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Abstract

Many systems in nature and laboratories are far from equilibrium and exhibit significant fluc-

tuations, invalidating the key assumptions of small fluctuations and short memory time in or

near equilibrium. A full knowledge of Probability Distribution Functions (PDFs), especially time-

dependent PDFs, becomes essential in understanding far-from-equilibrium processes. We consider

a stochastic logistic model with multiplicative noise, which has gamma distributions as stationary

PDFs. We numerically solve the transient relaxation problem, and show that as the strength of the

stochastic noise increases the time-dependent PDFs increasingly deviate from gamma distributions.

For sufficiently strong noise a transition occurs whereby the PDF never reaches a stationary state,

but instead forms a peak that becomes ever more narrowly concentrated at the origin. The addition

of an arbitrarily small amount of additive noise regularizes these solutions, and re-establishes the

existence of stationary solutions. In addition to diagnostic quantities such as mean value, standard

deviation, skewness and kurtosis, the transitions between different solutions are analyzed in terms

of entropy and information length, the total number of statistically distinguishable states that a

system passes through in time.
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I. INTRODUCTION

In classical statistical mechanics, the Gaussian (or normal) distribution and mean-field

type theories based on such distributions have been widely used to describe equilibrium

or near equilibrium phenomena. The ubiquity of the Gaussian distribution stems from

the central limit theorem that random variables governed by different distributions tend

to follow the Gaussian distribution in the limit of large sample size [1–3]. In such a limit,

fluctuations are small and have a short correlation time, and mean values and variance

completely describe all different moments, greatly facilitating analysis.

Many systems in nature and laboratories are however far from equilibrium, exhibiting

significant fluctuations. Examples are found not only in turbulence in astrophysical and

laboratory plasmas, but also in forest fires, the stock market, and biological ecosystems

[4–23]. Specifically, anomalous (much larger than average values) transport associated

with large fluctuations in fusion plasmas can degrade the confinement, potentially even

terminating fusion operation [6]. Tornadoes are rare, large amplitude events, but can cause

very substantial damage when they do occur. Furthermore, gene expression and protein

productions, which used to be thought of as smooth processes, have also been observed to

occur in bursts (e.g. [19–23]. Such rare events of large amplitude (called intermittency) can

dominate the entire transport even if they occur infrequently [8, 24]. They thus invalidate

the assumption of small fluctuations with short correlation time, making mean value

and variances meaningless. Therefore, to understand the dynamics of a system far from

equilibrium, it is crucial to have a full knowledge of Probability Distribution Functions

(PDFs), including time-dependent PDFs [25].

Obtaining a good quality of PDFs is often very challenging, as it requires a sufficiently

large number of simulations or observations. Therefore, a PDF is usually constructed by

averaging data from a long time series, and is thus stationary (independent of time). Unfor-

tunately, such stationary PDFs miss crucial information about the dynamics/evolution of

non-equilibrium processes (e.g. tumour evolution). Theoretical prediction of time-dependent

PDFs has proven to be no less challenging due to the limitation in our understanding of

nonlinear stochastic dynamical systems as well as the complexity in the required analysis.
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Spectral analysis, for example, using theoretical tools similar to those used in quantum

mechanics (e.g. raising and lower operators) is useful (e.g. [1]), but the summation of

all eigenfunctions is necessary for time-dependent PDFs far from equilibrium. Various

different methodologies have also been developed to obtain approximate PDFs, such

as the variational principle, the rate equation method, or moment method [26–31]. In

particular, the rate equation method [27, 28] assumes that the form of a time-dependent

PDF during the relaxation is similar to that of the stationary PDF, and thus approximates

a time-dependent PDF during transient relaxation by a PDF having the same functional

form as a stationary PDF, but with time-varying parameters.

In this work we show that this assumption is not always appropriate. We consider

a stochastic logistic model with multiplicative noise. We show that for fixed parameter

values the stationary PDFs are always gamma distributions (e.g. [32, 33]), one of the most

popular distributions used in fitting experimental data. However, we find numerically that

the time-dependent PDFs in transitioning from one set of parameter values to another are

significantly different from gamma distributions, especially for strong stochastic noise. For

sufficiently strong multiplicative noise it is necessary to introduce additive noise as well to

obtain stationary distributions at all.

II. STOCHASTIC LOGISTIC MODEL

We consider the logistic growth with a multiplicative noise given by the following Langevin

equation:
dx

dt
= (γ + ξ)x− εx2, (1)

where x is a random variable, and ξ is a stochastic forcing, which for simplicity can be taken

as a short-correlated random forcing as follows:

〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′). (2)

In Eq. (2), the angular brackets represent the average over ξ, 〈ξ〉 = 0, and D is the strength

of the forcing. γ is the control parameter in the positive feedback, representing the growth
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rate of x, while ε represents the efficiency in self-regulation by a negative feedback. When

ξ = 0, the balance between the positive and negative feedbacks yields the equilibrium point

x = γ/ε, the carrying capacity of the system. In contrast, the origin x = 0 is an unstable

point. The multiplicative noise in Eq. (1) shows that the linear growth rate contains the

stochastic part ξ.

By using the Stratonovich calculus [2, 3, 34], we can obtain the following Fokker-Planck

equation for the PDF p(x, t) (see Appendix A for details):

∂

∂t
p(x, t) = − ∂

∂x

[
(γx− εx2)p(x, t)

]
+D

∂

∂x

[
x
∂

∂x

[
x p(x, t)

]]
(3)

corresponding to the Langevin equation (1). By setting ∂tp = 0, we can analytically solve

for the stationary PDFs as

p(x) =
ba

Γ(a)
xa−1e−bx, (4)

which is the well-known gamma distribution. The two parameters a and b are given by

a = γ/D and b = ε/D. The mean value and variance of the gamma distribution are found

to be:

〈x〉 =
a

b
=
γ

ε
, Var(x) = σ2 = 〈(x− 〈x〉)2〉 =

a

b2
=
γD

ε2
, (5)

where σ =
√

Var(x) is the standard deviation. We recognise 〈x〉 as the carrying capacity

for a deterministic system with ξ = 0. It is useful to note that 〈x〉 is given by the linear

growth rate scaled by ε, while Var(x) is given by the product of the linear growth rate

and the diffusion coefficient, each scaled by ε. That is, the effect of stochasticity should be

measured relative to the linear growth rate.

Therefore, the case of small fluctuations is modelled by values of D small compared with

γ and ε. In such a limit, a and b are large, making
√

Var(x)� 〈x〉 in Eq. (5). That is, the

width of the PDF is much smaller than its mean value. In this limit, Eq. (4) reduces to a

Gaussian distribution. To show this, we express Eq. (4) in the following form:

p ≡ ba

Γ(a)
e−f(x), (6)

where f(x) = bx − (a − 1) lnx. For large b, we expand f(x) around the stationary point
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x = xp where ∂xf(x) = 0 = b− (a− 1)/x up to the second order in x− xp to find:

xp =
a− 1

b
∼ a

b
, f(x = xp) ∼ a

(
1− ln

a

b

)
, (7)

f(x) ∼ f(xp) +
1

2
(x− xp)2∂xxf(x)

∣∣∣
x=xp

= a
(

1− ln
a

b

)
+
b2

2a

(
x− a

b

)2
. (8)

Here a� 1 was used. Using Eq. (8) in Eq. (6) then gives us

p ∝ exp

[
− b

2

2a

(
x− a

b

)2]
∝ exp

[
−β(x− 〈x〉)2

]
, (9)

which is a Gaussian PDF with mean value 〈x〉. Here β = 1/Var(x) is the inverse

temperature and the variance Var(x) is given by Eq. (5). Therefore, for a sufficiently small

D, the gamma distribution is approximated as a Gaussian PDF, which is consistent with

the central limit theorem as small D corresponds to small fluctuations and large system

size. See also [35] for a different derivation.

As D increases, the Gaussian approximation becomes increasingly less valid. Indeed,

even the basic gamma distribution becomes invalid when D > γ; according to Eq. (4)

having a < 1 yields lim
x→0

p = ∞. However, from the full time-dependent Fokker-Planck

equation (3) one finds that if the initial condition satisfies p = 0 at x = 0, then p(x = 0)

will remain 0 for all later times. As we will see, the resolution to this seeming paradox is

that no stationary distribution is ever reached for D > γ, but instead the peak approaches

ever closer to x = 0, without ever reaching it.

If we are interested in obtaining stationary solutions even when D > γ, one way to achieve

that is to return to the original Langevin equation (1), but now include a further additive

stochastic noise η:
dx

dt
= (γ + ξ)x− εx2 + η, (10)

where ξ and η are uncorrelated, and η satisfies 〈η(t)η(t′)〉 = 2Qδ(t− t′). The new version of

the Fokker-Planck equation (3) then becomes:

∂

∂t
p = − ∂

∂x

[
(γx− εx2)p

]
+D

∂

∂x

[
x
∂

∂x

[
x p
]]

+Q
∂2

∂x2
p, (11)

which has stationary solutions given by

ln p(x) =

∫
(γ −D)x− εx2

Dx2 +Q
dx. (12)
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This integral can be evaluated analytically, but the final form is not particularly illumi-

nating. The only point to note is that for non-zero Q the denominator is never 0 even for

x → 0, which avoids any possible singularities at the origin. For γ > D and Q � D the

solutions are also essentially indistinguishable from the previous gamma distribution (4).

The only significant effect of including η therefore is to avoid the previous difficulties at the

origin when D > γ.

As we have seen, both Fokker-Planck equations (3) and (11) can be solved exactly for

their stationary solutions. This is unfortunately not the case regarding time-dependent

solutions, where no closed-form analytic solutions exist. (See Appendix B for the extent

to which analytic progress can be made.) We therefore developed finite-difference codes,

second-order accurate in both space and time. Most aspects of the numerics are standard,

and similar to previous work [36–38]. The only point that requires discussion are the

boundary conditions. As noted above, for (3) the equation itself states that p = 0 at x = 0

is the appropriate boundary condition, provided only that the initial condition also satisfies

this. In contrast, for (11) the appropriate boundary condition is ∂
∂x
p = 0 at x = 0. To

see this, we simply integrate (11) over the range x = [0,∞] and require that the total

probability should always remain 1, so that d
dt

∫
p dx = 0. Regarding the outer boundary,

choosing some moderately large outer value for x, and then imposing p = 0 there was

sufficient. Resolutions up to 106 grid points were used, and results were carefully checked

to ensure they were independent of the grid size, time step, and precise choice of outer

boundary.

Once the time-dependent solutions are computed, we can analyze them using a number

of diagnostics. First, we can evaluate the mean value 〈x〉 and standard deviation σ from (5).

Next, to explore the extent to which the time-dependent PDFs differ from gamma distribu-

tions, we can simply compare them with ‘equivalent’ gamma distributions and compute the

difference. That is, given 〈x〉 and σ, the gamma distribution pequiv having the same mean

and variance would have as its two parameters a = 〈x〉2/σ2 and b = 〈x〉/σ2. With these

values, we define

Difference =

∫
|p− pequiv| dx (13)

to measure how different the actual time-dependent PDF is from its equivalent gamma
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distribution.

Two other familiar quantities often useful in analyzing PDFs are the skewness and kur-

tosis, defined by

Skewness =
〈(x− 〈x〉)3〉

σ3
, Kurtosis =

〈(x− 〈x〉)4〉
σ4

− 3. (14)

Skewness measures the extent to which a PDF is asymmetric about its peak, whereas

kurtosis measures how concentrated a PDF is in the peak versus the tails, relative to a

Gaussian having the same variance. (The −3 is included in the definition of the kurtosis to

ensure that a Gaussian would yield 0.) For gamma distributions one finds analytically that

the skewness is 2
√
D/γ, and the kurtosis is 6D/γ. Comparing the skewness and kurtosis of

the time-dependent PDFs with these formulas is therefore another useful way of quantifying

how similar or different they are from gamma distributions.

Another quantity that can be useful is the so-called differential entropy as a measure of

order versus disorder (as entropy always is):

S = −
∫
p ln p dx, (15)

where the Boltzmann constant KB is not shown explicitly. In particular, we expect S to

be small for localised PDFs, and large for spread out ones (e.g. [36–39]). For unimodal

PDFs as the ones studied here, entropy and standard deviation are typically comparably

good measures of localization, but for bimodal peaks entropy can be significantly better [38].

Our final diagnostic quantity is what is known as information length. Unlike all the

previous diagnostics, which are simply evaluated at any instant in time but otherwise do

not involve t, information length is explicitly concerned with the full time-evolution of a

given PDF. It is thus ideally suited to understanding time-dependent PDFs. Very briefly,

we begin by defining

E ≡ 1

[τ(t)]2
=

∫
1

p(x, t)

[
∂p(x, t)

∂t

]2
dx. (16)

Note how τ has units of time, and quantifies the correlation time over which the PDF

changes, thereby serving as a time unit in statistical space. Alternatively, 1/τ quantifies
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the (average) rate of change of information in time.

The total change in information between initial and final times, 0 and t respectively, is

then defined by measuring the total elapsed time in units of τ as:

L(t) =

∫ t

0

dt1
τ(t1)

=

∫ t

0

√∫
dx

1

p(x, t1)

[
∂p(x, t1)

∂t1

]2
dt1. (17)

This information length L measures the total number of statistically distinguishable states

that a system evolves through, thereby establishing a distance between the initial and final

PDFs in the statistical space. See also [36–44] for further applications and theoretical

background of E and L.

III. RESULTS

A. γ > D

We start with the case γ > D, where Eq. (3) has stationary solutions, given by (4).

Keeping ε and D fixed, we then switch γ back and forth between two values, in the following

sense: Take the gamma distribution (4) corresponding to one value, call it γ1, and use that

as the initial condition to solve (3) with the other value, call it γ2. We then interchange

γ1 and γ2 to complete the pair of ‘inward’ and ‘outward’ processes. Such a pair can be

thought of as an order/disorder phase transition [36, 37], caused for example by cyclically

adjusting temperature in an experiment.

Figure 1 shows the result of switching γ between γ1 = 0.5 and γ2 = 0.05, for fixed

ε = 1 and D = 0.02. (One of the three parameters ε, γ and D can of course always be

kept fixed by rescaling the entire equation, so throughout this entire section we keep ε = 1

fixed, and focus on how the various quantities depend on γ and D.) We immediately see

that the inward and outward processes behave differently. When γ is decreased, and the

peak therefore moves inward, the PDF is relatively narrow, and the peak amplitude is

monotonically increasing. When γ is switched from 0.05 back to 0.5, the PDF is much

broader, and the peak amplitude in the intermediate stages is less than either the initial or
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FIG. 1: The left panel shows the result of switching γ = 0.5 → 0.05, the right panel

γ = 0.05 → 0.5, both at fixed ǫ = 1 and D = 0.02. The initial (red) and final (blue)

gamma distributions are shown as heavy lines. The four intermediate lines are when the

time-dependent solutions have 〈x〉 = 0.1, 0.2, 0.3, 0.4. The arrows are a reminder of the

direction of motion, inward on the left and outward on the right.

final gamma distributions.

Figure 2 shows how 〈x〉, E and L vary as functions of time, for the three values

D = 0.01, 0.02, 0.04. For 〈x〉 the movement from 0.5 to 0.05 is somewhat slower than the

reverse process, but both processes occur on a similar timescale, and both are essentially

independent of D. This is in contrast with other Fokker-Planck systems where the

magnitude of the diffusion coefficient can have a very strong influence on the equilibration

timescales [36, 37].

For E and L the equilibration is again somewhat slower for γ = 0.5 → 0.05 than the

reverse. We can further identify clear scalings E ∼ D−1 and L ∼ D−1/2. Finally, L is

greater for γ = 0.5 → 0.05 than the reverse. These results are all understandable in terms

of the interpretation of L as the number of statistically distinguishable states that the

PDF evolves through: First, we recall from figure 1 that γ = 0.5 → 0.05 had consistently

narrower PDFs than the reverse. Narrower PDFs means more distinguishable states,

hence larger L for γ = 0.5 → 0.05 than the reverse. The L ∼ D−1/2 scaling has the same

explanation; smaller D yields narrower PDFs, hence larger L.
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The first panel in Figure 3 shows the previous quantities 〈x〉 and L · D1/2, but now
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FIG. 2: The first panel shows 〈x〉 as a function of time, the second panel shows E ·D (to

indicate the E ∼ D−1 scaling), and the third panel shows L ·D1/2 (to indicate the

L ∼ D−1/2 scaling). Solid lines denote γ = 0.5 → 0.05, dashed lines the reverse. Each solid

or dashed ‘line’ is in fact three – occasionally barely distinguishable – lines with

D = 0.01, 0.02, 0.04. The dots on the 〈x〉 curves correspond to the PDFs shown in figure

1.

The first panel in figure 3 shows the previous quantities 〈x〉 and L · D1/2, but now

plotted against each other rather than separately against time. The behaviour is exactly

as one might expect, with L growing more or less linearly with distance from the initial

position. The right panel in figure 3 shows the entropy (15), again as a function of 〈x〉
rather than time, to emphasize the cyclic nature of the two processes. The significance is

indeed as claimed above, with more localized PDFs having smaller entropy values. Note

how γ = 0.5 → 0.05, which had the narrower PDFs, has lower entropy values than the

reverse process. Note also how reducing D by a factor of two, thereby making the PDFs

narrower, causes the entire cyclic pattern to shift downward by an essentially constant

amount.

Figure 4 shows how the standard deviation, skewness and kurtosis behave, again as func-

tions of 〈x〉 throughout the two processes. The heavy green lines also show the behaviour

that would be expected if the time-dependent PDFs were always gamma distributions

throughout their evolution. That is, if gamma distributions have 〈x〉 = γ, σ =
√
γD,

skewness = 2
√

D/γ and kurtosis = 6D/γ (setting ǫ = 1), then expressed as function of 〈x〉
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tions of 〈x〉 throughout the two processes. The heavy green lines also show the behaviour

that would be expected if the time-dependent PDFs were always gamma distributions

throughout their evolution. That is, if gamma distributions have 〈x〉 = γ, σ =
√
γD,

skewness = 2
√
D/γ and kurtosis = 6D/γ (setting ε = 1), then expressed as function of 〈x〉

we would have σ/D1/2 =
√
〈x〉, (skewness /

√
D) = 2/

√
〈x〉 and (kurtosis /D) = 6/〈x〉. As

we can see, the γ = 0.5 → 0.05 process follows these functional relationships reasonably
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FIG. 3: The left panel shows L ·D1/2, the right panel entropy, both as functions of 〈x〉.
Solid lines denote γ = 0.5 → 0.05, dashed lines the reverse. Numbers besides curves

indicate D = 0.01, 0.02, 0.04. The arrows on the entropy plot are a reminder of the

direction of inward/outward motion.
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FIG. 4: σ/D1/2, (skewness /D1/2) and (kurtosis /D), as functions of 〈x〉. Solid lines denote

γ = 0.5 → 0.05, dashed lines the reverse. Numbers besides curves indicate

D = 0.01, 0.02, 0.04. The heavy green curves are
√

〈x〉, 2/
√
〈x〉 and 6/〈x〉, respectively,

and indicate the behaviour expected for exact gamma distributions.

we would have σ/D1/2 =
√

〈x〉, (skewness /
√
D) = 2/

√
〈x〉 and (kurtosis /D) = 6/〈x〉. As

we can see, the γ = 0.5 → 0.05 process follows these functional relationships reasonably

well (especially for skewness and kurtosis), but for γ = 0.05 → 0.5 all three quantities

deviate substantially.
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well (especially for skewness and kurtosis), but for γ = 0.05 → 0.5 all three quantities

deviate substantially.

Further evidence of significant deviations from gamma distribution behaviour is seen in

figure 5, showing the difference (13) directly. As expected from figure 4, γ = 0.05 → 0.5

has a much greater difference than γ = 0.5→ 0.05. The second and third panels show how

11

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 August 2017                   doi:10.20944/preprints201708.0074.v1

Peer-reviewed version available at Entropy 2017, 19, 511; doi:10.3390/e19100511

http://dx.doi.org/10.20944/preprints201708.0074.v1
http://dx.doi.org/10.3390/e19100511


0 0.1 0.2 0.3 0.4 0.5
0

0.3

0.6

0.9

1.2

0.04

0.01

<x>

D
iff

er
en

ce
 / 

D1/
2

0 0.3 0.6 0.9
0

1

2

3

x

p

0 0.1 0.2 0.3
0

3

6

9

x

p

FIG. 5: The first panel shows the difference (13) between the actual PDF and the

equivalent gamma distribution, as functions of 〈x〉. Solid lines denote γ = 0.5 → 0.05,

dashed lines the reverse, with arrows also indicating the direction of motion. The dots at

〈x〉 = 0.3 for γ = 0.05 → 0.5, and 〈x〉 = 0.1 for γ = 0.5 → 0.05, correspond to the other

two panels: Panel 2 compares the γ = 0.05 → 0.5 PDF with its equivalent gamma

distribution; Panel 3 compares the γ = 0.5 → 0.05 PDF with its equivalent gamma

distribution. The actual PDFs in each case are solid (red), and the equivalent gamma

distributions are dashed (blue). D = 0.04 for both sets.

Further evidence of significant deviations from gamma distribution behaviour is seen in

figure 5, showing the difference (13) directly. As expected from figure 4, γ = 0.05 → 0.5

has a much greater difference than γ = 0.5 → 0.05. The second and third panels show how

the PDFs compare with the equivalent gamma distributions having the same 〈x〉 and σ

values as the actual PDFs at that instant. The differences are clearly visible, especially for

γ = 0.05 → 0.5, but also for γ = 0.5 → 0.05.

B. D > γ

We next consider the case D > γ, where we demonstrated above that stationary

solutions cannot exist at all, because the time-dependent PDF can only ever get closer and

closer to the gamma distribution singularity at the origin, but can never actually achieve

it. To explore what does happen in this case then, we simply repeat the above procedure,

12

FIG. 5: The first panel shows the difference (13) between the actual PDF and the

equivalent gamma distribution, as functions of 〈x〉. Solid lines denote γ = 0.5→ 0.05,

dashed lines the reverse, with arrows also indicating the direction of motion. The dots at

〈x〉 = 0.3 for γ = 0.05→ 0.5, and 〈x〉 = 0.1 for γ = 0.5→ 0.05, correspond to the other

two panels: Panel 2 compares the γ = 0.05→ 0.5 PDF with its equivalent gamma

distribution; Panel 3 compares the γ = 0.5→ 0.05 PDF with its equivalent gamma

distribution. The actual PDFs in each case are solid (red), and the equivalent gamma

distributions are dashed (blue). D = 0.04 for both sets.

the PDFs compare with the equivalent gamma distributions having the same 〈x〉 and σ

values as the actual PDFs at that instant. The differences are clearly visible, especially for

γ = 0.05→ 0.5, but also for γ = 0.5→ 0.05.

B. D > γ

We next consider the case D > γ, where we demonstrated above that stationary

solutions cannot exist at all, because the time-dependent PDF can only ever get closer and

closer to the gamma distribution singularity at the origin, but can never actually achieve

it. To explore what does happen in this case then, we simply repeat the above procedure,

except that there is now only an ‘inward’ process, and no reverse. That is, instead of

γ = 0.5 → 0.05, let us consider γ = 0.5 → 0. (Throughout this section we will also take

D = 10−3, to facilitate comparison with results in the next section. For γ = 0 of course any

D is greater than γ.)
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FIG. 6: The initial condition is a gamma distribution with γ = 0.5, ǫ = 1 and D = 10−3; γ

is then switched to 0, and the solution is evolved according to Eq. (3). Numbers besides

curves indicate time, from the initial condition at t = 0 to the final time 1000. The dashed

curves indicate the equivalent gamma distributions having the same 〈x〉 and σ.

except that there is now only an ‘inward’ process, and no reverse. That is, instead of

γ = 0.5 → 0.05, let us consider γ = 0.5 → 0. (Throughout this section we will also take

D = 10−3, to facilitate comparison with results in the next section. For γ = 0 of course any

D is greater than γ.)

Figure 6 shows the resulting PDFs, and how they approach ever closer to the origin, but

never actually achieve the x−1 blowup that would be implied by Eq. (4) for a = γ/D = 0.

The peak amplitude simply increases indefinitely, as t1/2. The widths correspondingly

also decrease; the apparent increase is an illusion caused by the logarithmic scale for x.

The dashed lines also show the equivalent gamma distributions, as before. Note how the

difference becomes increasingly noticeable; in line with the fact that the equivalent gamma

distribution is tending toward its singular behaviour as 〈x〉 decreases, but the actual PDFs

must always have p(0) = 0.

Figure 7 is the equivalent of figure 2, and directly compares γ = 0.5 → 0 here with

the previous γ = 0.5 → 0.05. We see that 〈x〉 starts out very similarly, but instead of

equilibrating to 0.05, it now tends to 0 as t−1. E again starts out similarly, but ultimately

tends to 0 much slower, as t−3 instead of exponentially. This t−3 scaling for E has an
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FIG. 6: The initial condition is a gamma distribution with γ = 0.5, ε = 1 and D = 10−3; γ

is then switched to 0, and the solution is evolved according to Eq. (3). Numbers besides

curves indicate time, from the initial condition at t = 0 to the final time 1000. The dashed

curves indicate the equivalent gamma distributions having the same 〈x〉 and σ.

Figure 6 shows the resulting PDFs, and how they approach ever closer to the origin, but

never actually achieve the x−1 blowup that would be implied by Eq. (4) for a = γ/D = 0.

The peak amplitude simply increases indefinitely, as t1/2. The widths correspondingly

also decrease; the apparent increase is an illusion caused by the logarithmic scale for x.

The dashed lines also show the equivalent gamma distributions, as before. Note how the

difference becomes increasingly noticeable; in line with the fact that the equivalent gamma

distribution is tending toward its singular behaviour as 〈x〉 decreases, but the actual PDFs

must always have p(0) = 0.

Figure 7 is the equivalent of figure 2, and directly compares γ = 0.5 → 0 here with

the previous γ = 0.5 → 0.05. We see that 〈x〉 starts out very similarly, but instead of

equilibrating to 0.05, it now tends to 0 as t−1. E again starts out similarly, but ultimately

tends to 0 much slower, as t−3 instead of exponentially. This t−3 scaling for E has an

interesting consequence for L, namely that L does saturate to a finite value L∞ (since
∫
t−3/2 dt remains bounded for t → ∞) even though the PDF itself never settles to a

stationary state.

Figure 8 shows entropy, σ, skewness and kurtosis, so some of the results as in figures 3
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FIG. 7: As in figure 2, the first panel shows 〈x〉, the second panel shows E ·D, and the

third panel L ·D1/2. Solid lines denote γ = 0.5 → 0 for D = 10−3, dashed lines the

previous γ = 0.5 → 0.05 for D = 0.01. Note how the scalings of E and L with D are still

preserved even when D is changed by a factor of 10.

interesting consequence for L, namely that L does saturate to a finite value L∞ (since
∫
t−3/2 dt remains bounded for t → ∞) even though the PDF itself never settles to a

stationary state.

Figure 8 shows entropy, σ, skewness and kurtosis, so some of the results as in figures 3

and 4. Entropy and σ are again both good measures of how narrow the PDF is, becoming

ever smaller as the peak moves toward the origin. Skewness and kurtosis seem to follow

the expected gamma distribution relationship extremely well, even though we saw before in

figure 6 that the PDFs are actually different from gamma distributions. As 〈x〉 → 0, both

skewness and kurtosis thus become indefinitely large.

C. Q 6= 0

Finally, we turn to the Fokker-Planck equation (11) with additive noise included, and

use it to explore the two questions that could not be addressed otherwise. First, how does

a process like γ = 0.5 → 0 then equilibrate to a stationary solution? Second, what does the

reverse process γ = 0 → 0.5 look like?

14

FIG. 7: As in figure 2, the first panel shows 〈x〉, the second panel shows E ·D, and the

third panel L ·D1/2. Solid lines denote γ = 0.5→ 0 for D = 10−3, dashed lines the

previous γ = 0.5→ 0.05 for D = 0.01. Note how the scalings of E and L with D are still

preserved even when D is changed by a factor of 10.
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FIG. 8: Entropy, σ/D1/2, (skewness /D1/2) and (kurtosis /D), as functions of 〈x〉, for the
γ = 0.5 → 0 calculation from figure 6. The heavy green curves in the last three panels are

√
〈x〉, 2/

√
〈x〉 and 6/〈x〉, respectively, and indicate the behaviour expected for exact

gamma distributions.

We will keep D = 10−3 and Q = 10−5 fixed throughout this section. Since the effective

diffusion coefficients in (11) are Dx2 and Q [recall also the denominator of Eq. (12)], this

means that Q is dominant only within x ≤ 0.1; any stationary solutions with peaks much

beyond that are effectively pure gamma distributions.

Figure 9 shows the same type of inward/outward process as before in figure 1, only

now switching γ between 0.5 and 0.1. Comparing with figure 1, we see that the dynamics

are very similar, just with all the peaks considerably narrower, which is to be expected if

D = 10−3 rather than 0.02. The only other point to note is how the final peak in the left

panel is lower than the previous peak at 〈x〉 = 0.2, which is different from figure 1, where

γ = 0.5 → 0.05 had peaks monotonically increasing throughout the entire evolution. The

reason the final peak here decreases slightly is precisely the influence of Q in this region; if

this peak is now seeing just as much diffusion from Q as from D, it is not surprising that

it spreads out somewhat more, and is correspondingly somewhat lower than a pure gamma

distribution would be.

Figure 10 shows the fundamentally new case, namely switching γ between 0.5 and 0.

The inward process γ = 0.5 → 0 is again very similar to either figure 1 or 9. The only

difference to figure 6 is that the process does actually equilibrate to a stationary solution

now, as given by Eq. (12). The reverse process γ = 0 → 0.5 is rather different though. The

initial central peak now broadens far more than previously seen in figures 1 and 9.
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and 4. Entropy and σ are again both good measures of how narrow the PDF is, becoming

ever smaller as the peak moves toward the origin. Skewness and kurtosis seem to follow

the expected gamma distribution relationship extremely well, even though we saw before in

figure 6 that the PDFs are actually different from gamma distributions. As 〈x〉 → 0, both

skewness and kurtosis thus become indefinitely large.
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this peak is now seeing just as much diffusion from Q as from D, it is not surprising that

it spreads out somewhat more, and is correspondingly somewhat lower than a pure gamma

distribution would be.

Figure 10 shows the fundamentally new case, namely switching γ between 0.5 and 0.

The inward process γ = 0.5 → 0 is again very similar to either figure 1 or 9. The only

difference to figure 6 is that the process does actually equilibrate to a stationary solution

now, as given by Eq. (12). The reverse process γ = 0→ 0.5 is rather different though. The

initial central peak now broadens far more than previously seen in figures 1 and 9.

One interesting consequence of this extreme broadening for γ = 0 → 0.5 is on the total

information length L∞. In figure 9 these values are 25 and 16, respectively, whereas in figure

10 they are 35 and 9.5. That is, in both cases decreasing γ yields larger L∞ values than
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FIG. 9: The left panel shows the result of switching γ = 0.5 → 0.1, the right panel

γ = 0.1 → 0.5, both at fixed ǫ = 1, D = 10−3 and Q = 10−5. The initial (red) and final

(blue) gamma distributions are shown as heavy lines. The three intermediate lines are

when the time-dependent solutions have 〈x〉 = 0.2, 0.3, 0.4. L∞ = 25 on the left and 16

on the right.

One interesting consequence of this extreme broadening for γ = 0 → 0.5 is on the total

information length L∞. In figure 9 these values are 25 and 16, respectively, whereas in figure

10 they are 35 and 9.5. That is, in both cases decreasing γ yields larger L∞ values than

increasing γ does, consistent with the peaks being narrower, and hence passing through

more statistically distinguishable states. Next, comparing 25 for γ = 0.5 → 0.1 versus 35

for γ = 0.5 → 0, this is exactly as one might expect: having the peak travel somewhat

further yields extra information length. However, comparing 16 for γ = 0.1 → 0.5 versus

9.5 for γ = 0 → 0.5 is puzzling then! The peak has further to travel, but accomplishes

it with less information length. The reason is precisely this extreme broadening, which

substantially reduces the number of distinguishable states along the way. See also [36, 37],

where the same effect was studied for Gaussian PDFs, and values of D as small as 10−7,

leading to fundamentally different scalings of L∞ with D for inward and outward processes.

Returning to the central question of this paper, namely how close the time-dependent

PDFs are to gamma distributions, the results for figure 9 are similar to the previous ones.

In particular, we recall that before in figure 5 we had the difference scaling as D1/2, so

16

FIG. 9: The left panel shows the result of switching γ = 0.5→ 0.1, the right panel

γ = 0.1→ 0.5, both at fixed ε = 1, D = 10−3 and Q = 10−5. The initial (red) and final

(blue) gamma distributions are shown as heavy lines. The three intermediate lines are

when the time-dependent solutions have 〈x〉 = 0.2, 0.3, 0.4. L∞ = 25 on the left and 16

on the right.

increasing γ does, consistent with the peaks being narrower, and hence passing through

more statistically distinguishable states. Next, comparing 25 for γ = 0.5 → 0.1 versus 35

for γ = 0.5 → 0, this is exactly as one might expect: having the peak travel somewhat

further yields extra information length. However, comparing 16 for γ = 0.1 → 0.5 versus

9.5 for γ = 0 → 0.5 is puzzling then! The peak has further to travel, but accomplishes

it with less information length. The reason is precisely this extreme broadening, which

substantially reduces the number of distinguishable states along the way. See also [36, 37],

where the same effect was studied for Gaussian PDFs, and values of D as small as 10−7,

leading to fundamentally different scalings of L∞ with D for inward and outward processes.

Returning to the central question of this paper, namely how close the time-dependent

PDFs are to gamma distributions, the results for figure 9 are similar to the previous ones.

In particular, we recall that before in figure 5 we had the difference scaling as D1/2, so

a smaller D here means a smaller difference. These results are approaching the small D

regime where gamma distributions become very close to Gaussians anyway, which generally

remain close to Gaussian as they move.

16

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 August 2017                   doi:10.20944/preprints201708.0074.v1

Peer-reviewed version available at Entropy 2017, 19, 511; doi:10.3390/e19100511

http://dx.doi.org/10.20944/preprints201708.0074.v1
http://dx.doi.org/10.3390/e19100511


0 0.1 0.2 0.3 0.4 0.5 0.6
0

10

20

30

40

x

p

0 0.1 0.2 0.3 0.4 0.5 0.6
0

10

20

30

40

x

p

FIG. 10: The left panel shows the result of switching γ = 0.5 → 0, the right panel

γ = 0 → 0.5, both at fixed ǫ = 1, D = 10−3 and Q = 10−5. The initial (red) and final

(blue) gamma distributions are shown as heavy lines. The four intermediate lines are when

the time-dependent solutions have 〈x〉 = 0.1, 0.2, 0.3, 0.4. L∞ = 35 on the left and 9.5 on

the right.

a smaller D here means a smaller difference. These results are approaching the small D

regime where gamma distributions become very close to Gaussians anyway, which generally

remain close to Gaussian as they move.

However, for the γ = 0 → 0.5 process in figure 10, the intermediate stages do not look

much like gamma distributions. (The final equilibrium is indistinguishable from a gamma

distribution though, consistent with Q being completely negligible for these values of x.) For

the intermediate stages, these were found to be so different from gamma distributions that

attempting to fit a gamma distribution having the same 〈x〉 and σ made little sense; this

extreme broadening and long tail trailing behind the peak meant that both 〈x〉 and σ were

too different from the normal expectation that they should be measures of ‘peak’ and ‘width’.

Instead, we simply asked the question, which values of a and b would minimize the

quantity
∫
|p − pbf | dx, where p is the time-dependent PDF to be fitted, and pbf is the

best-fit gamma distribution. Unlike our previous difference formula, this does not yield

simple analytic formulas for the a and b to choose, but is numerically still straightforward

to implement. Figure 11 shows the results, for two of the intermediate stages in the
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FIG. 10: The left panel shows the result of switching γ = 0.5→ 0, the right panel

γ = 0→ 0.5, both at fixed ε = 1, D = 10−3 and Q = 10−5. The initial (red) and final

(blue) gamma distributions are shown as heavy lines. The four intermediate lines are when

the time-dependent solutions have 〈x〉 = 0.1, 0.2, 0.3, 0.4. L∞ = 35 on the left and 9.5 on

the right.

However, for the γ = 0 → 0.5 process in figure 10, the intermediate stages do not look

much like gamma distributions. (The final equilibrium is indistinguishable from a gamma

distribution though, consistent with Q being completely negligible for these values of x.) For

the intermediate stages, these were found to be so different from gamma distributions that

attempting to fit a gamma distribution having the same 〈x〉 and σ made little sense; this

extreme broadening and long tail trailing behind the peak meant that both 〈x〉 and σ were

too different from the normal expectation that they should be measures of ‘peak’ and ‘width’.

Instead, we simply asked the question, which values of a and b would minimize the

quantity
∫
|p − pbf | dx, where p is the time-dependent PDF to be fitted, and pbf is the

best-fit gamma distribution. Unlike our previous difference formula, this does not yield

simple analytic formulas for the a and b to choose, but is numerically still straightforward

to implement. Figure 11 shows the results, for two of the intermediate stages in the

γ = 0→ 0.5 process. We can see that the fit is rather poor, indicating that these PDFs are

significantly different from gamma distributions.

This misfit is also not caused by the inclusion of Q; if this or any similar central peak is
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FIG. 11: The γ = 0 → 0.5 process as in figure 10, but now shown in more detail. The

dashed (magenta) curves are the gamma distributions that best fit the two thicker curves

at intermediate times. Note how even a ‘best-fit’ is a rather poor approximation to the

actual PDFs.

γ = 0 → 0.5 process. We can see that the fit is rather poor, indicating that these PDFs are

significantly different from gamma distributions.

This misfit is also not caused by the inclusion of Q; if this or any similar central peak is

evolved for either small or zero Q in the Fokker-Planck equation, the result is always similar

to here. As explained also in [36, 37], the dynamics of how central peaks move away from

the origin is simply different from how peaks already away from the origin move, regardless

of whether the final states are Gaussians as in [36, 37], or gamma distributions as here.

IV. CONCLUSION

Gamma distributions are among the most popular choices for modelling a broad range

of experimentally determined PDFs. It is often assumed that time-dependent PDFs can

then simply be modelled as gamma distributions with time-varying parameters a and b. In

this work we have demonstrated that one should be cautious with such an approach. By

numerically solving the full time-dependent Fokker-Planck equation, we found that there are

three sets of circumstances where the PDFs can differ significantly from gamma distributions:

• If D < γ, so that stationary solutions exist, but D is also sufficiently close to γ that
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at intermediate times. Note how even a ‘best-fit’ is a rather poor approximation to the

actual PDFs.

evolved for either small or zero Q in the Fokker-Planck equation, the result is always similar

to here. As explained also in [36, 37], the dynamics of how central peaks move away from

the origin is simply different from how peaks already away from the origin move, regardless

of whether the final states are Gaussians as in [36, 37], or gamma distributions as here.

IV. CONCLUSION

Gamma distributions are among the most popular choices for modelling a broad range

of experimentally determined PDFs. It is often assumed that time-dependent PDFs can

then simply be modelled as gamma distributions with time-varying parameters a and b. In

this work we have demonstrated that one should be cautious with such an approach. By

numerically solving the full time-dependent Fokker-Planck equation, we found that there are

three sets of circumstances where the PDFs can differ significantly from gamma distributions:

• If D < γ, so that stationary solutions exist, but D is also sufficiently close to γ that

a gamma distribution differs significantly from a Gaussian, then the time-dependent

PDFs will also differ significantly from gamma distributions.

• If D > γ, stationary gamma distributions do not exist at all. Instead, peaks move ever

closer to the origin, and in the process increasingly differ from gamma distributions.
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• If the initial condition is a peak right on the origin – either as a result of adding

additive noise to produce stationary solutions even for D > γ, or simply as an arbitrary

initial condition – then any evolution away from the origin will differ significantly from

gamma distributions. Unlike the previous two items, which become more pronounced

for larger D, this effect is most clearly visible for smaller D, where the mismatch

between the naturally narrower peaks and the extreme broadening seen in figure 11

becomes increasingly significant.

Future work will apply some of these ideas to fitting actual data.

V. ACKNOWLEDGEMENTS

We thank Prof Ovidiu Radulescu for motivating this work through many stimulating

discussions on PDFs in biological systems.

Appendix A: Derivation of the Fokker-Planck Equations

In order to derive the Fokker-Planck equation (3) from the Langevin equation (1), it is

useful to introduce a generating function Z:

Z = eiλx(t). (A1)

Then, by definition of ‘average’, the average of Z is related to the PDF, p(x, t), as

〈Z〉 =

∫
dxZ p(x, t) =

∫
dx eiλx(t) p(x, t). (A2)

Thus, we see that 〈Z〉 is the Fourier transform of p(x, t). The inverse Fourier transform of

〈Z〉 then gives p(x, t):

p(x, t) =
1

2π

∫
dλ e−iλx 〈Z〉. (A3)

We note that Eq. (A3) can be written as

p(x, t) =

〈
1

2π

∫
dλ eiλ(x−x(t))

〉
= 〈δ(x− x(t))〉 , (A4)

which is another form of p(x, t). To obtain the equation for p(x, t), we first derive the

equation for 〈x〉 and then take the inverse Fourier transform as summarised in the following.
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We differentiate Z with respect to time t and use Eq. (1) to obtain

∂tZ = iλ∂txZ = iλ(γx− εx2 + ξ(t)x)Z = λ [γ∂λ + iε∂λλ + ξ∂λ]Z, (A5)

where xZ = −i∂λZ was used. The formal solution to Eq. (A5) is

Z(t) = λ

∫
dt1 [γ∂λ + iε∂λλ + ξ(t1)∂λ]Z(t1). (A6)

The average of Eq. (A5) gives

∂t〈Z〉 = λ(γ∂λ + iε∂λλ)〈Z〉+ λ〈ξ(t)∂λZ(t)〉. (A7)

To find 〈ξ(t)Z(t)〉, we use Eq. (A6) iteratively as follows:

〈ξ(t)∂λZ〉 =

〈
ξ(t)∂λ

[
λ

∫
dt1 [γ∂λ + iε∂λλ + ξ(t1)∂λ]Z(t1)

]〉

= 〈ξ(t)〉∂λ
[
λ

∫
dt1 [γ∂λ + iε∂λλ] 〈Z(t1)〉

]
+ ∂λ

[
λ

∫
dt1 〈ξ(t)ξ(t1)〉∂λ〈Z(t1)〉

]

= ∂λ

[
λ [D∂λ〈Z(t)〉]

]
. (A8)

Here we used the independence of ξ(t) and Z(t1) for t1 < t, 〈ξ(t)Z(t1)〉 = 〈ξ(t)〉〈Z(t1)〉 = 0,

together with Eq. (2),
∫ t
0
dt1 δ(t− t1) = 1/2, and 〈ξ〉 = 0. By substituting Eq. (A8) into Eq.

(A7) we obtain

∂t〈Z〉 = λ(γ∂λ + iε∂λλ)〈Z〉+ λ∂λ

[
λ [D∂λ〈Z(t)〉]

]
. (A9)

The inverse Fourier transform of Eq. (A9) then gives us

∂

∂t
p(x, t) = − ∂

∂x

[
(γx− εx2)p(x, t)

]
+D

∂

∂x

[
x
∂

∂x

[
x p(x, t)

]]
(A10)

which is Eq. (3). Specifically, the inverse Fourier transforms of the first and last terms in

Eq. (A9) are shown explicitly in the following:

1

2π

∫
dλ e−iλx〈∂tZ〉 = ∂t

[
1

2π

∫
dλ e−iλx〈Z〉

]
=

∂

∂t
p(x, t), (A11)

D

2π

∫
dλ e−iλxλ∂λ [λ∂λ〈Z〉] = D

∂

∂x

[
x
∂

∂x

[
x p(x, t)

]]
, (A12)

where integration by parts was used twice in obtaining Eq. (A12). The additional Q∂xxp

term in the Fokker-Planck equation (11) can be derived in the same way.
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Appendix B: Time-dependent Analytical Solutions of Eq. (3)

We begin by making the change of variables y = 1/x in Eq. (1) to obtain

dy

dt
= −(γ + ξ)y + ε. (B1)

By using the Stratonovich calculus [2, 3, 34], the solution to Eq. (B1) is found as

y(t) = y0e
−(γt+B(t)) + εe−(γt+B(t))

∫ t

0

dt1e
(γt1+B(t1)), (B2)

where y0 = y(t = 0) and B(t) =
∫ t
0
dt1 ξ(t1) is the Brownian motion. Therefore,

x(t) =
x0e

γt+B(t)

1 + εx0
∫ t
0
dt1e(γt1+B(t1))

, (B3)

where x0 = x(t = 0). In Eq. (B3), eB(t) is the geometric Brownian motion while e−γt−B(t)

is the geometric Brownian motion with a drift (e.g. [2]). The time integral of the latter

is used in understanding stochastic processes in financial mathematics and many other

areas [45, 46]. In particular, in the long time limit, its PDF can be shown to be a gamma

distribution. However, this PDF of x is not particularly useful as it involves complicated

summations and integrals that cannot be evaluated in closed form [45, 46].
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