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Abstract: This paper presents a new scientific contribution on the two-dimensional (2-D) subdomain
technique in polar coordinates taking into account the finite relative permeability of the ferromagnetic
material. The constant relative permeability corresponds to linear part of the nonlinear B(H) curve.
As in conventional technique, the method of separation of variables and the Fourier’s series are
used for the resolution of magnetostatic Maxwell’s equations in each region. Although, the general
solutions of magnetic field in the subdomains and boundary conditions (BCs) between regions are
different in the conventional and proposed method. In this later, the magnetic field solution in each
subdomain is a superposition of two magnetic quantities in the two directions (i.e., r- and ®-axis)
and the BCs between two regions are also in both directions. For example, the scientific contribution
has been applied to an air- or iron-cored coil supplied by a constant current. The distribution of local
guantities (i.e., the magnetic vector potential and flux density) has been validated by a corresponding
2-D finite-element analysis (FEA). The obtained semi-analytical results are in very good agreement
with those of numerical method.

Keywords: air- or iron-cored coil; polar coordinates; fourier analysis; two-dimensional; subdomain
technique

1. Introduction

The full calculation of magnetic field in electrical engineering applications is the first step for
their design and optimization, the methods of magnetic field prediction can be classified in various
categories [1]:

e Lehmann’s graphical [2];

e Numerical (i.e., finite-element, finite-difference, boundary-element, etc.) [3-5];

e Equivalent circuit (i.e., electrical, thermal, magnetic, etc.) [6-8];

e Schwarz-Christoffel mapping (i.e., conformal transformation, complex permeance model, etc.) [9];
e Maxwell-Fourier [10-15].

Currently, the works of design are based on (semi-)analytical models! (i.e., equivalent circuit,
conformal transformation and Maxwell-Fourier methods). In comparison with the other methods,
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under certain geometrical and physical assumptions, these models permit to obtain accurate analytical
expressions of magnetic field and known as fast for the prediction of local and global electromagnetic
performances. At present, Maxwell-Fourier methods are one of the most used semi-analytic approaches
with very accurate results (i.e., error less than 5 %) on the electromagnetic performances calculation.
These models are based on the formal resolution of Maxwell’s equations in Cartesian, cylindrical or
spherical coordinates by using the method of seperation of variables and the Fourier’s series. Taking
into account of iron parts and/or the effect of local/global saturation is still a scientific challenge in
Maxwell-Fourier methods which is rarely explored in the literature [17,18]. Recently, Dubas et al. (2017)
[1] realized an overview on the existing (semi-)analytical models in Maxwell-Fourier methods with the
effect of local/global saturation, which can thus be classified as follows

e  Multi-layers models (i.e., Carter’s coefficient [19,20], saturation coefficient [21,22], concept wave

impedance [23-26], and convolution theorem [27-30]);

e  Eigenvalues model, viz., the method of Truncation Region Eigenfunction Expansions (TREE)
[31,32];
Subdomain technique [1,33,34];
Hybrid models, viz., the analytical solution combined with numerical methods [35,36] or
(non)linear magnetic equivalent circuit [37-39].

The consideration of the effect of local/global saturation is appearing in hybrid models, where
the solution is established analytically in concentric regions of very low permeability (e.g., air-gap and
magnets) and other methods (e.g., numerical or magnetic equivalent circuit) are sought in regions
where the saturation effect cannot be neglected. On other hand, the other models (i.e., multi-layers
models, TREE method and sudomain technique) are more focused the global saturation. Some details
and (dis)advantages of these techniques can be found in [1]. In most semi-analytical models based on
the subdomain technique, the iron parts are considered to be infinitely permeability due the variation
of material proprieties in the various directions, so that the saturation effect is neglected [16-18]. The
first paper introducing the iron parts in the magnetic field calculation by using subdomain technique
is [1], where the authors solve partial differential equations (EDPs) of magnetic potential vector in
Cartesian coordinates in which the subdomains connection is performed directly in both directions (i.e.,
x- and y-edges). The 2-D magnetostatic model has been applied to an air- or iron-cored coil supplied
by a constant current. In [33], the authors propose a 2-D semi-analytical model in spoke-type magnets
synchronous machines based on the subdomain technique in polar coordinates with Taylor polynomial
of degree 3 by focusing on the consideration of iron. The iron magnetic permeability is supposed
constant corresponding to linear zone of the nonlinear B(H) curve. The subdomains connection is
carried out in both directions (i.e., r- and @-edges). The general solution of magnetic field is obtained
by using the traditional BCs, in addition to new radial BCs (e.g., between the magnets and the rotor
teeth, between the teeth and the slots of the stator) which are traduced into a system of linear equations
according to Taylor series expansion. In [34], this semi-analytical model has been extended taking into
account the initial magnetization curve in each soft-magnetic subdomain by an iterative procedure.

In the literature, to the authors’ knowledge, there exists no exact 2-D subdomain technique in
polar coordinates taking into account of iron parts with(out) the nonlinear B(H) curve and not using
the Taylor series expansion to satisfy the r-edges BCs. Thus, the research work in this paper contributes
to the continuous improvement of the 2-D subdomain technique. Moreover, it is an extension of [1] in
polar coordinates (r, ®). Section 2 presents this new scientific contribution. By applying the principle
of superposition on the magnetic quantities in order to respect the BCs on the various edges, the
general solution of magnetic field is decomposed in Fourier’s series into two general solutions in both
directions (i.e., r- and ®-edges). It allows evaluation of the local distribution of flux densities in the
iron parts with a global saturation, does not have numerical convergence problems contrary to others
models, and would easily introduce the current penetration effect in the conductive materials. The
semi-analytical solution is exact as in [1] and does not use the Taylor polynomial to satisfy the r-edges
BCs contrary to [33,34]. For example, it was applied to an air- or iron-cored coil supplied by a constant
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Figure 1. Physical and geometrical parameters (see Table 1) of air- or iron-cored coil where ® and ®
are respectively the forward and return conductor.

current. The iron magnetic permeability is constant corresponding to linear zone of the nonlinear B(H)
curve [1,33]. Nevertheless, as in [29,30,34], the saturation effect could be taken into account by an
iterative calculation considering, at each iteration, a constant relative magnetic permeability according
to the nonlinear B(H) curve. However, this is beyond the scope of the paper. In Section 3, in order to
confirm the effectiveness of the proposed technique, all semi-analytical results are then compared to
those found by 2-D FEA [40]. The comparisons are very satisfying in amplitudes and waveforms.

2. A 2-D Subdomain Technique of Magnetic Field in Polar Coordinates

2.1. Model Description and Assumptions

Figure 1 represents the physical and geometrical parameters of an air- or iron-cored coil with N
turns of copper wire supplied by a constant current |. The electromagnetic device is surrounded by an
infinite box with null value of magnetic vector potential at it boundaries.

The analytical prediction of magnetic field based on the 2-D subdomain technique is done by
solving magnetostatic Maxwell’s equations in polar coordinates (r, ®) with the following assumptions:

e The magnetic vector potential has only one component along the z-axis (i.e., A = {0;0; A;}) and
then the end-effects are not considered;

e All materials are isotropic and the permeabilities are supposed constants in both directions (i.e., r-
and ©-axis);

e All electrical conductivities of materials are supposed nulls (i.e., the eddy-currents induced in the
copper/iron are neglected).

2.2. Problem Discretization in Regions

In Figure 2, we present the studied electromagnetic device which is divided into 7 regions with
u = C% viz,,
e Region1 {VO Ar € [ry, rp]} with py = py;
e Region2 {VO AT € [r3, 1]} with pip = py;


http://dx.doi.org/10.20944/preprints201708.0052.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 August 2017 d0i:10.20944/preprints201708.0052.v1

4 0f 29

Region 4

Region 2

Region 5
Region 1

Region 3

Boundary Condition /

(i.e., Dirichlet)

Figure 2. Definition of regions in the air- or iron-cored coil.

e Region3 {0 € [@1, Ox] AT € [y, r3]} with uz = py;

e Region4 {O € [@s, Og] AT € [y, r3]} with uy = py;

e Region 5 (i.e., the air or iron in the middle of the coil) {® € [®,, O3] AT € [r2, r3]} with us = py
for the air or ys = pjron for the iron;

e Region 6 (i.e., the forward conductor) {© € [@,, O3] AT € [ry, 3]} with g = pug;

e Region 7 (i.e.,, the return conductor) {® € [©4, Os] At € [ry, r3]} with 7 = .

2.3. Governing EDPs in Polar Coordinates: Laplace’s and Poisson’s Equations

According to (A.1) (see Appendix A), the distribution of magnetic vector potential in polar
coordinates (r, ®) is governed by

AAGj =

02 Ay 0A; 02 Ay
2l % I J—0 for j={1,...,5} (Laplace’sequation), (1a)

ar2 o T2 02

92A 1 9A 1 92A
AA,, — —zk = TRk ) zk _ 0]
%=z Ty T e T MK

where J, is the current density of the coil defined by

for k= {6, 7} (Poisson’s equation), (1b)

Nt - |
J = Cy - , 2
2k ks, 2
in which S; is the conductor surface, and C, (with Cg = 1and C; = —1) is the coefficient that represents

the current direction in the conductor.

According to Appendix A, the resolution of Laplace’s and Poisson’s equations by using the
method of separation of variables and the Fourier’s series permit to obtain two potentials in both
directions, viz., A9, for the ®-edges (A.2b) and A, for the r-edges (A.2c). The spatial frequency (or
periodicity) of AS, and A!, are respectively defined by Bene and Aep, With he and ne the spatial
harmonic orders.
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2.4. Definition of BCs

In electromagnetic, the general solutions of various regions depend on the BCs at the interface
of two surfaces, which are defined by the continuity of the normal flux density B, and parallel field
intensity H [1]. On the outer BCs for (®1 A ®g, Vr) and (VO, ry Ary), A, satisfies the Dirichlet BC
(see Figure 2), viz., A, = 0.

Figure 3 represents the respective BCs at the interface between the various regions in both
directions (i.e., r- and ®-edges).

2.5. General Solutions of Various Regions

2.5.1. Region 1

The solution of A;;, By; and Bg; are determined by the case-study no 1 (i.e., A; imposed on all
edges of a region) in Appendix B. The BCs on the r-edges of the region (see Figure 3a) are met by
posing cf? = 0in (B.6). Therefore, A,; satisfying the BCs of Figure 3a and solution of (1a) is given by

Ey(Blh1.r.ra)

fp— . G) . r2 . . 1 . —_
A== ) g P (Bl rary) [Blp - (©—©y)], 3)
the components of By = {By1;B@1;0} by
R e o Ey(Blnrin)
Br1 = — hlgldlhl e m - €08 [Blpy - (© — @y)], 4)
B@l - Z dlhl C - SIn [,Blhl . (@ — @1)], (5)

hi=1 r P}% (Blh1,r2,11)

where Eyz (w,x,y) and Pyz (w, x,y) are defined in (B.4), h1 the spatial harmonic orders in Region 1, dlﬁ’l
the integration constant, and 1y, = hl- 7T/T@1 with 191 = O — Oy.

Using a Fourier series expansion of F, (©) (see Figure 3a) over the interval @ = [0, O] =
[@1, ®1 + Te1), the integration constant d1h®1 is determined in Appendix C with

5 O1+Te1
g = — / F (@) -sin [Bly, - (© — @1)] - dO. (6)
0,

2.5.2. Region 2

The same method than Region 1 is used to define the general solution in Region 2. By posing
dﬁ) = 0in (B.6) (see Appendix B), A,, satisfying the BCs of Figure 3b and solution of (1a) is given by

[e0)

Ef (,82h21 Iy, I")

_ e Is . qi (O —
Pz = hzzzllczh2 B2ha Py (B2h2. 14, T3) sin(f2r, (€ = 1)) 0
the components of B, = {By; Bg,; 0} by
B —icZQ-r—S-M-cos[z (©—©1)] ®)
- h2=1 h2r Py‘ (ﬁ2h2ir4’r3) s v
Boz2 = i c25 - ro Py (P2 1a.t) +Sin [B2h; - (@ — ©1)], ©)

h2=1 r P}/ (‘BZhZI r41 r3)
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where h2 is the spatial harmonic orders in Region 2, c2§?2 the integration constant, and 2, = h2 - 7‘[/1’@2

with 19y = O — O;.
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Figure 3. Boundary conditions (BCs) in both directions (i.e., r- and ®-edges): (a) Region 1, (b) Region 2,
(c) Region 3, (d) Region 4, (e) Region 5, (f) Region 6, and (g) Region 7.
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Using a Fourier series expansion of G, (®) (see Figure 3b) over the interval ® = [®;, Og] =
[@1, ®1 + Te2], the integration constant CZE’2 is determined in Appendix C with

2 0147102
2= / G (®) - sin [B2n, - (© — ©1)] - dO. (10)
0,

2.5.3. Region 3

The solution of A3, Brz and Bgs are determined by the case-study no 1 (i.e., A; imposed on all
edges of a region) in Appendix B. The BCs on the ®-edges of the region (see Figure 3c) are met by
posing ef, = 0 in (B.1) — (B.3). Therefore, A,3 satisfying the BCs of Figure 3c and solution of (1a) is
given by

Az = A23 + AL, (11a)

e}

3h3, I3, 3n3, T, ]
AZ3—h3Z::1 l03h3 r- E% d3h3 rs- E’%] -sin[B3n3 - (@ —©1)], (11b)

S [A3ps - (@~ O1)] [ <r)]
= 313 -sin [A3n3-In|{ — )|, 1lic
Z3 n321 sh (/\3n3 . T®3) n3 Iy ( )

the r-component of B; by
Br3 - Br3 + Br3, (12&)
® E;(B3ha.r3.r) E;(B3n3.rir2)
893 B hZ_ B3ns - CS% . VTZ ' E¢(53h3,r3.r2) - d3ﬁ)3 ’ I’Ts ’ Eyl(ﬁ3h3,r3,l’z)} -€0s [B3h3 - (© — ©1)], (12b)
12 Ch[A3n3- (@ —O1)] . [ < r )]

= A3n3 - 33 . -sin [A3n3-In{ — )|, 12¢
I’3 n;l n3 " r Sh (A3n3 K T@3) n3 r2 ( )

the ®-component of B3 by
Bos = BS; + By, (13a)

P (B3h3.ra.r)

y P, (B3n3.r.r2) .
o _ ® o
Pos = 1 P 03h3.rrz'E¢(BSh3,r3,rz)d3h3'rr3'E¢(ﬁ3h3,r3,rz)]. N[B3s- (©—©1)],  (13b)
r r sh[A3ns- (@ —©1)] L
Pos n321)‘3n3 Fns r sh(A3ms-T03) % A3rs - In r2) ] (13¢)

where h3 and n3 are the spatial harmonic orders in Region 3; c3ﬁ’3, d3® and f3], the integration
constants; B3y3 = h3 - 71 /Te3 With T3 = @ — ©1; and A3p3 = N3 7T/ T3 W|th T3 = In (r3/r3).

Using Fourier series expansion of Az1|ygar—r, ad Az|year—r, (see Figure 3c) over the interval
0 = [01, Oy] = [@1, O1 + T3], the integration constants 03® and d3® are determined in Appendix C

with

2 ®1+T@3 |
tr=r, .
3% = —. / ZETER in[B3hs - (© — @4)] - dO, (14a)
T3 r2
21
O1+7e3
2 A22| — )
439, = . / T2 in (8343 - (© — ©,)] - dO. (14b)
T3 3 r3
1

With a weighting function g (r) = r~! and using a Fourier series expansion of A|q_ @,nvr (see
Figure 3c) over the interval r = [r,, r3], the integration constant f3[; is determined in Appendix C

with ]
3
2 1 A26|®:@ . r
f3l,=—. [ 2. —==2.5in|A3p3-In{ — )| -dr. 15
= r[r — [ 3 <r2)] (15)
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2.5.4. Region 4
The solution in Region 4 is obtained using the same development than Region 3. By posing f}, =
in (B.1) — (B.3) (see Appendix B), A4 satisfying the BCs of Figure 3d and solution of (1a) is given by
Ay =AY+ A, (16a)

ad EZ (ﬁ4h4! r3, r) EZ (ﬁ4h4! r, rz) .
A% = ). lma 2 Ey‘(,B4h4, r3, ry) gy 3 Ef(,B4h41 rs, VZ)] S B (02 9)), - (160)

ha=1
ad sh [)L4 4 ° (@5 — @)] . r
Al, = ar, oy - n - Mg -In( — |, 16
# n42:1e T2 g (Mg - Toa) SIN | Ane -0 r (160)
the r-component of B4 by
Bs = B + Bl (17a)

S E/(P4narsr) Ej(B4narr2)
BS1 = h£1 Bdha - C4r(?4 : rTZ ’ E(f(/g4h4"’3vrz) T d4f(?4 . rTS ’ E%(ﬁ4h4,r3,rz):| - €0 [BAng - (O — Os)], (17b)

> r, chMMy- (0 —0)] . r
Bly=— Y Mg -edl, 2. : 4oy -In [ — 17
r4 n4:1/\ n4 - €4ny r sh (Adna - Toa) sin | Adpg - In )l (17¢c)

the ®-component of B4 by

Bos = 884 + Br@4- (18a)
& P4(B4ha.ra.r) P (B4na.rir2) .
BSs = h42:1 Pna - |c4y - 7 E;m — 40, - 2 E;m] -sin[Bdp, - (© — ©s)],  (18b)

3 r2 sh[Mpy - (O — O)] r
Br = — A, - 4r . L. . . I 1
® n4Z:1A e T Ve tea) AMdna-In ()|, (18¢)

where h4 and n4 are the spatial harmonic orders in Region 4; c4f?4, d4f?4 and e4[, the integration
constants; B4y, = h4 - n/r@4 with T4 = O — Os; and Ay, = nd - T/ Teq With T4 = IN(r3/12).
Using Fourier series expansion of Az |y r—r, aNd Az|ygar—r, (see Figure 3d) over the interval

® = @5, Og] = [Os, Os + Te4), the integration constants c4h®4 and d4h®4 are determined in Appendix C

with o
5+ T4
2 Aul—r, .
40 = = . / DA Sin [Bang - (© — ©s)] - O, (19a)
Te4 r2
Os
Os5+To4
2 Azli—r, .
448, = = . / U Sin [Bng - (© — ©s)] - dO. (19b)
T4 4 r3
5

With a weighting function g (r) = r—! and using a Fourier series expansion of Az7|®:®5wr (see
Figure 3d) over the interval r = [r,, r3], the integration constant e4;, is determined in Appendix C
with

2 71 Azl r
edl, = —.[=. 2210205 i [A4n4 -In ()] -dr. (20)

2.5.5. Region 5

For Region 5, the general solution is given according to the BCs of case-study no 1 (i.e., A; imposed
on all edges of a region) in Appendix B. Therefore, A,5 satisfying the BCs of Figure 3e and solution of
(1a) is given by

Az = A + Als, (21a)
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- E/(BShs: r3, 1) Ey(BShsrir2) |
A = hSZ::l lCS% T2 E s (BShs, 13, 12) + 55 s Ey (BSns, r3,rz)] SN P (0= @)l (210)

& sh[A5n5-(©4—0)] sh[A5p5-(©0—03)] .
Aas = n52:21 {e5:15 ’ Sh(/\55n5'$’®5) + 150 - Sh()\55n5'T®5)3 } $f2-sin [)\5,15 In (%)}’ (21c)

the r-component of Bs by
Brs = B 4 By, (22a)

® Ei(/s5h5~r31r) Ei(ﬁf’hs’r,rz)
B'@S - h52:1 Pons [C5h®5 ' rTZ ’ Elf(ﬁ5h5,r3,r2) + d5h®5 ’ rTg ’ Ef(ﬁ5h5,r3,r2)} 08 [‘B5h5 (8-09)] (220)

S ch[A5ys5-(@4—© ch[A5p5-(©@—0 ;
Brs = n52:1 Adns - {_6555 . [Sh(/\55n(5';®5) ! + 50 - Lh(/\55n(5'T®5)3)] } . rTZ ~sin [/\5”5 In (%)}’ (22¢)
the ®-component of Bs by
Bos = BSs + By, (23a)

o P (B5hsr3.r) P/ (B5hs.r.r2) .
Bs = L Pons [05?5 -3 E’m —d5 - EW] +sin [BShs - (0 — @g)],  (23b)

ad sh[A5,5- (04 —O sh[A5,5-(O—O
Bos = n5§1 Adns {85[15 ’ £h(/\55r55'i®5) ! + 5ps - [Sh(/\55r55‘f®5)3)] } ’ rTZ $€0S {)\5”5 In (é)}' (23¢)

where h5 and n5 are the spatial harmonic orders in Region 5; cSﬁ’S, dS%, e5/; and f5] ; the integration
constants; 5,5 = hb5 - 7'[/T@5 with 1g5 = ®4 — @3; and A5,5 = n5 - 1/ 75 With 75 = In(r3/r2).
Using Fourier series expansion of A21|V®Ar:r2 and A22|V®N:r3 (see Figure 3e) over the interval

O = [03, O4] = [@3, O3 + Ts], the integration constants 05?5 and d5h®5 are determined in Appendix C

with o
3+ Tes
2 Aztl— )
5% = — - / Aatlrr, -sin [B5;s5 - (© — ©3)] - dO, (24a)
Tos r
O3
O3+71es5
2 Azl — i
d5 = — - / Aclr—r, -sin [B545 - (© — ©3)] - dO. (24b)
Tos o rs
3

With a weighting function g (r) = r—! and using a Fourier series expansion of A26|®:®3AW and
Az7lo—@,nvr (se€ Figure 3e) over the interval r = [rp, r3], the integration constants e55 and f5g are
determined in Appendix C with

r3

2 1 Aslo—e, . [ r\]
ro_ L = 2219=0s In( =11 - 2
5.5 - / ; r sin -)L5n5 n <r2>_ dr, (25a)
r2
2 71 Azl [ ]
7= . r
5 — ./,.ﬂ.sm A5ug - In () dr. (25b)
Tr5 r r L r /|

r

2.5.6. Region 6

For Region 6, the general solution is given according to the BCs of case-study no 2 (i.e., By and A;
are respectively imposed on r- and ®-edges of a region) in Appendix B. Therefore, A, satisfying the
BCs of Figure 3f and solution of (1b) is given by

Az = AR+ Als + Azpe, (26a)
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® In(r3/r) ® In(r/ry)
o _ | %012 i) 900 13 e (26b)
76 = ®© ) E /(Bbhe.r3.r) o E /(Bbhe.r.r2) ,
ot L Cﬁhe'@@mﬁ%'fr@m 05 [B6ng - (© — ©2)]
& ch[ABns (0—03)] ch[A6ys(©3—0)] r :
Ao = L {o0he b~ TOhe MMt g SN [A6ne - In ()] 269

Considering (26b) and (26¢) as well as the form of the current density distribution, i.e., (2), a particular
solution A,pg can be found. The following particular solution is proposed

1
Azpe = — ;- r? - e - doe. (26d)
The r-component of Bg is defined by

Brs = Brg + Bfg + Brps, (27a)

E/(Bbhs.r3.r) E ;(Bbhe.r.r2)

B = — L Pbno- By~ 7 gf% +dég - ﬁ%] sin[BBhs - (@ — @,)],  (27b)

8 sh[A6ys (0—03)] sh[Ane (@3—O) | 1y o
Bl = L {ebhe "ilinroa T (Ohe il P oin 260 I ()], @70)
1 0dAzps
Brpg = — - = 27
6= T 5 =0 (27d)
and the ®-component of B¢ by
Bes = 886 + B(r95 + Bops, (28a)
5O RO P"(‘é?%) Py (Bore.12) (28b)
06 = o he 3,1 he»l 2 )
o]k E e {06%’% : #W dﬁ%¢§%} €05 [B6ng - (O — O2)]
_ S ch[ABpg-(0—03)] ch[Abre:(©3—@)] | r
Boe = — = {e6he it roar — (Ohe Tty 008 Mo (£)], (289
_ JdAps 1
Bors = ——5 — =5 T He " e, (28d)

where h6 and n6 are the spatial harmonic orders in Region 6; c65, d65, c6%,, d65, e6l, and 6]
the integration constants; 6 = h6 - n/r@e with g = @3 — ©Oy; and A6, = n6- /1 With
T = INn (r3/r2).

Using Fourier series expansion of AZl|V®/\r:r2 and A22|v®N:r3 (see Figure 3f) over the interval
0 = [@,, O3] = [@2, ©®; + Tpg), the integration constants c6 & c6 and d6§ & d6, are determined
in Appendix C with

o 1 O2+Tes 1
060 = T : / r : {A21|r:r2 - AZP6|r:r2} -do, (298.)
06 &, 2
) ’ O72+106 1
= [ [Aulir, ~ Awelir,] 005 B (© - @)]-00,  (290)
Toes r
G2
O+
d6® — L ! A A de 29
0o — % N / 6 : |: 22|r=r3 - zP6|r=r3} : ! ( C)

G
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O, +Tes
a6ty = - / L. [ Acalizry = Aapelr—r, | - oS [B61s - (@ — @) - dO. (29d)
Tos rs - =h
O,

Using a Fourier series expansion of He/ﬂs . Br5|®:®3/\Vr and y6/y3 . Br3’®:®2/\w (see Figure 3f)
over the interval r = [r, r3], the integration constants e6/; and 6 are determined in Appendix C
with

3

2 1 |ue _ .
el Il e — B sin [A6rg In (=) | -ar, 30
€06 Tr6 A ro [Hs r5|@:®3 rP6|®:®3 Sln[ ne - In <r2)] r (30a)
2 3 1
b= [ |12 B - B i ()] ar
6n6 Trg ; r l:,uS r3 ‘@:@2 rP6 |@:®2 sin )L6n6 n ; dr (30b)
2.5.7. Region 7

The solution in Region 7 is using the same development than Region 6. Thus, A,7 satisfying the
BCs of Figure 3g and solution of (2) is defined by

Az =AY + AL + Agpr, (31a)
® In(rs/r) ® In(r/ry)

po | 102 iy o In()wé) E (BT r2) (31b)

77 = ® ® h7:r3.r ® h7:hr2 )

et h£1 Ty T2 Ej (B 2] +d77 T3 E¢(57h7,r3,r2):| +€0s [B7h7 - (© — O4)]
& ch[A7h7-(©0—04)] ch[A7q7:(©5—0)] r :
A= ¥ et i~ o SRy | i sin [V en ()] @19
1
Azpr =~ 2 u7 g7 (31d)
The r-component of By is defined by

Br7 = B + Bf7 + Brpr, (32a)

o E /(BTh7.r3.1) E (BTh7.1I2) .
By = - mZ:lfﬁm : {tﬂh@? 2 475%;37'17,@;2) +d7 - 2 QW] -sin[B7h7 - (O —0y)],  (32b)

r_S r . Sh[A7n7-(©—@4)] r . shA7h7-(@s—O)] 1 1z . o . xr
Bl; = n72:1 {e?n7 (AT T07) + 7 (A Tn07) } Z-sin [A7n7 In (rzﬂ’ (32¢)
1 0JAzp7
Bips = = - =0, 32d
T 50 (32d)
and the ®-component of B, by
Bg7 = 587 + Br®7 + Bop7, (336.)
50 C7g) ’ sz ’ In(r31/r2) B d70® ’ r73 ’ I?érgl/rz) ) ” ) (33D)
— ) P(BTh7,r3,r P, (B7h7.1,r2 f
o7 R h7=lﬁ7h7 : C7?7 T Ef(ﬁ7h7yf3,l’z) B d7% 3 E;(,BM%} €08 [Th7 - (© = Ou)]
o > ch[A7p7-(©0—04)] ch[A7h7-(@5—©)] | r
B = = L {oTr S — T Sy ) eos [ (g)] e
JA 1

Bop7 = — 5 = 5 [ Ji7 - Jar, (33d)

where h7 and n7 are the spatial harmonic orders in Region 7; c7§, d7§, ¢72, d7%, €7, and 7!,
the integration constants; 7,; = h7- 71/7@7 with 197 = O5 — Q4;, and A7,7 = n7- /77 With
7 = 1In (rglrz).

d0i:10.20944/preprints201708.0052.v1
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Using Fourier series expansion of AZl|V®/\r:r2 and AZZ‘V@/\r:@ (see Figure 3g) over the interval
© = [@4, Os] = [@4, ©®4 + Ty, the integration constants ¢7 & c7¢ and d7§ & d7}, are determined
in Appendix C with

o 1 O4+T07 1
Cly = — - / o {All|r:r2 - AZP7|r:r2} -do, (34a)
Te7 4 2
4
Oy+To7
2
Tio= = [ = [Patler, — Awprler,] 008 BT (0~ ©4)] - dO, (34b)
o1 o "2
@4t
479 — T A A do 34
0 — E ! ®~/ E : |: Z2|r:r3 - ZP7|r:r3:| : ’ ( C)
4
Oy+To7
2 1
d7hy = —- / o [Azz\r:rg - AZP7‘r:r3} +€0S [B7h7 - (O — ©4)] - dO. (34d)
U 3
4

Using a Fourier series expansion of ji7 /ju4 - Bralg—@nvr and /s - Br5|®:@4/\\1r (see Figure 30)
over the interval r = [ry, r3], the integration constants e7[; and f7], are determined in Appendix C

with )
3
2 1 nr . r
7o =—./=.|%.B - B . Alq7-In( — || - dr, 35
€/n7 Tr7 A ry [IM r4|®:®5 rP7|@):@)5 sIn [ n7 - 1IN <r2)] r (35a)
> 1
f?r = — —_ Ll? . B - B - Si )\7 * I r N d . 35b
n7 = 0 {}45 r5\@:@4 rP7lo—@, | SIN [ATn7 <IN r r (35b)

r

3. Validation of the Semi-Analytic Method with FEA

3.1. Introduction

The objective of this section is to validate the proposed 2-D subdomain method in polar
coordinates (r, ®) on the magnetic field distribution in relation to the numerical method. The physical
and geometrical parameters of studied electromagnetic device are given in Table 1.

For this validation, the air- or iron-cored coil has been modeled using Cedrat’s Flux2D (Version
10.2.1., Altair Engineering, Meylan Cedex, France) software package (i.e., an advanced finite-element
method based numeric field analysis program) [40]. The finite-element model is done with the same
assumptions as in the semi-analytical model (see § 2.1. Model Description and Assumptions). The
linear system (i.e., Cramer’s system), given in Appendix C, has been implemented in Matlab®) (R2015a,
Mathworks, Natick, MA, USA) by using the sparse matrix/vectors. A discussion on the numerical
problems (viz., harmonics and ill-conditioned systems) of such semi-analytical models has been
clarified in [1]. The Maxwell-Fourier methods exhibit a similar problem to the numerical methods
due to the periodicity of Fourier series, and consequently to the finite number of harmonics. Hence,
A; and B = {By;Bg; 0} in the various regions (see § 2.5. General Solutions of Various Regions) have
been computed with a finite number of spatial harmonics terms Hlpyax — H7max (for the ®@-edges)
and N3max — N7max (for the r-edges). As indicated in [41,42], these spatial harmonics terms, given in
Table 1, have been imposed according to an optinal ratio, i.e., for Hlyax given,

TOe TOe
Heomax = Hlpax- O and Nepmay = Hepay ‘ﬂ- (36)

To1 Tre
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Table 1. Physical and Geometrical Parameters of the Air- or Iron-Cored Coil.

Parameters, Symbols [Units] Values

Number of turns of the coil, N¢ [-] 60
Supply current, | [A] 20

Conductor Surface, S¢ [mm?] 120

Current density of the coil, J,, [A/mm?] +10
Effective axial length, L, [mm] 60

Geometrical parameters in the @-axis, {©1;0; O3;04; Os5; O} [deg.]  {0;17;21;29;33;50}
Geometrical parameters in the r-axis, {ry;ro;rs; r4} [mm] {21,81;100; 160}

Relative magnetic permeability of the iron, pjron [-] 1,500
Number of harmonics for Region 1, H1max [-] 260
Number of harmonics for Region 2, H2max [-] 260

Number of harmonics for Region 3, { H3max; N3max} [-] {88;124}
Number of harmonics for Region 4, {H4max; N4max} [-] {88;124}
Number of harmonics for Region 5, {H5max; N5max} [-] {42,124}
Number of harmonics for Region 6, { H6max; N6max} [-] {21;124}
Number of harmonics for Region 7, {H7max; N7max} [-] {21;124}

PAVAVAYAS

N AVAV
S aATAYAYAV A,
sl vavyy v 4y Ay
A Kb
KIAFHRRPK]
S AVAVAVNV VAV YAVAVAY
AN D RK]

Figure 4. 2-D finite-element analysis (FEA) mesh for the air- or iron-cored coil.

The linear system size depends on the number of: (i) regions; (ii) BCs; and (iii) harmonics of each
subdomain. In our study, the linear system (C.3) consists of 2,036 elements which is much smaller
than the 2-D FEA mesh having 3,081 surfaces elements of second order (viz., the triangles number of
system). For information, the 2-D FEA mesh for an air- or iron-cored coil is illustrated in Figure 4. The
personal computer used for this comparison has the following characteristics: HP Z800 Intel(R) Xeon(R)
CPU@2.4 GHz (with 2 processors) RAM 16 Go 64 bits. The computation time of 2-D subdomain model
is divided by 2 (viz., 0.5 sec for 2-D subdomain model and 1 sec for the 2-D FEA).

3.2. Results Discussion

The validation paths of A; and B = {By; Bg; 0} for the semi-analytic and numeric comparison are
given in Figure 5.

The waveforms of global quantities are shown on different paths in Figure 6 for A; and in
Figure 7-11 for the components of B. The solid lines represent the global quantities computed by the
2-D FEA and the circles correspond to 2-D subdomain model. Comparing those results with 2-D FEA,
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2\0=(0;+0,)/2

6,

Figure 5. Validation paths for the semi-analytic and numeric comparison.

it can be shown that a very good evaluation is obtained for A; and for the components of B, whatever
the paths, for both air- and iron-core. This confirms that the effect of global saturation can be taken
into account accurately. It is interesting to note that numerical peaks appear in the FEA results (see
Figure 6e, Figure 7, Figure 8b and Figure 11b) which are mainly due to the mesh. The relative error is
less than 1.5 % for the various global quantities (see Figure 6a and 6c¢ for the maximum error).

4. Conclusion

It has been demonstrated that there exists no exact semi-analytical model based on the subdomain
technique in polar coordinates taking into account of iron parts with(out) the nonlinear B(H) curve. An
improved 2-D subdomain method in polar coordinates (r, ®) to study the magnetic field distribution
in the iron parts with a finite relative permeability have been presented in this paper. Nevertheless, the
research work is an extension of [1] in polar coordinates (r, ®).

The proposed new subdomain model is applied to an air- or iron-cored coil supplied by a constant
current. The magnetic field solutions in the subdomains and interfaces conditions between regions are
carried out in the two directions (i.e., r- and ®-axis). The iron relative permeability used in this model
is constant and corresponds to the linear part of the nonlinear B(H) curve. However, the whole B(H)
curve of the magnetic material can be applied with an iterative algorithm as in [29,30,34]. The proposed
subdomain method in polar coordinates (r, ®) takes less computing time than the FEA (approximately
2 fold versus to FEA). It is very suitable for design and optimisation of the electromechanical systems
in general and electrical machines in particuler. The semi-analytical results have been validated with
FEA and good agreement has been obtained in both amplitudes and waveforms.

The major scientific contributionis the 2-D semi-analytical analysis of the rotating electrical
machines (e.g., radial-flux machines, etc.) with(out) magnets supplied by a direct or alternate current
(with any waveforms).
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Figure 6. Waveform of A; for: (a) Path 1, (b) Path 2, (c) Path 3, (d) Path 4, and (e) Path 5.
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Figure 11. Waveform of B for Path 5: (a) r- and (b) ®-component.
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Appendix A The 2-D General Solution of EDPs (i.e., Laplace’s and Poisson’s equations) in Polar
Coordinates

Using the magnetostatic Maxwell’s equations (viz., the Maxwell-Ampere law, the
Maxwell-Thomson law, and the magnetic material equation) [1], the general EDPs in terms of magnetic
vector potential A = {0;0; A;} with u = C®t can be expressed in polar coordinates (r, ®) by

A, 1 9A, 1 A,
Ae=T0 T o T e — B (A12)
N P . IMe M
ES = [;4 I+ . <M@+r o % )| (A.1b)

where J = {0;0;J;} is the current density (due to supply currents) vector, M = {M;; Mg;0} is
magnetization vector (with M = 0 for the vacuum/iron or M # 0 for the magnets according to the
magnetization direction [43]), and i = g - yr is the absolute magnetic permeability of the magnetic


http://dx.doi.org/10.20944/preprints201708.0052.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 August 2017 d0i:10.20944/preprints201708.0052.v1

18 of 29

material in which o and ., are respectively the vacuum permeability and the relative permeability of
the magnetic material (with y = 1 for the vacuum or u, # 1 for the magnets/iron).

The magnetic vector potential A; is governed by Poisson’s equation (i.e., ES # 0) or Laplace’s
equation (i.e., ES = 0). Using the method of separation of variables, the 2-D general solution of A; in
both directions (i.e., r- and ©®-edges) can be written as Fourier’s series

A; = AD + AL+ Agp, (A.2a)
[C5 +Dg - In(r)] - (B + Fy - ©)
A= e .| E-cos (B -©) , (A.2b)
h=1 \ -+ D -r P o+ RO sin (B - ©)
[C+Di-In(r)] - (Ef+F§-©)
Ar=| ) Crrcos[An-In(n) | Eh-ch(An-©) : (A.2c)
n—1| -+ Dp-sin[Ay-In(r)] 4+ FLsh(Ap - ©)

where A,p is the particular solution of A; respecting the second member ES in (A.1), C0® - Fr(? &Cy-F
the integration constants, 8, & A, the spatial frequency (or periodicity) of A9 & Al and h & n the
spatial harmonic orders.

Using B = V x A, the components of magnetic flux density B = {B;; Bg; 0} can be deduced by

1 9A; A,
Br=73e 4 Be=—T (A3)
which leads to L oA
Br = BY + B + - 5%, (A4a)
£.[c9+D§ In(r)]
BY = LR CRer —E® -sin (By - ©) , (A.4b)
h=1 ' : +Dh® r—Pn ~~~-|-Fh®.cos(ﬁh.@)
%[5+ Dg-In ()]
Bl = et Cl-cos[An-In(r)] [ Eq-sh(An- @) , (A4c)
n=1 ' -+ Dy, -sin[An - In(r)] -4 F.ch(Ay-O)
and
JA
Bo =BG + B — — (A5a)
DO
R NG
Bo =~ Yy B Cy - rhn | EP-cos (Bh-©) : (A5b)
h—1 " ---th®-r—/3h "'+Fr?‘5in(ﬁh'®)
Dr
% (& + 7 ©)
Bo= | ..y & i, ~Chosin[n-in(r)] [ EL-ch(An-0) . (A5
n=1 " -~~+D,']~cos[)\n-ln(r)] "'+F£~Sh(/\n-®)
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6 o
o f
r _
AZ‘o:@, &avr .
Adlo-gavr =L(1) Az@‘ = Al ave™
O=0, & Vr
)
i Al‘r:r.&vgz':(@) N r=r, &VO ()
,r: i
O, ot 1r=r|&V@ o,
- G R -
s Ch _
. /' AZ 1r=r,&\19 p
AZ}@:Q&W=R(I’) //X(i,F e - AZ‘070 &Vr: (I’)
e L - ) _
—-- A ‘0:0,&\#
(@) (b)

AZ‘@:@, gvr =0

Figure B.2. Particular case: A; = 0 on ®-edges and A; imposed on r-edges of a region.

Appendix B Simplification of Laplace’s Equations according to imposed BCs

Appendix B.1 Case-Study no 1: "'A; imposed on all edges of a region"
Figure B.1a shows a region (for © € [O,®;] and r € [r}, rt]) whose A; imposed on all edges. By
respecting the BCs and applying the principle of superposition on the magnetic quantities, Figure B.1a

is redefined by Figure B.1b.
In the case-study no 1, A, = A9 + Al ie., (A.2), is redefined by

> Ey (B, re.1) Ey(Bn. o) |
A=Y [cf?-n- E¢(ﬁhlrt,r|) +d2 - re - E;/(ﬁh.ft,n)] -sin B - (©@ — ©y)], (B.1a)

AL =

i{ ( Sh[An- (€ ~©)] | sh [/\n-(G)@r)]}.rl . sin {/\mln (r>] (B.1b)

LA™ T e) ™ sh(An o) r.

the component B, = B + B! of B, i.e., (A.4), by

o rn Ez(Bnrer) re Ey(Bn.r.n)
B?Zhglﬁh' [C?rlgj(ﬁh—rtrl)‘m?:g;(m—rtn)] +€os [By - (O — ©r)], (B.2a)
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Yy r Ch[An - (O —©)] . ch[An-(O-O0)] n r
Br - ng‘iAn . {—en . < (/\n .|T®) + fn . sh ()\n .T®) } . ?I -sin |:/\n -In <r|):|' (BZb)

and the component Bg = 88 + Bg of B, i.e., (A.5), by

= n Py(Bnrer) re Py(Bnrn) |
_—hglﬁh' [_Cﬁ.:.erdﬁ).;'Em] -sin[Bh - (© — ©y)], (B.3a)

_iAn.{eE_sh[An«@l—@)]w'shmn«@—@rﬂ} "L cos [An..n (;)] (B.3b)

Sh (/\n N T@) Sh (/\n ° T@)
where c® d®, e, and f) are new integration constants; B, = h-7n/19 with 9 = O} — Oy;
An = n-m/7 with 7. = In(r¢/r;); and E}/ (W, X,y) & P}; (w, X,y) are [44]
x\" o y\Ww X\ y\w
Ey; (w,x,y) = (y> - (;) and P;f (w,X,y) = (y) + (;) , (B.4)
with S
W, X, W, X
# = % +Py(w,x,y) and M —— Pyz (W, x,y), (B.5a)
dP , (w, X, W, X,

When A; = 0 on ®-edges and A, imposed on r-edges (see Figure B.2), A, with A} = 0in (B.1) is
expressed by

h=1

Sl BB o Ern)
AZ_Z[Ch " E;(,Bm—rt,r,)erh A Ey (Bn e n)

the r-component of B with B = 0in (B.2) by

] -sin [Bp - (@ — Oy)], (B.6a)

g |@.n EgBarn) o r EpBurm) | o
o hglﬁh [Ch r Ef(ﬁh:ft,f|)+dh r Ey(Bnrun) cos [fn- (0= 6], (B.6b)

the ®-component of B with BY, = 0in (B.3) by

Py (Bni T 1) re Py(Bnrin) |
Z Bh - [—Ch . ? E;;(,Bh,ft,n) +d§? T E}/(,Bh'rt, r|)] -sin[Bp - (© — Oy)]. (B.6¢)

Appendix B.2 Case-Study no 2: "B, and A; are respectively imposed on r- and @-edges of a region™

Figure B.3a shows a region (for © € [®,®;] and r € [r},rt]) whose B, and A; are respectively
imposed on r- and ®-edges. By respecting the BCs and applying the principle of superposition on the
magnetic quantities, Figure B.3a is redefined by Figure B.3b.

In the case-study no 2, A; = A? + AL, i.e., (A.2), is redefined by

In(r¢/r)

In(r/r)
n- In(re /1))

In(re /1))

b 5 (@ SO e EglBern) | (-
+h§1 [Ch fl E[/l(ﬁhvrtrrl)—i_dh t E(y;(ﬁh’rnﬂ) cos [ - (© — )]

_ i { hAn-(©=60)] _(r chltn- (0= 0O)] } I sin [An-ln (r)] (B.7b)

Sh (/\n N T@) Sh (/\n * T@)

o) o)
o +dg - re-

A9 = (B.7a)
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%}
K

Br‘(-):@, &vr L(r)

n Al‘r:rl&v@:':(g)

(a) (b)
Figure B.3. B, imposed on r-edges and A, imposed on ®-edges of a region: (a) General and (b)

Principle of superposition.

the component By = B® + B of B, i.e., (A.4), by

0 E , I, t E A .
B?Z—hg,lﬁh- lcﬁﬁﬁ%+dh®i%‘| -sin[Bp - (© — ©r)], (B.8a)

Br — i{ea_sh[)\n-(ﬁa—@r)]+fr§_sh[)\n-(®|—®)]}."rl_Sin [An.,n (r)] (B.8b)

n—1 sh ()Ln . T@) sh ()Ln . T@) I

and the component Bg = 88 +Bg of B, i.e., (A.5), by

RO In(re /1) 0 TP (ﬁln(rt/)n) o (5 :
e — S el N ,
...+h§lﬁh. {Cﬁ)rrsm—dh@f;%m] -cos [Bp - (O — Oy)]

r v [ chAn-(©—0y)] r Ch[An-(©—0©)]) r r
b= L {4 e e e (f)] e

©.n 1 0. I 1
0 r

(B.9a)

where ¢, d9, ¢2, d©, ef, and f} are new integration constants.

Appendix C Solving of Linear System

Appendix C.1 Calculation of General Integrals

For the determination of the Fourier’s series coefficients, it is required to calculate general integrals

of the form |
1+w
FO = [ sinfas- (1—1s)]-dI, (C.1a)
/
I +w
PP = [ cosfuc- (1-1o)] sin[us- (1= 15)] -l (C.1b)
I
I +w

FO = /sin[asl-(l—lsl)]-sin sz - (1 — I2)] - dl, (C.1c)
I
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I +w
RO = [ ehlaen (1= lep)] -sinas - (1= 1] - ol (C1d)
hy
I +w
FO = /sh[zxsh~(I—Ish)]-sin[zxs-(l—ls)]-dl, (C.1e)

Iy
Fl = /% -sin [‘Xsl -In <rr|>} -sin {asz -In <rr|)] -dr, (C.1f)

F = /r‘sin {rxs -In (rrl)] -dr, (C.19)

f

S = rl/rti : Ilr?((rrtt//r:)) -sin [txs -In (rﬁ)} .dr, (C.1h)
= Fl/rti . Ilrrl]((rrt//rrI,)) -sin [zxs -In <rr|>} .dr, (C.1i)

-1 5 ()]

The functions (C.1) will be used in the expression of the integration constants. The expressions of
(C.1a) — (C.1e) have given in [1,44]. The development of (C.1f) — (C.1k) gives

F (as, 1y, 1t) = rtz : ﬁ . {2 -In (::) -sinc [as -In (2)] + (2)2 — COoS {as -In (2)] } , (C.2b)
Fi (as, 1y, 1e) = [%S - {l —sinc [as In <:T)} } , (C.2c)

Fr (s, 1y, 1e) = Ixi {smc [ocs In <:T>} — cos [ocs In <:T>} } (C.2d)
W2+rx2 { 5 rt,n) In (::) sinc {as-ln (::)] —1}, (C.2e)

R (ronr) = ity {woin (1) - B -sine[osn ()] —eos e (1)] ). 020

Fl (as1, s, 1, 1t) = M . {sinc {(zxsl —ag)-In (::)] —sinc [(ocsl +ag) - In (:tﬂ } , (C.2a)

F5r (ﬁ(s, r|! rt)

Appendix C.2 Determination of Integral Constants

The integration constants are determined by solving

[IC] = [BC] *-[ES] (i.e., Cramer’s system) (C.3)
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which consists of

(C4
-+ 42 (H5max + N5max) + 2 - (H6max + N6max + 1) + 2 (H7max + N7max + 1)

Xmax =
equations and unknowns [1], where H1lnax - H7max (for the ®-edges) and N3pax - N7max (for the
r-edges) are the maximal number of spatial harmonics in the various regions for the computation of
A; and B = {By;Bg;0}. To solve (C.3), a numerical matrix inversion is required for the calculation
of [IC]. This set is implemented in Matlab® (R2015a, Mathworks, Natick, MA, USA) by using the
sparse matrix/vectors [1]. Usually, the two reasons for the possibility of including a finite number of
harmonics is a limiting computational time and numerical accuracy [45].

The integration constants vector [IC] (of dimension Xmax x 1) is defined by

[Ic] = { [Ic1] [1Ic2] [1c3] [I1c4] [IC5] [IC6] [ICT] }T, (C.5a)
[c1) = [dlh@l} , (C.5b)

[c2) = [czh%} , (C.5¢)

[cs] = [ 38, 3, f3, ] (C.5d)

4] = | o4, a4, ear, |, (C.5€)

[cs] = [ 58 d5Q esl,  f5, } (C.5)

[1C6] = | c69 c6% d6 defy ebhs f6lg |, (C.50)

(1C7) = | ¢7§ 79 79 a7 ety f7h | (C.5h)

The structure of the electromagnetic sources vector [ES] (of dimension Xmax x 1) as well as the
BCs matrix [BC] (of dimension Xmax X Xmax) is given in [1] (see § 2.6. Solving of Linear System). The
novel corresponding elements in [ES] and [BC] are defined as follows for Region 1

2-B3hg p1 Py (B3nsr3.r2)

d0i:10.20944/preprints201708.0052.v1

13Ch1h3 = — -FQ (B33, Bln1, ©1, 01,01, Tos) C.6a
Q13chy p3 Tor M3 Ef(ﬁ3h3,r37r2) 3 (B33, Bln1, O1, 01, O1, Te3) (C.6a)
2-B3h3 p1 I3 2 o
13d =t .. 2. — . F 343, Blh1, O, 01,01, T , C.6b
Q13dh1n3 Tor  H3 I E}/ (B3p3, 3, r2)  ° (B3h3, Blh1, O1, 01,01, Te3) ( )
2-A3
Q13fhyn3 = T@1n3 ' % -csch (A3n3 - Te3) - FE (A3n3, Bln1, @1, @1, O1, Tes) | (C.6c)
. P, (B4ps, r3, r
Ql4chipg = _2 P ‘%(‘B ha: (3. 72) - FS (BAna, Blh1, Os, 01, Os, Tes) , (C.6d)
' Tor M4 E;/ (B4na, 13, 12)
2-Bhns p1 I3 2 e
14d = = 2. . F 4v4, Blh1, Os, O, Os, T , C.6e
Q14dp1 ha o1 s T2 E/(/ (Banarars) 8 (B4na, Blh1, Os, ©1, Os, Tes) (C.6e)
2-A
Qldenyng = —Tlnﬂ' : % -csch (AMng - Tes) - FE (Adna, Pln1, Op, ©1, O, Tou) , (C.6f)
. P Bhs, I3, I
Q15Ch1 s = _ 2o 1 M - FS (B5ns, Bln1, O3, ©1, @3, Tes) | (C.69)
Tor M5 Ey(BSnsir3ir2)
2-B55 p1 I3 2 e
15d =+t 2. =-. . _ . F 5hs, Blh1, O3, 01, O3, Tes) , C.6h
Q15dp; ps Tor  fis T2 E/C/(,B5h5,rslr2) 3 (B5hs: Blh1, ©3, 01, O3, Tes5) (C.6h)
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2-A5 .
Q15105 = — " EL . cseh (A5ps - Tos) - Fs® (ABns, B, ©4, ©1, @3, Tos) (C.6i)
To1 Hs
,no — 7 n 5 ns» ’ ’ ’ ) 1 .
Q15fh1n5 o1 s ~csch (A5ns - Tes) - F5~ (ASns, Blh1, O3, O1, O3, Tes) (C.6))
2w m -F® (ﬁlh]_! ©4,0,, T@G) forh6 =0
Q16Ch he = ——— - (,86 r3,r2) (C.Gk)
1 Te1 ]"5 ﬁ6h6 E‘/[(,BG:Z rz rz . 26) (ﬁ6h6’ ﬁlhll @2, @1, @2, T@G) fOf h6 # 0
o164 2 13 W -FP (Blpy, ©1, 02, Te5) for h6 =0 (.6l
" o1 w12 % -F3 (B6ns, Bln1, O2, 01,02, 705)  forhé # 0 '
2
Q16eh1,n6 = —" ﬂ - ¢sch ()L6n6 . T@G) . F? (/\6,16, ‘Blhll @2, @1, @2, T@s) s (CGm)
To1 HMe
2
Q16fh1ne = "1 % -csch (ABns - Teg) - FY (ABns, Bln1, O3, ©1, 07, Tes) | (C.6n)
) ez L (Bl ©1, 04, To7) forh7 =0
Ql7chyp7 = —= - L. P (57 ) (C.60)
L or BTh7 - E¢(137:; rz é “FP (BTh7, Pl O, 01,04, T97)  fOrh7 #0
OL7dh 1 = 2 1 or3 m - FP (Blp1, O1, @4, To7) forh7 =0 (C.6p)
B 7%(;'7[:77,'}73,&) - F2 (BTh7, Bln1, ©4, ©1,04,Te7)  forh7 #0 P
2
Ql7enin7 = o1 % -csch (A7n7 - T07) - FY (ATh7, Blh1, @4, O1, @4, Te7) | (C.60)
2
Ql7fhyp7 = —— - BL . eseh (ATn7 - To7) - F2 (ATn7, Blht, ©s, ©1, @4, T07) , (C.6r)
To1 M7
r
ES16p1 + ES17hy = p1 - o1 {Jze FP (Blh1, ©1, @2, Ts) + 77 - 12 FY (ﬁ1h1,®1,®4,T®7)] , (C.6s)
for Region 2
2- B3 r 2
Q23chon3 = —% : % : é : m - F (B3h3, B2ho, O1, 01,01, Tea) , (C.79)
Qg = ~L12 . 2. E; Bty S (B312,6212.01,01,01,70),  (C.7b)
X
23y g — 208 B2 T2 yms ooon (a3 FO (A3p3, P21, O1, Oy, O C7
Q2303 = W'%‘E'(— )~ -csch (A3h3 - Te3) - F5' (A3n3, B2h2, @1,01,01,703),  (C.7¢)
2- B4 r 2
Q24¢hpha = —% : % : é : m “FS (B4ng, B2h2, Os, 01, Os, To4) , (C.7d)
2-B4 P/ (B4ha 13, 12)
Q24dno ha = Tﬁzm : ;Z E; (Bana, T2 T2) “FS (B4na, B2h2, ©s, 01, Os, Te4) , (C.7¢)
X ] [l
2-A4 r
Q24enp 04 = —72“4 : % : é +(—=1)™ - csch (Adng - Toa) - F€ (Ang, B2h2, ©6, O1,O5, Tos) . (C.7H)
265 r 2
Q25¢hy hs = —$ : % : é : m -FS (B5ns, B2h2, O3, 01, O3, Ts) , (C.79)
2-B5 P (,85h51 ra, rZ)
Q5thpg = =200 12 E; ooy FS (B, f212,03,01,05,705),  (CTh)
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2-A5 r .
Q25€hz,05 = — "5 P2 T2 ()™ esch (ASys - Tes) - F (ASns, f2h2 @4, ©1, @3, Te5) . (C.Ti)
Te2 Hs I3
_2:-Adps pp I ns o) i
Te2 Hs I3
02661 — 2 @ FP (ﬁ2h2,®1,®2,T®6) forh6 =0 -
hzhe Te2 Mo I3 E(f(,sefﬁ - F (Bbhg. B2h2, ©2,01,02,T95)  forhé #0 '
Q26d 2 M2 m (FG) (:BZI')IZ 0O1, 02, T@G) forh6 =0 (C 7|)
h2,h6 = 70 * 0 BBhe.3.r .
To2 Mo PB6ne - E%(ﬁﬁ:z rz rz FO (B6hs, B2n2, @2, @1, @2, Top) forh6 £ 0
2 r
Q26enyne = — - P2 22 (—1)" - csch (ABns - Tos) * Fy (ABne, B2h2. @2, ©1, @2, Teg) | (C.7m)
Te2 MHe I3
2 r
Q26 o6 = ——— - L2 2. (—1)" - csch (A6ns - Tos) - F (ABng, f2h2 O3, 01,05, Tes),  (C.7N)
Te2 He I3
Q27 _i & 2 ‘ @ F® (ﬁth, 1,0y, T@7) forh7 =0 (C 70)
L N N © Wﬁ% “FY (B7h7, B2h2, ©4,01,04,797)  forh7 #0 '
Q27d 2 12 W - FP (B2n2, ©1, Oz, Te7) forh7 =0 )
Tdhoht = == - o5 - (/57 13.12) P
e Blnr - E¢(ﬁ7: r3.12) -F9 (BTh7, B2h2, @4, 01,04, Te7)  forh7 #0
2 r
Q27eppn7 = — - F 22, (—=1)™ - csch (An7 - To7) - F (ATn7, B2h2, O4, ©1, O, Ta7) , (C.70)
Te2 M7 I3
2 r
Q27fh2,n7 = - —__ & 2 (_1)n7 - csch (/\n7 ' T@?) . F? (/\7n7, ﬁ2h2,®5, @1, @4, T®7) ) (C-7r)
To2 M7 I3
r
ES26y,, + ES27hy = 2 - 632 ' [Jze - FP (B2n2, ©1, 02, Tog) + %7 - FY (B2n2, ©1, @y, T®7)} . (C.7s)
for Region 3
31d -F 1h1, B3h3, ©O1, 01,01, Te3) , C.8a
Q31dngp = wos Blm P (Pl 212) 3 (Blh1, B3ns, O1, O1, O1, Tes) (C.8a)
2 1 Ey(BZnarats) Fo
32¢ = —— 2h9, B3n3, ©1,01, 01, T93) , C.8b
Q32¢h3 h2 o F2m P}/(,Bth, fota) F3” (B2n2, B3h3, O1, 01,01, Te3) (C.8b)
2 F3 (A3n3,12,13) forh6 =0
___c . C.8
Q36Cnans =~ ] { FL (BSho A\3ns.12,73)  for h6 0 (c80
2 I’3 4 ()\3n3, ro, r3) forh6 =0
= —— c.ad
Q36dn3,h6 3 I { (g(ﬁ6h6 /\3n3 ro, I’3) for h6 7'é 0 ( )
2
Q366n3’n5 = —— -csch ()Lﬁne : T@G) . F{ ()\6,16, A3n3, I'2, I’3) , (C.8e)
Tr3 Abng
Q36 fn3,n6 = : COth ()\Gnﬁ : T@G) : F{ (/\6n6| A3I’]3| r21 r3) ) (C8f)
Tr3 Abng
11 ]

Z-Trg )
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for Region 4
2 1 Ey(Blpnrarn) g
Mgy = — - —— - - F® (Blng, B4ns Or, Os, Os, Tou)
Q41dnan1 o1 Bln Pyl(,Blhlervrl) 3 (Blh1, B4ha, ©O1, 05, Os, Tos)
2 1 Ey(B2n2tats) g
42¢ =__° . . -F 2n2, B4hs, ©1,05,05, Tes) ,
Q42¢h4 h2 o1 F2m Pyz(ﬁth,u,rs) 3 (B2h2, B4na, O1, @5, O, Tes)
2 Fi (Adpa, 1o, 13) forh7 =0
Q47Chap7 = —— - h? or
Tra (=1)"" - F (BTh7, Adna, 12, 13) forh7 #£0
2 Fy (Adpa, ro,13) forh7 =0
Q47dngp7 = —— - —- h er
Tra T2 (=1)"" - R (BTh7, Mng, 12,13) forh7 # 0
2
Q4Tensn7 = e AT -coth (A7n7 - To7) - F{ (ATn7, Adna, 12,13),
I n
2
Q47fhyn7 = — - -¢sch (A7n7 - Te7) - F{ (ATn7, Adpa, r2,13),
Tra Aln7
ES47ng = — L F (e rars)
n4 = —H7 2 1a 1y 27 n4, 12,13),

for Region 5

2 1 Ey(Blnira,n) '

—_ — . . @
Q51dpshy = s Blm Pyz (Blnt, T2:11) F3” (Blh1, B5hs, ©1, @3, 03, Tes5) -
2 1 Ey(B2nrats) e
52¢ = —— . -F 2h9, B5ns, ©1, O3, O3, Tos) .
Q52¢hs h2 wos P2 P (B2 Tara) 3 (B2n2, B5Sns, O1, O3, O3, Tes)
Q56¢ _ 2 Fi (A5ns, 12, 13) forh6 =0
n5.h6 Ts | (—1)" - Ff (B6ng, ABns, r2,r3)  forh6 #0
Q564 _ 2 3 Fy (A5ns,r2,13) forh6 =0
"M s 12 | (=)™ B (BBhg ABns, 12,r3)  forh6 # 0
2 1 )
Q56en5 0 = —— - -coth (/\6n6 : T@G) -F (ABng, ABns, 2, I’3) )
Trs  Abng
2
Q56 fh5n6 = % : 165 - csch (A6ns - Teg) - |:1r (ABng, Abns, 2, 13)
2 F} (ABns, 2, 13) forh7 =0
57 =——-¢ 3
Q57Cns 7 Trs { Fs (B7h7,ASns,r2,r3)  forh7 #0

Fi (ABps, 2, 13) forh7=0

4
F§ (B7h7,A5ns, 12, 13) for h7 #0

2 13
7 _ —— . = .
Q57dps h7 s {

2
Q57ensn7 = —— - -¢sch (A7n7 - T7) - F{ (ATn7,ABns, 12, 13)
Trs  Aln7
2 r
Q57fnsn7 = — - - coth ()\7n7 : T®7) -F (/\7n7: A5ps, I2, I’3) )
Trs ATn7
ES56n5 = .1 F; (A5ps, I, 13)
n5 — ,uG ZTrS r2 26 2 n5:12,13) -
1 1 r
ES57n5 = —Hur- — - JZ7 . F2 (/\5n5, ro, I’3) .
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for Region 6
E/(Blh.r2.r1) FO (Blp1, O1, @2, Tes) forh6 =0
610hent = = o BT 3 ok co ci
Q h6,h1 Tes Pl f(ﬁlhlyl’z,ﬁ) 2- F2® (,36h6- ,Blhlr 0,,01,0,, T@G) for h6 7'é 0 ( a)
E(B2h2.r4.r3) FO (.Bth 01,0, T@G) forh6 =0
62 =L . L i o P C.11b
Q62Che n1 Tos P2 P¢(52hz’r4'r3) { 2+ FS (Bbhg, B2h2, O2,01, O, Tog) for h6 0 ( )
2-B3
Q63cCnen3 = 2 P tis, (—1)™ - FL (B3ha, Abne, 12, T3) , (C.11c)
Tr6 M3
2-B3 r
Q63 g = — L8 16 T3 ()03 e (30 A6 raTs) (C.11d)
Tr6 Mz T2
2-A3
QB3fngns =~ gj coth (A3ng - Tos) - FY (A3ng, Abns, 2, T3) | (C.11e)
I
2- 65
QSengys = — 1 L8 EQ (B, A 12 ), (110
2-B5 r
Q65dne hs = 2 PO ps 15 Fs’ (B5hs: Abns. 12, 13) , (C.11g)
Tr6 Hs T2
Q65€ng,ns = 2 .?5n5 ge - coth (A5ns - Tes) * Fi (A5ns, ABng, 12,13) , (C.11h)
ré 5
Q65fnens = 2 .T)‘Sn5 gG csch (A5ns - Tes) - Ff (A5ns, ABng, I2,13) , (C.11i)
ré 5
1 .
ES61y = Z “ U6 - Jz6 - I2, (C.llj)
1
E3620 = Z “Ue * Jz6 - I3, (C.llk)
for Region 7
E;(Blh1.ra.r1) (,Blhlv 1,0y, T@7) forh7 =0
Tldpypy = =& - gt - 2l C.12
Q7ldn7n = 7 * 1y Py (Bl 2 ) “F9 (BTh7, Blh1, ©4,01,04,797)  forh7 #0 (C123)
E(B2n2.r4.13) FO (B2h, O1, Oy, Te7) forh7 =0
19y — — A L h 12
Qe o7 Pz Py(Forarats) { 2-F (BTh7, B2n2. ©4, 01,04, Te7)  forh7 #0 (C.125)
2. B4
Q74Cn7ha = —% : % - Fs (BAng, ATn7,12,13) (C.12c)
r
2-B4 r
Q74dn7ng = 2P g7 1 “FE (B4ng, ATn7,12,13) (C.12d)
Tr7 Ha T2
Qe = 200t BT coth (s - or) - Ff (Vs Ao 12,73). (C.12¢)
7 4
265
Q567 = — 208 M1 (1) L EL (8515, ATur, 2, 1), (C.12f)
Tr7 Hs
2-B5 r
Q75dn7hs = _2:Foms 17 T (—1)™ - FL (B5hs, ATn7,2,T3) | (C.12g)
Tr7 Hs T2
2.
Q756n7’n5 = ﬂ . & -¢sch (/\5,—]5 . T®5) . F](_a (/\5,—]5, ATn7, 12, r3) , (C.].Zh)
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225 .
Q75%17n5 = —T’ﬁ : % - coth (ABps - Tos) - FO (ABps, ATn7,F2,T3) | (C.12i)
r
1 .
ES710 = Z “UT - J;7 19, (C.12j)
1
ES72y = Z “U7 Jz7 - 13. (C.].Zk)
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