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Abstract: Autonomous and cooperative vehicle systems represent a key priority in the automotive 
realm. Networked driving simulation can be utilized as a safe, cost-effective experimental replica of 
real traffic environments in order to support and accelerate the development of such systems. In 
networked driving simulation, different independent systems collaborate to achieve a common task: 
multi-driver traffic scenario simulation. Yet distinct system complexity levels are necessary to fulfill 
the requirements of various application scenarios, such as development of vehicle systems, analysis 
of driving behavior, and training of drivers. With myriad alternatives of available systems and 
components, developers of networked driving simulation are typically confronted with high design 
complexity. There are no systematic approaches to date for the design of networked driving 
simulation in accordance with the specific requirements of the concerned application scenarios. This 
paper presents a novel design method for networked driving simulation. The method consists 
mainly of a procedure model that is accompanied by a configuration software. The procedure model 
includes the necessary phases for the systematic design of application-oriented platforms for 
networked driving simulation. The configuration software embeds supportive decision-making 
processes that enable developers to apply the design method and easily create different system 
models. The design method was validated by generating system models and developing platforms 
of networked driving simulation for three different application scenarios. 

Keywords: autonomous and cooperative vehicle systems; connected driving simulators; systems 
engineering; system of systems; system-level design; application-oriented development 

 

1. Introduction 

Autonomous and cooperative vehicle technologies have attracted major attention from all key 
automotive players. These disruptive technologies create fascinating new mobility prospects while 
potentially providing more traffic safety and efficiency. As governments provide regulatory 
guidelines and carry out or supervise necessary infrastructure modifications, other sectors are 
positioning themselves firmly in this field, such as automotive manufacturers and suppliers, IT 
providers, insurance agencies, and logistics companies. All these key players are pursuing the 
economic benefits of these technologies and they must explore new business models that best suit the 
potential [1]. With respect to automotive manufacturers in particular, the competition to deploy these 
technologies onto public roads is becoming more obvious as customers’ expectations rise. The 
technology itself turns out to be a relatively minor concern. Various automotive manufacturers have 
revealed their practical prowess in self-driving cars. Yet methods and tools are still required for 
additional refining development and test loops. For instance, it is crucial to tackle different traffic and 
driving strategies, as well as the interoperability between technologies of different providers. 
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Moreover, as human drivers are still in the loop, various related factors must be examined, such as 
ethical values, customer acceptance, and drivers’ behavior [2]. In general, driving simulation is an 
effective tool that supports automotive research and industry [3]. It can be used mainly for the 
development and test of vehicle systems, such as advanced driver assistance systems (ADAS) [4]. 
Driving simulation can be used for other purposes, such as driver’s training, demonstration and 
marketing, and studying behavior of drivers. Figure 1 shows two different driving simulator variants 
developed and operated with multidisciplinary expertise at the Heinz Nixdorf Institute—University 
of Paderborn in Germany.  

(a) (b) 

Figure 1. Two driving simulator variants at the Heinz Nixdorf Institute in Germany: (a) Passenger car 
driving simulator with a motion platform; (b) Stationary truck driving simulator. 

It is feasible and less expensive to build and operate simulations in controlled environments than 
conducting real field drives [3]. Various traffic scenarios involving a human-driven vehicle and 
programmed traffic participants can be created. Harsh environmental conditions can be reproduced 
easily, such as foggy or snowy roads. Furthermore, driving simulators present an inherently safe 
environment for experiments. There are no hazards to drivers while undergoing critical driving 
maneuvers or testing new vehicle systems.  

However, with the introduction of autonomous and cooperative vehicle technologies, traffic 
systems become more complex while human drivers still represent an indispensable factor. 
Conventional driving simulation does not provide the realism and multi-interactivity related to these 
advanced automotive technologies. It provides only a rough representation of the unpredictability 
level associated with real traffic environments. Networked driving simulation can be used to mitigate 
this particular drawback. Specifically, creating a virtual driving environment that can be accessed by 
several human drivers provides a close approximation of real traffic interactions. There are various 
multi-interactive applications for networked driving simulation, such as development of vehicle 
systems, analysis of driving behavior, and training of drivers. A comprehensive discussion of these 
promising applications is presented in Reference [5]. As they focus on different aspects, these multi-
interactive applications vary considerably in their system complexity requirements. This paper 
presents a novel method for the systematic design of networked driving simulation. The method 
considers the requirements of different application scenarios to determine the necessary system 
complexity. The rest of this paper is structured in five main sections. Section 2 specifies the problem 
addressed in this work; Section 3 gives an overview about two distinguished design approaches for 
conventional driving simulation in the literature; Section 4 presents the developed design method for 
networked driving simulation; the validation of the method is provided in Section 5 by means of 
different non-traditional application scenarios. Finally, Section 6 derives the conclusions and reveals 
future work. 
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2. Problem Description 

There are various driving simulators available in the market with different fidelity levels. It is 
quite complicated to select a suitable driving simulator that fits a certain application scenario. Some 
assistance exists in the literature to support users of driving simulation while determining the 
necessary fidelity level of each building component [6]. Yet selecting different components to build a 
driving simulator requires some prior knowledge to guarantee the logical consistency and the 
technical interoperability. Additional work in the literature presents a method to configure driving 
simulation environments while assuring the compatibility of the building components [7]. However, 
networked driving simulation can be realized only with a more complex multidisciplinary system. 
This system involves typically distinct complex subsystems and components that interact together 
and work on a common goal. Moreover, challenging application scenarios for networked driving 
simulation arise with more diverging and changing requirements [5]. 

There has been a growing interest in a class of complex systems that themselves are composed 
of independent systems: systems of systems (SoS) [8]. Based on the literature review, numerous 
definitions exist for systems of systems. One relevant and quite simple definition is that “systems of 
systems are large-scale integrated systems that are heterogeneous and independently operable on 
their own, but are networked together for a common goal” [9]. Networked driving simulation 
belongs to this particular definition. Specifically, two or more driving simulators exchange 
information and share a common virtual environment, where human drivers interact with each other. 
Each participating driving simulator per se represents an independent system. A common system 
goal is accomplished through the collaboration within a system of systems environment. In a nutshell, 
the ultimate goal is to simulate multi-driver traffic scenarios close to the real traffic environment with 
its attendant uncertainties. 

However, the complexity of designing a system of systems is daunting. One primary challenge 
is to pursue a synergy between the constituent systems to attain the desired system goal. Several 
concepts and design considerations have been addressed in the literature for the theme of SoS. The 
well-established principles of systems engineering can be used to overcome the pitfalls of SoS design 
[9]. Extending the systems engineering concepts to accommodate the SoS paradigm is discussed in 
Reference [10]. This led principally to the emergence of system of systems engineering. Architecting 
SoS environments through an evolutionary process is a crucial requirement in this regard. To that 
end, the open systems approach is adopted by the system of systems engineering [9]. This approach 
defines the general key principles for an open system architecture that is suitable for future evolution. 
Following this approach results in a flexible SoS that can be modified easily by exchanging the 
constituent systems and/or altering the characteristics of some building components. Yet building a 
system model before establishing the real system is one of the significant measures recommended by 
system of systems engineering [9]. The modeling process itself is challenging due to the complexity 
of the independent constituent systems. Fortunately, model-based system engineering can provide a 
rigorous foundation for the modeling and conceptual design of SoS [11]. In this regard, a system 
model is created and used as a baseline that includes the requirements, analysis, design, and 
verification of a target system. This system model represents a link between various disciplines, such 
as electrical, mechanical, software, communication, and requirements engineering [12]. That is, the 
system model provides a comprehensive description of the real system so that it is not specific to one 
particular discipline. However, a design method and a complementary software tool are required to 
establish different system models or configurations [12]. There is no method or tool to date for the 
systematic design of system models for networked driving simulation based on the determined 
application requirements. The following section presents two remarkable approaches from the 
literature for conventional driving simulation. 

3. State of the Art 

Manufacturers of driving simulators provide different fidelity levels to fulfill the requirements 
of different application scenarios. A simple classification of driving simulators into three categories 
based on fidelity is presented in Reference [13]: low-level, mid-level, and high-level. Low-level driving 
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simulators may not provide the immersion necessary for drivers to be fully involved in the 
simulation. High-level driving simulators may present challenges to overcome the distraction of 
drivers and reduce the learning time. Therefore, the selection of fidelity levels of driving simulators 
should properly consider the purpose of use in particular. Three generic application scenarios for 
driving simulation are defined in Reference [13]: driver behavioral research, vehicle design and 
engineering, and driver’s training. These application scenarios are roughly correlated to the 
aforementioned classification of driving simulators [13]. Nonetheless, driving simulators are 
composed of many building components. Combining low-fidelity with high-fidelity components in 
one driving simulator can lead to effective utilization of resources and costs [14]. That is, a driving 
simulator may have high capability with respect to one particular component and low capability with 
respect to other components based on the purpose of use. However, it is challenging for non-expert 
users to select individual simulator components that fit their particular application scenarios. The 
following subsection presents guidelines from the literature to mitigate this problem. 

3.1. Determining Necessary Fidelity Levels of Driving Simulators 

While purchasing driving simulators, users usually undergo a selection process based on their 
own understanding of the capabilities of available solutions. The selection process tends usually to 
use the available budget to purchase simulator components with the highest possible fidelity level. 
This results typically in rough selections, where the end benefits are not as great as the purchase and 
operation costs. Negele introduced guidelines for determining the fidelity level of each primary 
simulator component with respect to the application scenarios [6]. Hereafter in this work, these 
guidelines are referred to as Negele’s guidelines according to the author’s name. 

Negele’s guidelines consider the human behavior that generally falls into one of three distinct 
categories: skill-based, rule-based, and knowledge-based behavior [15]. In particular, the driving 
behavior is affected correspondingly by the skills, experiences, and situation familiarity of drivers 
[16]. Skill-based responses occur in routine driving situations that require fast actions. In a driving 
simulator, these responses are triggered automatically only if the sensory stimuli are realistic enough 
for the driver. That is, high fidelity levels are required for these types of responses. Rule-based 
responses are invoked in driving situations that require identification and recall of previously 
instructed actions. The driver is fully aware of the situation and the corresponding necessary rules. 
In these situations, the responses are triggered moderately and the driver has some time to 
compensate missing cues. Therefore, a modest deviation from reality in a driving simulation 
environment is permitted for these types of responses. Knowledge-based responses emerge in 
unfamiliar driving situations that require effort and conscious attention. The driver exerts 
considerable intellectual effort to find an appropriate response for the situation. These responses 
occur slowly, so that the driver has enough time to mentally compensate necessary cues. Therefore, 
a large deviation from reality in a driving simulation environment is allowed for this type of 
responses.  

Moreover, Negele’s guidelines differentiate between three groups of driving tasks: primary, 
secondary, and tertiary. The primary tasks are further subdivided into: stabilization, guidance, and 
navigation tasks [6]. Maintaining the vehicle state while driving through a curve, interacting with 
other traffic participants, and planning an entire driving route are examples for the three types of the 
primary tasks respectively. While handling a driver assistance system is an example for the secondary 
driving tasks, adjusting the air conditioner and tuning the radio are typical tertiary driving tasks. 
Realistic simulation cues for appropriate vehicle control are more significant for the primary than the 
tertiary driving tasks [6]. The secondary driving tasks are considered intermediate with respect to the 
fidelity level required to control the vehicle. Figure 2 shows a matrix between the defined driving 
tasks and the driver response types. The mutual intersections result in 15 classes of driving simulator 
applications. Users have to specify the concerned driving task and response in order to determine the 
relevant application class [6]. Consequently, the determination of the application classes helps users 
to conclude the allowed fidelity deviation between the driving simulation system and reality as 
depicted in Figure 2.  
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Figure 2. Scheme for classifying driving simulator applications [6]. 

In addition, Negele’s guidelines defined the main driving simulator subsystems: scene 
simulation, motion simulation, driver’s platform, acoustic simulation, and objects database along 
with traffic simulation [6]. These subsystems can be considered in different orders based on their 
contribution to the overall simulation fidelity for each application class. Furthermore, each subsystem 
has a group of features characterized by different fidelity levels. The fidelity levels are distinguished 
by keys that are represented as letters and ordered by numbers. As an example, Table 1 shows the 
features of the driver’s platform along with their different fidelity levels. 

Table 1. Features and fidelity levels of the driver’s platform [6] 

Feature Key Fidelity Levels 

Mock-up 

S1 Driving seat and HMI without chassis 
S2 Partial vehicle (quarter or half vehicle) 
S3 Complete vehicle—no modifications apparent 
S4 Series production vehicle—no modifications apparent 

HMI 
T1 Basic and simple HMI
T2 Complete and realistic HMI 
T3 Complete HMI with reconfigurable display 

Steering 
U1 Steering moment proportional to steering angle 
U2 Electrical steering moment, damping, and friction 
U3 Electrical steering moment with high frequency 

Pedals Set 
V1 Passive force feedback 
V2 Adaptive force feedback—modifiable characteristic curve 
V3 Active force feedback—tangible effects of control systems 

However, it may be still challenging for non-expert users to select particular fidelity levels for 
the features of each subsystem. Therefore, Negele’s guidelines provided examples for common 
application classes as a means of orientation [6]. Moreover, reasonable feature fidelity levels for each 
of these classes were deduced and presented in the form of profile tables. As an example, Table 2 
shows the profile of the application class 1a. 
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Table 2. Profile of driving simulator application class 1a [6] 

Scene Simulation
Viewing distance (A1) Field of view (B2) Stereo vision (None) 
Head tracking (None) Rear-view mirrors (E2) Field continuity (F3) 

Resolution (G2) Frame rate (H1) Projector type (J2) 
Motion Simulation 

Motion platform < 6 DOF  
(K1) 

Standard platform = 6 DOF 
(None) 

Standard platform > 6 DOF (M1/M2/M3) 

Vehicle dynamics (N3) Tire (O4)
Driver’s Platform

Mock-up (S3) HMI (T2) Steering (U3) 
Pedals set (V2)   

Acoustic Simulation 
Primary sound P1 (P2) Auxiliary sound (Q1) Sound system (R1, R3) 

Environment Database 
Database type (W1) District type (Y1)  

Traffic Objects Simulation 
General traffic vehicles (Z1) Special objects (None)  

For better visualization and easy interpretation of the fidelity levels, the defined simulator 
application classes are presented in the form of specification radar charts [6]. For all driving simulator 
subsystems, these charts depict the features and the fidelity levels in comparison to the maximum 
achievable fidelity levels according to the technical advancement.  

In summary, Negele’s guidelines present an assistance to non-expert users to determine the 
necessary overall fidelity levels of the driving simulators. Following these guidelines leads to the 
selection of driving simulators with complexity levels intended for specific application scenarios. 
However, users may have to alternate between different fidelity levels to address further application 
scenarios. This process is challenging for non-expert users as it requires technical knowledge of 
system structure and component compatibility and interoperability. The following section presents 
a method from the literature to tame this complexity. 

3.2. Configuring Driving Simulation Environments 

Driving simulation facilities are used in practice to possibly cover diverse application scenarios 
simultaneously [7]. Users may have access to various simulator components of different fidelity levels 
within the same driving simulation facility. A maintainable and flexible environment for driving 
simulation is required to easily exchange driving simulator components. Hassan presented a method 
to reconfigure driving simulation environments by system users [7]. Hereafter in this paper, this 
method is referred to as Hassan’s method according to the author’s name. 

Principally, Hassan’s method applies a morphological box containing entries of the main driving 
simulator components together with the available variants [17]. These variants are called solution 
elements and they represent products with different fidelity levels and characteristics provided by 
different simulator manufacturers and developers. The driving simulator components are listed 
vertically and the corresponding available solution elements are listed horizontally within the 
morphological box.   

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 September 2017                   doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006


 7 of 50 

 

Table 3Table 3 shows the morphological box, where the solution elements are depicted as 
representative figures [7]. The morphological box of Hassan’s method is modified slightly in this 
work. Specifically, the naming convention of the driving simulator components of Negele’s 
guidelines is used in the morphological box of Hassan’s method to maintain consistency between 
both approaches. 
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Table 3. Morphological box for driving simulator components (excerpt) [7] 

Driving Simulator 
Components 

Solution Elements 
1 2 3 

Scene Simulation  
System 

 

Motion Simulation  
System 

 

Driver’s Platform 

 

Acoustic Simulation  
System 

 

Environment 
Database 

 

Traffic Objects  
Simulation 

 

The shown morphological box contains six driving simulator components: scene simulation 
system, motion simulation system, driver’s platform, acoustic simulation system, environment 
database, and traffic objects simulator [7]. Three exemplary solution elements are provided for each 
driving simulator component. The morphological box can be extended horizontally to add further 
solution elements. System users can select simulator components and solution elements in a process 
similar to browsing an online catalogue to customize a product before purchasing. The core of 
Hassan’s method incorporates a consensus check algorithm that has mainly two levels [7]. The first 
level is the logical dependency check between the driving simulator components. This dependency 
check process gives an indication whether the selection of one particular component necessitates or 
affects the selection of other components. For instance, the selection of the driver’s platform may 
depend on the selection of the motion platform and vice versa. This dependency may arise due to the 
dimension and weight of the driver’s platform in relation to the corresponding specifications of the 
motion platform. A two-dimensional dependency matrix is created to facilitate the dependency check 
process. Driving simulator components are listed in the first row and column of the matrix as shown 
in Table 4. The dependency matrix is mirrored along the diagonal line. The intersection of each pair 
of different driving simulator components determines the respective logical dependency.
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Table 4. Dependency matrix of driving simulator components [7] 

Dependency Scheme Hardware Software 

0 = Independent Components  
1 = Dependent Components 

Visualization 
System 

Motion 
Platform 

Human-
Machine 
Interface 

Acoustic 
System 

Visualization 
Software 

Platform 
Controller 

Vehicle 
Dynamics 

HMI 
Software 

Acoustic 
Software 

Hardware 

Visualization system x         
Motion platform 1 x  

Human-machine interface 0 1 x       
Acoustic system 0 0 0 x  

Software 

Visualization software 1 0 0 0 x     
Platform controller 0 1 0 0 0 x
Vehicle dynamics 0 0 0 0 0 0 x   

HMI software 0 0 1 0 0 0 0 x  
Acoustic software 0 0 0 1 0 0 0 0 x 
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The second level of the consensus check algorithm is the logical consistency analysis. This 
consistency check process gives an indication whether the selection of one particular solution element 
is consistent with the selection of other solution elements. A two-dimensional consistency matrix is 
created to facilitate the consistency check process. The solution elements of each system component 
are listed in the first row and first column of the matrix. The consistency matrix is mirrored about the 
diagonal line. The intersection of each pair of different solution elements determines the respective 
logical consistency. Table 5 shows an excerpt of the consistency matrix.  

Table 5. Consistency matrix of driving simulator solution elements (excerpt) [7] 

Consistency Scheme Hardware
0 = Inconsistent Solution Elements  
1 = Independent Solution Elements  
2 = Consistent Solution Elements 

Visualization 
System 

Motion 
Platform 

Human 
Machine 
Interface 

Acoustic 
System 

 A B A B A B A B

Hardware 

Visualization system 
A x x       
B x x       

Motion platform 
A 2 0 x x     
B 0 2 x x     

Human machine 
interface 

A 1 1 2 0 x x   
B 1 1 0 2 x x   

Acoustic system 
A 1 1 1 1 1 1 x x 
B 1 1 1 1 1 1 x x 

The consistency check process makes use of the preceding dependency check process. If two 
components are independent, the two corresponding solution elements inherit the independence. In 
this case, it is not necessary to check the consistency between these particular solution elements. The 
consistency matrix is editable to account for eventual availability change of solution elements. Both 
dependency and consistency matrices must be filled out by a system expert. However, Hassan’s 
method was embedded within configuration software [7]. This can be used by non-expert system 
users to compose different configurations of driving simulators from the available solution elements. 

In summary, Hassan’s method provides a procedure to reconfigure driving simulation 
environments. The focus is given to the configuration process to assure the consensus of the simulator 
components without the consideration of the application requirements. An accompanying 
configuration software facilitates the configuration process. No substantial knowledge of driving 
simulator components or available solution elements is required from non-expert system users. 
However, the specifications of the driving simulator components are not correlated to the 
requirements of possible application scenarios. Users still need to manually determine the 
requirements or the necessary simulator fidelity level for their application scenarios based on some 
criteria, such as Negele’s guidelines. Moreover, users have to manually analyze available simulator 
components to determine their fidelity levels. The effort increases considerably if multiple driving 
simulators are networked in one environment. The following section presents a new method to 
design networked driving simulation systems based on the specific application requirements. 

4. Development Methodology 

The approaches discussed in the previous section represent compelling methodological work 
for the field of conventional driving simulation [6,7]. However, broader design considerations are 
necessary for networked driving simulation as a typical system of systems (SoS) with its 
acknowledged complexity [5]. A multidisciplinary expertise must be involved while building system 
models and during system realization. The current modeling techniques for SoS are still in their 
infancy [9]. A domain-spanning conceptual design method and tool are required. To that end, a new 
systems engineering design method for networked driving simulation is presented in this section. 
Figure 3 depicts the fundamental components of the developed design method. 
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Figure 3. The fundamental components of the developed design method for networked driving 
simulation. 

In particular, the concepts of model-based system engineering for building system models are 
adopted in the design method [14]. The design method consists basically of a procedure model and 
system of systems (SoS) configuration software as shown in Figure 3. These primary components are 
described as follows: 

• Procedure model 
The procedure includes the necessary development phases that are arranged in a specific 
hierarchy towards the design of multidisciplinary system models for platforms of networked 
driving simulation. Each development phase contains a set of specific tasks, which shall be 
carried out in order to obtain the phase objectives. The procedure model specifies the methods 
and approaches used in each task. Moreover, the procedure model reveals the results of each 
individual phase. This work is concerned with the comprehensive description of the procedure 
model and its phases.  

• SoS configuration software 
The SoS configuration software embeds the methods and approaches of the procedure model to 
generate application-oriented system models. The SoS configuration software guides non-expert 
system users in a sequential process to achieve the end objective. Non-expert users can be 
operators or domain-specific experts. They do not have to acquire deep multidisciplinary 
knowledge in order to use the SoS configuration software for system model design and 
generation. A comprehensive description of the design of the SoS configuration software is 
beyond the scope of this work. The design concepts of an analogous software tool are discussed 
thoroughly in Reference [18].  

The ultimate goal of the design method is to assist non-expert system users in building different 
system models in accordance with the application scenarios of interest. The general proposed 
approach to taming design complexity in a systematic manner is to handle the modeling process in 
two major system aspects: simulation and communication. The approaches discussed in the previous 
section are combined and utilized in this work to address the first major aspect. Specifically, 
determining the fidelity levels of the constituent simulation systems is embedded within the SoS 
configuration software according to Negele’s guidelines. Hassan’s method is complemented so that 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 September 2017                   doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006


 12 of 50 

 

the configuration of the constituent simulation systems is carried out in accordance with the 
requirements of the concerned application scenarios. The second major aspect handles mainly the 
prioritization process of various network characteristics and functions of available competing 
communication systems in accordance with the requirements of the concerned application scenarios. 
Hence, suitable communication systems are selected to guarantee proper system operation and 
achieve substantial results. The following subsections describe the different phases of the procedure 
model and their tasks in detail. 

4.1. Networked System Specification 

The objective of this phase is to provide a clear understanding of the networked driving 
simulation system by formalizing a holistic system description. Principally, this description combines 
various aspects of the target system. Available system architecting and description techniques for SoS 
to date are not sufficient as they typically focus on specific aspects of the SoS [9]. For instance, some 
architecting techniques concentrate on the synergy of the constituent systems. Others focus on the 
communication between the constituent systems, with the argument that this particular aspect is 
common for all SoS types. However, the utilization of a well-established domain-spanning 
conceptual design method is necessary for the specification of networked driving simulation systems. 
This assures a broader consideration during its design as a system of systems. 

To that end, the CONSENS specification technique is adopted in this phase [19]. The term 
‘CONSENS’ is an English acronym that stands for ‘conceptual design specification technique for the 
engineering of complex systems’. This specification technique mitigates the design complexity by 
describing the various aspects of the multidisciplinary systems using a set of coherent partial models. 
In particular, the effective usability of the CONSENS specification technique for the field of 
conventional driving simulation was validated in Reference [7]. Furthermore, the essential 
CONSENS partial models in this regard were determined and structured in a specific workflow [7]. 
Since the CONSENS specification technique is open for the conceptual design of newly emerging 
complex systems, it undergoes some minor modifications in this work for the development of 
networked driving simulation. The following subsection discusses the CONSENS workflow adopted 
in this work. 

4.1.1. CONSENS Workflow for Networked Driving Simulation 

The outcome of the CONSENS specification technique is represented as a principle solution that 
is described by seven interrelated partial models. Specifically, these partial models are: environment, 
application scenarios, requirements, functions, active structure, shape, and behavior [20]. Each partial 
model describes a specific aspect of the target system. To build a coherent system of systems model, 
the focus is given to the first five partial models in particular. The shape and behavior partial models 
are not considered in this work as they are more relevant to the development of commercial 
mechatronic products, such as printers and air conditioners. Figure 4 shows a specified workflow for 
the five relevant partial models along with their summarized results. 

In this work, the CONSENS workflow is divided into three steps towards an increased system 
concretization. The first step includes the construction of three partial models: environment, 
application scenarios, and requirements. The second step depends on the outcomes of the first step 
to create a function hierarchy for the entire system. In the third step, an active structure is built based 
on the results of the previous steps. The system specification process is often carried out during expert 
workshops. Specifically, experts of various disciplines—such as mechanical engineering, electrical 
engineering, communication engineering, and requirements engineering—collaborate to specify the 
different aspects of the target system [19]. The following are brief discussions of the five partial 
models and the results with respect to networked driving simulation systems. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 September 2017                   doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006


 13 of 50 

 

 
Figure 4. CONSENS workflow for networked driving simulation development. 

4.1.2. Identify Environment 

The environment partial model defines all possible external influences that can affect the 
networked driving simulation system. These external influences can be either environment elements 
or disturbance variables. Within the environment partial model, the networked driving simulation 
system is considered as a black box. That is, the internal structure and the constituent systems are not 
visible in this partial model. In this work, the environment partial model of the networked driving 
simulation system was determined based on the comprehensive analysis of typical driving 
simulation facilities as shown in Figure 5. Specifically, the analyses result in the identification of five 
main environment elements. These are described as follows: 

• Drivers 
Human drivers represent a crucial environment element. They use the input devices within the 
driving platforms of the participating driving simulators to control a simulated vehicle in a 
virtual environment. The main input signals are: acceleration pedal position, brake pedal 
position, gear selector position, and steering wheel angle. The drivers receive feedback from 
their driving simulators in the form of motion or vibration, as well as visual and acoustic 
information. Basically, the motions and vibrations are generated by the eventually utilized 
motion platforms. In addition, some input devices, such as active steering wheels, can deliver 
relative motions to the drivers. The visual feedback is represented with virtual scenes displayed 
to the drivers via the visualization systems. The acoustic feedback is delivered via the acoustic 
systems as sound effects that accompany the 3D models. The visual and acoustic signals are 
generated often together by the visualization software.  

• Simulation operator 
This can be a technician or a laboratory engineer, who is responsible for the general operation of 
the facility of networked driving simulation. Eventually, the simulation operator can be a 
domain-specific engineer or developer, who conducts some experiments using the networked 
driving simulation facility. The simulation operator can control the scenario by setting some 
simulation parameters. The networked driving simulation system returns simulation signals for 
monitoring purposes. 
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• Energy source 
This can be a wall outlet that provides electrical energy to the constituent systems and building 
components of the networked driving simulation system. Eventually, some components may 
require power supplies to convert the electrical power of the wall outlet to the levels suitable for 
their circuitry. 

• Ground 
This is the physical base of the networked driving simulation system. Dynamic forces occur 
between the ground and the networked driving simulation system as actions and reactions, 
especially when the participating driving simulators are equipped with motion platforms. 

• Environment 
The surrounding environment affects the networked driving simulation system through 
disturbing influences, such as humidity, dirt, light, and temperature. The networked driving 
simulation system affects the surrounding environment through the produced heat and 
operation noise. 

Figure 5 shows the environment partial model of a networked driving simulation system. The 
environment elements are illustrated as yellow hexagons, while the networked driving simulation 
system is represented as a blue hexagon in the center of the model. The interrelations between the 
networked driving simulation system and the main environment components are categorized mainly 
as information, energy, and disturbing flows. The information flow denotes the exchange of 
information between the units of the whole system, such as the measured system variables or 
environment conditions. The energy flow denotes the transfer of energy between the units of the 
system, such as mechanical, thermal, or electrical energy. The disturbing flow represents any external 
factors affecting the normal operation of the system. 

 
Figure 5. Example environment partial model of a networked driving simulation system. 

Establishing the environment partial model ensures that all system surroundings are considered 
in a very early development phase. System users and maintenance personnel can use this partial 
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model to systematically determine and mitigate external causes of eventual future malfunctions. The 
following is an elaboration of the partial model of the application scenarios and its results with 
respect to networked driving simulation systems. 

4.1.3. Define Application Scenarios 

This partial model specifies the potential application scenarios of the networked driving 
simulation system. Each application scenario describes the target system with respect to the aim of 
use, operation modes, and the primary constituent systems and building components utilized in this 
particular application scenario. Specifically, the application scenarios are modeled using the so-called 
profile pages [19]. Each profile page contains characterizing information about a particular scenario, 
such as the title, ID, and last modification date. Moreover, each profile page provides a concise 
description of the application scenario [20]. Eventually, a sketch or a schematic can be added to 
provide better understanding of the application scenario. As a system of independent and 
heterogeneous systems, the partial model of the application scenarios of networked driving 
simulation in this work has a different form than that presented in Reference [19]. Specifically, an 
overall application scenario is described for the whole networked driving simulation system. This 
description principally highlights the ultimate goal of the developed system of systems. In addition, 
a purpose of use is described for each anticipated constituent simulation system. Two or more driving 
simulators and eventually a traffic simulator can represent a typical set of the constituent simulation 
systems. Furthermore, a rough description of the essential role of the communication system can be 
added eventually to the profile page. Table 6 shows the profile page of an example application 
scenario of a networked driving simulation system that is intended for use in modern driving schools. 
The example application scenario involves two driving simulators and a workstation for session 
control and monitoring. 

Table 6. Example application scenario of a networked driving simulation system 

Application  
Scenario 1 Multi-Driver Training in Driving Schools Status  

1 September 2017 Page 1 

Description: An instructor at a driving school handles two trainees simultaneously in realistic 
and multi-interactive traffic scenarios. The trainees share a virtual traffic environment. They 

have to react to each other and adapt their driving behavior.  
Simulation System 

Simulation Entities Supplementary Components 
Driving simulator 1 Driving simulator 2 Workstation 

Trainee 1 uses this driving 
simulator to experience 

different traffic situations in a 
safe virtual environment.  

Trainee 2 uses this driving 
simulator to experience 

different traffic situations in a 
safe virtual environment.  

Purpose of use: the driving 
instructor uses the work 

station to control and 
monitor the training session. 

Communication System 
Communication Technology Communication Architecture 

It is a feasible communication technology that 
ensures a data exchange with little delay and 

loss rates. 

To maintain system feasibility for driving 
schools, no communication architecture is 

utilized in this application scenario.  
Sketch 

 

The defined purposes of use can be used to determine and document a set of requirements for 
each anticipated constituent simulation system separately. This requirement description is refined in 
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the requirements partial model. The following is an elaboration of the requirements partial model 
and its results with respect to networked driving simulation systems. 

4.1.4. Derive Requirements 

This partial model specifies a comprehensive list of requirements of the networked driving 
simulation system. Principally, this list can include functional and non-functional requirements [20]. 
Moreover, the individual items of requirements can be denoted as demands or wishes (D/W). Table 
7 shows an excerpt of an example list of requirements of a networked driving simulation system. 

Table 7. Example list of requirements of a networked driving simulation system (excerpt) 

ID No. Requirements of Networked Driving Simulation D/W 

1 

Requirement of Driving Simulator 1 
1 Scene simulation system 

1.1 It shall cover a 120° horizontal field of view D 
… …  
2 Motion simulation system 

2.1 It shall provide three degrees of freedom W 
… …  

2 

Requirement of Driving Simulator 2 
1 Scene simulation system

1.1 It shall cover a 240° horizontal field of view W 
… …  
2 Motion simulation system 

2.1 It shall provide five degrees of freedom D 
… …  

As a system of independent systems, the structure of the list of requirements of networked 
driving simulation in this work has a different form than the standard form presented in the 
CONSENS specification technique [19]. Specifically, a separate set of requirements is defined for each 
independent constituent system and component that is denoted by a unique ID as shown in Table 7. 
The different sets of requirements together form the overall requirements of the networked driving 
simulation system. The following is an elaboration of the functions partial model and its results with 
respect to networked driving simulation systems. 

4.1.5. Deduce Functions 

The functions of the networked driving simulation system are defined based on system 
requirements and application scenarios. Interactive simulation, traffic simulation, operation 
management, data collection, and network communication are the fundamental system functions 
identified based on a comprehensive analysis of the networked driving simulation. Each of these 
defined functions may undergo further top-down hierarchical subdivisions [20]. Figure 6 shows the 
functions and sub-functions of a networked driving simulation system. 

 
Figure 6. Example functions partial model of a networked driving simulation system. 
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The defined system functions are realized by solution patterns towards system concretization. 
For instance, the interactive simulation function can be carried out by two or more driving—like 
passenger car or truck—simulators of different or equal complexity grades. The simulation of traffic 
vehicles and pedestrians can be performed with an independent traffic simulator. A workstation can 
provide capabilities of operation control and monitoring. A database console can carry out the data 
logging function and serve for subsequent simulation session analysis. A communication technology, 
for instance, such as Ethernet, can carry out the data exchange between the constituent systems and 
building components. Data management can be achieved by communication architecture, like high-
level architecture [21]. As a lot of solutions may be available, a classification scheme (morphological 
box) can be utilized to facilitate the systematic combination of available solutions [17]. According to 
the SoS definition adopted in this work, networked driving simulation systems are composed of 
further heterogeneous constituent systems and building components. Therefore, combining only 
compatible solutions does not apply in this context in contrast to the design of typical mechatronic 
systems [17]. The following is an elaboration of the active structure partial model and its results with 
respect to networked driving simulation systems. 

4.1.6. Build Active Structure 

The active structure partial model is created based on the defined system functions and the 
possible constituent systems and building components of networked driving simulation. In contrast 
to the environment partial model that considers the whole system as a black box, the active structure 
partial model concretizes the system by illustrating its internal structure in more detail [20]. 
Specifically, it shows the main system components and their primary interrelationships in the form 
of information and energy flows. Figure 7 shows the active structure of a networked driving 
simulation system including all possible (yet not all necessary) constituent systems and building 
components. These correspond to the particular system functions defined previously.  

 
Figure 7. Example active structure partial model of a networked driving simulation system. 
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The presented active structure partial model includes six constituent systems and building 
components that belong to two main member groups: simulation system group and communication 
system group. On the one hand, the driving simulators and the traffic simulator are constituent 
systems that belong to the simulation system group. Similarly, the workstation and database station 
are considered as supplementary system components that belong to the simulation system group. On 
the other hand, the communication technology and the communication architecture belong to the 
communication system group. To illustrate, Figure 7 depicts the drivers that represent a crucial 
environment element to illustrate the interaction with the driving simulators that act as central 
constituent systems of the networked driving simulation system.  

In summary, the collective results of the five specified partial models form together a principle 
solution that acts as a communication and cooperation basis between the experts of the involved 
development domains [20]. This basis is used for the subsequent design and development phases of 
the networked driving simulation system in this work. The following subsection presents a 
comprehensive analysis of system components as a further step towards concretization. 

4.2. System Components Analysis 

The objective of the second development phase is the identification, description, and 
classification of the components of the networked driving simulation system. This development 
phase depends mainly on the results of the system specification phase. Nonetheless, prior to the 
identification of the system components, a distinction must be clear between the terms ‘constituent 
systems’ and ‘building components’. On the one hand, the constituent systems are independent 
participants within the networked driving simulation system. They can carry out meaningful tasks 
of their own, even if they are not networked to an entire system. On the other hand, the building 
components can provide services to the system of systems. However, they cannot carry out 
meaningful tasks of their own, more specifically, when they are not networked to one or more 
constituent systems. The following is an elaboration of the system components identification task and 
its results. 

4.2.1. Identify System Components 

The active structure partial model initially revealed the possible five system components of the 
networked driving simulation system. These system components can be identified further based on 
the presented distinction between the constituent systems and building components of the 
networked driving simulation. On the one hand, the driving and traffic simulators are constituent 
systems. They can be used separately for useful, independent purposes. On the other hand, 
workstations, database consoles, and the communication system are building components. They 
present services to the entire system, but they are not useful if utilized independently without 
constituent systems. Table 8 presents the five system components and the clear distinction between 
the constituent systems and the building components. 

Table 8. Distinction between constituent systems and building components 

Distinction 
System Components of Networked Driving Simulation 

Driving  
Simulators 

Traffic
Simulators Workstations 

Database
Consoles 

Communication 
Systems 

Constituent  
System 

x x    

Building  
Component  

  x x x 

Based on the results of the identification task, the following is an elaboration of the components 
description task and its results. The concrete role of each system component within the networked 
driving simulation is highlighted. 
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4.2.2. Describe System Components 

The five main identified system components of the networked driving simulation system can be 
characterized as essential and optional components based on their roles. Essential system 
components are vital to achieve the central purpose of networked driving simulation: multi-driver 
traffic scenario simulation. However, the system of networked driving simulation can operate 
without the optional components and still achieve this central purpose. The following is a concise 
description and a role characterization of each system component of the networked driving 
simulation system from a solution-neutral perspective. 

• Driving simulators 
They are operated by human drivers to control the respective simulated vehicles. The driving 
simulators can be of different types, such as a passenger car simulator or a truck simulator. 
Moreover, driving simulators of different complexity grades can principally participate within 
the networked driving simulation system. By any means, the participation of at least two driving 
simulators is necessary not only to achieve the central purpose, but also to establish a system of 
networked driving simulation. If a third driving simulator is added to the system, one of the 
driving simulators can be eventually considered as an optional component. However, driving 
simulators are characterized as essential constituent systems in general. 

• Traffic simulators 
They generate traffic participants, such as programmed vehicles and pedestrians, to add more 
complexity to the multi-driver traffic scenario. One traffic simulator is often sufficient for the 
system of networked driving simulation. However, more than one traffic simulator can be 
integrated within the system to provide different granularity levels of traffic simulation, such as 
macroscopic and microscopic traffic flows [22]. The system of networked driving simulation can 
operate without the utilization of traffic simulators. In this case, the multi-driver traffic scenario 
simulation depends only on the participating interactive driving simulators. Hence, traffic 
simulators are characterized as optional constituent systems.  

• Workstations 
A workstation is utilized to provide control and monitoring operations on the networked 
driving simulation system. That is, the simulation operator can make commands to stop/start 
the system and control particular building components. Moreover, the simulation operator can 
monitor various signals that give indications about the operation and performance of the system 
and its building components. Principally, the system of networked driving simulation can 
operate without the use of a workstation. Hence, the workstation is characterized as an optional 
building component.  

• Database consoles 
A database console is utilized to capture and save the simulation data. Moreover, operators and 
developers can conduct simulation analysis or generate after-action-review reports. However, 
the system of networked driving simulation can operate without the use of a database console. 
Hence, the database console is characterized as an optional building component.  

• Communication systems 
In this work, a communication system includes two categories of building components: 
communication technologies and communication architectures. On the one hand, the 
communication technologies are responsible for information exchange, such as Ethernet, CAN, 
and FlexRay. These communication technologies differ mainly through the provided 
networking characteristics. The system of networked driving simulation cannot operate without 
the use of a communication technology. Hence, communication technologies are characterized 
as essential building components. On the other hand, the communication architectures are 
responsible for networked simulation management, such as Distributed Interactive Simulation 
(DIS) and High-Level Architecture (HLA) [23,21]. These communication architectures differ 
mainly through the provided functions and services that can be useful for networked simulation. 
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Unlike the communication technologies, the system of networked driving simulation can 
operate without the use of communication architectures. Hence, the communication 
architectures are characterized as optional building components. Table 9 shows the identified 
and described system components together with their role significance within the networked 
driving simulation system.  

Table 9. Role significance of constituent systems and building components 

Role  
Significance 

Components of Networked Driving Simulation Systems 
Constituent Systems Building Components 

Driving  
Simulators 

Traffic  
Simulators 

Workstations Database  
Consoles 

Comm.  
Technologies 

Comm.  
Architectures 

Essential  
Component 

x    x  

Optional  
Component  

 x x x  x 

The identification and description of system components provided more understanding towards 
system concretization. Using the results of the identification and description tasks, the following is 
an elaboration of the components classification task. Main categories of system components are 
specified as an essential preparation step for the subsequent development phases. 

4.2.3. Classify System Components 

Based on the functions and active structure established in the previous development phase, 
system components can be classified into two main groups: the simulation system group and 
communication system group as shown in Figure 8.  

 
Figure 8. Classification of networked driving simulation system components. 

On the one hand, the simulation system group is classified further into simulation entities and 
supplementary components. The driving and traffic simulators are assigned to the simulation system 
group under the simulation entities. Moreover, individual components of driving simulators, such 
as visualization systems and motion platforms, belong to the simulation entities as well. 
Comprehensive identification, description, and classification of the individual components of driving 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 September 2017                   doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006


 21 of 50 

 

simulators are presented in References [6,7]. The workstations and database consoles can be assigned 
to the simulation system group. However, these belong to the supplementary components to indicate 
their relative uncritical role within the system of networked driving simulation. On the other hand, 
the communication system group includes various communication technologies and communication 
architectures. This particular classification reflects the functional role of the five main system 
components within the networked driving simulation as a system of systems. It is used as a basis for 
the next development phases. The following section presents the development of system databases 
and the deployment of solution elements. 

4.3. System Databases Development 

The third development phase depends on the results of the preceding phases and presents 
another step towards system concretization. The objective of this development phase is to build 
system databases that contain entries of the analyzed system components, which are concretized as 
solution elements. While system components are solution-neutral, the solution elements represent 
concrete products of the system components provided from different developers and manufacturers. 
In addition, an approach to filling the system databases with entries of the solution elements is 
presented in this development phase. The system databases are accessible and editable from the 
system of systems (SoS) configuration software. This is necessary for the subsequent development 
phases that address the configuration of the networked driving simulation system and the generation 
of system models. The following is an elaboration of the structure of the system databases. 

4.3.1. Build System Databases for Solution Elements 

In this task, system databases are developed based on the classification of system components 
presented in the previous phase. More specifically, two system databases are built for the two main 
groups of system components: simulation system database and communication system database.  

On the one hand, the simulation system database includes only solution elements of components 
related to the simulation task of the overall system of networked driving simulation. The simulation 
system database has four tables representing the four component categories that belong to the 
simulation system group: driving simulators, traffic simulators, workstations, and database consoles. 
These four database tables are filled with entries of the corresponding solution elements. A database 
for the solution elements of the individual driving simulator components has been created and filled 
within Hassan’s method [7]. It has tables for solution elements of three categories of driving simulator 
components: hardware, software, and resources. This particular database is merged with the 
simulation system database developed in this work. Its entries can be used eventually during the next 
phase of system configuration.  

On the other hand, the communication system database includes solution elements of 
components related to the communication task of the overall system of networked driving 
simulation. The communication system database has two tables representing the two components 
that belong to the communication system group: communication technologies and communication 
architectures. Similarly, these two database tables are filled with entries of the corresponding solution 
elements. Figure 9 depicts the two developed system databases and the main associated tables. 

The system databases can be implemented with different database development tools. However, 
the selected database development tool and the implementation approach must allow the 
fundamental database operations: create, read, update, and delete [24]. These basic database 
operations are typically summarized using the acronym ‘CRUD’ according to the first letters of the 
four operations, respectively. This particular feature is necessary to make the system databases 
accessible and editable from the SoS configuration software. The following is an elaboration of the 
specified attributes of the main database tables. 
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Figure 9. The developed system databases and the main tables. 

4.3.2. Fill System Databases with Solution Elements 

Apart from the database tables used in Hassan’s methods, six database tables were identified in 
the previous development task to include solution element entries of six system component 
categories: driving simulators, traffic simulators, workstations, database consoles, communication 
technologies, and communication architectures. These database tables must be specified further with 
attributes before registering entries of corresponding solution elements. The table attributes 
presented in this development task can be extended arbitrarily so that the design conforms to the 
open systems approach of the system of systems engineering [9]. 

Table 10 shows the database table created to include entries of existing driving simulators as 
available solution elements. For example, entries of three driving simulators are included: ATMOS 
(Atlas Motion System) driving simulator, Airmotion_ride driving simulator, and HNI (Heinz 
Nixdorf Institute) PC-based driving simulator. These driving simulators were developed at the Heinz 
Nixdorf Institute in Paderborn, Germany within a previous research project [25]. They have different 
fidelity levels and can be used for different application scenarios. A comprehensive description of the 
technical specifications of these driving simulators is presented in Reference [25]. 
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Table 10. Database table of driving simulators with building components of specified fidelity levels 

ID Name 

Visualization 
System 

Motion 
System 

Acoustic  
System 

Driver 
Platform 

Eye 
Distance 

(A) 

Field 
of 

View 
(B) 

Rear-
View 

Mirrors 
(E) 

Continuity 
(F) 

Resolution 
(G) 

Motion 
Standard 

(L) 

Motion 
< 6 

DOF 
(K) 

Motion 
> 6 

DOF 
(M) 

Vehicle 
Dynamics 

(N) 

Tire 
Model 

(O) 

Primary 
Sound 

(P) 

Auxiliary 
Sound (Q) 

Sound 
System 

(R) 

Mock-
Up (S) 

HMI 
(T) 

Steering 
(U) 

Pedals 
Set (V) 

1 
ATMOS  

simulator 
2 3 2 3 2 ‒ 3 ‒ 3 3 1 1 1 4 2 2 1 

2 
Airmotion 

_ride 2 1 3 1 2 1 ‒ ‒ 2 2 1 1 1 1 1 1 1 

3 
HNI PC  

simulator 1 1 3 1 1 ‒ ‒ ‒ 2 2 1 ‒ 1 1 1 1 1 
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In addition to the ID and name attributes, this database table has four more attributes in 
accordance with the four driving simulator components identified in Negele’s guidelines [6]: 
visualization system, motion system, acoustic system, and driver’s platform. Reference [6] provides 
a detailed description of these components together with all possible fidelity levels. In accordance 
with Negele’s guidelines, specific fidelity levels are assigned to the individual components of the 
driving simulators in this work as shown in Table 10. The subsequent application-oriented 
configuration and model generation processes will make use of these fidelity level assignments. To 
conform to the SoS definition adopted in this work, the traffic simulation is considered as a separate 
task that is independent of the driving simulators in contrast to both Negele’s guidelines and 
Hassan’s method. The database table of traffic simulator entries mainly has four attributes in addition 
to the ID: environment database, objects simulation, granularity level, and visualization type. A 
detailed description of these characteristics is provided in Reference [6]. The third member of the 
simulation system database is the workstations table. This database table includes solution element 
entries of workstations that have different capabilities or specifications. The set of attributes can 
include the ID, name, manufacturer, number of monitors, computer specifications, etc. The fourth 
member of the simulation system database is the database consoles table. Similarly, this database 
table includes entries of solution elements of database consoles that have different capabilities or 
specifications. The set of attributes can include the ID, name, developer, design software, interfaces, 
storage capacity, and computer specifications. Some of the solution elements of the individual driving 
simulator components can be characterized based on the features identified in Negele’s guidelines 
[6]. Specifically, nine driving simulator components were identified in Hassan’s method: 
visualization system, motion platform, driver’s platform, acoustic system, visualization software, 
motion controller, vehicle model, HMI interface, and acoustic software. The visualization software, 
motion platform controller, and HMI interface in Hassan’s method do not have corresponding 
features in Negele’s guidelines. Hence, the remaining six driving simulator components from 
Hassan’s method are correlated to features from Negele’s guidelines. This correlation step represents 
the link established in this work between Hassan’s method and Negele’s guidelines. The database 
tables of the individual driving simulator components are extended in this work to allow for the 
fidelity level assignments of the solution elements. With respect to the communication system, a 
database table includes entries of all available communication technologies as solution elements. 
These communication technologies differ mainly through network characteristics. In addition to the 
ID and name attributes, this database table has one main attribute representing significant 
characteristics of the communication technologies [26]. For instance, this attribute is divided into 
eight sub-attributes: bandwidth, latency, jitter, packet loss rate, determinism, error rate, transmission 
mode, and segment length. Another database table includes entries of all available communication 
architectures as solution elements. These communication architectures differ mainly through the 
provided functions and services for networked simulation. In addition to the ID and name attributes, 
this database table has one main attribute representing significant characteristics, functions, and 
services of the communication architectures. Further attributes can be added to the database table of 
communication architectures, such as the provider and the version of the underlying standard. The 
following subsection presents a central development phase of the design method.  

4.4. Configuration Methods Development 

The previous phases provided a comprehensive understanding of the networked driving 
simulation system. The system components were identified, described, and classified. Moreover, 
system databases were developed in accordance with the results of the system components analysis. 
Table 11 shows a morphological box that includes the identified system components and symbolic, 
exemplary solution elements. 
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Table 11. Morphological box of the networked driving simulation system (excerpt) 

System 
Components 

Solution Elements
1 2 3 

Driving 
Simulators 

 

Traffic Simulators 

 

Workstations 

 

Database 
Consoles 

 

Communication  
Technologies 

 

Communication  
Architectures 

 

In general, the morphological box represents a well-established approach that can be used 
particularly when it comes to system composition [17]. In this work, the system components and the 
corresponding available solution elements are inserted into the rows of a morphological matrix as 
shown in Table 11. While the first four system components belong to the simulation aspect of the 
networked driving simulation system, the latter two system components belong to the 
communication aspect. The solution elements of system components must be combined 
systematically to obtain an overall solution. The networked driving simulation system is composed 
of independent, heterogeneous systems. Hence, the combination of solution elements is not governed 
by their consistency or compatibility in this work in contrast to Hassan’s method [7]. The solution 
elements are selected based on the offered capabilities and functionalities with respect to the 
requirements of the concerned application scenarios. The following is a discussion of a configuration 
method for the simulation aspect of the networked driving simulation system. 

4.4.1. Simulation System Configuration Method 

The simulation system aspect in this work includes four system components: driving simulators, 
traffic simulators, workstations, and database consoles. The application-oriented selection of the 
participating driving simulators is the central task of the simulation system configuration. However, 
available driving simulators must be classified according to their capabilities to account for the 
subsequent phase of application-oriented system model configuration and generation. 
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Selection Approach for Available Driving Simulators 

Classifying driving simulators into three categories (low-level, mid-level, and high-level) 
collectively is not practical [13]. A driving simulator may have high capability for one particular 
component and low capability for other components based on the purpose of use [14]. Hence, driving 
simulators are classified in this work in accordance with the 15 application classes defined in Negele’s 
guidelines [6]. These application classes give more insight into the fidelity levels of the individual 
driving simulator components. While seven application classes are considered as not common or 
practical, eight application classes are fully specified in Negele’s guidelines [6]. Nonetheless, the 
specifications of available driving simulators may not exactly fulfill the whole requirements of the 
application classes. Therefore, a cost function is defined to give a quantified indication of the 
specification/requirement deviations.  

The relative significances of the individual driving simulator components are specified for each 
application class in Negele’s guidelines [6]. For instance, the motion system is more significant than 
the visualization system for the application class 1a (skill-based responses and vehicle stabilization). 
In this work, the relative significance is quantified, where each driving simulator component takes a 
unique integer number from 1 to 4. Higher numbers mean more relative significances. With respect 
to the application class 1a for example, the significance numbers: 4, 3, 1, and 2 are assigned to the 
simulator components: motion system, visualization system, acoustic system, and driver’s platform 
respectively. Based on the specified and quantified relative significances, Equation (1) presents the 
cost function developed in this work to give an indicative measure of the deviation between the 
specifications of the available driving simulators and the requirements of the application classes: 

Fidelity	level	deviation	 = 		 SignificanceN 		×	 |Level ( ) 	−	Level ( )|
	 	

,	 (1) 

where: 
m Designation of the driving simulator component 
Significancem Specified relative significance value of a simulator component
n Designation of the feature of a driving simulator component
N Maximum number of features of a driving simulator component 
LevelReq Requirement feature fidelity level of a simulator component 
LevelSpec Specification feature fidelity level of a simulator component

This cost function is applied to each available driving simulator with respect to each application 
class. The minimal deviation value among all available driving simulators with respect to a particular 
application class indicates a best possible match between the specifications and the requirements. 
With respect to any particular application class, Equation (2) presents a simple function used to find 
the minimal deviation value among all driving simulators. Best	matching	simulator	 = 	Min (Deviation , Deviation , Deviation ,… , Deviation ),	 (2) 

where n is the number of available driving simulators. The resulting minimal deviation value is used 
to select the driving simulator, whose specifications best match the requirements of a concerned 
application class. Further cost functions can be eventually developed, provided that they can give 
unique selections of driving simulators. The developed cost function has been applied to the three 
exemplary driving simulators of Table 10 and showed very good results, where no ambiguous 
selections were provided. Error! Not a valid bookmark self-reference.Table 12 shows these results 
with respect to the eight specified application classes. 

Table 12. Results of the developed cost function for three example driving simulators 

Example Driving 
Simulators 

Specified Driving Simulator Application Classes 
1a 2b 3b 3c 4b 4c 5b 5c 
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ATMOS  
driving simulator 

2.04 2.15 3.22 3.22 2.00 1.81 2.00 2.00 

Airmotion_ride  
driving simulator 

3.26 2.23 1.48 1.48 1.38 2.38 1.80 1.80 

HNI PC-based  
driving simulator 

3.15 2.30 1.30 1.30 1.96 2.96 1.78 1.78 

Example minimal deviation values are highlighted in Table 12 supposing that the database table 
contains entries of only three driving simulators. For instance, the HNI PC-based driving simulator 
can be used for the application class 3b (navigation driving tasks with rule-based responses) and the 
application class 3c (navigation driving tasks with knowledge-based responses). The Airmotion_ride 
driving simulator can be used for the application class 4b that addresses secondary driving tasks with 
rule-based responses [6]. The ATMOS driving simulator can serve the application class 4c that 
addresses secondary driving tasks with knowledge-based responses [6]. If other entries of driving 
simulators are added to the database table and the cost function is applied, the results of the minimal 
deviation function will differ with respect to each application class. 

Selection Approach for Further Available Simulation System Components 

The selection of solution elements of traffic simulators, workstations, and database consoles is 
more convenient and straightforward due to the limited number of characterizing features. A similar 
approach can be applied to these simulation system components, however, without the use of a 
particular predetermined significance factor. That is, the deviation between the specifications of the 
available solution elements and the requirements of the application scenarios can be determined 
through any simple cost functions based on comparison tables.  

Selection Approach for Available Driving Simulator Components 

The available driving simulators may not be satisfactory if the deviations between their 
specifications and the requirements of the concerned application classes are large. In such cases, new 
driving simulators can be built through combining solution elements of the different driving 
simulator components. Hassan’s method can be utilized for this particular purpose [7]. In this regard, 
the previous development phase presented an approach to assign feature fidelity levels from 
Negele’s guidelines to the solution elements of the driving simulator components specified in 
Hassan’s method. Moreover, the associated database table has been modified to include these 
assignments. According to Negele’s guidelines, driving simulator components are characterized by 
a set of features. For instance, the visualization system is characterized by five features: eye distance, 
field of view, rear-view mirrors, continuity, and resolution.  

Nonetheless, the features of an available solution element, together, may not have the exact 
fidelity levels that fulfill the corresponding requirements of a particular application class. Therefore, 
a cost function must be defined to give a quantified indication of the deviation. No relative 
significances for the features of the individual driving simulator components are specified in Negele’s 
guidelines. Hence, no particular significance factor is used within the cost function. Equation (3) 
presents the cost function developed in this work to give an indicative measure of the deviation 
between the specifications of individual driving simulator components and the corresponding 
requirements of the application classes: 

Fidelity	level	deviation = Level ( ) − Level ( ) , (3) 

where: 
n Designation of the feature of a driving simulator component
N Maximum number of features of a driving simulator component 
LevelReq Requirement feature fidelity level of a simulator component
LevelSpec Specification feature fidelity level of a simulator component
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This cost function is applied to all available solution elements of each driving simulator 
component with respect to the corresponding requirements of each application class. Among all 
solution elements of a particular driving simulator component, the minimal deviation value indicates 
a best possible specifications match to the corresponding requirements of the concerned application 
class. With respect to any particular driving simulator component and an application class, Equation 
(4) presents a simple function used to find the minimal deviation value among all solution elements. Best	matching	component	 = 	Min(Deviation , Deviation , Deviation ,… , Deviation ),	 (4) 

where n is the number of available solution elements of any particular driving simulator component. 
This approach complements the process of driving simulator configuration introduced in Hassan’s 
method [7]. Specifically, the selection of solution elements of driving simulator components is 
governed by their capability to fulfill the corresponding requirements of the concerned application 
scenarios. The following is a discussion of a configuration method for the communication aspect of 
the networked driving simulation system. 

4.4.2. Communication System Configuration Method 

The communication system aspect in this work includes two system components: 
communication technologies and communication architectures. While using a communication 
technology is essential for the operation of the networked driving simulation system, the 
communication architectures are classified as optional building components. There are a lot of 
solution elements for both building components from different providers. Moreover, the available 
solution elements are usually subjected to continuous development to establish variants of different 
characteristics and functions. A careful selection of the communication system is necessary to reach 
the expected outcomes of the networked driving simulation system. 

Determining Priority of Communication Characteristics and Functions 

Communication technologies are characterized typically by a set of network characteristics, such 
as bandwidth and latency. However, no particular communication technology can provide the best 
possible specifications regarding all network characteristics [27]. Therefore, it may be difficult to find 
an absolute optimal solution element for all application scenarios due to the presence of various 
conflicting network characteristics and myriad choices of available communication technologies. This 
leads to a typical multi-criteria decision-making problem [28]. Thereby, the network characteristics 
represent the criteria and the communication technologies represent the alternatives. In general, there 
are different methods in the literature to handle multi-criteria decision making problems [28]. 
Nonetheless, some of these methods require a prior assignment of priority weights to the different 
criteria. This is necessary to ultimately reach a compromised solution. The compromised solution in 
this regard refers to a choice that satisfies the most important criteria to a sufficient extent while 
partially satisfying the less important criteria.  

Hence, the network characteristics in this context must be prioritized based on the requirements 
of the concerned application scenarios. Table 13 shows an excerpt of a priority analysis matrix that 
can be used to assign priority weights to the network characteristics of the communication 
technologies. At this stage, the priority weighting process is solution-neutral, where no particular 
communication technologies are considered.
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Table 13. Priority analysis matrix including example network characteristics 

Priority Scheme 
1 = Equally Important 

5 = More Important 
10 = Much More Important 

0.2 = Less Important 
0.1 = Much Less Important 

Network Characteristics 

Sum of Weights Priority Weight (%) 
Bandwidth Packet Loss Rate Determinism Latency Segment Length 

Bandwidth x 5 0.2 1 10 16.2 29.35
Packet loss rate 0.2 x 0.2 1 5 6.4 11.59
Determinism 5 5 x 5 10 25 45.29

Latency 1 1 0.2 x 5 7.2 13.04
Segment length 0.1 0.2 0.1 0.2 x 0.4 0.730
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The relevant network characteristics are listed vertically and horizontally in the priority analysis 
matrix. Based on the requirements of a concerned application scenario, a relative priority weight is 
assigned to each pair of different network characteristics according to a priority scheme. The priority 
scheme used in this work includes five levels as shown in 
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Table 13. Exemplary relative priority weights are presented in 
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Table 13 for a set of five network characteristics. For instance, the bandwidth can be less 
important than the determinism, but much more important than the segment length for a particular 
application scenario. The overall relative priority weight of each network characteristic is calculated 
as a sum of weights. The final priority weighting percentages of each network characteristic are 
calculated according to Equation (5). 

Priority	weighting 	(%) 	= (Sum of weights × 100) / Sum of weights 	 ,	 (5) 

where: 
n and m Designations of the network characteristics n and m 
M Total number of network characteristics 

The priority weighting percentages reflect the unique significances of the individual network 
characteristics with respect to a concerned application scenario. Although the shown example 
priority analysis matrix includes only five network characteristics, it can be extended vertically and 
horizontally to include more network characteristics as desired.  

Similarly, the communication architectures are characterized typically by a set of functions for 
networked simulation. However, no particular communication architecture can provide the best 
possible specifications regarding all functions. Hence, the communication functions must be 
prioritized with respect to the application scenarios to reach a compromised solution. A similar 
approach can be used to assign priority weights to the functions of the communication architectures 
based on the requirements of the concerned application scenarios. 

Selection Approach for Available Communication Systems 

After determining the relative priorities of the communication characteristics and functions, a 
decision-making method is required to avoid an exhaustive and impractical search among all 
available solution elements of the communication technologies and communication architectures. 
The cost–benefit analysis method is used in this work as a well-established decision-making process 
recognized by systems engineering [29]. Based on this method, Table 14 shows an exemplary 
assessment of three communication technologies with respect to five network characteristics. 

Table 14. Example assessment according to the cost-benefit analysis method 

Network 
Characteristics 

Priority 
Weight 

(%) 

Communication Technologies
Ethernet 10 Mbps CAN Bus InfiniBand 

Fulfillment 
(%) 

Partial 
Assessment 

(%)

Fulfillment 
(%) 

Partial 
Assessment 

(%)

Fulfillment 
(%) 

Partial 
Assessment 

(%)
Bandwidth 29.35 80 23.5 20 5.87 100 29.4

Packet loss rate 11.59 10 1.16 100 11.6 100 11.6 
Determinism 45.29 00 0.00 100 45.3 00 0.00 

Latency 13.04 00 0.00 100 13.0 00 0.00
Segment length 0.730 100 0.73 50 0.37 30 0.22 

Final assessment (%) 25.39 76.14 41.22 

The network characteristics are listed vertically and the available communication technologies 
are listed horizontally within the shown assessment matrix. Principally, the assessment uses the 
results of the priority analysis scheme presented earlier in this sub-section. More specifically, each 
network characteristic is assigned to its priority weighting percentage that is calculated using the 
priority analysis scheme. The priority weighting percentages differ according to user preferences for 
the concerned application scenarios. For each communication technology, the extent of fulfillment of 
each network characteristic is determined using the values given by the user. Consequently, all 
available communication technologies are assessed partially with respect to the individual network 
characteristics using Equation (6). 
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Partial	assessment	(%) = Priority weight (%) × Fulfillment (%)100 ,	 (6) 

The final assessment of each communication technology is calculated as the summation of all 
partial assessments according to Equation (7). 

Final	assessment (%) = Partial assessment (%),  (7) 

where: 
n Designation of the communication technology n
m Designation of the communication characteristic m 
M Total number of communication characteristics 

Equation (8) presents a simple function that is used to find the best matching communication 
technology, which has the highest final assessment value. Best	matching	communication	technology = Max(Final assessment , … , Final assessment ),	 (8) 

where n is the number of available communication technologies. 
A quite similar approach can be used for the selection of the communication architectures. That 

is, the user prioritizes the functions and services based on the concerned application scenarios to 
calculate priority weighting percentages. The available communication architectures are assessed 
according to the prioritized functions and services. Consequently, a simple function can be used to 
select the best matching communication architecture that has the maximal assessment value. 

4.5. System Models Development 

The previous development phases and their tasks focused on the comprehensive analysis of the 
whole system and the development of selection approaches for the simulation and communication 
aspects. The outcomes are embedded in the SoS configuration software to save efforts and time of 
non-expert system users. The last development phase is concerned with the actual creation of 
application-oriented system models based on the outcomes of the previous phases. The following is 
an illustration of the system configuration sequence to compose application-oriented system models 
for networked driving simulation. 

4.5.1. Specify Configuration Sequence 

The selection sequence of system components is specified in this task. The system components 
have been classified into two groups in the second development phase of the procedure model: the 
simulation system group and communication system group. Basically, the components of the 
simulation system group are selected before the components of the communication system group. 
The number of the selected simulation system components—and hence, the amount of the exchanged 
data packets—can affect the determination of some network characteristics, such as the bandwidth. 
Figure 10 illustrates the selection sequence of the simulation and communication system components. 
The user is guided by the SoS configuration software through this configuration sequence. The 
configuration process is based on the selection approaches developed in the previous phase of the 
procedure model. The system user can navigate back and forth arbitrarily along the configuration 
sequence to modify the selections.  
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Figure 10. System configuration workflow and selection sequence of system components. 

The user starts the configuration process by determining the concerned response type and 
driving task for each participating driving simulator. The SoS configuration software determines the 
corresponding application classes. Consequently, the SoS configuration software finds the best 
matching driving simulators within the entries of the corresponding database table. Alternatively, 
the user can configure new driving simulators from the individual simulator components using the 
SoS configuration software. Similarly, the SoS configuration software finds the best matching traffic 
simulator within the entries of the corresponding database table according the concerned application 
classes. The user can skip this suggestion as traffic simulators are optional components for the 
networked driving simulation. After that, the user can select a workstation and a database console 
based on the desired requirements. Similarly, the user can skip this step as the utilization of these 
system components is optional for networked driving simulation. As an intermediate step before the 
selection of the communication system components, the user determines the information exchange 
between selected simulation system components. After that, the SoS configuration software finds a 
best matching communication technology according to specified and prioritized requirements 
regarding the network characteristics. Some of these requirements—e.g., bandwidth—can be only 
estimated as worst-case scenario based on the amount of exchanged data packets [30]. Consequently, 
the result is an initial proposed communication technology with the best matching network 
characteristics. Finally, the SoS configuration software finds a best matching communication 
architecture according to the eventually specified and prioritized requirements regarding the 
communication functions and services. The user can skip this step as the utilization of a 
communication architecture is optional for networked driving simulation. Before the final creation of 
a system model, the following task is performed to assure the appropriate selection of the 
communication technology. 

4.5.2. Examine Network Behavior 

In this task, the initially selected communication technology is examined to make sure that the 
eventually estimated requirements of network characteristics still can guarantee proper system 
operation. A network simulator can be utilized for this purpose as supplementary software [31]. 
Principally, network simulators are used to simulate the network behavior using mathematical 
formulas and models of the network protocols. There are commercial network simulators, such as 
OPNET and QualNet. Other network simulators are available as free and open source packages, such 
as NS2, NS3, J-Sim, SSFNet, and OMNeT++.  
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The Automotive Network Diagnoser (ANDi) from Technica Engineering GmbH in Munich, 
Germany is utilized particularly in this work. It is a user-friendly test and simulation environment 
that supports various communication technologies and operation platforms. Using this network 
simulator, users can construct a virtual network by creating nodes connected by network segments 
in a form that replicates a desired real network topology. The characteristics of the initially selected 
communication technology are provided along with the estimated amount of data packets to start a 
simulation. According to the observed network behavior, the initial requirements of network 
characteristics are eventually modified. In this case, the selection step of communication technologies 
is recalled to select a more appropriate solution element. This process is repeated until the simulated 
network behavior exactly meets or comes very close to the requirements of the concerned application 
scenario regarding the communication technology. The following task discusses the creation of a 
system model after finishing the configuration process. 

4.5.3. Generate System Models 

In this task, a system model is generated by the SoS configuration software in the form of a 
comprehensive report that contains concise information about the selected solution elements. In 
general, model-based systems engineering relies on models to progress from the level of 
requirements to the level of system realization [32]. That is, it follows a model-centric approach rather 
than a traditional document-centric approach. In practice, the SoS design and modeling cannot be 
carried out through a conventional system development process. Yet the complexity of the SoS design 
can be reduced considerably by following a model-centric approach [32]. Agent-based modeling can 
provide a practical tool in this regard [32]. It is a relatively new approach for modeling complex 
systems that are composed of further interacting systems. The agent-based modeling method defines 
the roles of all system components from a bottom-up perspective [33]. Hence, the created agent-based 
model can describe the emerging system as a whole based on the roles and interactions of the 
constituent systems and components. There is no universal agreement on a precise definition for the 
term ‘agent’. In this work, an agent is a constituent system or a building component as identified, 
described, and classified in the second development phase of the procedure model. A formal visual 
scheme is typically required to apply the agent-based modeling principles. 

The unified modeling language (UML) is a practical means for graphical visualization during 
system conception [34]. It provides an abstract modeling level that can be used for the system-level 
design. Specifically, UML uses a set of well-defined elements that are independent of any particular 
programming language to describe a system as high-level structures. Reference [34] discusses the 
UML diagrams that can be used practically for agent-based modeling: sequence, state, activity, and 
class diagrams. The sequence diagrams can be used if the sequential interaction of agents over time 
is a significant design aspect. The state diagrams can be used if the change of the internal states of the 
agents is of particular interest. The activity diagrams are similar to the traditional flow charts. They 
can be used if it is important to analyze the activity progress of system components. The class 
diagrams consist typically of classes and different types of relationships, such as association, 
composition, and inheritance [34]. They can be used when the focus is given to system composition 
and the relationships between its components. A detailed discussion about the UML class diagrams 
is presented in Reference [35].  

The application-oriented modeling of networked driving simulation in this work is concerned 
particularly with the system components and their relationships. Hence, it adopts the agent-based 
modeling principles together with the concepts of the UML class diagrams. Specifically, the system 
model consists of three parts that are constructed automatically by the SoS configuration software 
based on the results of the configuration process.  

System Model Components—Part I 

The first part contains a UML class diagram that gives a holistic overview about the configured 
networked driving simulation system. The UML class diagram is further divided into two groups, 
which are called packages in accordance with the UML notations [35]. While the first package 
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addresses the simulation system aspect, the second package addresses the communication system 
aspect. Each package encompasses various blocks. The parent blocks are classes that represent the 
utilized system components. The parent blocks within the simulation system package have 
inheritance relationships with an upper parent simulation system class. Similarly, the parent blocks 
within the communication system package have inheritance relationships with an upper parent 
communication system class. The child blocks are instances that represent the selected solution 
elements. The instances have abstraction relationships to the corresponding classes (parent blocks). 
Each block within the class diagram is typically composed of three compartments stacked vertically. 
The top compartment includes the name. The middle compartment lists the significant specifications 
and characteristics. The bottom compartment lists the main operations performed by the system 
component or the solution element.  

System Model Components—Part II 

The second part consists of two sections containing radar charts. Generally, the radar chart is a 
demonstration method for the visualization of data sets that include multiple quantitative variables. 
These variables are represented on axes that start from an origin point. Particularly, the first section 
of this part contains radar charts illustrating the deviation between the specifications of each selected 
simulation solution element and the corresponding application requirements. Analogously, the 
second section contains radar charts illustrating the deviation between the specifications of each 
selected communication solution element and the corresponding application requirements. This part 
gives an overview of the eligibility of each selected solution element with respect to the concerned 
application scenario. This visual demonstration of the specifications and the requirements enables 
users to decide whether to proceed or to navigate back to select other alternatives.  

System Model Components—Part III 

The third part contains a list of the simulation data that each selected solution element sends 
and/or receives. The simulation data are characterized by different attributes, such as the sender, unit, 
and type. This list of exchanged simulation data can be used during the preparation of the constituent 
systems and building components for system realization. Moreover, it can be used as a basis if a 
communication architecture is utilized to particularly provide a data distribution management 
service [36]. The Extensible Markup Language (XML) is chosen for the construction of this part. The 
XML defines a set of rules to encode the information in an easy format that can be understood by 
humans as well as software programs. Furthermore, the hierarchical structure supported by the XML 
format makes it convenient to trace and find the concerned information. A comprehensive discussion 
about the XML and its rules is presented in Reference [37]. 

Based on the information demonstrated through the created system model, the user can still 
navigate back to alter particular selections when necessary. Finally, the user can save the created 
system model and/or print it to start the system realization. The generated model is used at this stage 
to easily communicate information about the system that shall be built. Three system models are 
shown together with example application scenarios in the next section.  

5. Validation 

Three example multi-interactive application scenarios are presented in this section in order to 
validate the design method. A comprehensive description is provided for each example application 
scenario. Corresponding system models are generated using the developed SoS configuration 
software. Specifically, the solution elements of the simulation and communication system 
components are selected using the approaches adopted in the developed method and embedded in 
the SoS configuration software. The actual application requirements and the preferences of the 
system user play a considerable role during the configuration process. Beside the validation purpose, 
the presented application scenarios deliver an example line of thoughts to illustrate how to use the 
SoS configuration software for creating system models. 
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5.1. Multi-Interactive Training with ADAS 

5.1.1. Scenario Definition 

Although ADAS are designed to reduce the burden on drivers, the complexity of user interface 
grows with increasing the number of automated functionalities. This demands some of the driver’s 
attention and introduces a considerable cognitive load. Therefore, conventional training with driving 
simulators must be adapted for more immersion and a capability for interactive supervision and 
instruction [5]. The application scenario of this validation example is to perform multi-interactive, 
supervised training sessions to learn ADAS functions and avoid eventual overestimation of their 
capabilities.  

5.1.2. Configuration Process 

Based on this application scenario, a simulation environment consisting mainly of two driving 
simulators is defined. While one driving simulator is used by a trainee, the other driving simulator 
is used by a training instructor. The trainee is introduced to various ADAS functions—e.g., blind spot 
and congestion assistance systems—while driving through an unfamiliar road network. The trainee 
activates and handles the settings of the ADAS functions and responds to the dashboard indicators. 
This purpose of use falls within the driving simulator application class 4c that addresses knowledge-
based responses and secondary driving tasks. The training instructor has a simple navigation driving 
task. The aim is to drive interactively within the same virtual environment to observe the traffic 
situation and to eventually introduce unexpected driving maneuvers. The response of the training 
instructor is not of concern as a matter of course. The purpose of use can be represented by the driving 
simulator application classes 3a, 3b, and 3c that address different responses with navigation driving 
tasks. The application class 3c is chosen for convenience. The determined application classes of the 
two participating driving simulators are used together as the first actual input to the SoS 
configuration software. Among the available driving simulators, the SoS configuration software 
suggests two particular driving simulators that best fulfill the requirements of application classes 4c 
and 3c.  

In this application scenario, no traffic simulator is chosen as the trainee has to react only to the 
maneuvers introduced by the training instructor. No workstation is required for this platform as the 
training instructor already participates interactively in the virtual traffic scenario. A database console 
can be used to capture, save, and replay the simulation data for analysis and after-action review. A 
lot of data must be exchanged between the participating simulators. Not only the position and 
orientation data of the simulated vehicles are exchanged through the network, but also additional 
information for better immersion and engaging training sessions, such as front and rear lamps state, 
turning indicator lamps state, and front wheels orientation. A bandwidth of 10 Mbps (megabit per 
second) is required initially according to a worst-case calculation of the number of exchanged data 
packets [30]. Lower priority levels are assigned to the other communication characteristics, such as 
real-time data delivery or data loss rate. Accordingly, a 10 Mbps Ethernet with User Datagram 
Protocol is suggested by the SoS configuration software for this application scenario. The simulated 
network behavior using the ANDi software confirmed the eligibility of this selection. No standard 
architecture for networked simulation is selected as networked simulation management functions 
are not required for this application scenario.  

5.1.3. Generated System Model 

A system model is created by the SoS configuration software based on the scenario analysis and 
the configuration process. Figure 11 shows a simplified version of the simulation package of the UML 
class diagram containing the selected simulation system components.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 September 2017                   doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006


 38 of 50 

 

 
Figure 11. UML class diagram of the selected simulation system components—package 1. 

The simulation package includes a main class named simulation_system. Two classes inherit the 
simulation_system class: driving_simulator and database_console. The driving_simulator class has 
two instances representing the two selected driving simulators: ATMOS_simulator and 
HNI_PC_simulator. The database_console class has one instance representing the selected database 
console: HNI_database. Figure 12 shows a simplified version of the communication package of the 
UML class diagram containing the selected communication system components.  

 

Figure 12. UML class diagram of the selected communication system components—package 2. 

The communication package includes a main class named: communication_system. There is 
only one class that inherits the communication_system class: comm_technology. It has one instance 
representing the selected communication technology. Figure 13 shows the first section of the second 
part of the generated system model. This section contains the specification/requirement radar charts 
of the two selected driving simulators. The definitions of the depicted features and their fidelity levels 
are provided in Reference [6].  

Part I Simulation Package

driving_simulator

drivingTask : string
driverResponse : string
applicationClass : string

setInfo ( simData[n] : float )
getInfo ( ) : float

simulation_system

type : string 
significance : string 

Simulation

HNI_PC_simulator : driving_simulator

significance = essential
drivingTask = navigationTask
driverResponse = knowledge
applicationClass = 3c
vehicleType = passengerCar

database_console

capacity : string
opSystem : string
…

getInfo ( ) : float
saveInfo ( ) : float

HNI_database : database_console

significance = optional
capacity : 1TB
opSystem = Windows
…
…

ATMOS_simulator : driving_simulator

significance = essential
drivingTask = secondaryTask
driverResponse = knowledge
applicationClass = 4c
vehicleType = passengerCar

Part I Communication Package

comm_technology

drivingTask : string
bandwidth : string
latency : string
…

deliverInfo ( simData[n] : float )

communication_system

type : string 
significance : string 

Communication

Ethernet : comm_technology

significance = essential
bandwidth = 10Mbps
latency = 0.5millisec 
…
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Figure 13. Specification/requirement radar charts of the selected system components. 

Analogously, the second section of the second part contains the specification/requirement radar 
chart of the selected communication technology. Figure 14 shows the two networked driving 
simulators of the first example application scenario. 

 
Figure 14. Established platform of networked driving simulation for the first application scenario. 

The HNI PC-based driving simulator shown at the left side within Figure 14 has no motion 
platform. This driving simulator has a commercial wheel–transmission–pedals set and a simple 
driving seat. It utilizes a 60-inch high-definition screen. The HNI PC-based driving simulator is 
operated by a software package developed with MATLAB/Simulink. The ATMOS driving simulator 
shown at the right side within Figure 14 has a complex motion platform consisting of two dynamical 
components. The motion platform provides five Degrees Of Freedom (DOF) to fully simulate vehicle 
lateral and longitudinal accelerations. The ATMOS driving simulator has an eight-channel cylindrical 
projection system. It is powered by eight LCD-projectors to cover a horizontal field of view of 240 
degrees. In addition, three small displays are used to simulate the side and rear mirror views. The 
ATMOS driving simulator is operated by a software package developed by the company dSPACE in 
Germany. The platform shown in Figure 14 adopts the mixed-fidelity concept [38]. That is, two 
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driving simulators of two different complexity grades and component fidelity levels are networked 
together to achieve a common goal.  

5.2. Multi-Interactive Demonstration of an Autonomous Driving System 

5.2.1. Scenario Definition 

Demonstrating the capabilities of autonomous driving contributes significantly to raising the 
awareness about its benefits and attracting more customers [39]. Automotive manufacturers organize 
demonstration events to show the magnificent features and enable broader audience to be familiar 
with the new technologies. Demonstration with the help of drives on test roads delivers an impressive 
experience to potential customers. However, driving with other traffic participants is typically not 
permitted to date. Networked driving simulation can complement the demonstration purpose by 
adding an interactive factor to the simulated traffic environment. This delivers a comprehensive 
experience with the capabilities as well as the limitations of the autonomous driving system. The 
application scenario of this validation example is to interactively demonstrate different autonomous 
driving technologies.  

5.2.2. Configuration Process 

A simulation environment consisting mainly of two driving simulators is defined. One driving 
simulator is equipped with a simulation model for an autonomous driving system [25]. It is used by 
customers to interactively experience and test the system in a safe simulation environment. It is 
assumed that the customers are introduced theoretically to the autonomous driving system in 
advance. That is, they know about the features of the system and how to handle its settings. This 
purpose of use falls within the application class 4b that addresses rule-based responses and 
secondary driving tasks. The second driving simulator is used by a marketing representative, who 
has a simple navigation driving task. The aim is to drive interactively within the same virtual 
environment to subject the autonomous driving system to different traffic conditions—e.g., car 
following or emergency brake scenarios. The response of the marketing representative is not of 
concern as a matter of course. This purpose of use falls within the application classes 3a, 3b, and 3c 
that address different responses with navigation driving tasks. The application class 3c is chosen for 
convenience. Similar to the previous example application scenario, the determined application 
classes of the two participating driving simulators are used together as the first actual input to the 
SoS configuration software. Among the available driving simulators, the SoS configuration software 
suggests two particular driving simulators that best fulfill the requirements of application classes 4b 
and 3c.  

In this application scenario, no traffic simulator is chosen so that customers are not overwhelmed 
or confused by the interaction with other programmed traffic participants at this system introductory 
level. No workstation is required for this platform as it used simply for quick demonstration purposes 
in exhibitions, where no control or monitoring tasks are necessary. Similarly, no database console is 
used as typically no analysis process is required after the demonstration sessions.  

Only the position and orientation data of the simulated vehicles must be exchanged in this 
application scenario. No high priority is given to the bandwidth of the communication system. The 
simulation model of the autonomous driving system incorporates sub-models of various sensors [25]. 
Another sub-model takes decisions for rapid actions that influence the vehicle dynamics—e.g., 
acceleration, braking, and steering. Hence, deterministic data exchange between the driving 
simulators is essential for reliable system operation. A bandwidth of 1 Mbps (Megabit per second) is 
required initially based on a worst-case calculation of the number of exchanged data packets [30]. 
Other network characteristics are less relevant—e.g., secure data exchange, or length of transmission 
medium. Accordingly, the CAN bus technology is suggested by the SoS configuration software for 
this application scenario as a deterministic communication technology [40]. If the utilization of the 
CAN bus technology is expensive and relatively complex as it requires special network cards, the 
user can alternatively choose the FireWire (IEEE 1394). The FireWire (IEEE 1394) is a serial bus for 
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high-speed communication that can be utilized as a more feasible alternative [41]. The high 
performance provided by the IEEE-1394 connection reduces the likelihood of bandwidth saturation 
and data collisions. Although the IEEE-1394 standard is typically used to connect computers to 
peripherals—e.g., digital cameras and external hard drives—it can be used to carry network data as 
well. The utilization of FireWire with the Internet Protocol provides a very near deterministic data 
delivery [41]. In this case, the IEEE-1394 standard can be mapped to the lower three layers of the 
widely-known Open Systems Interconnection (OSI) network model: physical, link, and network 
layers. The traditional IEEE-1394 connection supports a bandwidth of 400 Mbps. Newer versions 
support potential bandwidth up to 3 Gbps. In addition to its high transfer rate, the IEEE-1394 
connection supports isochronous data transfer, i.e., delivering data at a deterministic rate. This makes 
it suitable for applications that need to transfer large amounts of data under real-time requirements. 
The simulated network behavior using the ANDi software confirmed the eligibility of the FireWire 
(IEEE 1394) as an alternative selection. Similar to the previous validation example, no standard 
architecture for networked simulation is used in this application scenario as networked simulation 
management functions are not required.  

5.2.3. Generated System Model 

A system model is created by the SoS configuration software based on the scenario analysis and 
the configuration process. Figure 15 shows a simplified version of the simulation package of the UML 
class diagram containing the selected simulation system components.  

 
Figure 15. UML class diagram of the selected simulation system components—package 1. 

The simulation package includes a main class named simulation_system. There is only one class 
that inherits the simulation_system class: driving_simulator. The driving_simulator class has two 
instances representing the two selected driving simulators: Airmotion_ride_simulator and 
HNI_PC_simulator. Figure 176 shows a simplified version of the communication package of the UML 
class diagram containing the selected communication system components.  

Part I Simulation Package

driving_simulator

drivingTask : string
driverResponse : string
applicationClass : string

setInfo ( simData[n] : float )
getInfo ( ) : float

simulation_system

type : string 
significance : string 

Simulation

HNI_PC_simulator : driving_simulator

significance = essential
drivingTask = navigationTask
driverResponse = knowledge
applicationClass = 3c
vehicleType = passengerCar

Airmotion_ride_simulator : driving_simulator

significance = essential
drivingTask = secondaryTask
driverResponse = rule
applicationClass = 4b
vehicleType = passengerCar
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Figure 16. UML class diagram of the selected communication system components—package 2. 

The communication package includes a main class named: communication_system. There is 
only one class that inherits the communication_system class: comm_technology. It has one instance 
representing the selected communication technology. Figure 17 shows the first section of the second 
part of the generated system model. This section contains the specification/requirement radar charts 
of the two selected driving simulators. The definitions of the depicted features and their fidelity levels 
are provided in Reference [6].  

 
Figure 17. Specification/requirement radar charts of the selected system components. 

Analogously, the second section of the second part contains the specification/requirement radar 
chart of the selected communication technology. Figure 18 shows the two networked driving 
simulators of the second example application scenario. 

The HNI PC-based driving simulator is utilized as shown at the left side within Figure 18. It is 
the same simple driving simulator variant of the previous example application scenario. The 
Airmotion_ride driving simulator shown at the right side within Figure 18 has a pneumatic motion 
platform consisting of an inverted hexapod system that provides six DOF. A simple motion controller 
regulates the extension and contraction of six pneumatic elastic tubes based on the position and 
orientation of the simulated vehicle. Similar to the HNI PC-based driving simulator, the 
Airmotion_ride driving simulator has a 60-inch high-definition screen and a low-cost commercial 
wheel-transmission-pedals set. The Airmotion_ride driving simulator is operated by a software 
package developed with MATLAB/Simulink by the Heinz Nixdorf Institute. Similar to the platform 
of the first application scenario, the platform shown in Figure 18 follows the mixed-fidelity concept 
[38]. Specifically, two driving simulators of two different complexity grades and component fidelity 
levels share the same virtual environment to achieve a common goal. 

Part I Communication Package

comm_technology

drivingTask : string
bandwidth : string
latency : string
...

deliverInfo ( simData[n] : float )

communication_system

type : string 
significance : string 

Communication

FireWire : comm_technology

significance = essential
bandwidth = 800Mbps
latency = 15micorsec 
...
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Figure 18. Established platform of networked driving simulation for the second application scenario. 

5.3. Multi-Interactive Analysis of Advanced Traffic Systems 

5.3.1. Scenario Definition 

Promising applications are emerging with the utilization of Vehicle-to-Infrastructure (V2I) and 
Vehicle-to-Vehicle (V2V) communication technologies. The common target of these technologies is 
to improve traffic efficiency while reducing the probability of collisions [42]. Yet analyzing different 
strategies is important to compare their efficiency and benefits, as well as to detect possible 
shortcomings early. Microscopic and macroscopic traffic modeling and simulation are effective tools 
to study the causes of traffic problems in general and to evaluate the solutions of potential traffic 
strategies in particular [43].  

However, the human drivers still represent an important factor. They may be assisted by various 
connected systems that offer different information and service levels [44]. Drivers may take different 
decisions according to the received information—e.g., changing the route. Adding human drivers to 
the simulation environment helps to conduct analysis in a multi-interactive traffic environment, and 
hence, to deliver more substantial results. The application scenario of this validation example is to 
analyze different traffic strategies while taking the human driver factor into consideration.  

5.3.2. Configuration Process 

A simulation environment consisting mainly of two driving simulators is defined. Both driving 
simulators are used by test persons, who are familiar with the simulated road network and the 
features of the addressed connected vehicle technology. The test persons have to plan the route and 
drive from an origin to a target location. They can change the planned route based on the received 
information about the current traffic situation. This purpose of use falls within the application class 
3b that addresses rule-based responses and navigation driving tasks. Similar to the previous example 
application scenarios, the determined application classes of the two participating driving simulators 
are used together as the first actual input to the SoS configuration software. Among the available 
driving simulators, the SoS configuration software suggests a particular driving simulator that best 
fulfills the requirements of application class 3b.  
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In this application scenario, a traffic simulator is chosen in accordance with the requirements of 
the application class 3b. This traffic simulator allows for changing the traffic density and defining the 
behavior of individual traffic participants. More information about this particular traffic simulator is 
presented in Reference [0]. A workstation is required for this application scenario to perform 
monitoring and control operations. Moreover, a database console is necessary to capture, save, and 
replay the simulation data for analysis and after-action reviews.  

In this application scenario, a considerable amount of data must be exchanged through the 
communication system. Not only position and orientation data of simulator vehicles are exchanged, 
but also those of each programmed traffic participant. Moreover, data messages of the addressed 
connected vehicle technology are exchanged between the simulator vehicles. Hence, this application 
scenario is concerned particularly with the bandwidth for data exchange. The other characteristics of 
the communication technology have lower priority levels, such as, real-time data delivery or data 
loss rate. A bandwidth of 1 Gbps (Gigabit per second) is required initially based on a first worst-case 
calculation of the number of exchanged data packets [30]. Accordingly, a 1 Gbps Ethernet with User 
Datagram Protocol is suggested by the SoS configuration software for this application scenario. The 
simulated network behavior using the ANDi software confirmed the eligibility of this selection. More 
driving simulators may be added to the system to increase the complexity of traffic scenarios. In some 
scenarios, one of the driving simulators may be used to represent a special-purpose vehicle—e.g., an 
ambulance or an emergency vehicle. This special-purpose simulated vehicle may have different 
requirements regarding the type of exchanged data. It may be necessary to declare the generated and 
required data separately for each traffic participant. Therefore, a standard architecture for networked 
simulation is required unlike the previous validation examples. HLA standard is selected for this 
application scenario, especially, due to the provided declaration management function [46].  

5.3.3. Generated System Model 

A system model is generated by the SoS configuration software based on the scenario analysis 
and the configuration process. Figure 19 shows a simplified version of the simulation package of the 
UML class diagram containing the selected simulation system components. 

The simulation package includes a main class named simulation_system. Four classes inherit the 
simulation_system class: driving_simulator, traffic_simulator, workstation, and database_console. 
The driving_simulator class has two instances representing the two selected driving simulators: 
HNI_PC_simulator1 and HNI_PC_simulator2. The traffic_simulator class has one instance 
representing the selected traffic simulator: HNI_traffic. Similarly, the workstation and the 
database_console classes have instances representing the respective selected solution elements. 
Figure 20 shows a simplified version of the communication package of the UML class diagram 
containing the selected communication system components.  

The communication package includes a main class named: communication_system. Two classes 
inherit the communication_system class: comm_technology and comm_architecture. Each of these 
classes has an instance representing the selected solution element. Figure 21 shows the first section 
of the second part of the generated system model. This section contains the specification/requirement 
radar charts of the two selected driving simulators. The definitions of the depicted features and their 
fidelity levels are provided in Reference [6].  

Analogously, the second section of the second part contains the specification/requirement radar 
charts of the selected communication technology and communication architecture. Figure 22 shows 
the two networked driving simulators of the third example application scenario. 
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Figure 19. UML class diagram of the selected simulation system components—package 1. 

 

Figure 20. UML class diagram of the selected communication system components—package 2. 

Part I Simulation Package

driving_simulator

drivingTask : string
driverResponse : string
applicationClass : string

setInfo ( simData[n] : float )
getInfo ( ) : float

HNI_PC_simulator1 : driving_simulator

significance = essential
drivingTask = navigationTask
driverResponse = rule
applicationClass = 3b
vehicleType = passengerCar

HNI_PC_simulator2 : driving_simulator

significance = essential
drivingTask = navigationTask
driverResponse = rule
applicationClass = 3b
vehicleType = passengerCar

simulation_system

type : string 
significance : string 

Simulation

HNI_database : database_console

significance = optional
capacity : 1TB
opSystem = Windows
…

traffic_simulator

drivingTask : string
driverResponse : string
applicationClass : string

setInfo ( simData[n] : float )
getInfo ( ) : float

HNI_workstation : workstation

significance = optional
numMonitor : 3
opSystem = Windows
…

workstation

numMonitor : int
opSystem : string
…

setParam ( simParam[n] : float)
getInfo ( ) : float

database_console

capacity : string
opSystem : string
…

getInfo ( ) : float
saveInfo ( ) : float

HNI_traffic : traffic_simulator

significance = optional
drivingTask = navigationTask
driverResponse = rule
applicationClass = 3b
granularity = microscopic

Part I Communication Package

comm_technology

bandwidth : string
latency : string
…

deliverInfo ( simData[n] : float )

communication_system

type : string
significance : string

Communication

Ethernet : comm_technology

significance = essential
bandwidth = 1Gbps
latency = 0.5ms 
…

HLA : comm_architecture

significance = optional
decManage = yes
disManage = yes
...

comm_architecture

decManage : string
disManage : string
…

deliverInfo ( simData[n] : float )
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Figure 21. Specification/requirement radar charts of the selected simulation system components. 

 
Figure 22. Established platform of networked driving simulation for the third application scenario.  

The platform shown in Figure 22 utilizes two variants of the same driving simulator: HNI PC-
based driving simulator. In this application scenario, the HNI PC-based driving simulator has a small 
screen and a normal seat in contrast to the configuration used within the previous two example 
application scenarios. Consequently, the shown platform does not impose special space requirements 
in comparison to the platforms of the previous validation examples. The platform shown in Figure 
22 does not impose special space requirements in comparison to the platforms of the previous 
validation examples. It has been demonstrated successfully during the FMB 2016 exhibition (a 
German acronym that stands for “Forum of Mechanical Engineering”) in Bad Salzuflen in Germany. 
The exhibition visitors got insight into the developed platform of networked driving simulation and 
its intended application scenario. The following section outlines the conclusions of the presented 
work, emphasizes the novelty of the developed method, and reveals the future work. 
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6. Conclusions and Future Work 

This work presented a new method for the systematic design of networked driving simulation 
systems. The design method consists mainly of a procedure model accompanied by a configuration 
software. With its concrete phases, the procedure model analyzes the system thoroughly and 
addresses all the necessary tasks for the system modeling process. The design process is embedded 
in the configuration software to aid non-expert system users while selecting system components in 
accordance with the requirements of the concerned application scenarios. In particular, the design 
method considers the whole system of networked driving simulation in two main aspects: simulation 
and communication. The novelty of the developed method can be summarized in the following three 
concrete aspects: 

• Combining and using two distinguished approaches from the literature for the selection of the 
simulation components of the networked driving simulation system [6,7].  

• Utilizing a well-established decision-making method for the selection of the communication 
components of the networked driving simulation system [29]. 

• Creating system models with a structure that follows the principles of the agent-based modeling 
technique and uses the concepts of the UML class diagrams [32,35]. Thereby, the system model 
acts as simple communication basis for subsequent system realization. 

Together, these unique aspects form the first methodological work for networked driving 
simulation to date. The presented validation examples emphasized the flexible usability of the 
developed method by designing three different system models. These system models make use of 
existing driving simulators in accordance with the requirements of the concerned application 
scenarios. The utilized driving simulators exhibit different complexity grades (mixed-fidelity levels). 
That is, they have different technical specifications and serve different purposes of use. However, 
new application scenarios were achieved by the integration in environments of networked driving 
simulation. Moreover, the utilized communication systems have different characteristics and 
capabilities. These were tailored to the data delivery requirements of the respective application 
scenarios. Three platforms of networked driving simulation have been built in accordance with the 
designed system models. With the help of the accompanying configuration software, non-expert 
users can apply the developed method to design further application-oriented system models for 
networked driving simulation.  

As potential future work, further non-traditional application scenarios for driving simulation 
will be introduced and analyzed. The purpose of these non-traditional application scenarios is to keep 
up with advancements in the automotive field. The requirements of these application scenarios will 
be determined based on the demands of future autonomous and cooperative driving systems. These 
requirements will be used with the presented method and the accompanying SoS configuration 
software to create further system models for networked driving simulation. Users and developers 
will be able to use these ready system models to establish corresponding application-oriented 
platforms for networked driving simulation.  
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