
Article

An Application-Oriented Design Method for
Networked Driving Simulation
Kareem Abdelgawad 1,*, Jürgen Gausemeier 1, Ansgar Trächtler 1, Sandra Gausemeier 1,
Roman Dumitrescu 2, Jan Berssenbrügge 2, Jörg Stöcklein 2, and Michael Grafe 2

1 Heinz Nixdorf Institute, University of Paderborn, 33102 Paderborn, Germany;
Juergen.Gausemeier@hni.upb.de (J.G.); Ansgar.Traechtler@hni.upb.de (A.T.);
Sandra.Gausemeier@hni.upb.de (S.G.)

2 Fraunhofer Institute for Mechatronic Systems Design IEM, 33102 Paderborn, Germany;
Roman.Dumitrescu@iem.fraunhofer.de (R.D.); Jan.Berssenbruegge@iem.fraunhofer.de (J.B.);
Joerg.Stoecklein@iem.fraunhofer.de (J.S.); Michael.Grafe@iem.fraunhofer.de (M.G.)

* Correspondence: Kareem.Abdelgawad@hni.upb.de; Tel.: +49-5251-606-228

Abstract: Autonomous and cooperative vehicle systems represent a key priority in the automotive
realm. Networked driving simulation can be utilized as a safe, cost-effective experimental replica of
real traffic environments in order to support and accelerate the development of such systems. In
networked driving simulation, different independent systems collaborate to achieve a common task:
multi-driver traffic scenario simulation. Yet distinct system complexity levels are necessary to fulfill
the requirements of various application scenarios, such as development of vehicle systems, analysis
of driving behavior, and training of drivers. With myriad alternatives of available systems and
components, developers of networked driving simulation are typically confronted with high design
complexity. There are no systematic approaches to date for the design of networked driving
simulation in accordance with the specific requirements of the concerned application scenarios. This
paper presents a novel design method for networked driving simulation. The method consists
mainly of a procedure model that is accompanied by a configuration software. The procedure model
includes the necessary phases for the systematic design of application-oriented platforms for
networked driving simulation. The configuration software embeds supportive decision-making
processes that enable developers to apply the design method and easily create different system
models. The design method was validated by generating system models and developing platforms
of networked driving simulation for three different application scenarios.

Keywords: autonomous and cooperative vehicle systems; connected driving simulators; systems
engineering; system of systems; system-level design; application-oriented development

1. Introduction

Autonomous and cooperative vehicle technologies have attracted major attention from all key
automotive players. These disruptive technologies create fascinating new mobility prospects while
potentially providing more traffic safety and efficiency. As governments provide regulatory
guidelines and carry out or supervise necessary infrastructure modifications, other sectors are
positioning themselves firmly in this field, such as automotive manufacturers and suppliers, IT
providers, insurance agencies, and logistics companies. All these key players are pursuing the
economic benefits of these technologies and they must explore new business models that best suit the
potential [1]. With respect to automotive manufacturers in particular, the competition to deploy these
technologies onto public roads is becoming more obvious as customers’ expectations rise. The
technology itself turns out to be a relatively minor concern. Various automotive manufacturers have
revealed their practical prowess in self-driving cars. Yet methods and tools are still required for
additional refining development and test loops. For instance, it is crucial to tackle different traffic and
driving strategies, as well as the interoperability between technologies of different providers.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

© 2017 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 2 of 50

Moreover, as human drivers are still in the loop, various related factors must be examined, such as
ethical values, customer acceptance, and drivers’ behavior [2]. In general, driving simulation is an
effective tool that supports automotive research and industry [3]. It can be used mainly for the
development and test of vehicle systems, such as advanced driver assistance systems (ADAS) [4].
Driving simulation can be used for other purposes, such as driver’s training, demonstration and
marketing, and studying behavior of drivers. Figure 1 shows two different driving simulator variants
developed and operated with multidisciplinary expertise at the Heinz Nixdorf Institute—University
of Paderborn in Germany.

(a) (b)

Figure 1. Two driving simulator variants at the Heinz Nixdorf Institute in Germany: (a) Passenger car
driving simulator with a motion platform; (b) Stationary truck driving simulator.

It is feasible and less expensive to build and operate simulations in controlled environments than
conducting real field drives [3]. Various traffic scenarios involving a human-driven vehicle and
programmed traffic participants can be created. Harsh environmental conditions can be reproduced
easily, such as foggy or snowy roads. Furthermore, driving simulators present an inherently safe
environment for experiments. There are no hazards to drivers while undergoing critical driving
maneuvers or testing new vehicle systems.

However, with the introduction of autonomous and cooperative vehicle technologies, traffic
systems become more complex while human drivers still represent an indispensable factor.
Conventional driving simulation does not provide the realism and multi-interactivity related to these
advanced automotive technologies. It provides only a rough representation of the unpredictability
level associated with real traffic environments. Networked driving simulation can be used to mitigate
this particular drawback. Specifically, creating a virtual driving environment that can be accessed by
several human drivers provides a close approximation of real traffic interactions. There are various
multi-interactive applications for networked driving simulation, such as development of vehicle
systems, analysis of driving behavior, and training of drivers. A comprehensive discussion of these
promising applications is presented in Reference [5]. As they focus on different aspects, these multi-
interactive applications vary considerably in their system complexity requirements. This paper
presents a novel method for the systematic design of networked driving simulation. The method
considers the requirements of different application scenarios to determine the necessary system
complexity. The rest of this paper is structured in five main sections. Section 2 specifies the problem
addressed in this work; Section 3 gives an overview about two distinguished design approaches for
conventional driving simulation in the literature; Section 4 presents the developed design method for
networked driving simulation; the validation of the method is provided in Section 5 by means of
different non-traditional application scenarios. Finally, Section 6 derives the conclusions and reveals
future work.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 3 of 50

2. Problem Description

There are various driving simulators available in the market with different fidelity levels. It is
quite complicated to select a suitable driving simulator that fits a certain application scenario. Some
assistance exists in the literature to support users of driving simulation while determining the
necessary fidelity level of each building component [6]. Yet selecting different components to build a
driving simulator requires some prior knowledge to guarantee the logical consistency and the
technical interoperability. Additional work in the literature presents a method to configure driving
simulation environments while assuring the compatibility of the building components [7]. However,
networked driving simulation can be realized only with a more complex multidisciplinary system.
This system involves typically distinct complex subsystems and components that interact together
and work on a common goal. Moreover, challenging application scenarios for networked driving
simulation arise with more diverging and changing requirements [5].

There has been a growing interest in a class of complex systems that themselves are composed
of independent systems: systems of systems (SoS) [8]. Based on the literature review, numerous
definitions exist for systems of systems. One relevant and quite simple definition is that “systems of
systems are large-scale integrated systems that are heterogeneous and independently operable on
their own, but are networked together for a common goal” [9]. Networked driving simulation
belongs to this particular definition. Specifically, two or more driving simulators exchange
information and share a common virtual environment, where human drivers interact with each other.
Each participating driving simulator per se represents an independent system. A common system
goal is accomplished through the collaboration within a system of systems environment. In a nutshell,
the ultimate goal is to simulate multi-driver traffic scenarios close to the real traffic environment with
its attendant uncertainties.

However, the complexity of designing a system of systems is daunting. One primary challenge
is to pursue a synergy between the constituent systems to attain the desired system goal. Several
concepts and design considerations have been addressed in the literature for the theme of SoS. The
well-established principles of systems engineering can be used to overcome the pitfalls of SoS design
[9]. Extending the systems engineering concepts to accommodate the SoS paradigm is discussed in
Reference [10]. This led principally to the emergence of system of systems engineering. Architecting
SoS environments through an evolutionary process is a crucial requirement in this regard. To that
end, the open systems approach is adopted by the system of systems engineering [9]. This approach
defines the general key principles for an open system architecture that is suitable for future evolution.
Following this approach results in a flexible SoS that can be modified easily by exchanging the
constituent systems and/or altering the characteristics of some building components. Yet building a
system model before establishing the real system is one of the significant measures recommended by
system of systems engineering [9]. The modeling process itself is challenging due to the complexity
of the independent constituent systems. Fortunately, model-based system engineering can provide a
rigorous foundation for the modeling and conceptual design of SoS [11]. In this regard, a system
model is created and used as a baseline that includes the requirements, analysis, design, and
verification of a target system. This system model represents a link between various disciplines, such
as electrical, mechanical, software, communication, and requirements engineering [12]. That is, the
system model provides a comprehensive description of the real system so that it is not specific to one
particular discipline. However, a design method and a complementary software tool are required to
establish different system models or configurations [12]. There is no method or tool to date for the
systematic design of system models for networked driving simulation based on the determined
application requirements. The following section presents two remarkable approaches from the
literature for conventional driving simulation.

3. State of the Art

Manufacturers of driving simulators provide different fidelity levels to fulfill the requirements
of different application scenarios. A simple classification of driving simulators into three categories
based on fidelity is presented in Reference [13]: low-level, mid-level, and high-level. Low-level driving

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 4 of 50

simulators may not provide the immersion necessary for drivers to be fully involved in the
simulation. High-level driving simulators may present challenges to overcome the distraction of
drivers and reduce the learning time. Therefore, the selection of fidelity levels of driving simulators
should properly consider the purpose of use in particular. Three generic application scenarios for
driving simulation are defined in Reference [13]: driver behavioral research, vehicle design and
engineering, and driver’s training. These application scenarios are roughly correlated to the
aforementioned classification of driving simulators [13]. Nonetheless, driving simulators are
composed of many building components. Combining low-fidelity with high-fidelity components in
one driving simulator can lead to effective utilization of resources and costs [14]. That is, a driving
simulator may have high capability with respect to one particular component and low capability with
respect to other components based on the purpose of use. However, it is challenging for non-expert
users to select individual simulator components that fit their particular application scenarios. The
following subsection presents guidelines from the literature to mitigate this problem.

3.1. Determining Necessary Fidelity Levels of Driving Simulators

While purchasing driving simulators, users usually undergo a selection process based on their
own understanding of the capabilities of available solutions. The selection process tends usually to
use the available budget to purchase simulator components with the highest possible fidelity level.
This results typically in rough selections, where the end benefits are not as great as the purchase and
operation costs. Negele introduced guidelines for determining the fidelity level of each primary
simulator component with respect to the application scenarios [6]. Hereafter in this work, these
guidelines are referred to as Negele’s guidelines according to the author’s name.

Negele’s guidelines consider the human behavior that generally falls into one of three distinct
categories: skill-based, rule-based, and knowledge-based behavior [15]. In particular, the driving
behavior is affected correspondingly by the skills, experiences, and situation familiarity of drivers
[16]. Skill-based responses occur in routine driving situations that require fast actions. In a driving
simulator, these responses are triggered automatically only if the sensory stimuli are realistic enough
for the driver. That is, high fidelity levels are required for these types of responses. Rule-based
responses are invoked in driving situations that require identification and recall of previously
instructed actions. The driver is fully aware of the situation and the corresponding necessary rules.
In these situations, the responses are triggered moderately and the driver has some time to
compensate missing cues. Therefore, a modest deviation from reality in a driving simulation
environment is permitted for these types of responses. Knowledge-based responses emerge in
unfamiliar driving situations that require effort and conscious attention. The driver exerts
considerable intellectual effort to find an appropriate response for the situation. These responses
occur slowly, so that the driver has enough time to mentally compensate necessary cues. Therefore,
a large deviation from reality in a driving simulation environment is allowed for this type of
responses.

Moreover, Negele’s guidelines differentiate between three groups of driving tasks: primary,
secondary, and tertiary. The primary tasks are further subdivided into: stabilization, guidance, and
navigation tasks [6]. Maintaining the vehicle state while driving through a curve, interacting with
other traffic participants, and planning an entire driving route are examples for the three types of the
primary tasks respectively. While handling a driver assistance system is an example for the secondary
driving tasks, adjusting the air conditioner and tuning the radio are typical tertiary driving tasks.
Realistic simulation cues for appropriate vehicle control are more significant for the primary than the
tertiary driving tasks [6]. The secondary driving tasks are considered intermediate with respect to the
fidelity level required to control the vehicle. Figure 2 shows a matrix between the defined driving
tasks and the driver response types. The mutual intersections result in 15 classes of driving simulator
applications. Users have to specify the concerned driving task and response in order to determine the
relevant application class [6]. Consequently, the determination of the application classes helps users
to conclude the allowed fidelity deviation between the driving simulation system and reality as
depicted in Figure 2.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 5 of 50

Figure 2. Scheme for classifying driving simulator applications [6].

In addition, Negele’s guidelines defined the main driving simulator subsystems: scene
simulation, motion simulation, driver’s platform, acoustic simulation, and objects database along
with traffic simulation [6]. These subsystems can be considered in different orders based on their
contribution to the overall simulation fidelity for each application class. Furthermore, each subsystem
has a group of features characterized by different fidelity levels. The fidelity levels are distinguished
by keys that are represented as letters and ordered by numbers. As an example, Table 1 shows the
features of the driver’s platform along with their different fidelity levels.

Table 1. Features and fidelity levels of the driver’s platform [6]

Feature Key Fidelity Levels

Mock-up

S1 Driving seat and HMI without chassis
S2 Partial vehicle (quarter or half vehicle)
S3 Complete vehicle—no modifications apparent
S4 Series production vehicle—no modifications apparent

HMI
T1 Basic and simple HMI
T2 Complete and realistic HMI
T3 Complete HMI with reconfigurable display

Steering
U1 Steering moment proportional to steering angle
U2 Electrical steering moment, damping, and friction
U3 Electrical steering moment with high frequency

Pedals Set
V1 Passive force feedback
V2 Adaptive force feedback—modifiable characteristic curve
V3 Active force feedback—tangible effects of control systems

However, it may be still challenging for non-expert users to select particular fidelity levels for
the features of each subsystem. Therefore, Negele’s guidelines provided examples for common
application classes as a means of orientation [6]. Moreover, reasonable feature fidelity levels for each
of these classes were deduced and presented in the form of profile tables. As an example, Table 2
shows the profile of the application class 1a.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 6 of 50

Table 2. Profile of driving simulator application class 1a [6]

Scene Simulation
Viewing distance (A1) Field of view (B2) Stereo vision (None)
Head tracking (None) Rear-view mirrors (E2) Field continuity (F3)

Resolution (G2) Frame rate (H1) Projector type (J2)
Motion Simulation

Motion platform < 6 DOF
(K1)

Standard platform = 6 DOF
(None)

Standard platform > 6 DOF (M1/M2/M3)

Vehicle dynamics (N3) Tire (O4)
Driver’s Platform

Mock-up (S3) HMI (T2) Steering (U3)
Pedals set (V2)

Acoustic Simulation
Primary sound P1 (P2) Auxiliary sound (Q1) Sound system (R1, R3)

Environment Database
Database type (W1) District type (Y1)

Traffic Objects Simulation
General traffic vehicles (Z1) Special objects (None)

For better visualization and easy interpretation of the fidelity levels, the defined simulator
application classes are presented in the form of specification radar charts [6]. For all driving simulator
subsystems, these charts depict the features and the fidelity levels in comparison to the maximum
achievable fidelity levels according to the technical advancement.

In summary, Negele’s guidelines present an assistance to non-expert users to determine the
necessary overall fidelity levels of the driving simulators. Following these guidelines leads to the
selection of driving simulators with complexity levels intended for specific application scenarios.
However, users may have to alternate between different fidelity levels to address further application
scenarios. This process is challenging for non-expert users as it requires technical knowledge of
system structure and component compatibility and interoperability. The following section presents
a method from the literature to tame this complexity.

3.2. Configuring Driving Simulation Environments

Driving simulation facilities are used in practice to possibly cover diverse application scenarios
simultaneously [7]. Users may have access to various simulator components of different fidelity levels
within the same driving simulation facility. A maintainable and flexible environment for driving
simulation is required to easily exchange driving simulator components. Hassan presented a method
to reconfigure driving simulation environments by system users [7]. Hereafter in this paper, this
method is referred to as Hassan’s method according to the author’s name.

Principally, Hassan’s method applies a morphological box containing entries of the main driving
simulator components together with the available variants [17]. These variants are called solution
elements and they represent products with different fidelity levels and characteristics provided by
different simulator manufacturers and developers. The driving simulator components are listed
vertically and the corresponding available solution elements are listed horizontally within the
morphological box.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 7 of 50

Table 3Table 3 shows the morphological box, where the solution elements are depicted as
representative figures [7]. The morphological box of Hassan’s method is modified slightly in this
work. Specifically, the naming convention of the driving simulator components of Negele’s
guidelines is used in the morphological box of Hassan’s method to maintain consistency between
both approaches.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 8 of 50

Table 3. Morphological box for driving simulator components (excerpt) [7]

Driving Simulator
Components

Solution Elements
1 2 3

Scene Simulation
System

Motion Simulation
System

Driver’s Platform

Acoustic Simulation
System

Environment
Database

Traffic Objects
Simulation

The shown morphological box contains six driving simulator components: scene simulation
system, motion simulation system, driver’s platform, acoustic simulation system, environment
database, and traffic objects simulator [7]. Three exemplary solution elements are provided for each
driving simulator component. The morphological box can be extended horizontally to add further
solution elements. System users can select simulator components and solution elements in a process
similar to browsing an online catalogue to customize a product before purchasing. The core of
Hassan’s method incorporates a consensus check algorithm that has mainly two levels [7]. The first
level is the logical dependency check between the driving simulator components. This dependency
check process gives an indication whether the selection of one particular component necessitates or
affects the selection of other components. For instance, the selection of the driver’s platform may
depend on the selection of the motion platform and vice versa. This dependency may arise due to the
dimension and weight of the driver’s platform in relation to the corresponding specifications of the
motion platform. A two-dimensional dependency matrix is created to facilitate the dependency check
process. Driving simulator components are listed in the first row and column of the matrix as shown
in Table 4. The dependency matrix is mirrored along the diagonal line. The intersection of each pair
of different driving simulator components determines the respective logical dependency.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 9 of 50

Table 4. Dependency matrix of driving simulator components [7]

Dependency Scheme Hardware Software

0 = Independent Components
1 = Dependent Components

Visualization
System

Motion
Platform

Human-
Machine
Interface

Acoustic
System

Visualization
Software

Platform
Controller

Vehicle
Dynamics

HMI
Software

Acoustic
Software

Hardware

Visualization system x
Motion platform 1 x

Human-machine interface 0 1 x
Acoustic system 0 0 0 x

Software

Visualization software 1 0 0 0 x
Platform controller 0 1 0 0 0 x
Vehicle dynamics 0 0 0 0 0 0 x

HMI software 0 0 1 0 0 0 0 x
Acoustic software 0 0 0 1 0 0 0 0 x

P
rep

rin
ts (w

w
w

.p
rep

rin
ts.o

rg
) | N

O
T

 P
E

E
R

-R
E

V
IE

W
E

D
 | P

o
sted

: 12 S
ep

tem
b

er 2017 d
o

i:10.20944/p
rep

rin
ts201709.0005.v2

P
eer-review

ed version available at D
esigns 2017, 1, 6; doi:10.3390/designs1010006

P
eer-review

ed version available at D
esigns 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 10 of 50

The second level of the consensus check algorithm is the logical consistency analysis. This
consistency check process gives an indication whether the selection of one particular solution element
is consistent with the selection of other solution elements. A two-dimensional consistency matrix is
created to facilitate the consistency check process. The solution elements of each system component
are listed in the first row and first column of the matrix. The consistency matrix is mirrored about the
diagonal line. The intersection of each pair of different solution elements determines the respective
logical consistency. Table 5 shows an excerpt of the consistency matrix.

Table 5. Consistency matrix of driving simulator solution elements (excerpt) [7]

Consistency Scheme Hardware
0 = Inconsistent Solution Elements
1 = Independent Solution Elements
2 = Consistent Solution Elements

Visualization
System

Motion
Platform

Human
Machine
Interface

Acoustic
System

 A B A B A B A B

Hardware

Visualization system
A x x
B x x

Motion platform
A 2 0 x x
B 0 2 x x

Human machine
interface

A 1 1 2 0 x x
B 1 1 0 2 x x

Acoustic system
A 1 1 1 1 1 1 x x
B 1 1 1 1 1 1 x x

The consistency check process makes use of the preceding dependency check process. If two
components are independent, the two corresponding solution elements inherit the independence. In
this case, it is not necessary to check the consistency between these particular solution elements. The
consistency matrix is editable to account for eventual availability change of solution elements. Both
dependency and consistency matrices must be filled out by a system expert. However, Hassan’s
method was embedded within configuration software [7]. This can be used by non-expert system
users to compose different configurations of driving simulators from the available solution elements.

In summary, Hassan’s method provides a procedure to reconfigure driving simulation
environments. The focus is given to the configuration process to assure the consensus of the simulator
components without the consideration of the application requirements. An accompanying
configuration software facilitates the configuration process. No substantial knowledge of driving
simulator components or available solution elements is required from non-expert system users.
However, the specifications of the driving simulator components are not correlated to the
requirements of possible application scenarios. Users still need to manually determine the
requirements or the necessary simulator fidelity level for their application scenarios based on some
criteria, such as Negele’s guidelines. Moreover, users have to manually analyze available simulator
components to determine their fidelity levels. The effort increases considerably if multiple driving
simulators are networked in one environment. The following section presents a new method to
design networked driving simulation systems based on the specific application requirements.

4. Development Methodology

The approaches discussed in the previous section represent compelling methodological work
for the field of conventional driving simulation [6,7]. However, broader design considerations are
necessary for networked driving simulation as a typical system of systems (SoS) with its
acknowledged complexity [5]. A multidisciplinary expertise must be involved while building system
models and during system realization. The current modeling techniques for SoS are still in their
infancy [9]. A domain-spanning conceptual design method and tool are required. To that end, a new
systems engineering design method for networked driving simulation is presented in this section.
Figure 3 depicts the fundamental components of the developed design method.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 11 of 50

Figure 3. The fundamental components of the developed design method for networked driving
simulation.

In particular, the concepts of model-based system engineering for building system models are
adopted in the design method [14]. The design method consists basically of a procedure model and
system of systems (SoS) configuration software as shown in Figure 3. These primary components are
described as follows:

• Procedure model
The procedure includes the necessary development phases that are arranged in a specific
hierarchy towards the design of multidisciplinary system models for platforms of networked
driving simulation. Each development phase contains a set of specific tasks, which shall be
carried out in order to obtain the phase objectives. The procedure model specifies the methods
and approaches used in each task. Moreover, the procedure model reveals the results of each
individual phase. This work is concerned with the comprehensive description of the procedure
model and its phases.

• SoS configuration software
The SoS configuration software embeds the methods and approaches of the procedure model to
generate application-oriented system models. The SoS configuration software guides non-expert
system users in a sequential process to achieve the end objective. Non-expert users can be
operators or domain-specific experts. They do not have to acquire deep multidisciplinary
knowledge in order to use the SoS configuration software for system model design and
generation. A comprehensive description of the design of the SoS configuration software is
beyond the scope of this work. The design concepts of an analogous software tool are discussed
thoroughly in Reference [18].

The ultimate goal of the design method is to assist non-expert system users in building different
system models in accordance with the application scenarios of interest. The general proposed
approach to taming design complexity in a systematic manner is to handle the modeling process in
two major system aspects: simulation and communication. The approaches discussed in the previous
section are combined and utilized in this work to address the first major aspect. Specifically,
determining the fidelity levels of the constituent simulation systems is embedded within the SoS
configuration software according to Negele’s guidelines. Hassan’s method is complemented so that

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 12 of 50

the configuration of the constituent simulation systems is carried out in accordance with the
requirements of the concerned application scenarios. The second major aspect handles mainly the
prioritization process of various network characteristics and functions of available competing
communication systems in accordance with the requirements of the concerned application scenarios.
Hence, suitable communication systems are selected to guarantee proper system operation and
achieve substantial results. The following subsections describe the different phases of the procedure
model and their tasks in detail.

4.1. Networked System Specification

The objective of this phase is to provide a clear understanding of the networked driving
simulation system by formalizing a holistic system description. Principally, this description combines
various aspects of the target system. Available system architecting and description techniques for SoS
to date are not sufficient as they typically focus on specific aspects of the SoS [9]. For instance, some
architecting techniques concentrate on the synergy of the constituent systems. Others focus on the
communication between the constituent systems, with the argument that this particular aspect is
common for all SoS types. However, the utilization of a well-established domain-spanning
conceptual design method is necessary for the specification of networked driving simulation systems.
This assures a broader consideration during its design as a system of systems.

To that end, the CONSENS specification technique is adopted in this phase [19]. The term
‘CONSENS’ is an English acronym that stands for ‘conceptual design specification technique for the
engineering of complex systems’. This specification technique mitigates the design complexity by
describing the various aspects of the multidisciplinary systems using a set of coherent partial models.
In particular, the effective usability of the CONSENS specification technique for the field of
conventional driving simulation was validated in Reference [7]. Furthermore, the essential
CONSENS partial models in this regard were determined and structured in a specific workflow [7].
Since the CONSENS specification technique is open for the conceptual design of newly emerging
complex systems, it undergoes some minor modifications in this work for the development of
networked driving simulation. The following subsection discusses the CONSENS workflow adopted
in this work.

4.1.1. CONSENS Workflow for Networked Driving Simulation

The outcome of the CONSENS specification technique is represented as a principle solution that
is described by seven interrelated partial models. Specifically, these partial models are: environment,
application scenarios, requirements, functions, active structure, shape, and behavior [20]. Each partial
model describes a specific aspect of the target system. To build a coherent system of systems model,
the focus is given to the first five partial models in particular. The shape and behavior partial models
are not considered in this work as they are more relevant to the development of commercial
mechatronic products, such as printers and air conditioners. Figure 4 shows a specified workflow for
the five relevant partial models along with their summarized results.

In this work, the CONSENS workflow is divided into three steps towards an increased system
concretization. The first step includes the construction of three partial models: environment,
application scenarios, and requirements. The second step depends on the outcomes of the first step
to create a function hierarchy for the entire system. In the third step, an active structure is built based
on the results of the previous steps. The system specification process is often carried out during expert
workshops. Specifically, experts of various disciplines—such as mechanical engineering, electrical
engineering, communication engineering, and requirements engineering—collaborate to specify the
different aspects of the target system [19]. The following are brief discussions of the five partial
models and the results with respect to networked driving simulation systems.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 13 of 50

Figure 4. CONSENS workflow for networked driving simulation development.

4.1.2. Identify Environment

The environment partial model defines all possible external influences that can affect the
networked driving simulation system. These external influences can be either environment elements
or disturbance variables. Within the environment partial model, the networked driving simulation
system is considered as a black box. That is, the internal structure and the constituent systems are not
visible in this partial model. In this work, the environment partial model of the networked driving
simulation system was determined based on the comprehensive analysis of typical driving
simulation facilities as shown in Figure 5. Specifically, the analyses result in the identification of five
main environment elements. These are described as follows:

• Drivers
Human drivers represent a crucial environment element. They use the input devices within the
driving platforms of the participating driving simulators to control a simulated vehicle in a
virtual environment. The main input signals are: acceleration pedal position, brake pedal
position, gear selector position, and steering wheel angle. The drivers receive feedback from
their driving simulators in the form of motion or vibration, as well as visual and acoustic
information. Basically, the motions and vibrations are generated by the eventually utilized
motion platforms. In addition, some input devices, such as active steering wheels, can deliver
relative motions to the drivers. The visual feedback is represented with virtual scenes displayed
to the drivers via the visualization systems. The acoustic feedback is delivered via the acoustic
systems as sound effects that accompany the 3D models. The visual and acoustic signals are
generated often together by the visualization software.

• Simulation operator
This can be a technician or a laboratory engineer, who is responsible for the general operation of
the facility of networked driving simulation. Eventually, the simulation operator can be a
domain-specific engineer or developer, who conducts some experiments using the networked
driving simulation facility. The simulation operator can control the scenario by setting some
simulation parameters. The networked driving simulation system returns simulation signals for
monitoring purposes.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 14 of 50

• Energy source
This can be a wall outlet that provides electrical energy to the constituent systems and building
components of the networked driving simulation system. Eventually, some components may
require power supplies to convert the electrical power of the wall outlet to the levels suitable for
their circuitry.

• Ground
This is the physical base of the networked driving simulation system. Dynamic forces occur
between the ground and the networked driving simulation system as actions and reactions,
especially when the participating driving simulators are equipped with motion platforms.

• Environment
The surrounding environment affects the networked driving simulation system through
disturbing influences, such as humidity, dirt, light, and temperature. The networked driving
simulation system affects the surrounding environment through the produced heat and
operation noise.

Figure 5 shows the environment partial model of a networked driving simulation system. The
environment elements are illustrated as yellow hexagons, while the networked driving simulation
system is represented as a blue hexagon in the center of the model. The interrelations between the
networked driving simulation system and the main environment components are categorized mainly
as information, energy, and disturbing flows. The information flow denotes the exchange of
information between the units of the whole system, such as the measured system variables or
environment conditions. The energy flow denotes the transfer of energy between the units of the
system, such as mechanical, thermal, or electrical energy. The disturbing flow represents any external
factors affecting the normal operation of the system.

Figure 5. Example environment partial model of a networked driving simulation system.

Establishing the environment partial model ensures that all system surroundings are considered
in a very early development phase. System users and maintenance personnel can use this partial

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 15 of 50

model to systematically determine and mitigate external causes of eventual future malfunctions. The
following is an elaboration of the partial model of the application scenarios and its results with
respect to networked driving simulation systems.

4.1.3. Define Application Scenarios

This partial model specifies the potential application scenarios of the networked driving
simulation system. Each application scenario describes the target system with respect to the aim of
use, operation modes, and the primary constituent systems and building components utilized in this
particular application scenario. Specifically, the application scenarios are modeled using the so-called
profile pages [19]. Each profile page contains characterizing information about a particular scenario,
such as the title, ID, and last modification date. Moreover, each profile page provides a concise
description of the application scenario [20]. Eventually, a sketch or a schematic can be added to
provide better understanding of the application scenario. As a system of independent and
heterogeneous systems, the partial model of the application scenarios of networked driving
simulation in this work has a different form than that presented in Reference [19]. Specifically, an
overall application scenario is described for the whole networked driving simulation system. This
description principally highlights the ultimate goal of the developed system of systems. In addition,
a purpose of use is described for each anticipated constituent simulation system. Two or more driving
simulators and eventually a traffic simulator can represent a typical set of the constituent simulation
systems. Furthermore, a rough description of the essential role of the communication system can be
added eventually to the profile page. Table 6 shows the profile page of an example application
scenario of a networked driving simulation system that is intended for use in modern driving schools.
The example application scenario involves two driving simulators and a workstation for session
control and monitoring.

Table 6. Example application scenario of a networked driving simulation system

Application
Scenario 1 Multi-Driver Training in Driving Schools Status

1 September 2017 Page 1

Description: An instructor at a driving school handles two trainees simultaneously in realistic
and multi-interactive traffic scenarios. The trainees share a virtual traffic environment. They

have to react to each other and adapt their driving behavior.
Simulation System

Simulation Entities Supplementary Components
Driving simulator 1 Driving simulator 2 Workstation

Trainee 1 uses this driving
simulator to experience

different traffic situations in a
safe virtual environment.

Trainee 2 uses this driving
simulator to experience

different traffic situations in a
safe virtual environment.

Purpose of use: the driving
instructor uses the work

station to control and
monitor the training session.

Communication System
Communication Technology Communication Architecture

It is a feasible communication technology that
ensures a data exchange with little delay and

loss rates.

To maintain system feasibility for driving
schools, no communication architecture is

utilized in this application scenario.
Sketch

The defined purposes of use can be used to determine and document a set of requirements for
each anticipated constituent simulation system separately. This requirement description is refined in

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 16 of 50

the requirements partial model. The following is an elaboration of the requirements partial model
and its results with respect to networked driving simulation systems.

4.1.4. Derive Requirements

This partial model specifies a comprehensive list of requirements of the networked driving
simulation system. Principally, this list can include functional and non-functional requirements [20].
Moreover, the individual items of requirements can be denoted as demands or wishes (D/W). Table
7 shows an excerpt of an example list of requirements of a networked driving simulation system.

Table 7. Example list of requirements of a networked driving simulation system (excerpt)

ID No. Requirements of Networked Driving Simulation D/W

1

Requirement of Driving Simulator 1
1 Scene simulation system

1.1 It shall cover a 120° horizontal field of view D
… …
2 Motion simulation system

2.1 It shall provide three degrees of freedom W
… …

2

Requirement of Driving Simulator 2
1 Scene simulation system

1.1 It shall cover a 240° horizontal field of view W
… …
2 Motion simulation system

2.1 It shall provide five degrees of freedom D
… …

As a system of independent systems, the structure of the list of requirements of networked
driving simulation in this work has a different form than the standard form presented in the
CONSENS specification technique [19]. Specifically, a separate set of requirements is defined for each
independent constituent system and component that is denoted by a unique ID as shown in Table 7.
The different sets of requirements together form the overall requirements of the networked driving
simulation system. The following is an elaboration of the functions partial model and its results with
respect to networked driving simulation systems.

4.1.5. Deduce Functions

The functions of the networked driving simulation system are defined based on system
requirements and application scenarios. Interactive simulation, traffic simulation, operation
management, data collection, and network communication are the fundamental system functions
identified based on a comprehensive analysis of the networked driving simulation. Each of these
defined functions may undergo further top-down hierarchical subdivisions [20]. Figure 6 shows the
functions and sub-functions of a networked driving simulation system.

Figure 6. Example functions partial model of a networked driving simulation system.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 17 of 50

The defined system functions are realized by solution patterns towards system concretization.
For instance, the interactive simulation function can be carried out by two or more driving—like
passenger car or truck—simulators of different or equal complexity grades. The simulation of traffic
vehicles and pedestrians can be performed with an independent traffic simulator. A workstation can
provide capabilities of operation control and monitoring. A database console can carry out the data
logging function and serve for subsequent simulation session analysis. A communication technology,
for instance, such as Ethernet, can carry out the data exchange between the constituent systems and
building components. Data management can be achieved by communication architecture, like high-
level architecture [21]. As a lot of solutions may be available, a classification scheme (morphological
box) can be utilized to facilitate the systematic combination of available solutions [17]. According to
the SoS definition adopted in this work, networked driving simulation systems are composed of
further heterogeneous constituent systems and building components. Therefore, combining only
compatible solutions does not apply in this context in contrast to the design of typical mechatronic
systems [17]. The following is an elaboration of the active structure partial model and its results with
respect to networked driving simulation systems.

4.1.6. Build Active Structure

The active structure partial model is created based on the defined system functions and the
possible constituent systems and building components of networked driving simulation. In contrast
to the environment partial model that considers the whole system as a black box, the active structure
partial model concretizes the system by illustrating its internal structure in more detail [20].
Specifically, it shows the main system components and their primary interrelationships in the form
of information and energy flows. Figure 7 shows the active structure of a networked driving
simulation system including all possible (yet not all necessary) constituent systems and building
components. These correspond to the particular system functions defined previously.

Figure 7. Example active structure partial model of a networked driving simulation system.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 18 of 50

The presented active structure partial model includes six constituent systems and building
components that belong to two main member groups: simulation system group and communication
system group. On the one hand, the driving simulators and the traffic simulator are constituent
systems that belong to the simulation system group. Similarly, the workstation and database station
are considered as supplementary system components that belong to the simulation system group. On
the other hand, the communication technology and the communication architecture belong to the
communication system group. To illustrate, Figure 7 depicts the drivers that represent a crucial
environment element to illustrate the interaction with the driving simulators that act as central
constituent systems of the networked driving simulation system.

In summary, the collective results of the five specified partial models form together a principle
solution that acts as a communication and cooperation basis between the experts of the involved
development domains [20]. This basis is used for the subsequent design and development phases of
the networked driving simulation system in this work. The following subsection presents a
comprehensive analysis of system components as a further step towards concretization.

4.2. System Components Analysis

The objective of the second development phase is the identification, description, and
classification of the components of the networked driving simulation system. This development
phase depends mainly on the results of the system specification phase. Nonetheless, prior to the
identification of the system components, a distinction must be clear between the terms ‘constituent
systems’ and ‘building components’. On the one hand, the constituent systems are independent
participants within the networked driving simulation system. They can carry out meaningful tasks
of their own, even if they are not networked to an entire system. On the other hand, the building
components can provide services to the system of systems. However, they cannot carry out
meaningful tasks of their own, more specifically, when they are not networked to one or more
constituent systems. The following is an elaboration of the system components identification task and
its results.

4.2.1. Identify System Components

The active structure partial model initially revealed the possible five system components of the
networked driving simulation system. These system components can be identified further based on
the presented distinction between the constituent systems and building components of the
networked driving simulation. On the one hand, the driving and traffic simulators are constituent
systems. They can be used separately for useful, independent purposes. On the other hand,
workstations, database consoles, and the communication system are building components. They
present services to the entire system, but they are not useful if utilized independently without
constituent systems. Table 8 presents the five system components and the clear distinction between
the constituent systems and the building components.

Table 8. Distinction between constituent systems and building components

Distinction
System Components of Networked Driving Simulation

Driving
Simulators

Traffic
Simulators Workstations

Database
Consoles

Communication
Systems

Constituent
System

x x

Building
Component

 x x x

Based on the results of the identification task, the following is an elaboration of the components
description task and its results. The concrete role of each system component within the networked
driving simulation is highlighted.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 19 of 50

4.2.2. Describe System Components

The five main identified system components of the networked driving simulation system can be
characterized as essential and optional components based on their roles. Essential system
components are vital to achieve the central purpose of networked driving simulation: multi-driver
traffic scenario simulation. However, the system of networked driving simulation can operate
without the optional components and still achieve this central purpose. The following is a concise
description and a role characterization of each system component of the networked driving
simulation system from a solution-neutral perspective.

• Driving simulators
They are operated by human drivers to control the respective simulated vehicles. The driving
simulators can be of different types, such as a passenger car simulator or a truck simulator.
Moreover, driving simulators of different complexity grades can principally participate within
the networked driving simulation system. By any means, the participation of at least two driving
simulators is necessary not only to achieve the central purpose, but also to establish a system of
networked driving simulation. If a third driving simulator is added to the system, one of the
driving simulators can be eventually considered as an optional component. However, driving
simulators are characterized as essential constituent systems in general.

• Traffic simulators
They generate traffic participants, such as programmed vehicles and pedestrians, to add more
complexity to the multi-driver traffic scenario. One traffic simulator is often sufficient for the
system of networked driving simulation. However, more than one traffic simulator can be
integrated within the system to provide different granularity levels of traffic simulation, such as
macroscopic and microscopic traffic flows [22]. The system of networked driving simulation can
operate without the utilization of traffic simulators. In this case, the multi-driver traffic scenario
simulation depends only on the participating interactive driving simulators. Hence, traffic
simulators are characterized as optional constituent systems.

• Workstations
A workstation is utilized to provide control and monitoring operations on the networked
driving simulation system. That is, the simulation operator can make commands to stop/start
the system and control particular building components. Moreover, the simulation operator can
monitor various signals that give indications about the operation and performance of the system
and its building components. Principally, the system of networked driving simulation can
operate without the use of a workstation. Hence, the workstation is characterized as an optional
building component.

• Database consoles
A database console is utilized to capture and save the simulation data. Moreover, operators and
developers can conduct simulation analysis or generate after-action-review reports. However,
the system of networked driving simulation can operate without the use of a database console.
Hence, the database console is characterized as an optional building component.

• Communication systems
In this work, a communication system includes two categories of building components:
communication technologies and communication architectures. On the one hand, the
communication technologies are responsible for information exchange, such as Ethernet, CAN,
and FlexRay. These communication technologies differ mainly through the provided
networking characteristics. The system of networked driving simulation cannot operate without
the use of a communication technology. Hence, communication technologies are characterized
as essential building components. On the other hand, the communication architectures are
responsible for networked simulation management, such as Distributed Interactive Simulation
(DIS) and High-Level Architecture (HLA) [23,21]. These communication architectures differ
mainly through the provided functions and services that can be useful for networked simulation.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 20 of 50

Unlike the communication technologies, the system of networked driving simulation can
operate without the use of communication architectures. Hence, the communication
architectures are characterized as optional building components. Table 9 shows the identified
and described system components together with their role significance within the networked
driving simulation system.

Table 9. Role significance of constituent systems and building components

Role
Significance

Components of Networked Driving Simulation Systems
Constituent Systems Building Components

Driving
Simulators

Traffic
Simulators

Workstations Database
Consoles

Comm.
Technologies

Comm.
Architectures

Essential
Component

x x

Optional
Component

 x x x x

The identification and description of system components provided more understanding towards
system concretization. Using the results of the identification and description tasks, the following is
an elaboration of the components classification task. Main categories of system components are
specified as an essential preparation step for the subsequent development phases.

4.2.3. Classify System Components

Based on the functions and active structure established in the previous development phase,
system components can be classified into two main groups: the simulation system group and
communication system group as shown in Figure 8.

Figure 8. Classification of networked driving simulation system components.

On the one hand, the simulation system group is classified further into simulation entities and
supplementary components. The driving and traffic simulators are assigned to the simulation system
group under the simulation entities. Moreover, individual components of driving simulators, such
as visualization systems and motion platforms, belong to the simulation entities as well.
Comprehensive identification, description, and classification of the individual components of driving

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 21 of 50

simulators are presented in References [6,7]. The workstations and database consoles can be assigned
to the simulation system group. However, these belong to the supplementary components to indicate
their relative uncritical role within the system of networked driving simulation. On the other hand,
the communication system group includes various communication technologies and communication
architectures. This particular classification reflects the functional role of the five main system
components within the networked driving simulation as a system of systems. It is used as a basis for
the next development phases. The following section presents the development of system databases
and the deployment of solution elements.

4.3. System Databases Development

The third development phase depends on the results of the preceding phases and presents
another step towards system concretization. The objective of this development phase is to build
system databases that contain entries of the analyzed system components, which are concretized as
solution elements. While system components are solution-neutral, the solution elements represent
concrete products of the system components provided from different developers and manufacturers.
In addition, an approach to filling the system databases with entries of the solution elements is
presented in this development phase. The system databases are accessible and editable from the
system of systems (SoS) configuration software. This is necessary for the subsequent development
phases that address the configuration of the networked driving simulation system and the generation
of system models. The following is an elaboration of the structure of the system databases.

4.3.1. Build System Databases for Solution Elements

In this task, system databases are developed based on the classification of system components
presented in the previous phase. More specifically, two system databases are built for the two main
groups of system components: simulation system database and communication system database.

On the one hand, the simulation system database includes only solution elements of components
related to the simulation task of the overall system of networked driving simulation. The simulation
system database has four tables representing the four component categories that belong to the
simulation system group: driving simulators, traffic simulators, workstations, and database consoles.
These four database tables are filled with entries of the corresponding solution elements. A database
for the solution elements of the individual driving simulator components has been created and filled
within Hassan’s method [7]. It has tables for solution elements of three categories of driving simulator
components: hardware, software, and resources. This particular database is merged with the
simulation system database developed in this work. Its entries can be used eventually during the next
phase of system configuration.

On the other hand, the communication system database includes solution elements of
components related to the communication task of the overall system of networked driving
simulation. The communication system database has two tables representing the two components
that belong to the communication system group: communication technologies and communication
architectures. Similarly, these two database tables are filled with entries of the corresponding solution
elements. Figure 9 depicts the two developed system databases and the main associated tables.

The system databases can be implemented with different database development tools. However,
the selected database development tool and the implementation approach must allow the
fundamental database operations: create, read, update, and delete [24]. These basic database
operations are typically summarized using the acronym ‘CRUD’ according to the first letters of the
four operations, respectively. This particular feature is necessary to make the system databases
accessible and editable from the SoS configuration software. The following is an elaboration of the
specified attributes of the main database tables.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 22 of 50

Figure 9. The developed system databases and the main tables.

4.3.2. Fill System Databases with Solution Elements

Apart from the database tables used in Hassan’s methods, six database tables were identified in
the previous development task to include solution element entries of six system component
categories: driving simulators, traffic simulators, workstations, database consoles, communication
technologies, and communication architectures. These database tables must be specified further with
attributes before registering entries of corresponding solution elements. The table attributes
presented in this development task can be extended arbitrarily so that the design conforms to the
open systems approach of the system of systems engineering [9].

Table 10 shows the database table created to include entries of existing driving simulators as
available solution elements. For example, entries of three driving simulators are included: ATMOS
(Atlas Motion System) driving simulator, Airmotion_ride driving simulator, and HNI (Heinz
Nixdorf Institute) PC-based driving simulator. These driving simulators were developed at the Heinz
Nixdorf Institute in Paderborn, Germany within a previous research project [25]. They have different
fidelity levels and can be used for different application scenarios. A comprehensive description of the
technical specifications of these driving simulators is presented in Reference [25].

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 23 of 50

Table 10. Database table of driving simulators with building components of specified fidelity levels

ID Name

Visualization
System

Motion
System

Acoustic
System

Driver
Platform

Eye
Distance

(A)

Field
of

View
(B)

Rear-
View

Mirrors
(E)

Continuity
(F)

Resolution
(G)

Motion
Standard

(L)

Motion
< 6

DOF
(K)

Motion
> 6

DOF
(M)

Vehicle
Dynamics

(N)

Tire
Model

(O)

Primary
Sound

(P)

Auxiliary
Sound (Q)

Sound
System

(R)

Mock-
Up (S)

HMI
(T)

Steering
(U)

Pedals
Set (V)

1
ATMOS

simulator
2 3 2 3 2 ‒ 3 ‒ 3 3 1 1 1 4 2 2 1

2
Airmotion

_ride 2 1 3 1 2 1 ‒ ‒ 2 2 1 1 1 1 1 1 1

3
HNI PC

simulator 1 1 3 1 1 ‒ ‒ ‒ 2 2 1 ‒ 1 1 1 1 1

P
rep

rin
ts (w

w
w

.p
rep

rin
ts.o

rg
) | N

O
T

 P
E

E
R

-R
E

V
IE

W
E

D
 | P

o
sted

: 12 S
ep

tem
b

er 2017 d
o

i:10.20944/p
rep

rin
ts201709.0005.v2

P
eer-review

ed version available at D
esigns 2017, 1, 6; doi:10.3390/designs1010006

P
eer-review

ed version available at D
esigns 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 24 of 50

In addition to the ID and name attributes, this database table has four more attributes in
accordance with the four driving simulator components identified in Negele’s guidelines [6]:
visualization system, motion system, acoustic system, and driver’s platform. Reference [6] provides
a detailed description of these components together with all possible fidelity levels. In accordance
with Negele’s guidelines, specific fidelity levels are assigned to the individual components of the
driving simulators in this work as shown in Table 10. The subsequent application-oriented
configuration and model generation processes will make use of these fidelity level assignments. To
conform to the SoS definition adopted in this work, the traffic simulation is considered as a separate
task that is independent of the driving simulators in contrast to both Negele’s guidelines and
Hassan’s method. The database table of traffic simulator entries mainly has four attributes in addition
to the ID: environment database, objects simulation, granularity level, and visualization type. A
detailed description of these characteristics is provided in Reference [6]. The third member of the
simulation system database is the workstations table. This database table includes solution element
entries of workstations that have different capabilities or specifications. The set of attributes can
include the ID, name, manufacturer, number of monitors, computer specifications, etc. The fourth
member of the simulation system database is the database consoles table. Similarly, this database
table includes entries of solution elements of database consoles that have different capabilities or
specifications. The set of attributes can include the ID, name, developer, design software, interfaces,
storage capacity, and computer specifications. Some of the solution elements of the individual driving
simulator components can be characterized based on the features identified in Negele’s guidelines
[6]. Specifically, nine driving simulator components were identified in Hassan’s method:
visualization system, motion platform, driver’s platform, acoustic system, visualization software,
motion controller, vehicle model, HMI interface, and acoustic software. The visualization software,
motion platform controller, and HMI interface in Hassan’s method do not have corresponding
features in Negele’s guidelines. Hence, the remaining six driving simulator components from
Hassan’s method are correlated to features from Negele’s guidelines. This correlation step represents
the link established in this work between Hassan’s method and Negele’s guidelines. The database
tables of the individual driving simulator components are extended in this work to allow for the
fidelity level assignments of the solution elements. With respect to the communication system, a
database table includes entries of all available communication technologies as solution elements.
These communication technologies differ mainly through network characteristics. In addition to the
ID and name attributes, this database table has one main attribute representing significant
characteristics of the communication technologies [26]. For instance, this attribute is divided into
eight sub-attributes: bandwidth, latency, jitter, packet loss rate, determinism, error rate, transmission
mode, and segment length. Another database table includes entries of all available communication
architectures as solution elements. These communication architectures differ mainly through the
provided functions and services for networked simulation. In addition to the ID and name attributes,
this database table has one main attribute representing significant characteristics, functions, and
services of the communication architectures. Further attributes can be added to the database table of
communication architectures, such as the provider and the version of the underlying standard. The
following subsection presents a central development phase of the design method.

4.4. Configuration Methods Development

The previous phases provided a comprehensive understanding of the networked driving
simulation system. The system components were identified, described, and classified. Moreover,
system databases were developed in accordance with the results of the system components analysis.
Table 11 shows a morphological box that includes the identified system components and symbolic,
exemplary solution elements.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 25 of 50

Table 11. Morphological box of the networked driving simulation system (excerpt)

System
Components

Solution Elements
1 2 3

Driving
Simulators

Traffic Simulators

Workstations

Database
Consoles

Communication
Technologies

Communication
Architectures

In general, the morphological box represents a well-established approach that can be used
particularly when it comes to system composition [17]. In this work, the system components and the
corresponding available solution elements are inserted into the rows of a morphological matrix as
shown in Table 11. While the first four system components belong to the simulation aspect of the
networked driving simulation system, the latter two system components belong to the
communication aspect. The solution elements of system components must be combined
systematically to obtain an overall solution. The networked driving simulation system is composed
of independent, heterogeneous systems. Hence, the combination of solution elements is not governed
by their consistency or compatibility in this work in contrast to Hassan’s method [7]. The solution
elements are selected based on the offered capabilities and functionalities with respect to the
requirements of the concerned application scenarios. The following is a discussion of a configuration
method for the simulation aspect of the networked driving simulation system.

4.4.1. Simulation System Configuration Method

The simulation system aspect in this work includes four system components: driving simulators,
traffic simulators, workstations, and database consoles. The application-oriented selection of the
participating driving simulators is the central task of the simulation system configuration. However,
available driving simulators must be classified according to their capabilities to account for the
subsequent phase of application-oriented system model configuration and generation.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 26 of 50

Selection Approach for Available Driving Simulators

Classifying driving simulators into three categories (low-level, mid-level, and high-level)
collectively is not practical [13]. A driving simulator may have high capability for one particular
component and low capability for other components based on the purpose of use [14]. Hence, driving
simulators are classified in this work in accordance with the 15 application classes defined in Negele’s
guidelines [6]. These application classes give more insight into the fidelity levels of the individual
driving simulator components. While seven application classes are considered as not common or
practical, eight application classes are fully specified in Negele’s guidelines [6]. Nonetheless, the
specifications of available driving simulators may not exactly fulfill the whole requirements of the
application classes. Therefore, a cost function is defined to give a quantified indication of the
specification/requirement deviations.

The relative significances of the individual driving simulator components are specified for each
application class in Negele’s guidelines [6]. For instance, the motion system is more significant than
the visualization system for the application class 1a (skill-based responses and vehicle stabilization).
In this work, the relative significance is quantified, where each driving simulator component takes a
unique integer number from 1 to 4. Higher numbers mean more relative significances. With respect
to the application class 1a for example, the significance numbers: 4, 3, 1, and 2 are assigned to the
simulator components: motion system, visualization system, acoustic system, and driver’s platform
respectively. Based on the specified and quantified relative significances, Equation (1) presents the
cost function developed in this work to give an indicative measure of the deviation between the
specifications of the available driving simulators and the requirements of the application classes:

Fidelity	level	deviation	 = 		 SignificanceN 		×	 |Level () 	−	Level ()|
	 	

,	 (1)

where:
m Designation of the driving simulator component
Significancem Specified relative significance value of a simulator component
n Designation of the feature of a driving simulator component
N Maximum number of features of a driving simulator component
LevelReq Requirement feature fidelity level of a simulator component
LevelSpec Specification feature fidelity level of a simulator component

This cost function is applied to each available driving simulator with respect to each application
class. The minimal deviation value among all available driving simulators with respect to a particular
application class indicates a best possible match between the specifications and the requirements.
With respect to any particular application class, Equation (2) presents a simple function used to find
the minimal deviation value among all driving simulators. Best	matching	simulator	 = 	Min (Deviation , Deviation , Deviation ,… , Deviation),	 (2)

where n is the number of available driving simulators. The resulting minimal deviation value is used
to select the driving simulator, whose specifications best match the requirements of a concerned
application class. Further cost functions can be eventually developed, provided that they can give
unique selections of driving simulators. The developed cost function has been applied to the three
exemplary driving simulators of Table 10 and showed very good results, where no ambiguous
selections were provided. Error! Not a valid bookmark self-reference.Table 12 shows these results
with respect to the eight specified application classes.

Table 12. Results of the developed cost function for three example driving simulators

Example Driving
Simulators

Specified Driving Simulator Application Classes
1a 2b 3b 3c 4b 4c 5b 5c

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 27 of 50

ATMOS
driving simulator

2.04 2.15 3.22 3.22 2.00 1.81 2.00 2.00

Airmotion_ride
driving simulator

3.26 2.23 1.48 1.48 1.38 2.38 1.80 1.80

HNI PC-based
driving simulator

3.15 2.30 1.30 1.30 1.96 2.96 1.78 1.78

Example minimal deviation values are highlighted in Table 12 supposing that the database table
contains entries of only three driving simulators. For instance, the HNI PC-based driving simulator
can be used for the application class 3b (navigation driving tasks with rule-based responses) and the
application class 3c (navigation driving tasks with knowledge-based responses). The Airmotion_ride
driving simulator can be used for the application class 4b that addresses secondary driving tasks with
rule-based responses [6]. The ATMOS driving simulator can serve the application class 4c that
addresses secondary driving tasks with knowledge-based responses [6]. If other entries of driving
simulators are added to the database table and the cost function is applied, the results of the minimal
deviation function will differ with respect to each application class.

Selection Approach for Further Available Simulation System Components

The selection of solution elements of traffic simulators, workstations, and database consoles is
more convenient and straightforward due to the limited number of characterizing features. A similar
approach can be applied to these simulation system components, however, without the use of a
particular predetermined significance factor. That is, the deviation between the specifications of the
available solution elements and the requirements of the application scenarios can be determined
through any simple cost functions based on comparison tables.

Selection Approach for Available Driving Simulator Components

The available driving simulators may not be satisfactory if the deviations between their
specifications and the requirements of the concerned application classes are large. In such cases, new
driving simulators can be built through combining solution elements of the different driving
simulator components. Hassan’s method can be utilized for this particular purpose [7]. In this regard,
the previous development phase presented an approach to assign feature fidelity levels from
Negele’s guidelines to the solution elements of the driving simulator components specified in
Hassan’s method. Moreover, the associated database table has been modified to include these
assignments. According to Negele’s guidelines, driving simulator components are characterized by
a set of features. For instance, the visualization system is characterized by five features: eye distance,
field of view, rear-view mirrors, continuity, and resolution.

Nonetheless, the features of an available solution element, together, may not have the exact
fidelity levels that fulfill the corresponding requirements of a particular application class. Therefore,
a cost function must be defined to give a quantified indication of the deviation. No relative
significances for the features of the individual driving simulator components are specified in Negele’s
guidelines. Hence, no particular significance factor is used within the cost function. Equation (3)
presents the cost function developed in this work to give an indicative measure of the deviation
between the specifications of individual driving simulator components and the corresponding
requirements of the application classes:

Fidelity	level	deviation = Level () − Level () , (3)

where:
n Designation of the feature of a driving simulator component
N Maximum number of features of a driving simulator component
LevelReq Requirement feature fidelity level of a simulator component
LevelSpec Specification feature fidelity level of a simulator component

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 28 of 50

This cost function is applied to all available solution elements of each driving simulator
component with respect to the corresponding requirements of each application class. Among all
solution elements of a particular driving simulator component, the minimal deviation value indicates
a best possible specifications match to the corresponding requirements of the concerned application
class. With respect to any particular driving simulator component and an application class, Equation
(4) presents a simple function used to find the minimal deviation value among all solution elements. Best	matching	component	 = 	Min(Deviation , Deviation , Deviation ,… , Deviation),	 (4)

where n is the number of available solution elements of any particular driving simulator component.
This approach complements the process of driving simulator configuration introduced in Hassan’s
method [7]. Specifically, the selection of solution elements of driving simulator components is
governed by their capability to fulfill the corresponding requirements of the concerned application
scenarios. The following is a discussion of a configuration method for the communication aspect of
the networked driving simulation system.

4.4.2. Communication System Configuration Method

The communication system aspect in this work includes two system components:
communication technologies and communication architectures. While using a communication
technology is essential for the operation of the networked driving simulation system, the
communication architectures are classified as optional building components. There are a lot of
solution elements for both building components from different providers. Moreover, the available
solution elements are usually subjected to continuous development to establish variants of different
characteristics and functions. A careful selection of the communication system is necessary to reach
the expected outcomes of the networked driving simulation system.

Determining Priority of Communication Characteristics and Functions

Communication technologies are characterized typically by a set of network characteristics, such
as bandwidth and latency. However, no particular communication technology can provide the best
possible specifications regarding all network characteristics [27]. Therefore, it may be difficult to find
an absolute optimal solution element for all application scenarios due to the presence of various
conflicting network characteristics and myriad choices of available communication technologies. This
leads to a typical multi-criteria decision-making problem [28]. Thereby, the network characteristics
represent the criteria and the communication technologies represent the alternatives. In general, there
are different methods in the literature to handle multi-criteria decision making problems [28].
Nonetheless, some of these methods require a prior assignment of priority weights to the different
criteria. This is necessary to ultimately reach a compromised solution. The compromised solution in
this regard refers to a choice that satisfies the most important criteria to a sufficient extent while
partially satisfying the less important criteria.

Hence, the network characteristics in this context must be prioritized based on the requirements
of the concerned application scenarios. Table 13 shows an excerpt of a priority analysis matrix that
can be used to assign priority weights to the network characteristics of the communication
technologies. At this stage, the priority weighting process is solution-neutral, where no particular
communication technologies are considered.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 29 of 50

Table 13. Priority analysis matrix including example network characteristics

Priority Scheme
1 = Equally Important

5 = More Important
10 = Much More Important

0.2 = Less Important
0.1 = Much Less Important

Network Characteristics

Sum of Weights Priority Weight (%)
Bandwidth Packet Loss Rate Determinism Latency Segment Length

Bandwidth x 5 0.2 1 10 16.2 29.35
Packet loss rate 0.2 x 0.2 1 5 6.4 11.59
Determinism 5 5 x 5 10 25 45.29

Latency 1 1 0.2 x 5 7.2 13.04
Segment length 0.1 0.2 0.1 0.2 x 0.4 0.730

P
rep

rin
ts (w

w
w

.p
rep

rin
ts.o

rg
) | N

O
T

 P
E

E
R

-R
E

V
IE

W
E

D
 | P

o
sted

: 12 S
ep

tem
b

er 2017 d
o

i:10.20944/p
rep

rin
ts201709.0005.v2

P
eer-review

ed version available at D
esigns 2017, 1, 6; doi:10.3390/designs1010006

P
eer-review

ed version available at D
esigns 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 30 of 50

The relevant network characteristics are listed vertically and horizontally in the priority analysis
matrix. Based on the requirements of a concerned application scenario, a relative priority weight is
assigned to each pair of different network characteristics according to a priority scheme. The priority
scheme used in this work includes five levels as shown in

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 31 of 50

Table 13. Exemplary relative priority weights are presented in

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 32 of 50

Table 13 for a set of five network characteristics. For instance, the bandwidth can be less
important than the determinism, but much more important than the segment length for a particular
application scenario. The overall relative priority weight of each network characteristic is calculated
as a sum of weights. The final priority weighting percentages of each network characteristic are
calculated according to Equation (5).

Priority	weighting 	(%) 	= (Sum of weights × 100) / Sum of weights 	 ,	 (5)

where:
n and m Designations of the network characteristics n and m
M Total number of network characteristics

The priority weighting percentages reflect the unique significances of the individual network
characteristics with respect to a concerned application scenario. Although the shown example
priority analysis matrix includes only five network characteristics, it can be extended vertically and
horizontally to include more network characteristics as desired.

Similarly, the communication architectures are characterized typically by a set of functions for
networked simulation. However, no particular communication architecture can provide the best
possible specifications regarding all functions. Hence, the communication functions must be
prioritized with respect to the application scenarios to reach a compromised solution. A similar
approach can be used to assign priority weights to the functions of the communication architectures
based on the requirements of the concerned application scenarios.

Selection Approach for Available Communication Systems

After determining the relative priorities of the communication characteristics and functions, a
decision-making method is required to avoid an exhaustive and impractical search among all
available solution elements of the communication technologies and communication architectures.
The cost–benefit analysis method is used in this work as a well-established decision-making process
recognized by systems engineering [29]. Based on this method, Table 14 shows an exemplary
assessment of three communication technologies with respect to five network characteristics.

Table 14. Example assessment according to the cost-benefit analysis method

Network
Characteristics

Priority
Weight

(%)

Communication Technologies
Ethernet 10 Mbps CAN Bus InfiniBand

Fulfillment
(%)

Partial
Assessment

(%)

Fulfillment
(%)

Partial
Assessment

(%)

Fulfillment
(%)

Partial
Assessment

(%)
Bandwidth 29.35 80 23.5 20 5.87 100 29.4

Packet loss rate 11.59 10 1.16 100 11.6 100 11.6
Determinism 45.29 00 0.00 100 45.3 00 0.00

Latency 13.04 00 0.00 100 13.0 00 0.00
Segment length 0.730 100 0.73 50 0.37 30 0.22

Final assessment (%) 25.39 76.14 41.22

The network characteristics are listed vertically and the available communication technologies
are listed horizontally within the shown assessment matrix. Principally, the assessment uses the
results of the priority analysis scheme presented earlier in this sub-section. More specifically, each
network characteristic is assigned to its priority weighting percentage that is calculated using the
priority analysis scheme. The priority weighting percentages differ according to user preferences for
the concerned application scenarios. For each communication technology, the extent of fulfillment of
each network characteristic is determined using the values given by the user. Consequently, all
available communication technologies are assessed partially with respect to the individual network
characteristics using Equation (6).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 33 of 50

Partial	assessment	(%) = Priority weight (%) × Fulfillment (%)100 ,	 (6)

The final assessment of each communication technology is calculated as the summation of all
partial assessments according to Equation (7).

Final	assessment (%) = Partial assessment (%), (7)

where:
n Designation of the communication technology n
m Designation of the communication characteristic m
M Total number of communication characteristics

Equation (8) presents a simple function that is used to find the best matching communication
technology, which has the highest final assessment value. Best	matching	communication	technology = Max(Final assessment , … , Final assessment),	 (8)

where n is the number of available communication technologies.
A quite similar approach can be used for the selection of the communication architectures. That

is, the user prioritizes the functions and services based on the concerned application scenarios to
calculate priority weighting percentages. The available communication architectures are assessed
according to the prioritized functions and services. Consequently, a simple function can be used to
select the best matching communication architecture that has the maximal assessment value.

4.5. System Models Development

The previous development phases and their tasks focused on the comprehensive analysis of the
whole system and the development of selection approaches for the simulation and communication
aspects. The outcomes are embedded in the SoS configuration software to save efforts and time of
non-expert system users. The last development phase is concerned with the actual creation of
application-oriented system models based on the outcomes of the previous phases. The following is
an illustration of the system configuration sequence to compose application-oriented system models
for networked driving simulation.

4.5.1. Specify Configuration Sequence

The selection sequence of system components is specified in this task. The system components
have been classified into two groups in the second development phase of the procedure model: the
simulation system group and communication system group. Basically, the components of the
simulation system group are selected before the components of the communication system group.
The number of the selected simulation system components—and hence, the amount of the exchanged
data packets—can affect the determination of some network characteristics, such as the bandwidth.
Figure 10 illustrates the selection sequence of the simulation and communication system components.
The user is guided by the SoS configuration software through this configuration sequence. The
configuration process is based on the selection approaches developed in the previous phase of the
procedure model. The system user can navigate back and forth arbitrarily along the configuration
sequence to modify the selections.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 34 of 50

Figure 10. System configuration workflow and selection sequence of system components.

The user starts the configuration process by determining the concerned response type and
driving task for each participating driving simulator. The SoS configuration software determines the
corresponding application classes. Consequently, the SoS configuration software finds the best
matching driving simulators within the entries of the corresponding database table. Alternatively,
the user can configure new driving simulators from the individual simulator components using the
SoS configuration software. Similarly, the SoS configuration software finds the best matching traffic
simulator within the entries of the corresponding database table according the concerned application
classes. The user can skip this suggestion as traffic simulators are optional components for the
networked driving simulation. After that, the user can select a workstation and a database console
based on the desired requirements. Similarly, the user can skip this step as the utilization of these
system components is optional for networked driving simulation. As an intermediate step before the
selection of the communication system components, the user determines the information exchange
between selected simulation system components. After that, the SoS configuration software finds a
best matching communication technology according to specified and prioritized requirements
regarding the network characteristics. Some of these requirements—e.g., bandwidth—can be only
estimated as worst-case scenario based on the amount of exchanged data packets [30]. Consequently,
the result is an initial proposed communication technology with the best matching network
characteristics. Finally, the SoS configuration software finds a best matching communication
architecture according to the eventually specified and prioritized requirements regarding the
communication functions and services. The user can skip this step as the utilization of a
communication architecture is optional for networked driving simulation. Before the final creation of
a system model, the following task is performed to assure the appropriate selection of the
communication technology.

4.5.2. Examine Network Behavior

In this task, the initially selected communication technology is examined to make sure that the
eventually estimated requirements of network characteristics still can guarantee proper system
operation. A network simulator can be utilized for this purpose as supplementary software [31].
Principally, network simulators are used to simulate the network behavior using mathematical
formulas and models of the network protocols. There are commercial network simulators, such as
OPNET and QualNet. Other network simulators are available as free and open source packages, such
as NS2, NS3, J-Sim, SSFNet, and OMNeT++.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 35 of 50

The Automotive Network Diagnoser (ANDi) from Technica Engineering GmbH in Munich,
Germany is utilized particularly in this work. It is a user-friendly test and simulation environment
that supports various communication technologies and operation platforms. Using this network
simulator, users can construct a virtual network by creating nodes connected by network segments
in a form that replicates a desired real network topology. The characteristics of the initially selected
communication technology are provided along with the estimated amount of data packets to start a
simulation. According to the observed network behavior, the initial requirements of network
characteristics are eventually modified. In this case, the selection step of communication technologies
is recalled to select a more appropriate solution element. This process is repeated until the simulated
network behavior exactly meets or comes very close to the requirements of the concerned application
scenario regarding the communication technology. The following task discusses the creation of a
system model after finishing the configuration process.

4.5.3. Generate System Models

In this task, a system model is generated by the SoS configuration software in the form of a
comprehensive report that contains concise information about the selected solution elements. In
general, model-based systems engineering relies on models to progress from the level of
requirements to the level of system realization [32]. That is, it follows a model-centric approach rather
than a traditional document-centric approach. In practice, the SoS design and modeling cannot be
carried out through a conventional system development process. Yet the complexity of the SoS design
can be reduced considerably by following a model-centric approach [32]. Agent-based modeling can
provide a practical tool in this regard [32]. It is a relatively new approach for modeling complex
systems that are composed of further interacting systems. The agent-based modeling method defines
the roles of all system components from a bottom-up perspective [33]. Hence, the created agent-based
model can describe the emerging system as a whole based on the roles and interactions of the
constituent systems and components. There is no universal agreement on a precise definition for the
term ‘agent’. In this work, an agent is a constituent system or a building component as identified,
described, and classified in the second development phase of the procedure model. A formal visual
scheme is typically required to apply the agent-based modeling principles.

The unified modeling language (UML) is a practical means for graphical visualization during
system conception [34]. It provides an abstract modeling level that can be used for the system-level
design. Specifically, UML uses a set of well-defined elements that are independent of any particular
programming language to describe a system as high-level structures. Reference [34] discusses the
UML diagrams that can be used practically for agent-based modeling: sequence, state, activity, and
class diagrams. The sequence diagrams can be used if the sequential interaction of agents over time
is a significant design aspect. The state diagrams can be used if the change of the internal states of the
agents is of particular interest. The activity diagrams are similar to the traditional flow charts. They
can be used if it is important to analyze the activity progress of system components. The class
diagrams consist typically of classes and different types of relationships, such as association,
composition, and inheritance [34]. They can be used when the focus is given to system composition
and the relationships between its components. A detailed discussion about the UML class diagrams
is presented in Reference [35].

The application-oriented modeling of networked driving simulation in this work is concerned
particularly with the system components and their relationships. Hence, it adopts the agent-based
modeling principles together with the concepts of the UML class diagrams. Specifically, the system
model consists of three parts that are constructed automatically by the SoS configuration software
based on the results of the configuration process.

System Model Components—Part I

The first part contains a UML class diagram that gives a holistic overview about the configured
networked driving simulation system. The UML class diagram is further divided into two groups,
which are called packages in accordance with the UML notations [35]. While the first package

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 36 of 50

addresses the simulation system aspect, the second package addresses the communication system
aspect. Each package encompasses various blocks. The parent blocks are classes that represent the
utilized system components. The parent blocks within the simulation system package have
inheritance relationships with an upper parent simulation system class. Similarly, the parent blocks
within the communication system package have inheritance relationships with an upper parent
communication system class. The child blocks are instances that represent the selected solution
elements. The instances have abstraction relationships to the corresponding classes (parent blocks).
Each block within the class diagram is typically composed of three compartments stacked vertically.
The top compartment includes the name. The middle compartment lists the significant specifications
and characteristics. The bottom compartment lists the main operations performed by the system
component or the solution element.

System Model Components—Part II

The second part consists of two sections containing radar charts. Generally, the radar chart is a
demonstration method for the visualization of data sets that include multiple quantitative variables.
These variables are represented on axes that start from an origin point. Particularly, the first section
of this part contains radar charts illustrating the deviation between the specifications of each selected
simulation solution element and the corresponding application requirements. Analogously, the
second section contains radar charts illustrating the deviation between the specifications of each
selected communication solution element and the corresponding application requirements. This part
gives an overview of the eligibility of each selected solution element with respect to the concerned
application scenario. This visual demonstration of the specifications and the requirements enables
users to decide whether to proceed or to navigate back to select other alternatives.

System Model Components—Part III

The third part contains a list of the simulation data that each selected solution element sends
and/or receives. The simulation data are characterized by different attributes, such as the sender, unit,
and type. This list of exchanged simulation data can be used during the preparation of the constituent
systems and building components for system realization. Moreover, it can be used as a basis if a
communication architecture is utilized to particularly provide a data distribution management
service [36]. The Extensible Markup Language (XML) is chosen for the construction of this part. The
XML defines a set of rules to encode the information in an easy format that can be understood by
humans as well as software programs. Furthermore, the hierarchical structure supported by the XML
format makes it convenient to trace and find the concerned information. A comprehensive discussion
about the XML and its rules is presented in Reference [37].

Based on the information demonstrated through the created system model, the user can still
navigate back to alter particular selections when necessary. Finally, the user can save the created
system model and/or print it to start the system realization. The generated model is used at this stage
to easily communicate information about the system that shall be built. Three system models are
shown together with example application scenarios in the next section.

5. Validation

Three example multi-interactive application scenarios are presented in this section in order to
validate the design method. A comprehensive description is provided for each example application
scenario. Corresponding system models are generated using the developed SoS configuration
software. Specifically, the solution elements of the simulation and communication system
components are selected using the approaches adopted in the developed method and embedded in
the SoS configuration software. The actual application requirements and the preferences of the
system user play a considerable role during the configuration process. Beside the validation purpose,
the presented application scenarios deliver an example line of thoughts to illustrate how to use the
SoS configuration software for creating system models.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 37 of 50

5.1. Multi-Interactive Training with ADAS

5.1.1. Scenario Definition

Although ADAS are designed to reduce the burden on drivers, the complexity of user interface
grows with increasing the number of automated functionalities. This demands some of the driver’s
attention and introduces a considerable cognitive load. Therefore, conventional training with driving
simulators must be adapted for more immersion and a capability for interactive supervision and
instruction [5]. The application scenario of this validation example is to perform multi-interactive,
supervised training sessions to learn ADAS functions and avoid eventual overestimation of their
capabilities.

5.1.2. Configuration Process

Based on this application scenario, a simulation environment consisting mainly of two driving
simulators is defined. While one driving simulator is used by a trainee, the other driving simulator
is used by a training instructor. The trainee is introduced to various ADAS functions—e.g., blind spot
and congestion assistance systems—while driving through an unfamiliar road network. The trainee
activates and handles the settings of the ADAS functions and responds to the dashboard indicators.
This purpose of use falls within the driving simulator application class 4c that addresses knowledge-
based responses and secondary driving tasks. The training instructor has a simple navigation driving
task. The aim is to drive interactively within the same virtual environment to observe the traffic
situation and to eventually introduce unexpected driving maneuvers. The response of the training
instructor is not of concern as a matter of course. The purpose of use can be represented by the driving
simulator application classes 3a, 3b, and 3c that address different responses with navigation driving
tasks. The application class 3c is chosen for convenience. The determined application classes of the
two participating driving simulators are used together as the first actual input to the SoS
configuration software. Among the available driving simulators, the SoS configuration software
suggests two particular driving simulators that best fulfill the requirements of application classes 4c
and 3c.

In this application scenario, no traffic simulator is chosen as the trainee has to react only to the
maneuvers introduced by the training instructor. No workstation is required for this platform as the
training instructor already participates interactively in the virtual traffic scenario. A database console
can be used to capture, save, and replay the simulation data for analysis and after-action review. A
lot of data must be exchanged between the participating simulators. Not only the position and
orientation data of the simulated vehicles are exchanged through the network, but also additional
information for better immersion and engaging training sessions, such as front and rear lamps state,
turning indicator lamps state, and front wheels orientation. A bandwidth of 10 Mbps (megabit per
second) is required initially according to a worst-case calculation of the number of exchanged data
packets [30]. Lower priority levels are assigned to the other communication characteristics, such as
real-time data delivery or data loss rate. Accordingly, a 10 Mbps Ethernet with User Datagram
Protocol is suggested by the SoS configuration software for this application scenario. The simulated
network behavior using the ANDi software confirmed the eligibility of this selection. No standard
architecture for networked simulation is selected as networked simulation management functions
are not required for this application scenario.

5.1.3. Generated System Model

A system model is created by the SoS configuration software based on the scenario analysis and
the configuration process. Figure 11 shows a simplified version of the simulation package of the UML
class diagram containing the selected simulation system components.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 38 of 50

Figure 11. UML class diagram of the selected simulation system components—package 1.

The simulation package includes a main class named simulation_system. Two classes inherit the
simulation_system class: driving_simulator and database_console. The driving_simulator class has
two instances representing the two selected driving simulators: ATMOS_simulator and
HNI_PC_simulator. The database_console class has one instance representing the selected database
console: HNI_database. Figure 12 shows a simplified version of the communication package of the
UML class diagram containing the selected communication system components.

Figure 12. UML class diagram of the selected communication system components—package 2.

The communication package includes a main class named: communication_system. There is
only one class that inherits the communication_system class: comm_technology. It has one instance
representing the selected communication technology. Figure 13 shows the first section of the second
part of the generated system model. This section contains the specification/requirement radar charts
of the two selected driving simulators. The definitions of the depicted features and their fidelity levels
are provided in Reference [6].

Part I Simulation Package

driving_simulator

drivingTask : string
driverResponse : string
applicationClass : string

setInfo (simData[n] : float)
getInfo () : float

simulation_system

type : string
significance : string

Simulation

HNI_PC_simulator : driving_simulator

significance = essential
drivingTask = navigationTask
driverResponse = knowledge
applicationClass = 3c
vehicleType = passengerCar

database_console

capacity : string
opSystem : string
…

getInfo () : float
saveInfo () : float

HNI_database : database_console

significance = optional
capacity : 1TB
opSystem = Windows
…
…

ATMOS_simulator : driving_simulator

significance = essential
drivingTask = secondaryTask
driverResponse = knowledge
applicationClass = 4c
vehicleType = passengerCar

Part I Communication Package

comm_technology

drivingTask : string
bandwidth : string
latency : string
…

deliverInfo (simData[n] : float)

communication_system

type : string
significance : string

Communication

Ethernet : comm_technology

significance = essential
bandwidth = 10Mbps
latency = 0.5millisec
…

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 39 of 50

Figure 13. Specification/requirement radar charts of the selected system components.

Analogously, the second section of the second part contains the specification/requirement radar
chart of the selected communication technology. Figure 14 shows the two networked driving
simulators of the first example application scenario.

Figure 14. Established platform of networked driving simulation for the first application scenario.

The HNI PC-based driving simulator shown at the left side within Figure 14 has no motion
platform. This driving simulator has a commercial wheel–transmission–pedals set and a simple
driving seat. It utilizes a 60-inch high-definition screen. The HNI PC-based driving simulator is
operated by a software package developed with MATLAB/Simulink. The ATMOS driving simulator
shown at the right side within Figure 14 has a complex motion platform consisting of two dynamical
components. The motion platform provides five Degrees Of Freedom (DOF) to fully simulate vehicle
lateral and longitudinal accelerations. The ATMOS driving simulator has an eight-channel cylindrical
projection system. It is powered by eight LCD-projectors to cover a horizontal field of view of 240
degrees. In addition, three small displays are used to simulate the side and rear mirror views. The
ATMOS driving simulator is operated by a software package developed by the company dSPACE in
Germany. The platform shown in Figure 14 adopts the mixed-fidelity concept [38]. That is, two

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 40 of 50

driving simulators of two different complexity grades and component fidelity levels are networked
together to achieve a common goal.

5.2. Multi-Interactive Demonstration of an Autonomous Driving System

5.2.1. Scenario Definition

Demonstrating the capabilities of autonomous driving contributes significantly to raising the
awareness about its benefits and attracting more customers [39]. Automotive manufacturers organize
demonstration events to show the magnificent features and enable broader audience to be familiar
with the new technologies. Demonstration with the help of drives on test roads delivers an impressive
experience to potential customers. However, driving with other traffic participants is typically not
permitted to date. Networked driving simulation can complement the demonstration purpose by
adding an interactive factor to the simulated traffic environment. This delivers a comprehensive
experience with the capabilities as well as the limitations of the autonomous driving system. The
application scenario of this validation example is to interactively demonstrate different autonomous
driving technologies.

5.2.2. Configuration Process

A simulation environment consisting mainly of two driving simulators is defined. One driving
simulator is equipped with a simulation model for an autonomous driving system [25]. It is used by
customers to interactively experience and test the system in a safe simulation environment. It is
assumed that the customers are introduced theoretically to the autonomous driving system in
advance. That is, they know about the features of the system and how to handle its settings. This
purpose of use falls within the application class 4b that addresses rule-based responses and
secondary driving tasks. The second driving simulator is used by a marketing representative, who
has a simple navigation driving task. The aim is to drive interactively within the same virtual
environment to subject the autonomous driving system to different traffic conditions—e.g., car
following or emergency brake scenarios. The response of the marketing representative is not of
concern as a matter of course. This purpose of use falls within the application classes 3a, 3b, and 3c
that address different responses with navigation driving tasks. The application class 3c is chosen for
convenience. Similar to the previous example application scenario, the determined application
classes of the two participating driving simulators are used together as the first actual input to the
SoS configuration software. Among the available driving simulators, the SoS configuration software
suggests two particular driving simulators that best fulfill the requirements of application classes 4b
and 3c.

In this application scenario, no traffic simulator is chosen so that customers are not overwhelmed
or confused by the interaction with other programmed traffic participants at this system introductory
level. No workstation is required for this platform as it used simply for quick demonstration purposes
in exhibitions, where no control or monitoring tasks are necessary. Similarly, no database console is
used as typically no analysis process is required after the demonstration sessions.

Only the position and orientation data of the simulated vehicles must be exchanged in this
application scenario. No high priority is given to the bandwidth of the communication system. The
simulation model of the autonomous driving system incorporates sub-models of various sensors [25].
Another sub-model takes decisions for rapid actions that influence the vehicle dynamics—e.g.,
acceleration, braking, and steering. Hence, deterministic data exchange between the driving
simulators is essential for reliable system operation. A bandwidth of 1 Mbps (Megabit per second) is
required initially based on a worst-case calculation of the number of exchanged data packets [30].
Other network characteristics are less relevant—e.g., secure data exchange, or length of transmission
medium. Accordingly, the CAN bus technology is suggested by the SoS configuration software for
this application scenario as a deterministic communication technology [40]. If the utilization of the
CAN bus technology is expensive and relatively complex as it requires special network cards, the
user can alternatively choose the FireWire (IEEE 1394). The FireWire (IEEE 1394) is a serial bus for

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 41 of 50

high-speed communication that can be utilized as a more feasible alternative [41]. The high
performance provided by the IEEE-1394 connection reduces the likelihood of bandwidth saturation
and data collisions. Although the IEEE-1394 standard is typically used to connect computers to
peripherals—e.g., digital cameras and external hard drives—it can be used to carry network data as
well. The utilization of FireWire with the Internet Protocol provides a very near deterministic data
delivery [41]. In this case, the IEEE-1394 standard can be mapped to the lower three layers of the
widely-known Open Systems Interconnection (OSI) network model: physical, link, and network
layers. The traditional IEEE-1394 connection supports a bandwidth of 400 Mbps. Newer versions
support potential bandwidth up to 3 Gbps. In addition to its high transfer rate, the IEEE-1394
connection supports isochronous data transfer, i.e., delivering data at a deterministic rate. This makes
it suitable for applications that need to transfer large amounts of data under real-time requirements.
The simulated network behavior using the ANDi software confirmed the eligibility of the FireWire
(IEEE 1394) as an alternative selection. Similar to the previous validation example, no standard
architecture for networked simulation is used in this application scenario as networked simulation
management functions are not required.

5.2.3. Generated System Model

A system model is created by the SoS configuration software based on the scenario analysis and
the configuration process. Figure 15 shows a simplified version of the simulation package of the UML
class diagram containing the selected simulation system components.

Figure 15. UML class diagram of the selected simulation system components—package 1.

The simulation package includes a main class named simulation_system. There is only one class
that inherits the simulation_system class: driving_simulator. The driving_simulator class has two
instances representing the two selected driving simulators: Airmotion_ride_simulator and
HNI_PC_simulator. Figure 176 shows a simplified version of the communication package of the UML
class diagram containing the selected communication system components.

Part I Simulation Package

driving_simulator

drivingTask : string
driverResponse : string
applicationClass : string

setInfo (simData[n] : float)
getInfo () : float

simulation_system

type : string
significance : string

Simulation

HNI_PC_simulator : driving_simulator

significance = essential
drivingTask = navigationTask
driverResponse = knowledge
applicationClass = 3c
vehicleType = passengerCar

Airmotion_ride_simulator : driving_simulator

significance = essential
drivingTask = secondaryTask
driverResponse = rule
applicationClass = 4b
vehicleType = passengerCar

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 42 of 50

Figure 16. UML class diagram of the selected communication system components—package 2.

The communication package includes a main class named: communication_system. There is
only one class that inherits the communication_system class: comm_technology. It has one instance
representing the selected communication technology. Figure 17 shows the first section of the second
part of the generated system model. This section contains the specification/requirement radar charts
of the two selected driving simulators. The definitions of the depicted features and their fidelity levels
are provided in Reference [6].

Figure 17. Specification/requirement radar charts of the selected system components.

Analogously, the second section of the second part contains the specification/requirement radar
chart of the selected communication technology. Figure 18 shows the two networked driving
simulators of the second example application scenario.

The HNI PC-based driving simulator is utilized as shown at the left side within Figure 18. It is
the same simple driving simulator variant of the previous example application scenario. The
Airmotion_ride driving simulator shown at the right side within Figure 18 has a pneumatic motion
platform consisting of an inverted hexapod system that provides six DOF. A simple motion controller
regulates the extension and contraction of six pneumatic elastic tubes based on the position and
orientation of the simulated vehicle. Similar to the HNI PC-based driving simulator, the
Airmotion_ride driving simulator has a 60-inch high-definition screen and a low-cost commercial
wheel-transmission-pedals set. The Airmotion_ride driving simulator is operated by a software
package developed with MATLAB/Simulink by the Heinz Nixdorf Institute. Similar to the platform
of the first application scenario, the platform shown in Figure 18 follows the mixed-fidelity concept
[38]. Specifically, two driving simulators of two different complexity grades and component fidelity
levels share the same virtual environment to achieve a common goal.

Part I Communication Package

comm_technology

drivingTask : string
bandwidth : string
latency : string
...

deliverInfo (simData[n] : float)

communication_system

type : string
significance : string

Communication

FireWire : comm_technology

significance = essential
bandwidth = 800Mbps
latency = 15micorsec
...

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 43 of 50

Figure 18. Established platform of networked driving simulation for the second application scenario.

5.3. Multi-Interactive Analysis of Advanced Traffic Systems

5.3.1. Scenario Definition

Promising applications are emerging with the utilization of Vehicle-to-Infrastructure (V2I) and
Vehicle-to-Vehicle (V2V) communication technologies. The common target of these technologies is
to improve traffic efficiency while reducing the probability of collisions [42]. Yet analyzing different
strategies is important to compare their efficiency and benefits, as well as to detect possible
shortcomings early. Microscopic and macroscopic traffic modeling and simulation are effective tools
to study the causes of traffic problems in general and to evaluate the solutions of potential traffic
strategies in particular [43].

However, the human drivers still represent an important factor. They may be assisted by various
connected systems that offer different information and service levels [44]. Drivers may take different
decisions according to the received information—e.g., changing the route. Adding human drivers to
the simulation environment helps to conduct analysis in a multi-interactive traffic environment, and
hence, to deliver more substantial results. The application scenario of this validation example is to
analyze different traffic strategies while taking the human driver factor into consideration.

5.3.2. Configuration Process

A simulation environment consisting mainly of two driving simulators is defined. Both driving
simulators are used by test persons, who are familiar with the simulated road network and the
features of the addressed connected vehicle technology. The test persons have to plan the route and
drive from an origin to a target location. They can change the planned route based on the received
information about the current traffic situation. This purpose of use falls within the application class
3b that addresses rule-based responses and navigation driving tasks. Similar to the previous example
application scenarios, the determined application classes of the two participating driving simulators
are used together as the first actual input to the SoS configuration software. Among the available
driving simulators, the SoS configuration software suggests a particular driving simulator that best
fulfills the requirements of application class 3b.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 44 of 50

In this application scenario, a traffic simulator is chosen in accordance with the requirements of
the application class 3b. This traffic simulator allows for changing the traffic density and defining the
behavior of individual traffic participants. More information about this particular traffic simulator is
presented in Reference [0]. A workstation is required for this application scenario to perform
monitoring and control operations. Moreover, a database console is necessary to capture, save, and
replay the simulation data for analysis and after-action reviews.

In this application scenario, a considerable amount of data must be exchanged through the
communication system. Not only position and orientation data of simulator vehicles are exchanged,
but also those of each programmed traffic participant. Moreover, data messages of the addressed
connected vehicle technology are exchanged between the simulator vehicles. Hence, this application
scenario is concerned particularly with the bandwidth for data exchange. The other characteristics of
the communication technology have lower priority levels, such as, real-time data delivery or data
loss rate. A bandwidth of 1 Gbps (Gigabit per second) is required initially based on a first worst-case
calculation of the number of exchanged data packets [30]. Accordingly, a 1 Gbps Ethernet with User
Datagram Protocol is suggested by the SoS configuration software for this application scenario. The
simulated network behavior using the ANDi software confirmed the eligibility of this selection. More
driving simulators may be added to the system to increase the complexity of traffic scenarios. In some
scenarios, one of the driving simulators may be used to represent a special-purpose vehicle—e.g., an
ambulance or an emergency vehicle. This special-purpose simulated vehicle may have different
requirements regarding the type of exchanged data. It may be necessary to declare the generated and
required data separately for each traffic participant. Therefore, a standard architecture for networked
simulation is required unlike the previous validation examples. HLA standard is selected for this
application scenario, especially, due to the provided declaration management function [46].

5.3.3. Generated System Model

A system model is generated by the SoS configuration software based on the scenario analysis
and the configuration process. Figure 19 shows a simplified version of the simulation package of the
UML class diagram containing the selected simulation system components.

The simulation package includes a main class named simulation_system. Four classes inherit the
simulation_system class: driving_simulator, traffic_simulator, workstation, and database_console.
The driving_simulator class has two instances representing the two selected driving simulators:
HNI_PC_simulator1 and HNI_PC_simulator2. The traffic_simulator class has one instance
representing the selected traffic simulator: HNI_traffic. Similarly, the workstation and the
database_console classes have instances representing the respective selected solution elements.
Figure 20 shows a simplified version of the communication package of the UML class diagram
containing the selected communication system components.

The communication package includes a main class named: communication_system. Two classes
inherit the communication_system class: comm_technology and comm_architecture. Each of these
classes has an instance representing the selected solution element. Figure 21 shows the first section
of the second part of the generated system model. This section contains the specification/requirement
radar charts of the two selected driving simulators. The definitions of the depicted features and their
fidelity levels are provided in Reference [6].

Analogously, the second section of the second part contains the specification/requirement radar
charts of the selected communication technology and communication architecture. Figure 22 shows
the two networked driving simulators of the third example application scenario.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 45 of 50

Figure 19. UML class diagram of the selected simulation system components—package 1.

Figure 20. UML class diagram of the selected communication system components—package 2.

Part I Simulation Package

driving_simulator

drivingTask : string
driverResponse : string
applicationClass : string

setInfo (simData[n] : float)
getInfo () : float

HNI_PC_simulator1 : driving_simulator

significance = essential
drivingTask = navigationTask
driverResponse = rule
applicationClass = 3b
vehicleType = passengerCar

HNI_PC_simulator2 : driving_simulator

significance = essential
drivingTask = navigationTask
driverResponse = rule
applicationClass = 3b
vehicleType = passengerCar

simulation_system

type : string
significance : string

Simulation

HNI_database : database_console

significance = optional
capacity : 1TB
opSystem = Windows
…

traffic_simulator

drivingTask : string
driverResponse : string
applicationClass : string

setInfo (simData[n] : float)
getInfo () : float

HNI_workstation : workstation

significance = optional
numMonitor : 3
opSystem = Windows
…

workstation

numMonitor : int
opSystem : string
…

setParam (simParam[n] : float)
getInfo () : float

database_console

capacity : string
opSystem : string
…

getInfo () : float
saveInfo () : float

HNI_traffic : traffic_simulator

significance = optional
drivingTask = navigationTask
driverResponse = rule
applicationClass = 3b
granularity = microscopic

Part I Communication Package

comm_technology

bandwidth : string
latency : string
…

deliverInfo (simData[n] : float)

communication_system

type : string
significance : string

Communication

Ethernet : comm_technology

significance = essential
bandwidth = 1Gbps
latency = 0.5ms
…

HLA : comm_architecture

significance = optional
decManage = yes
disManage = yes
...

comm_architecture

decManage : string
disManage : string
…

deliverInfo (simData[n] : float)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 46 of 50

Figure 21. Specification/requirement radar charts of the selected simulation system components.

Figure 22. Established platform of networked driving simulation for the third application scenario.

The platform shown in Figure 22 utilizes two variants of the same driving simulator: HNI PC-
based driving simulator. In this application scenario, the HNI PC-based driving simulator has a small
screen and a normal seat in contrast to the configuration used within the previous two example
application scenarios. Consequently, the shown platform does not impose special space requirements
in comparison to the platforms of the previous validation examples. The platform shown in Figure
22 does not impose special space requirements in comparison to the platforms of the previous
validation examples. It has been demonstrated successfully during the FMB 2016 exhibition (a
German acronym that stands for “Forum of Mechanical Engineering”) in Bad Salzuflen in Germany.
The exhibition visitors got insight into the developed platform of networked driving simulation and
its intended application scenario. The following section outlines the conclusions of the presented
work, emphasizes the novelty of the developed method, and reveals the future work.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 47 of 50

6. Conclusions and Future Work

This work presented a new method for the systematic design of networked driving simulation
systems. The design method consists mainly of a procedure model accompanied by a configuration
software. With its concrete phases, the procedure model analyzes the system thoroughly and
addresses all the necessary tasks for the system modeling process. The design process is embedded
in the configuration software to aid non-expert system users while selecting system components in
accordance with the requirements of the concerned application scenarios. In particular, the design
method considers the whole system of networked driving simulation in two main aspects: simulation
and communication. The novelty of the developed method can be summarized in the following three
concrete aspects:

• Combining and using two distinguished approaches from the literature for the selection of the
simulation components of the networked driving simulation system [6,7].

• Utilizing a well-established decision-making method for the selection of the communication
components of the networked driving simulation system [29].

• Creating system models with a structure that follows the principles of the agent-based modeling
technique and uses the concepts of the UML class diagrams [32,35]. Thereby, the system model
acts as simple communication basis for subsequent system realization.

Together, these unique aspects form the first methodological work for networked driving
simulation to date. The presented validation examples emphasized the flexible usability of the
developed method by designing three different system models. These system models make use of
existing driving simulators in accordance with the requirements of the concerned application
scenarios. The utilized driving simulators exhibit different complexity grades (mixed-fidelity levels).
That is, they have different technical specifications and serve different purposes of use. However,
new application scenarios were achieved by the integration in environments of networked driving
simulation. Moreover, the utilized communication systems have different characteristics and
capabilities. These were tailored to the data delivery requirements of the respective application
scenarios. Three platforms of networked driving simulation have been built in accordance with the
designed system models. With the help of the accompanying configuration software, non-expert
users can apply the developed method to design further application-oriented system models for
networked driving simulation.

As potential future work, further non-traditional application scenarios for driving simulation
will be introduced and analyzed. The purpose of these non-traditional application scenarios is to keep
up with advancements in the automotive field. The requirements of these application scenarios will
be determined based on the demands of future autonomous and cooperative driving systems. These
requirements will be used with the presented method and the accompanying SoS configuration
software to create further system models for networked driving simulation. Users and developers
will be able to use these ready system models to establish corresponding application-oriented
platforms for networked driving simulation.

Acknowledgments: The presented work was carried out by the authors during the collaborative research and
development activities at the Heinz Nixdorf Institute and the Fraunhofer Institute in Paderborn, Germany. No
necessary special or external funding resources were acquired to produce or publish the research and
development outcomes of this work. The authors acknowledge the valuable consultation and support of
dSPACE GmbH, HELLA KGaA Hueck & Co., Varroc Lighting Systems GmbH, TU Dortmund University,
Oregon State University, German Aerospace Center (DLR), Aerosoft GmbH, VDL Bus & Coach GmbH, UNITY
AG, Fahrerakademie Paderborn, Isaak driving school, Hainer driving school, and Ringhoff driving school.

Author Contributions: Kareem Abdelgawad examined the related methods in the literature, developed the new
method, designed the validation examples, and wrote the paper. Jürgen Gausemeier and Ansgar Trächtler were
consulted regarding the call for action and directed the research topic. Sandra Gausemeier contributed to the
analysis and evaluation of the related methods in the literature. Roman Dumiterscu and Jan Berssenbrügge
contributed to design of the validation examples. Jörg Stöcklein and Michael Grafe built the example platforms
for networked driving simulation. The latter seven authors examined the work and reviewed the paper.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 48 of 50

Conflicts of Interest: All authors declare no conflict of interest.

References

1. Wall, M.; Gausemeier, J.; Peitz, C. Technology Push-based Product Planning—Future Markets for
Emerging Technologies. Int. J. Technol. Mark. 2011, 8, 61–81, ISSN 1741-878X.

2. Maurer, M.; Gerdes, J.C.; Lenz, B.; Winner, H. Autonomous Driving: Technical, Legal and Social Aspects, 1st
ed.; Springer: Heidelberg, Germany, 2016, ISBN 978-3-662-48845-4.

3. Arioui, H.; Nehaoua, L. Driving Simulation, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013, ISBN 978-
1-84821-467-5.

4. Winner, H.; Hakuli, S.; Lotz, F.; Singer, C. Handbook of Driver Assistance Systems: Basic Information,
Components and Systems for Active Safety and Comfort, 1st ed.; Springer: Cham, Switzerland, 2015, ISBN 978-
3-319-12351-6.

5. Abdelgawad, K.; Gausemeier, J.; Dumitrescu, R.; Grafe, M.; Stöcklein, J.; Berssenbrügge, J. Networked
Driving Simulation: Applications, State of the Art, and Design Considerations. Designs 2017, 1, 4.

6. Negele, H.J. Anwendungsgerechte Konzipierung von Fahrsimulatoren für die Fahrzeugentwicklung.
Ph.D. Thesis, Faculty of Mechanical Engineering, University of Munich, Munich, Germany, 2007.

7. Hassan, B. A Design Framework for Developing a Reconfigurable Driving Simulator. Ph.D. Thesis, Faculty
of Mechanical Engineering, University of Paderborn, Paderborn, Germany, 2014.

8. DiMario, M.J. System of Systems Collaborative Formation, 1st ed.; World Scientific Publishing: Singapore, 2010;
pp. 29–62, ISBN 978-981-4313-88-9.

9. Jamshidi, M. System of Systems Engineering: Innovations for the Twenty-first Century, 1st ed.; John Wiley &
Sons: Hoboken, NJ, USA, 2008, ISBN 978-0-470-19590-1.

10. Johnson, M.A. From engineering to system engineering to system of systems engineering. In Proceedings
of the IEEE World Automation Congress (WAC), Hawaii, HI, USA, 28 September–2 October 2008, ISBN
978-1-889335-38-4.

11. Keating, C.; Rogers, R.; Unal, R.; Dryer, D.; Sousa-Poza, A.; Safford, R.; Peterson, W.; Rabadi, G. System of
systems engineering. J. Eng. Manag. 2010, 15, 36–45, doi:10.1080/10429247.2003.11415214.

12. Gausemeier, J.; Czaja, A.; Wiederkehr, O.; Dumitrescu, R.; Tschirner, C.; Steffen, D. Survey: Systems
Engineering in Industrial Practice. In Proceedings of the Tag des Systems Engineering, Stuttgart, Germany,
6–8 November 2013.

13. Fisher, D.; Caird, J.; Rizzo, M.; Lee, J. Handbook of Driving Simulation for Engineering, Medicine, and Psychology,
1st ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2011, ISBN 978-1-4200-6100-0.

14. Porter, B.E. Handbook of Traffic Psychology, 1st ed.; Academic Press, Elsevier: Waltham, MA, USA, 2011, ISBN
978-0-12-381984-0.

15. Cacciabue, P.C. Guide to Applying Human Factors Methods: Human Error and Accident Management in Safety-
critical Systems, 1st ed.; Springer: London, UK, 2004, ISBN 978-1-84996-898-0.

16. Walker, G.H.; Stanton, N.A.; Salmon, P.M. Human Factors in Automotive Engineering and Technology, 1st ed.;
Taylor and Francis Group: Boca Raton, FL, USA, 2015, ISBN 978-1-4094-4757-3.

17. Pahl, G.; Beitz, W.; Feldhusen, J.; Grote, K.-H. Engineering Design: A Systematic Approach, 3rd ed.; Springer:
Heidelberg, Germany, 2007, ISBN 978-1114243064.

18. Hassan, B.; Gausemeier, J.; Abdelgawad, K.; Berssenbrügge, J.; Grafe, M. Systematik für Die Entwicklung
von Rekonfigurierbaren Fahrsimulatoren. In Proceedings of the 12th Workshop on Augmented & Virtual
Reality in Product Development, Paderborn, Germany, 23‒24 April 2015; HNI Publication Series; Volume
342, pp. 213–229, ISBN 2195-5239.

19. Gausemeier, J.; Frank, U.; Donoth, J.; Kahl, S. Specification technique for the description of self-optimizing
mechatronic systems. J. Res. Eng. Des. 2009, 20, 201–223, ISSN 0934-9839.

20. Gausemeier, J.; Rammig, F.J.; Schäfer, W. Design Methodology for Intelligent Technical Systems: Develop
Intelligent Technical Systems of the Future, 1st ed.; Springer: Heidelberg, Germany, 2014; pp. 117–171, ISBN
978-3-642-45434-9.

21. Wenguang, W.; Yongpinq, X.; Xin, C.; Qun, L.; Weiping, W. High level architecture evolved modular
federation object model. J. Syst. Eng. Electron. 2009, 20, 625–635, e-ISSN 1004-4132.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 49 of 50

22. Potuzak, T. Comparison of Road Traffic Network Division Based on Microscopic and Macroscopic
Simulation. In Proceedings of the 13th International Conference on Computer Modelling and Simulation
(UKSim), Cambridge, UK, 30 March–1 April 2011, ISBN 978-1-61284-705-4.

23. Xu, C.; Song, J.; Chen, M.; Chen, J.; Yu, L. Research on Adaptive State Update Strategy of Distributed
Interactive Simulation. In Proceedings of the 3rd IEEE International Conference on Multimedia Information
Networking and Security (MINES), Shanghai, China, 4–6 November 2011, ISBN 978-1-4577-1795-6.

24. Stephens, R. Beginning Database Design Solutions, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2008, ISBN
978-0-470-38549-4.

25. Abdelgawad, K.; Hassan, B.; Berssenbrügge, J.; Stöcklein, J.; Grafe, M. A Modular Architecture of an
Interactive Simulation and Training Environment for Advanced Driver Assistance Systems. Int. J. Adv.
Softw. IARIA 2015, 8, 247–261.

26. Mir, N.F. Computer and Communication Networks, 1st ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2006,
ISBN 978-0131389106.

27. Doganata, Y.N.; Tantawi, A.N. Analysis of communication requirements for intelligent transportation
systems: methodology and examples. In Proceedings of the 45th IEEE Vehicular Technology Conference,
Chicago, IL, USA, 25–28 July 1995, ISBN 0-7803-2742-X.

28. Triantaphyllou, E. Multi-criteria Decision Making Methods—A Comparative Study, 1st ed.; Springer
International Publishing: Cham, Switzerland, 2000; Volume 44, pp. 5–21, ISBN 978-1-4419-4838-0.

29. Brent, R.J. Applied Cost-benefit Analysis, 2nd ed.; Edward Elgar Publishing: Cheltenham, UK, 2006, ISBN
9781843768913.

30. Meinel, C.; Sack, H. Internetworking: Technological Foundations and Applications, 1st ed.; Springer: Berlin,
Germany, 2013, ISBN 978-3-642-35391-8.

31. Wehrle, K.; Gunes, M.; Gross, J. Modeling and Tools for Network Simulation, 1st ed.; Springer: Cham,
Switzerland, 2010, ISBN 978-3-642-12330-6.

32. Achesona, P.; Daglia, C.; Kilicay-Ergin, N. Model Based Systems Engineering for System of Systems Using
Agent-based Modeling. In Proceedings of the Conference on Systems Engineering Research (CSER’13),
Atlanta, GA, USA, 19–22 March 2013; doi:10.1016/j.procs.2013.01.002.

33. Banos, A.; Lang, C.; Marilleau, N. Agent-Based Spatial Simulation with NetLogo, 1st ed.; ISTE Press, Elsevier:
London, UK, 2015, ISBN 9781785480553.

34. Bersini, H. UML for ABM. J. Artif. Soc. Soc. Simul. 2012, 15, doi:10.18564/jasss.1897.
35. Rumpe, B. Modeling with UML: Language, Concepts, Methods, 1st ed.; Springer: Cham, Switzerland, 2016,

ISBN 978-3-319-33932-0.
36. Sarbazi-Azad, H.; Zomaya, A.Y. Data Distribution Management, 1st ed.; Wiley-IEEE Press, Hoboken, NJ,

USA, 2014, ISBN 9781118640708.
37. Rambhia, A.M. XML Distributed Systems Design, 1st ed.; Sams Publishing: Indian-apolis, IN, USA, 2002,

ISBN 978-0672323287.
38. Cutler, M.; Walsh, T.J.; How, J.P. Reinforcement learning with multi-fidelity simulators. In Proceedings of

the IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June
2014, ISBN 978-1-4799-3686-1.

39. Planing, P. Innovation Acceptance: The Case of Advanced Driver-Assistance Systems. Ph.D. Thesis, Faculty
of Mechanical Engineering, Leeds Metropolitan University, Leeds, UK, 2007.

40. Voss, W. A Comprehensible Guide to Controller Area Network, 2nd ed.; Copperhill Media Corporation:
Greenfield, MA, USA, 2015, ISBN 978-0976511601.

41. Anderson, D. FireWire System Architecture: IEEE 1394A, 2nd ed.; Addison-Wesley Professional: Boston, MA,
USA, 1998, ISBN 978-0201485356.

42. Wuthishuwong, C.; Traechtler, A.; Bruns, T. Safe Trajectory Planning for Autonomous Intersection
Management by Using Vehicle to Infrastructure Communication. J. Wirel. Commun. Netw. 2015, 33,
doi:10.1186/s13638-015-0243-3.

43. Barcelo, J. Fundamentals of Traffic Simulation, 1st ed.; Springer Science & Business Media: New York, NY,
USA, 2010, ISBN 978-1-4419-6141-9.

44. Stevens, A.; Brusque, C.; Krems, J. Driver Adaptation to Information and Assistance Systems, 1st ed.; Institution
of Engineering and Technology: London, UK, 2013, ISBN 978-1-84919-639-0.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

 50 of 50

45. Abdelgawad, K.; Henning, S.; Biemelt, P.; Gausemeier, S.; Trächtler, A. Advanced traffic simulation
framework for networked driving simulators. In Proceedings of the 8th IFAC Conference on Advances in
Automotive Control (ACC), Norrköping, Sweden, 20–23 June 2016; Volume 49, pp. 101–108.

46. Abdelgawad, K.; Gausemeier, J.; Grafe, M.; Berssenbrügge, J. Interest Manager for Networked Driving
Simulation Based on High-Level Architecture. Designs 2017, 1, 3.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2017 doi:10.20944/preprints201709.0005.v2

Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006Peer-reviewed version available at Designs 2017, 1, 6; doi:10.3390/designs1010006

http://dx.doi.org/10.20944/preprints201709.0005.v2
http://dx.doi.org/10.3390/designs1010006
http://dx.doi.org/10.3390/designs1010006

