor can give unsatisfactory results. An attempt to improve it [1] is114

at best marginally successful. For reversible methods, there are properties of the autocorrelation function115

that may be useful for improving estimates of it [7].116

3. Quasi-reliable Estimates of Sampling Thoroughness117

The idea of quasi-reliability is to require that the sample size N be large enough that, with say
95% confidence, the estimated probability of any subset Ω of phase space differs by no more than
tol from its correct value. More specifically, for any subset Ω of phase space, an estimate 1Ω ,N of
E[1Ω(Z)] = Pr(Z ∈ Ω) must satisfy

Var[1Ω ,N ] ≤
1
4

tol2.

Because
Var[1Ω ,N ] ≈ τΩ

1
N

Var[1Ω(Z)] ≤ 1
4N

τΩ,

where τΩ is the IAcT for 1Ω, it is enough that

1
4N

τΩ ≤
1
4

tol2 for all Ω. (9)
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For molecular simulations, this requires that only those conformations or clusters of conformations118

having a probability greater than tol be sampled.119

In practice, molecular systems have many symmetries, which dramatically reduces the amount120

of sampling needed. For example, water molecules are generally considered interchangeable as are121

many subsets of atoms on a given molecule, e.g., the 2 hydrogen atoms of any water molecule. More122

formally, there are permutations P of the variables z such that ρ(Pz) = ρ(z) and that P−1FP = F123

where (Pu)(z) = u(Pz). For such symmetries P, the quasi-reliablity requirement considers only those124

Ω for which 1Ω(Pz) = 1Ω(z).125

It is helpful to express the IAcT in terms of the forward transfer operator. It can be shown that

E[v(Z0)u(Zk)] = 〈F kv, u〉.

and, in particular,126

C(k) = E[u(Q0)u(Qk)]−E[u(Q0)]E[u(Qk)] = 〈F ku, u〉 − 〈Eu, u〉

=

{
〈(1− E)u, u〉, for k = 0,
〈F k

0 u, u〉, for k ≥ 1,
(10)

using the fact that EF0 = F0E = 0. The integrated autocorrelation time can be rewritten as

τ =
C(0) + 2 ∑+∞

k=1 C(k)
C(0)

=
〈(1− E + 2 ∑+∞

k=1 F
k
0 )u, u〉

〈(1− E)u, u〉 =
〈Gu, u〉

〈(1− E)u, u〉

where
G = 1− E +F0(1−F0)

−1 + (F0(1−F0)
−1)†,

which is a self-adjoint operator.127

For a reversible propagator, for which F and hence F0 is self adjoint, an arbitrary preobservable u
is in many cases expressible as a linear combination of the eigenfunctions ϕk(z) of F0, corresponding to
eigenvalues 1 > λ2 ≥ λ3 ≥ · · · > −1. (For a more rigorous treatment, see Ref. [7, Sec. 2].) The IAcT for u
is then simply a weighted average, of the values

1 +
2λk

1− λk
=

1 + λk
1− λk

with weights 〈ϕk, u〉2/(〈ϕk, ϕk〉〈u, u〉). This is maximized for u = ϕ2, since (1 + λ2)/(1− λ2) is the128

largest of these values. Note that, for λ2 negative, τ could be much less than 1. Having τ < 1 may appear129

paradoxical until it is recognized that Eq. (1) is simply an asymptotic approximation for N → +∞.130

For the simple example with F(q) = −ω2q, the eigenfunction ϕ2(q) =
√

2ωq. The indicator function
1Ω that is richest in ϕ2(q) is the one with Ω = [0,+∞], for which the first weight is 2/π. This means that
the IAcT for 1Ω is at least 2/π of the maximum IAcT. For a multimodal distribution, the eigenfunction
ϕ2(q) corresponding to the subdominant eigenvalue λ2 resembles an indicator function more closely [2]
than does

√
2ωq. Therefore, little is lost and simplicity is gained, if we use the maximun IAcT over all

observables satisfying the symmetries instead of just indicator functions:

τmax = supu∈W
〈Gu, u〉

〈(1− E)u, u〉 (11)

where
W = {u = u(z) | u(Pz) = u(z) for symmetries P}
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is our set of preobservables. This can be simplified to

τmax = supu∈W
〈Gu, u〉
〈u, u〉 . (12)

To see this, note that the same supremum is obtained for both objective functions if the function u is131

restricted so that Eu = 0 and that for such a function u the two objective functions are equal.132

For the simple example of Eq. (8), the IAcT is maximized by u(q) = q. In the case of a133

multidimensional Gaussian distribution, the maximum occurs for linear combination aTq of q where a134

is the eigenvector of the Hessian of V(q) corresponding to its smallest eigenvalue ω2
1. For multimodal135

distributions in 1 dimension, it appears that the maximizing preobservable ϕ2(q) is qualitatively similar136

to q in the sense that it is monotonic [2].137

As is customary when seeking an unknown function, one considers a finite linear combination
u(q) = aTu(q) of basis functions ui ∈W where the ai are chosen to maximimize the IAcT. From Eq. (10),
the autocovariance for such u(q) is

C(k) = aTCka

where

Ck =

{
〈(1− E)u, uT〉, for k = 0,
〈F k

0 u, uT〉, for k ≥ 1.
(13)

Consequently,

τmax ≈ max
a

aTKa
aTC0a

where K = C0 + 2
+∞

∑
k=1

Ck, (14)

which is a solution of the generalized eigenvalue problem

1
2
(K + KT)a = C0aτ. (15)

Without information about the actual distribution ρ(z), a general choice for basis functions might138

be linear polynomials, which are the “subdominant” eigenfunctions for a Gaussian distribution. Simple139

examples in Ref. [1] (consisting of a mixture of 2 Gaussians, a one-node neural “network”, and logistic140

regression) demonstrate that the use of linear basis functions can yield an IAcT much greater than141

that of a preobservable of “interest”. For molecular simulation, it is clear that instead of atomic142

coordinates, a better choice of a basis function the distance between two atoms, each of which is143

uniquely distinguishable. In particular, for a protein, one might choose α-carbons distributed along the144

backbone chain of a protein. For further suggestions consult Ref. [10], which considers the automatic145

construction of indicator functions for estimating τmax, based on the dynamics of the propagator.146

3.1. Quasi-reversible propagators147

As stated above, the BAOAB integrator would be reversible if the final B substep were modified to148

include a momenta flip, i.e.,149

BR: Pn = −(P′′n + 1
2 ∆tF(Qn)).150

If the flipped BAOAB integrator is followed by another momenta flip, the result is the original irreversible151

BAOAB integrator, which intuitively and empirically is a superior sampler. More generally, a sampler152

might be said to be “quasi-reversible” if its forward transfer operator F = RF̄ where each of F̄ andR153

is reversible andR2 = 1. For a momenta flip, the operatorR is defined by (Ru)(q, p) = u(q,−p).154

Quasi-reversible propagators are special in that their covariance matrices satisfy a special property
if basis functions ui are chosen so that

Ru = Du where D = diag(I′,−I′′)
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and I′ and I′′ are identity matrices of possibly different dimension. Such basis functions are easy to155

construct since any function u can be written as a sum of its “even part” 1
2 (u +Ru) and its “odd part”156

1
2 (u−Ru). In particular, using the fact thatRE = ER,157

Ck = 〈F ku, uT〉 − 〈Eu, uT〉 = 〈u, (F̄R)kuT〉 − 〈u, EuT〉
= 〈Ru, (RF̄ )kRuT〉 − 〈Ru,REuT〉 = 〈Du,F kuTD〉 − 〈Du, EuTD〉 = DCT

k D.

The matrix Ck thus partitions into 4 blocks. The symmetric part of Ck consists of the two diagonal blocks,158

and the skew-symmetric part consists of the two off-diagonal blocks. Empirical estimates of Ck lack159

these symmetry properties. The expected symmetries provides twice as many sample for estimating the160

sampling error in the off-diagonal elements. Additionally, since the IAcT requires only the symmetric161

part of Ck, it is unnecessary to compute the off-diagonal blocks, and the eigenvalue problem decouples162

into two smaller problems. Also, it follows that the maximizing linear combination is either a linear163

combination of the even functions or of the odd functions. For molecular dynamics at least, it seems to164

be the case that the long time scales are present only in the position coordinates, so only the (1, 1) block165

might be computed.166

4. Irreversible Samplers and Their Superiority167

Uniform sampling—if it could be used—converges likeO(1/N), which is superior to theO(1/
√

N)168

convergence of random sampling. It would be desirable to combine them by promoting near-uniform169

sampling within layers of near-constant energy and using diffusion to move among energy layers.170

4.1. A very simple example171

The following very simple example is an analog of Example 2.8 of Ref. [4] and similar to an example
of Ref. [11]. Assuming probabilities are represented as row vectors, let F be an n by n probability
transition matrix given by

Fij =


θ, if i = j,
1− θ, if i = j + 1 mod n,
0, otherwise,

where 0 < θ < 1. The stationary probability vector is (1/n)[1, 1, . . . , 1]. The inner product for two
row vectors uT, vT is 〈vT, uT〉 = vTu, and the adjoint of a transition matrix is its transpose. Since F
is a circulant matrix, both it and its adjoint have as eigenvectors uT

k = [1, ζk−1, . . . , (ζk−1)n−1], where ζ

denotes the nth root of unity exp(2πi/n). A straightforward, though lengthy, calculation shows that

uT
k F0 = (θ + (1− θ)ζk−1)uT

k and uT
k F

T
0 = (θ + (1− θ)ζ1−k)uT

k ,

for k = 2, 3, . . . , n, and

uT
k G =

θ

1− θ
uT

k .

Therefore,
2/|1− λ2| = 2/((1− θ)|1− ζ|) = 1/((1− θ) sin(π/n)),

but
τmax = θ/(1− θ).

This a most elementary illustration of the assertion[4] that “the asymptotic variance for every observable
can be made as small as desired under large irreversible drift”. If θ � 1, the IAcT is likewise much less
than 1 despite the very strong correlation between successive values of the state j. The reason for this
is that the IAcT is a measure of sample quality not independence. The measure τ simply says that N
samples are as good as N/τ independent random samples. And the F operator encourages a uniform
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Table 1. τmax is the IAcT for F and τrv
max is that for F rv = 1

2 (F +FT)

(a) τmax

n\ε 0.1 0.01 0.001
10 90 990 9990

100 900 9900 99900
1000 9000 99000 999000

(b) τrv
max − τmax

n\ε 0.1 0.01 0.001
10 35 33 33

100 3910 3511 3355
1000 403612 389921 351047

sampling, which is better than uncorrelated random samples. However, as shown in the example that
follows, such a dramatic difference between (one less than twice) the reciprocal of the spectral gap
and the IAcT does not hold when sampling is inhibited more by energy than by entropy barriers. A
reversible propagator can be formed from this simple example by using instead the symmetric part of its
propagator: F rv = 1

2 (F +FT). This time

uT
k F

rv
0 = (θ +

1
2
(1− θ)(ζk−1 + ζ1−k))uT

k , for k = 2, 3, . . . , n,

and

uT
k G

rv =

(
4

(1− θ)(2− ζk−1 − ζ1−k)
− 1
)

uT
k .

Therefore
2/|1− λ2| = 4/((1− θ)(2− ζ − ζ−1)) = 1/((1− θ) sin2(π/n)),

and
τmax = 1/((1− θ) sin2(π/n))− 1.

Clearly, the irreversible propagator is much better for n� 1.172

4.2. A very simple example with a barrier173

Consider the 2n by 2n transition matrix given by

F =



0 1− ε ε

1 0
. . . . . .

1 0
ε 0 1− ε

1 0
. . . . . .

1 0


.

If ε were zero, the eigenvalue 1 would have multiplicity 2, with orthogonal eigenvectors given by the174

vector of all ones and by fT = [1, 1, . . . , 1,−1,−1, . . . ,−1]. For small ε > 0, it is expected that the175

eigenvector corresponding to the subdominant eigenvalue would be a perturbation of fT. Indeed, it176

happens that fTFn = (1− 2ε) fT. This also holds for (Fn)T, so the IAcT for Fn is 1/ε− 1. This suggests177

a value of about n(1/ε− 1) for the IAcT of F , which is corroborated by Table 1(a). The excess IAcT178

due to making the propagator reversible is given by Table 1(b). It appears to grow quadratically with179

n, consistent with the diffusive nature of the propagator. Summing pairs of entries from the two tables180

shows that the advantage of irreversibility depends on the relative importance of entropy barriers to181

energy barriers.182

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 September 2017                   doi:10.20944/preprints201709.0021.v1

Peer-reviewed version available at Entropy 2017, 19, 561; doi:10.3390/e19100561

http://www.mdpi.com/journal/entropy
http://dx.doi.org/10.20944/preprints201709.0021.v1
http://dx.doi.org/10.3390/e19100561


5. Optimal Langevin Damping for a Model Problem183

To analyze the effect of the damping parameter γ on the IAcT for Langevin dynamics, given by
Eq. (4), consider the standard model problem F(q) = −mω2q. Changing variables Qt = (βm)−1/2Q′t,
Pt = β−1/2m1/2P′t , and dropping the primes gives

dQt = Pt dt, dPt = −ω2Qt dt− γPt dt +
√

2γ dWt.

Assume exact integration with step size ∆t.184

The analysis is rather lengthy, so for the benefit of the reader who wishes to omit it, the discussion185

and conclusions are given here:186

1. Reaching precise conclusions is difficult for most of the analysis unless one assumes that ∆t is not187

too large, where “not too large” seems to be satisfied in practice. This assumption underlies the188

statements that follow.189

2. The spectral gap is an increasing function of ω, so for a multidimensional quadratic potential190

energy, the value of γ that maximizes the spectral gap depends on the lowest frequency ω1.191

3. The spectral gap is maximized for γ ≤ 2ω, corresponding to an underdamped system, for which192

the spectral gap is ω∆t +O(∆t2).193

4. The eigenfunctions of the operator G can be partitioned into eigenspaces P′k, k = 0, 1, . . ., where194

P′k is a linear combination of k + 1 specific polynomials of degree k in ωq and p. The greatest195

eigenvalue of G is τmax = maxk τ
(k)
max where τ

(k)
max is the maximum IAcT over P′k.196

5. Figure 1 shows that, for fixed ∆t and γ, the value τ
(k)
max is an increasing function of ω, at least for197

k = 1, 2, 3, 4. Hence, as for the spectral gap, it is the lowest frequency ω1 that dictates the maximum198

τ.199

6. Figure 2 indicates that, for fixed ∆t and ω, the maximizing τ is either τ
(1)
max or τ

(2)
max, depending on the200

value of γ. The optimal damping coefficient is γ = (
√

6/2)ω, for which τ
(1)
max = τ

(2)
max =

√
6/(ω∆t).201

7. The eigenfunction for τ
(1)
max is the linear polynomial ωq. For such a preobservable, it may not seem202

correct that the IAcT becomes arbitrary close to zero as γ goes to zero. This does not mean, however203

that the variance goes to 0, because Eq. (1) is an asymptotic result, and the IAcT is a prefactor for204

the leading order 1/N term in the expression for the variance. The next order 1/N2 term would205

dominate if γ were very small. An order 1/N2 error is characteristic of uniform sampling, which206

would be the consequence of near-Hamiltonian dynamics. Also, linear polynomials are special207

in that their expectation is independent of total energy, so it matters little that near-Hamiltonian208

dynamics poorly samples different values of total energy.209

8. The eigenfunction for τ
(2)
max is a specific linear combination of ω2q2 − 1 and p2 − 1. For quadratic210

polynomials, the total energy does affect its expected value, which is why it is necessary that γ be211

large enough to sample different energies on a reasonable time scale.212

5.1. The forward transfer operator213

The forward transfer operator is

Fu = ρ−1e∆tLK(ρu)

where
ρ(q, p) ∝ exp(−1

2
p2 − 1

2
ω2q2).

and LK is the Fokker-Planck operator [12, Eq. (10.1)–(10.3), (10.9)]

LK f = −p
∂

∂q
f + ω2q

∂

∂p
f + γ

∂

∂p
(p f ) + γ

∂2

∂p2 f .
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Therefore,
F = e∆tL

where

L f =
1
ρ
LK(ρ f ) = −p

∂

∂q
f + ω2q

∂

∂p
f − γp

∂

∂p
f + γ

∂2

∂p2 f .

Using the relation L f = 1
ρLK(ρ f ), it is easy to show that the adjoint

L† f = p
∂

∂q
f −ω2q

∂

∂p
f − γp

∂

∂p
f + γ

∂2

∂p2 f .

5.2. Gamma for maximum spectral gap214

Ref. [12, Ch. 10, Eqs.(1, 2, 3b, 9, 22, 52, 60, 71, 72, 74, 77, 78, 82, 83)] gives the eigenvalues of LK as

µk,l = −
1
2
(k + l)γ− 1

2
(k− l)δ, k, l = 0, 1, . . . ,

with eigenfunctions

ψk,l = ρ(q, p)1/2(k!l!δk+l)−1/2(
√

γ+B −
√

γ−A)k(−√γ−B +
√

γ+A)lρ(q, p)1/2,

where
γ± =

1
2
(γ± δ) and δ =

√
γ2 − 4ω2,

with the radical sign denoting the principal square root, and operators A, B defined by

A f = −ω−1 ∂

∂q
f +

1
2

ωq f , B f = − ∂

∂p
f +

1
2

p f .

The operator L has eigenfunctions ρ(q, p)−1ψk,l(q, p) and the same eigenvalues; F has these same215

eigenfunctions and has eigenvalues exp(∆t µk,l).216

For k + l = 1, one has µ0,1 = −γ−, µ1,0 = −γ+ and

ϕ0,1 = (γ−/δ)1/2(−p + γ+q)ρ(q, p), ϕ1,0 = (γ+/δ)1/2(p− γ−q)ρ(q, p).

In the case γ± = 1
2 γ, F has a double eigenvalue λ2 = λ3 = e−ω∆t but one eigenfunction ϕ2(q, p) =217

p− ωq and one generalized eigenfunction ϕ3(q, p) = q, satisfying (F − λ2)ϕ3 = ϕ2. This results in218

behavior involving a linear combination of e−ωt and te−ωt.219

The eigenvalue nearest 1 depends on ∆t. For small enough ∆t, it is exp(−γ−∆t), and the spectral220

gap is ω∆t +O(∆t2) for γ ≤ 2ω and ω∆t(2ω/γ)(1 + (1− (2ω/γ)2)1/2)−1 +O(∆t2) otherwise. To221

maximize the spectral gap, choose γ to be no greater than 2ω, corresponding to an underdamped system.222

5.3. Gamma for maximum IAcT223

To obtain τmax, one needs eigenelements for G, given by Eq. (2) with F = exp(∆tL). Note that the224

subspace of polynomials of degree ≤ k is closed under application of L and L†. Moreover, this holds225

separately for subspace Pk of odd polynomials of degree ≤ k for k odd and for subspace Pk of even226

polynomials of degree ≤ k for k even. And it applies also to operators E , F , F †, and G. Hence, the Pk are227

eigenspaces ofr G. These eigenspaces can be further decomposed as follows. Let P′k = Pk for k < 2, and228

let P′k = Pk ∩ P⊥k−2 for k ≥ 2. The claim is that P′k is an eigenspace, of dimension k + 1. To confirm this, it229

is enough to show that 〈Gu, v〉 = 0 for any u ∈ Pk, v ∈ Pk−2, which follows almost immediately, since230
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G† = G and Gv ∈ Pk−2. Let u be a basis for P′k chosen so there are even functions of p followed by odd231

functions of p. In particular,232

u = [ωq, p]T,

u = [ω2q2 − 1, ωqp, p2 − 1]T,

u = [ω3q3 − 3ωq, (ω2q2 − 1)p, ωq(p2 − 1), p3 − 3p]T,

u = [ω4q4 − 6ω2q2 + 3, (ω3q3 − 3ωq)p, (ω2q2 − 1)(p2 − 1), ωq(p3 − 3p), p4 − 6p + 3]T,

for k = 1, 2, 3, 4, respectively. The polynomials in ωq and in p are modified versions Hek of Hermite
polynomials. We have Lu = Au for some matrix of constants A, given by

A =


0 −kω

ω −γ
. . .

. . . . . . −ω

kω −kγ

 . (16)

(Cf. Risken (1984), Eqs.(10.96),(10.97) for LK.) We have Eu = 0 and F0u = Fu = exp(∆tA)u. Therefore,
from Eqs. (13) and (14), one has

Ck = 〈F k
0 u, uT〉 = exp(k∆tA)〈u, uT〉,

and
K = coth(−1

2
∆tA)〈u, uT〉 = coth(−1

2
∆tA)C0.

For each value of k, τmax is the maximum eigenvalue of

1
2

(
C−1

0 coth(−1
2

∆tA)C0 + coth(−1
2

∆tA)T
)

. (17)

As explained in Sec. 3.1, if the basis functions are re-ordered so that those that are even functions of p233

precede those that are odd functions of p, the eigenvalue problem splits into 2 nearly equal parts.234

For k = 1, A = XΛX−1 where Λ = diag(−γ−,−γ+) and

X =

[
ω ω

γ− γ+

]
.

The covariance matrix C0 = 〈u, uT〉 = diag(1, 1), and matrix (17) is diag(τ+, τ−) where

τ± =
1
δ

(
±γ± coth(

1
2

∆tγ−)∓ γ∓ coth(
1
2

∆tγ+)

)
.

Using the identity coth(x± y) = (sinh 2x∓ sinh 2y)/(cosh 2x− cosh 2y), one gets that the eigenvalues
of matrix (17) are

τ± =
sinh( 1

2 ∆tγ)± γ sinh( 1
2 ∆tδ)/δ

cosh( 1
2 ∆tγ)− cosh( 1

2 ∆tδ)
.

The greater of τ± is τ+, and it is a straightforward exercise to show that τ+ is an decreasing function
of ω as along as

(ω∆t)2 ≤ π2 + (γ∆t/2)2. (18)
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In practice, a numerical integrator is used, whose step size is chosen so that ∆tL = θ where θ is some
fractional value, e.g., 1

2 , and L is the magnitude of largest eigenvalue of the Jacobian matrix of the
right-hand side of the system of (first-order) stochastic differential equations. In particular,

ω∆t = θ if γ ≤ 2ω; (19)

otherwise, it holds that ω∆t < γ∆t/2. Hence, inequality (18) is more than satisfied. It is more complicated
to analyze the behavior of values of τ for k > 1, so we exploit the smallness of ω∆t and γ∆t to do an
asymptotic analysis. From expression (17), one sees that for P′k, its τmax equals τ

(k)
max +O(∆t) where τ

(k)
max

is the greatest eigenvalue of

− 1
∆t

(C−1
0 A−1C0 + A−T). (20)

For k = 1, one has C0 = diag(1, 1) and τ
(1)
max = 2γ/(ω2∆t), corresponding to the eigenfunction ωq. For

k = 2, one has

A−1 =
1

2γω2

 −γ2 −ω2 2γω −ω2

−γω 0 0
−ω2 0 −ω2

 ,

C0 = diag(2, 1, 2), and the largest eigenvalue for expression (20) is

τ
(2)
max =

1
2∆t

(
γ

ω2 +
2
γ
+

√
γ2

ω4 +
4

γ2

)
,

corresponding to an eigenfunction that is some linear combination of ω2q2 − 1 and p2 − 1. Again τ
(k)
max is

a decreasing function of ω for small enough ∆t. For general k, the size of the elements of A in Eq. (16)
increase with ω, which suggests that for practical values of ∆t, the largest eigenvalue for expression (20)
decreases with ω. This can be confirmed numerically. To reduce the number of parameters, write
A = −ωB(γ/ω), and rewrite expression (20) as

1
ω∆t

(C−1
0 B(γ/ω)−1C0 + B(γ/ω)−T). (21)

The value τ
(k)
max is the largest eigenvalue of matrix (21), so γ∆t τ

(k)
max is a function only of the ratio ω/γ.235

Fig. 1 plots this quantity for k = 1, 2, 3, 4, confirming that τ
(k)
max is decreasing function of ω for fixed values236

of γ and ∆t. Therefore, for a multidimensional quadratic potential, τmax is very likely to be determined237

by the lowest frequency mode. (This is readily established for the spectral gap for reasonable values of238

∆t.)239

Having established that the lowest frequency mode is most likely responsible for τmax, let ω denote240

the lowest frequency ω1, and consider the optimal choice of γ. From matrix (21), observe that ω∆t τ
(k)
max241

is a function only of γ/ω. Accordingly, we choose γ/ω to minimize maxk ω∆t τ
(k)
max. However, ∆t may242

depend on γ, but only if γ > 2ων, according to Eq. (19). Let us initially ignore this possibility and revisit243

it after determining the optimal γ.244

Assuming that the maximum of ω∆t τ
(k)
max is attained for k = 1 or k = 2, there are two possible245

locations for the best γ. One is the choice γ =
√

2ω, for which ω∆t τ
(2)
max = 1 +

√
2 and ω∆t τ

(1)
max = 2

√
2.246

The other is the choice γ = (
√

6/2)ω where ω∆t τ
(k)
max =

√
6 for both k = 1 and k = 2. The latter is the247

better choice. This and the assumption that the maximum occurs for k < 3 is supported by Fig. 2. Since248

(
√

6/2)ω1 < 2ων, we see from Eq. (19) that there is no concern about ∆t limiting the value of γ.249

Note that for the optimal γ, the dynamics is underdamped in every mode.250
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6. Discussion and Conclusions251

It is asserted in the literature [1,3] that for comparing MCMC propagators and for ensuring252

reasonably reliable simulation results, it is of great value to estimate the maximum autocorrelation253

time over all possible observables. Certainly, this would seem desirable for comparing propagators, since254

it is best to assume as little as possible about the actual observables that are to be estimated from the255

Markov chain. Also, the longest IAcT would be most reliably estimated, because its accurate estimation256

would call for a greatest number of samples; moreover, the accuracy of estimates of other IAcTs might257

be influenced by the longest IAcT. Unfortunately, estimating IAcTs and assessing such estimates is a258

difficult task, which could benefit greatly from further research.259

In this article, it is suggested that the maximum IAcT be estimated by considering an arbitrary linear260

combination of basis functions chosen to capture the lowest frequency motions of the dynamics of the261

MCMC chain. Also appealing is the approach based on a set of well chosen indicator functions [10].262

Another quantity for measuring performance of an MCMC propagator is the spectral gap. It263

is related to equilibration time, but as a predictor of IAcTs, it can be arbritarily too pessimistic or264

optimistic. This may occur for irreversible propagators applied to energy landscapes where entropy265

barriers dominate energy barriers.266

Shorter integrated autocorrelation times are thus a primary consideration in the design of MCMC267

propagators. To this end, it is advantageous not to insist on reversibility. In particular, the ballistic268

component of propagators like hybrid Monte Carlo and Langevin dynamics may offer dramatic speedups269

for overcoming entropy barrriers, though no advantage for energy barriers.270

Irreversible propagators typically have a parameter that determines the extent of diffusive behavior.271

For discrete Langevin dynamics applied to a multidimensional quadratic potential, the optimal value272

corresponds to slightly underdamped dynamics for the lowest frequency mode, with other modes273

experiencing even lighter dampling. Although this conclusion is not necessarily indicative of the optimal274

damping for the usual situation, in which there a multiplicity of energy minima, it can be helpful to275

begin with an understanding of simple situations.276

Author Contributions: Y.F. performed the analysis for Sec. 5.2 and the computation for Sec. 5.3. R.S. did the analysis277

for Secs. 3.1, 4, 5.1, 5.3 and wrote the paper.278

Conflicts of Interest: The authors declare no conflict of interest.279

280

1. Fang, Y.; Cao, Y.; Skeel, R. Quasi-Reliable Estimates of Effective Sample Size, 2017. arXiv:1705.03831v2281

[stat.CO].282

2. Schütte, C.; Huisinga, W. Biomolecular Conformations as Metastable Sets of Markov Chains. Proceedings of283

the 38th Annual Allerton Conference on Communication, Control, and Computing, 2000, pp. 1106–1115.284

3. Lyman, E.; Zuckerman, D.M. On the Structural Convergence of Biomolecular Simulations by Determination285

of the Effective Sample Size. J. Phys. Chem. B 2007, 111, 12876–12882.286

4. Rey-Bellet, L.; Spiliopoulos, K. Irreversible Langevin Samplers and Variance Reduction: a Large Deviations287

Approach. Nonlinearity 2015, 28, 2081–2104.288

5. Leimkuhler, B.; Matthews, C. Rational Construction of Stochastic Numerical Methods for Molecular Sampling.289

Appl. Math. Res. Express 2013, pp. 34–56.290

6. Leimkuhler, B.; Matthews, C.; Stoltz, G. The Computation of Averages from Equilibrium and Nonequilibrium291

Langevin Molecular Dynamics. IMA J. Numer. Anal. 2016, 36, 13–79.292

7. Geyer, C.J. Practical Markov Chain Monte Carlo. Stat. Sci. 1992, 7, 473–511.293

8. Priestly, M.B. Spectral Analysis and Time Series; Academic Press, 1981.294

9. Goodman, J. Acor, Statistical Analysis of a Time Series, 2009. http://www.math.nyu.edu/faculty/goodman/295

software/acor/, https://github.com/dfm/acor.296

10. Zhang, X.; Bhatt, D.; Zuckerman, D.M. Automated Sampling Assessment for Molecular Simulations Using297

the Effective Sample Size. J. Chem. Theory Comput. 2010, 6, 3048–3057.298

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 September 2017                   doi:10.20944/preprints201709.0021.v1

Peer-reviewed version available at Entropy 2017, 19, 561; doi:10.3390/e19100561

http://www.math.nyu.edu/faculty/goodman/software/acor/
http://www.math.nyu.edu/faculty/goodman/software/acor/
http://www.math.nyu.edu/faculty/goodman/software/acor/
https://github.com/dfm/acor
http://www.mdpi.com/journal/entropy
http://dx.doi.org/10.20944/preprints201709.0021.v1
http://dx.doi.org/10.3390/e19100561


11. Diaconis, P.; Holmes, S.; Neal, R.M. Analysis of a Nonreversible Markov Chain Sampler. Ann. Appl. Probab.299

2000, 10, 726–752.300

12. Risken, H. The Fokker-Planck Equation. Methods of Solution and Applications; Vol. 18, Springer Series in Synergetics,301

Springer, 1984.302

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 September 2017 doi:10.20944/preprints201709.0021.v1

Peer-reviewed version available at Entropy 2017, 19, 561; doi:10.3390/e19100561

http://creativecommons.org/licenses/by/4.0/.
http://www.mdpi.com/journal/entropy
http://dx.doi.org/10.20944/preprints201709.0021.v1
http://dx.doi.org/10.3390/e19100561

	Summary
	Preliminaries
	Estimating integrated autocorrelation time

	Quasi-reliable Estimates of Sampling Thoroughness
	Quasi-reversible propagators

	Irreversible Samplers and Their Superiority
	A very simple example
	A very simple example with a barrier

	Optimal Langevin Damping for a Model Problem
	The forward transfer operator
	Gamma for maximum spectral gap
	Gamma for maximum IAcT

	Discussion and Conclusions
	References

