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Abstract: An adaptive spatial clustering (ASC) algorithm is proposed that employs sweep-circle 12 
techniques and a dynamic threshold setting based on Gestalt theory to detect spatial clusters. The 13 
proposed algorithm can automatically discover clusters in one pass, rather than through the 14 
modification of the initial model (for example, a minimal spanning tree, Delaunay triangulation, or 15 
Voronoi diagram). It can quickly identify arbitrarily shaped clusters while adapting efficiently to 16 
non-homogeneous density characteristics of spatial data, without the need of priori knowledge or 17 
parameters. The proposed algorithm is also ideal for use in data streaming technology with dynamic 18 
characteristics flowing in the form of spatial clustering large data sets. 19 
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1. Introduction 22 

Rapid advancements in geographic spatial information technology, generation, and collection 23 
have created exponential growth in spatial data, resulting in increasingly complex data structures. It 24 
is more than ever necessary to address the challenges involved in extracting useful information and 25 
knowledge from large-scale, highly complex, spatial data sets. Data mining from the spatial data set 26 
is a valuable way to obtain valuable information; spatial clustering has played an extremely 27 
indispensable role in spatial data mining research. Clustering is the process of grouping spatial data 28 
objects into a series of meaningful clusters so that objects within a particular cluster shares 29 
similarities, while being dissimilar to other clusters[1,2]. Spatial point clustering has been applied to 30 
a wide variety of fields, including urban planning, remote sensing, geographic information, 31 
bio-engineering, geology and minerals, as well as computer science [3-5]. Current spatial clusterings 32 
have been roughly classified into the following categories: 33 

• Partitioning methods, e.g., K-Means[6] and K-Medoids[7]. 34 
• Hierarchical methods, e.g., CURE[8], BIRCH[9], and CHAMELEON[10]. 35 
• Density-based methods, e.g., DBSCAN[11], OPTICS[12], and DENCLUE[13]. 36 
• Graph-based methods, e.g., ZEMST[14], AUTOCLUST[15], and SMTIN[16]. 37 
• Grid-based methods STING[17] and WaveCluster[18]. 38 
• Model-based methods, e.g., EM[19], COBWEB[20] and SOM[21]. 39 
• Hybrid methods and large data set methods CLIQUE[22],NN-Density[23],and ACODF[24]. 40 
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These traditional approaches have been successful in managing a number of specific applications 41 
across different domains, but significant limitations exists. Most traditional clustering methods rely 42 
on user-specified arguments or a priori knowledge, and cannot manage clusters of irregular shapes 43 
or of different sizes, and are not effective in sets with non-uniform inner density, outliers, or noise. In 44 
fact, no particular clustering method has been shown to be superior to its competitors among all the 45 
necessary aspects[25,26]. To date, the advantages and disadvantages of various algorithms have 46 
been extensively analyzed [26-31].Some analysis of the classical spatial clustering algorithms are 47 
summarized in Table 1. 48 

Relation to geographical space and large amounts of data are common characters of data. The 49 
spatial object is highly complex requires high correlation. This demands that clustering algorithms 50 
be highly efficient. Efficient spatial clustering algorithms are valuable for many real-world, dynamic 51 
applications[32]. Large data sets are challenging for computational systems when processed with 52 
conventional algorithms, particularly as the amount of spatial data increases exponentially in the 53 
real world. Popular traditional clustering algorithms require repeated access to the data set, as well 54 
as multiple clustering operations, which decreases their efficiency as data set size increases[27] 55 
[5,33]. This paper proposes an adaptive spatial clustering algorithm (ASC) that employs both 56 
sweep-circle techniques and a dynamic threshold setting based on Gestalt theory to detect spatial 57 
clusters. Empirical results and comparison demonstrated that the proposed ASC can automatically 58 
discover clusters in one pass, rather than modifying the initial model. A minimal spanning tree, 59 
Delaunay triangulation, or Voronoi diagram, can be quickly identified even with arbitrarily shaped 60 
clusters. The proposed ASC can identify the non-homogeneous density characteristics of spatial data 61 
without the need for a prior knowledge or parameters. It is compatible with streaming dynamic, 62 
large-scale data found in spatial clustering.  63 

The remainder of this paper is organized as follows: In Section 2, the relation of ASC to 64 
previous methods is described. In Section 3, the proposed algorithm is explained in detail. Section 4 65 
describes the ASC-based streaming process as-applied to large data sets. Section 5 reports our 66 
analysis of the algorithm including its time complexity and comparison against other clustering 67 
methods. Section 6 provides an example of the proposed algorithm applied to a real-world data set, 68 
and Section 7 concludes with an outlook for further research. 69 

2. Related work 70 
2.1 Plane-sweep techniques 71 
The plane-sweep is a popular acceleration technique used to solve 2D Euclidean space 72 

geometric problems[34]. This technique initially sorts the geometric elements, then it is imagined 73 
that a sweep-line glides over the plane and stops at geometric elements (typically called “event 74 
points”)[35], where the corresponding data structure is then updated. The plane-sweep method 75 
cannot move backwards across the event points. 76 

The sweep-plane technique was initially applied to computational geometry problems[36]. 77 
Shamos and Hoey later applied a unidirectional sweep-plane algorithm that used time O (nlogn) to 78 
determine whether or not a finite number of line segments are any two intersect in a plane[37].  79 
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Table 1.Comparisons of some classical spatial clustering algorithms  80 
Based on 
category 

Typical 
algorithm 

Shape of 
suitable 
data set 

Discovery
of clusters 
with even  
ensity

Scalability Requirement 
of prior 
knowledge 

Sensitive 
to 
noise/out 

For 
large-scale 
data 

Complexity 
(times) 

Partition K-means Convex No Middle Yes Highly Yes Low 

 CLARANS Convex No Middle Yes Little Yes High 

Hierarchy BIRCH Convex No High Yes Little Yes Low 

 CURE Arbitrary No High Yes Little Yes Low 

 CHAMELEON Arbitrary Yes High Yes Little No High 

Density DBSCAN Arbitrary No Middle Yes Little Yes Middle 

 OPTICS Arbitrary Yes Middle Yes Little Yes Middle 

 DENCLUE Arbitrary No Middle Yes Little Yes Middle 

Graph theory MST Arbitrary Yes High Yes Highly Yes Middle 

 AMEOBA Arbitrary Yes High No Little No Middle 

 AUTOCLUST Arbitrary Yes High No Little No Middle 

Grid STING Arbitrary No High Yes Little Yes Low 

 CLIQUE Arbitrary No High Yes Moderately No Low 

 WaveCluster Arbitrary No High Yes Little Yes Low 

Model EM Convex No Middle Yes Highly No Low 

 81 
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Bentley and Ottmann extended this algorithm to determine the existence of intersecting line 

segments, but were also able report all k intersections of n line segments within time O ((n+k)logn), 

where k is the number of intersections[38]. The sweep-line algorithm  was also used to construct a 

Voronoi diagram, i.e., dual Delaunay triangulation[39]. The Delaunay algorithm examined in this 

study is based on plane scattered point sets used by Žalik[35] and Zhou[40]. Žalik was the first to 

suggest the use of sweep-line techniques for spatial clustering[41]. 

2.2 Sweep-circle algorithm 

The sweep-circle is another important sweep-line technique, where points are initially sorted 

according to their distances from a fixed pole O in the convex hull of S. It is assumed there is a circle 

C centered at O, with radius increasing from 0 to +∞, which stops at event points and updates the 

data structure. A part of the problem being swept (inside the circle) is already solved, while the 

remaining part (out of the circle) is unsolved.. Dehne and Klein[42] were the first to use a circle that 

emanates from a fixed point resulting in a Voronoi. Adam[43] and Biniaz and Dastghaibyfard (2012) 

suggested that the incremental sweep-circle algorithm is better suited to constructing Delaunay 

triangulations[42] (Figure 1). 

 

 

 

 

 

 

 

 

 

 

 

 

2.3 Data stream technique 

The “data stream” is an unbounded orderly sequence of information, which can consecutively 

arrive in large quantities, however this technique can only process data sequentially with 

appropriate access. Data mining algorithms based on data streaming techniques are commonly used 

in satellite remote sensing, geographic information, network monitoring, and financial services. 

Traditional typical spatial clustering algorithms that repeatedly access the entire data sets repeatedly 

cannot be readily applied to data streaming, as their high complexity and computational cost 

renders them unable manage such a large amount of data. In fact, data stream clustering algorithms 

have become important from within data mining research and there have been many algorithms 

based on data stream technology proposed, including the commonly-used one-pass algorithm[44] 

[9] [45-48]. This algorithm divides the non-stream data sets into data blocks so as to fit requirements 

of the memory space and one-pass sweeping data objects. The traditional clustering algorithm can 

be applied to the data-streaming environment once the data blocks have arrived from the data 

stream[49]. For example, K-Means and K-Medians algorithms[44] can be used to process large data 

Figure 1. Incremental sweep circle algorithm constructs Delaunay triangulation 
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sets, and the Squeezer algorithm can allocate the data into similar globes before clustering using 

one-pass sweeping[46]. The BIRCH algorithm uses a clustering feature tree to minimize I/O requests 

prior to one-pass sweeping for clustering[9]. Guha et al. also conducted valuable research on the 

one-pass algorithm using similar data sets[44] [47]. 

2.4 Sweep-line clustering algorithm 

Žalik (2009) proposed an innovative, agglomerative hierarchical clustering algorithm for spatial 

data using a sweep-line in O (nlogn) time in the worst case. This algorithm does not rely on domain 

knowledge or modification of the initial model, and can determine clusters of arbitrary shapes while 

completing spatial clustering of large data sets. In this algorithm, there are horizontal sweep-lines S1 

and S2, where the distance from S1 to the front of S2 is d. It is assumed that S1 sweeps the pi-1 set points 

in accordance to the proximity parameter d to form part of the clusters, and the points of front line 

(AF) are sorted in accordance to the x coordinates. When S1 encounters point pi, pi is projected to the 

frontier toward AF, and a cluster is found by comparing the distance from pi to pl and pi to pr using 

proximity parameter d (Figure 2). When S1 moves to the next point, S2 follows it at distance d. The 

points that have been swept by S2 are removed from the AF. If the projection misses the AF (that can 

also be empty), the corresponding end-point of the AF is tested to determine it is close enough to 

point pi to discover a new cluster[41]. It is difficult to determine the global parameter d that accounts 

for uneven distribution of data sets. If the parameters are set without a priori knowledge (or 

experimental measurement  result) it is difficult to find true clusters accurately. 

 

 

 

 

 

 

 

3. ASC algorithm 

In the polar coordinate system where the ASC algorithm is applied, pi is swept from the initial 

frontier outward in accordance with the increasing distance from pole O, i.e., the sweep-circle center. 

pi is projected onto the segment of frontier edge (plpr) along the circle in O direction (Figure 3). 

According to Tobler, the first law of geography is that “Everything is related to everything else, but 

near things are more related than distant things”[50]. The points are considered to be similar if the 

points are within a specific distance of each other, such as points pi and pl or pi and pr ,as shown in 

Figure 3. These values fall under a threshold value used to determine the formation of clusters. 

The algorithm proposed in this paper utilizes Gestalt theory and the associated definition of the 

dynamic adaptive threshold. It can efficiently locate the adaptive clusters of arbitrary shapes and can 

acclimate to the uneven density characteristics of spatial data to avoid necessitating preset global 

parameters such those necessary for DBSCAN, DENCLUE, and other algorithms[41]. ASC works in 

a four-phase process: basic conceptualization, initialization, clustering, and cluster merging. 

 

 

 

Figure 2. Sweeping the points by the sweep- lines
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3.1 Basic concepts and initialization 

Cluster definitions. Given n collection of discrete points S=｛p1,p2,p3,···,pn｝on 2D set (R2), using 

the degree of similarity between data points, where data set then divides S into k clusters C=｛C1,C2, 

…,Ck｝Ck ⊆ S to define the cluster. Where：
1

k

i
C

=
∪ =S, i jC C∩ = ∅ (i≠j)，With a cluster of objects 

with high similarity, different clusters of objects with high dissimilarity. 

Determining the center of the sweep-circle. S corresponds to the coordinate set｛p1 (x1,y1), p2 

(x2,y2), p3 (x3,y3), ···, pn (xn,yn)｝, where the origin of the polar coordinate O (px,py) is the center of the 

sweep-circle. Select O (px,py) as the average of the largest (xmax, ymax) and smallest (xmax, ymax) values of 

input S.  

Calculating the polar coordinates of input points and sorting. The polar coordinates of input 

points are calculated and sorted by increasing distance from O as follows: 

2 2( ) ( )i i x i yr x p y p= − + +                                      (1) 

)

arccos( ) ( ) 0

arccos( ) ( ) 0

i x
i y

i

i x
i y

i

x p
if y p

r

x p
if y p

r

θ
π

− − >
=  − + − <


                         (2) 

Each point p i (xi,yi) in the Cartesian coordinates can be transformed to pi (ri,θi), where the points are 

sorted according to their r-coordinate found in the polar coordinates. If two points have the same 

r-coordinate, they are sorted by the secondary criterion θ . In a special case where the first point 

coincides with the origin O (i.e., its r-coordinate is zero), the point is removed from the list. 

Constructing the initial frontier and clusters. The three points located nearest to center O are 

used to form a triangle where it is assumed that the three points are nonlinear. The three edges of the 

triangle form a polyline referred to as the frontier. Any spatial clustering algorithm should work 

based on various distances such as the Euclidean distance, the Manhattan distance, or the 

Minkowski distance. This algorithm uses the Euclidian distance between data points to measure the 

 

Figure 3. Sweeping the data set to obtain clusters
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distance needed for spatial clustering. Figure 4 shows an example of the nearest three points to the 

center O that forms the initial cluster. 

 

 

 

 

 

 

Clustering the threshold. The threshold setting Ɛ serves is the distance measurement of d (pi,pj) 

,which determines if two points are grouped into the same cluster. If the distance between the two 

points is less than or equal to this value, they belong to the same cluster; otherwise, they do not. This 

is calculated as follows: 

Cp=∪｛pi,pj｝|d (pi,pj) ≤Ɛ, (j≠i,pi,pj∈S)                               (3) 

The clustering process for global threshold setting Ɛ is sensitive to density changes, particularly 

internal density changes within the clusters. To manage the gradual changes of the local density, the 

fact that the spatial data mining process obeys not only the objective law of the geographical entity 

itself but also relates to the concept of recognition in cognitive psychology, specifically, the Gestalt 

theory was taken into account. 

The Gestalt theory summarizes the cognitive law of human vision, and the pattern organization 

discipline generated by the gestalt principle have been applied to pattern recognition and spatial 

clustering [14].The main principle of the Gestalt perception model is “the whole is greater than the 

sum of its parts,” suggesting that people tend to perceptually recognize structural integrity and can 

initially observe the visual object as a whole, and then brake the object down into partials[14]. 

Gestalt is interpreted through principles of visual recognition, such as proximity, similarity, closure, 

continuity, orientation, and common fate[51]. We combined a subset of Gestalt principles operating 

simultaneously to build the dynamic adaptive threshold model Ɛ (pi). In this model, each new event 

point pi is processed to correspond to the threshold according to the following three Gestalt 

principles: 
• Proximity, where objects placed close together tend to be perceived as a group. 
• Continuity, where spatial objects arranged in a logical order are easily perceived as a group 

or a continuous graph. 
• Closure, where the observer tends to prioritize closeness and “perfection” of objects, so gaps 

between objects may be perceived as being filled to create a unified whole. 

Spatial clustering should be consistent with visual psychology principles and spatial cognition 

from simple to complex. In agreement with Tobler’s First Law of Geography, proximity is important 

within spatial clustering (and is also the basis of continuity and closure). The easier it is to form 

continuity and closure among spatial data, the greater the similarity. Accordingly, when event point 

pi is projected onto the frontier toward O, the triangle including the frontier is identified and we can 

define the mean of the triangle’s perimeter Li as adaptive dynamic threshold Ɛ (pi): 

Ɛ (pi) =1/3α Li   (i>3)                                           (4) 

Figure 4. Initial frontier
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where α is a constant factor. We can enlarge or reduce Ɛ (pi) by manipulating the value of α , 

although this may affect the quality of clusters and reflect the hierarchical relation. The value of α is 

usually set to 1 within ASC. 

The three Gestalt principles operate simultaneously within ASC to build the dynamic adaptive 

threshold model Ɛ (pi) as shown in Figure 5. Input point p4 is an event point projected on the edge 

(p2,p3) of triangle △p1p2p3 toward O, where p4 is closest to p2 and p3 that results in the formation of a 

cluster due to the rule of proximity. Under the closure rule, p2 and  p3 combine with p4 to form a 

simple triangle △p4p2p3 adjacent to △p1p2p3 with a common edge (p2p3). Both proximity and 

continuity Gestalt clusters occur at triangle △p4p2p3 and △p1p2p3, which maintain closely related 

spatial properties. Therefore, p4’s distance from p2,p3 is used to form a cluster, where the mean of 

perimeter (L4 ) of triangle △p1p2p3 forms the adaptive dynamic threshold Ɛ (p4). When a new event 

point( p5) is obtained, the mean of perimeter (L5 ) of triangle △p1p2p3 serves as the adaptive dynamic 

threshold Ɛ (p5). 

 
 
 
 
 
 

Thresholds like these are often set in similar real-world applications for use in situation-specific 

guidelines for users. For example, during urban planning, the threshold value is set according to the 

minimum radius of the public service area being covered. The threshold can vary, still allowing for 

the analysis of the distribution of buildings in residential, commercial, or industrial areas, as well as 

reflecting the hierarchical structure of the relationships among different structures. 
3.2 Clustering 

 In a system where the sweep-circle SC has already passed the first three points and assigns 

them to one cluster, an algorithm surrounds the points by single-closure bordering polylines (i.e., 

the frontier) as shown in Figure 6a. When SC increases and sweeps to the new point pi, the projection 

of pi hits the edge (pl, pr) of the frontier toward O. This manner of projection will typically hit the 

frontier, since the O lies inside the frontier and new points lie outside of it. By connecting pi and pl, 

and pi and pr, the distances dist (pi,pl) and dist (pi,pr) are calculated, where the threshold Ɛ (pi) can be 

set accordingly. According to Eq. (3) there are four possibilities when moving forward: 
• dist (pi,pl)＞Ɛ (pi) and dist (pi,pr)＞Ɛ (pi), where pi is the first element of a new cluster. 
• dist (pi,pl)＞Ɛ (pi) and dist (pi,pr)≤Ɛ (pi), where the right side of pi is assigned to a cluster (Cr) 

(Figure 6b). 
• dist (pi,pl)≤Ɛ (pi) and dist (pi,pr)＞Ɛ (pi), where the left side of pi is assigned to a cluster (C1) 

(Figure 6b). 
• dist (pi,pl)≤Ɛ (pi) and dist (pi,pr)≤Ɛ (pi), where if pl and pr are members of the same cluster, then 

pi is placed into the same cluster; otherwise, pi is a merging point between left and right 
clusters[41]. 

 

 

Figure 5. Adaptive dynamic threshold example 
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The frontier plays an important role in the process of discovery of clusters.In order to effectively 

implement of frontier, a heap or balanced binary search trees (e.g., AVL tree, B-tree, Read-Black tree) 

can be often selected. In our case, a simple hash-table on a circular double-linked list is used to 

implement the algorithms efficiently and to ensure that large data sets were manipulated correctly 

(Figure. 7).Each record of the frontier stores the key, vertex index Pi, the index of the triangle Ti 

sharing its edge with the frontier (generating an adaptive threshold), and the generated initial 

clustered index Ci.Fortunately, ASC will not appear projection missed frontier relative to 

literature[41]. 
 
 
 
 
 
 
 
 
 
 

3.3 Merging clusters 

The indices of clusters must be merged, i.e., the initial clusters must be adjusted during the final 

phase in accordance with the merged points. We used a previously applied method [41] to merge the 

indices of the clusters, see Figure 6b for an example. In this example, the clusters Cl and Cr are merged 

via pi and the smallest index value is preserved. In each list, any point that does not belong to any 

cluster is treated as an outlier/noise. 

3.4 Point collinearity 

In the ASC algorithm, the “point collinearity” occurs when more than one spatial point is 

located on the same θ of the polar coordinates. This is a special case that must be treated accordingly 

in terms of setting the adaptive threshold Ɛ (pi) to ensure the stability of the algorithm. The mean of 

the triangle perimeter (including previously even points) is defined as the adaptive dynamic 

threshold that occurs when the sweep-circle located a new even point. When the projection of the 

next point p5 hits the vertex p4 of the triangle △p2p4p3, the mean of the perimeter can be calculated as 

the threshold, which determines if the points p4 and p5 are grouped into the same cluster as seen in 

Figure 8. The threshold of p6 is obtained according to the triangle △p2p5p3. 

Figure 6. ASC algorithm cluster basics:(a)sweep the points;(b)2 clusters are obtained 

(b)(a) 
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Figure 7. Hash-table on a circular double-linked list for sweep-circle clustering 
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4. ASC-based stream clustering 

Bezdekg and Hathaway categorize any data set containing 108 objects as a “large data set”[52]. 

ASC extends the streaming clustering technique to large spatial data sets repeating a small number 

of sequential passes over objects (ideally, single passes) and clustering the objects using the average 

memory space, where the size of is a fraction of the stream length. The ASC-based stream clusters 

use a two-stage online and offline approach, as found in most streaming algorithms. In the online 

stage, the data set is split into blocks that are divided until they fit into the computer’s main memory 

bank as the data points are swept with in an increasingly large circle. ASC is applied until all spatial 

data objects in the blocks are processed. In the current experiment we, implemented cluster indexing 

that stores the data in units of clusters grouped by ASC within storage systems. In the offline stage, 

the user sets the threshold Ɛ and the corresponding clustering number K is identified. Atom clusters 

in the online stage are repeatedly computed via ASC until the process is complete and the results are 

outputted. 

Online stage 
• The large data set S is divided into a sequence of data blocks S=｛X1,X2,…,Xi｝ according to 

the memory size. A load monitor[53] ensures that the loading of spatial data fits the main 
memory. 

• ASC is applied to each data block Xi to form atom clusters Ci=｛C1,C2,…, Cl｝.  

Offline stage 
•  It is assumed that the user provides a suitable threshold value Ɛ and the clustering number 

K is set in advance for the obtained atom clusters. ASC is repeatedly implemented until 
forming a final (macro) space cluster by processing retrieval queries from the cluster indexes 
into the adjacent data blocks. 

The above algorithm can manage static data, as well as extend to the processing of dynamic data. 

5. Results and Discussion 

5.1 Time complexity analysis 

All space points n are transformed to polar coordinates in O (n) and sorted according to their 

r-coordinates by Quicksort in O (nlogn). The total time complexity of the initialization phase is: 

 

Tinti =O (n)+O (nlogn)=O (nlogn)                                     （5） 

 

The sweep-circle status is represented by the frontier, where points must be located to identify 

the hit the projected edge. This point location is found in the hash table. A previously reported 

formula was used[35] to determine the number of entries into the hash-table in ASC: 

Figure 8. Vertexes located on the same line 
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   h=1+ /n k                                                    （6） 

where h is the size of the hash-table, n is the number of table entries, and k is the constant factor. 

According to a previous analysis[35], the relation between CPU time spent and the number of 

entries into the hash-table h correspond to k. If k is too small or too large, the run time will be 

significantly impacted. The  k was set to 100 within these experiments, in accordance to previous 

literature[35]. During the sweeping phase, each point was projected onto the frontier, where it 

reached the frontier in a time period calculated as follows 

Tlocate=1+ /n k   = O (n/100)= O (n)                                  （7） 

The frontier that corresponds to threshold Ɛ (pi) is computed in constant time O(n). The frontier 

projections and their corresponding distances under the adaptive threshold are used to determine if 

the clusters require O(nlogn). In the final phase the merged clusters that are adjusted indices require 

O (nlogn). The total time complexity of clustering is as follows: 

Tclus=O (n)+O (nlogn)+O (n)=O (nlogn)                                   (8) 

where the total expected time complexity of the proposed ASC algorithm is: 

Ttotal=Tinti+Tlocate +Tclus=O (nlogn)                                       (9) 

5.2 Comparison and analysis of experimental results 

In order determine if the ASC clustering method could handle data with complex distribution, 

we utilized three 2D simulated spatial testing data sets:D1-D3, as well as a real-world spatial 

database. D1 and D2 are benchmark CHAMELEON data sets that satisfy the similarity test 

requirements in terms of spatial proximity, thematic attributes, spatial distribution, and hierarchy.  

Data set D3 is very challenging for most clustering algorithms,as there are not only clusters with 

arbitrary shapes, different densities, and noise, but also distinctly uneven internal densities. 

Traditional clustering algorithms were also tested for comparison sake including K-Means (the most 

commonly used method), DBSCAN (which can determine arbitrary shape clusters), CURE (which 

can identify clusters of more complex shapes and wide variances in size, while preferentially 

filtering the isolated points), and AMOEDA (which can adapt to the clusters that are arbitrarily 

shaped or with different density without any a priori parameters using the Delaunay triangulation). 

The proposed ASC sweep-circle algorithm was also compared with Žalik’s sweep-line 

algorithm[41]. A real-world GIS data set was used in order to imitate the proposed algorithm’s 

ability to deal with actual spatial data. 

D1includes 8000 points with eight arbitrary shape clusters of different densities as well as  

random noise as seen in Figure 9a. The DBSCAN, CURE, Žalik’s sweep-line algorithm (from here on 

referred to simply as “Žalik”) were all compared with the ASC. The DBSCAN had, MinPts set to 4, 

Eps was fixed to 5.4, the shrink factor of CURE was set to 0.3, and the number of representative 

points was set to 12. Parameter d was set to 12 for the Žalik algorithm. The ASC algorithm 

automatically discovered arbitrary shapes, clusters of different densities, and nested clusters (Figure 

9b). It not only effectively detected all eight clusters but also correctly identified the noise in D1. The 

CURE algorithm was unable identify spatial clusters with complex shape and incorrectly defined 

less dense spatial data as noise. The DBSCAN algorithm could not readily adapt to the density 
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variations among clusters, and the Žalik algorithm used global parameters that prevented it from 

identifying clusters with varying densities. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

There were 10000 points in data set D2, see Figure 10. We varied the scaling factor α , which 

causes changes in the threshold in order to form clusters at different hierarchies. The results 

demonstrated that if the threshold was small when α  was small, resulting in a large number of 

clusters. Conversely, the threshold was large if α  was large, resulting in a smaller number of 

clusters forming (i.e., relatively shallow hierarchy). When the value of α  nears 1, clusters are easily 

and accurately distinguished from noise. In fact, the two effects create a favorable balance. This 

implicit hierarchical relationships with different thresholds related to α  are often used as the basis 

of analysis in practice[16].  

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

(c) (a) (b) 

(e)(d)

Figure 9. Testing data set D1 of ASC. (a) Graph built by triangulation of D1; (b) clustering result by ASC; (c) 
clustering result by DBSCAN; (d) clustering result by CURE; (e) clustering result by Žalik. 

Figure 10. Results largely dependent on parameters. (a) Graph built by triangulation of D2; (b) 20 clusters 

obtained when α = 1; (c) 30 clusters obtained when α = 0.8; (d) 8 clusters obtained when α = 1.2. 

(d)(c)

(a) (b)
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Data set D3 containing 264 test points was used to test the recognition effectiveness of the ASC 

algorithm in clusters with uneven internal densities and non-uniform data distribution. The 

clustering results of D3 by K-Means, DBSCAN (Minpts=4, Eps=0.78), AMOEBA, and Žalik (d=0.0074) 

and the ASC algorithm are seen in Figure 11, where the ASC algorithm was best able to discover 

clusters of uneven internal density. The clusters were simply divided into several parts by K-Means, 

where DBSCAN detected noise accurately, however failed to separate nearby clusters. Both the 

AMOEBA and the Žalik failed to identify clusters of uneven internal density. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Clustering results of data set D3 by comparison: (a) Graph built by triangulation of D3; (b) clustering 
result by ASC; (c) clustering result by K-Means; (d) clustering result by DBSCAN; (e) clustering result by Žalik. ; 
(f) clustering result by AMOEBA. 

(b)(a) 

(c) (d) 

(e) (f) 
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To illustrate the practical adaptability of ASC, we applied it to a real-world GIS data set 

collected obtained from the DCW (Digital Chart of the World) that focused on 15067 position data 

points taken from Chinese cities, towns, and villages pertaining to populations in 2002. The results 

from the ASC showed that the algorithm adapted well and is effective for this manner of practical 

application (See Figure 12). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.3 CPU time 

Actual CPU run-time for data processing is a greater concern within real-world applications, 

so we tested the proposed algorithm and compared it to several other methods accordingly. All 

algorithms were executed with the same development language, development environment, 

operating system, and hardware (Intel R-core i3-3220 CPU@3.30GHz 3.29 GHz and 2GB memory, 

Seagate SV35 7200 rpm, access time 14.7 MS). 

CPU time spent for clustering 

The CPU time spent while clustering data sets from Figure 9-12 is compared in Table 2. The 

actual efficiency of CPU time is correlated to the number of clusters and test points generated – 

more CPU time was spent on larger numbers of clusters than when the number of test points were 

the same. When the same number of clusters were obtained, the run time decreased when there 

were fewer test points. Additional time was spent when clustering or merging many small 

clusters rather than one larger cluster. 

Table 2.CPU time (s) spent for clustering 

Data set        Points CPU time (s) 

Figure 12      264 0.014 

Figure 9      8000 0.074 

Figure 10b      10,000 0.116 

Figure 10c      10,000 0.124 

Figure 10d      10,000 0.243 

Figure 11      15,067 0.457 

Figure 12. ASC in large spatial datasets discovered clusters.(a)is the graph built by triangulation of GIS datasets;(b)is the 
clustering result of GIS large spatial datasets generated by ASC. 

(a) (b) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 August 2017                   doi:10.20944/preprints201708.0040.v1

http://dx.doi.org/10.20944/preprints201708.0040.v1


 12 of 21 

 

Most current adaptive algorithms (AMOEB, AUTOCLUST, and ANDC) were developed based 

on the Delaunay triangulation (i.e., high spatial proximity). See Table 3 for a comparison of the 

traditional adaptive method AUTOCLUST against the proposed algorithm. AUTOCLUST is a 

relatively new algorithm developed to manage complex data sets (such as those with clusters of 

varying density and arbitrarily shapes). This algorithm is similar to the proposed algorithm in that it 

can adaptively discover spatial clusters without the need to set parameters in advance. The 

implementation class of AUTOCLUST can be obtained from the WEB[29].  
There are several methods available for constructing Delaunay triangulations. We used the 

fastest SL algorithm among them according to the literature[35]. The experimental results suggested 

that the ASC is more efficient than AUTOCLUST see Table 3. AUTOCLUST spent more CPU time on 

both the Delaunay triangulation phase of the algorithm and when dealing with repeated global and 

local uninteresting edges during the clustering process when the number of edges exceeded the 

number of points. 

Table 3.CPU time (s) spent by ASC and AUTOCLUST for clustering 

Dataset 

 

ASC              AUTOCLUST 

Clustering time    DT time      Clustering time       Total (s) 

100,00          0.249                0.026         0.314                  0.340 

20,000          0.422                0.082         2.450                  2.532 

50,000          0.941                0.287         5.125                  5.412 

100,000         2.653                0.607         14.234                 14.841 

200,000         5.324                2.290         61.124                 63.414 

The CPU time spent between Žalik and ASC was compared (Table 4) using the same dataset, 

but with the different corresponding phases of the ASC algorithm. Initialization involved sorting 

input points by Quicksort in Žalik, which accounted for 22% of the total time spent. Initialization 

involved calculating the polar coordinate with Quicksort in ASC, which accounted for 30% of the 

total time. ASC employed the hash-table to speed up the efficiency during the clustering and 

merging phases when searching the event queue and locations on the borders. It was not necessary 

to consider projections that surpassed the border, however, this portion of the run time in Žalik was 

spent both on missed projections and deleting the useless AF. In ASC, 8-9% of the total time was 

spent calculating polar coordinates of the input points and adaptive thresholds of the event points. 

The CPU spent less time on the whole, and it is possible that the ASC algorithm could be truncated 

even further if the polar coordinates of the input points were obtained in advance. 

Table 4.CPU time (s) spent by ASC and Žalik for different algorithm phases 

Data set 

Algorithm 

  100,000                200,000  
ASC    Žalik             ASC          Žalik  

Initialization 0.646    0.717             1.597         2.700  
Clustering      1.026    1.944             2.715         7.242  
Merging  0.481    0.624       1.012         2.332  
Total      2.153    3.285             5.324         12.274  
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CPU time spent for ASC-based stream clustering 

The ASC algorithm was also tested based on stream techniques. Input spatial data sets were 

generated with high-resolution images obtained from Bing Maps (http://www.bing.com/maps/) 

containing 1.3G bytes of data points. As shown in Figure 13, varying thresholds for Ɛ (e.g., 100-600 

m) and clusters K (e.g., 100-500) were provided to test the CPU time spent running the algorithm. 

The obtained clusters decreased as Ɛ increased, the running time of the algorithm was lower in the 

offline phase, and the Ɛ value ranged between 100-300 resulted in relatively accurate clusters as 

shown in Figure 13. It took longer to generate a larger number of adaptive sub-clusters during the 

online phase. 

 

 

 

 

 

 

 

 

 

 

 

6. Practical application of ASC 

In order to explore the feasibility of the ASC algorithm in real world scenarios, it was used to 

forecast geological disasters and quake magnitude based on geography. The real-world spatial data 

set containing 1264 geological disaster spots in Congzuo was collected from the geologic hazard 

database at the land department of Guangxi Zhuang Autonomous Region, China. The clustering 

results are shown in Figure 14. 

ASC successfully detected nine clusters with varying densities within the disaster spots, which 

were divisible into a preliminary distribution range of disaster-prone geographical areas (Figure 

14c). It is possible to set a specific threshold (e.g., Ɛ=1000 m) in order to find the areas most prone to 

major disasters, which could be beneficial for early warning purposes (Figure 14d). 

 

 

 

 

Figure 13. Stream clustering speed comparison 
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7. Conclusion 

The most notable conclusions of this study can be summarized as follows: 
• The Gestalt theory was successfully applied to enhance the adaptability of the spatial 

clustering algorithm. Both the sweep-circle technique and the dynamic threshold setting  
were employed to detect spatial clusters. 

• The ASC algorithm can automatically locate clusters in a single pass, rather than through 
modifying the initial model (i.e., via minimal spanning tree, Delaunay triangulation, or 
Voronoi diagram). The algorithm could quickly adapt to identify arbitrarily shaped clusters, 
and could locate the non-homogeneous density characteristics of spatial data without 
necessitating a priori knowledge or parameters. The time complexity of the ASC algorithm 
was approx. O (nlogn), where n is the size of the spatial database. 

• Scalability in ASC was not limited to the size of the data set, demonstrating that the 
algorithm is suitable for data streaming technology to cluster large, dynamic spatial data 

Figure 14. Spatial clustering results on disaster database by ASC:(a) Distribution of disaster data 

points; (b) description of spatial neighborhood relations via Delaunay triangulation; (c) 

clustering result of ASC; (d) clustering result of user-defined threshold setting (Ɛ=1000m). 

 (a)  (b)

 (c)  (d)
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sets.  
• The proposed algorithm was efficient, feasible, easily understood, and easily implemented. 

The vast amount of information contained in spatial data sets and their relative complexity 

represent challenges yet to be solved. In the future, we believe we may benefit from further 

exploiting the characteristics of human vision; humans can easily clusters connected by chains 

and/or necks, for example, and those touching Gaussian clusters[14] – ASC is unable to discover 

these special clusters. Additionally, in ASC, points which do not belong to any cluster are treated as 

outliers/noise, where multiple outliers or noise points could be processed as new, independent 

clusters. Finally, the algorithm can potentially be extended to clustering spatial data with higher 

dimensionality than those discussed in the present study. 

 

Acknowledgments: This work has been supported by the National Science and Technology Support Program 

(Grant No. 2014BAL05B07) funded by the Ministry of Science and Technology of China.  

Author Contributions: Qingming Zhan and Shuguang Deng conceived and designed the experiments; 
Shuguang Deng performed the experiments; All the authors analyzed the data; Qingming Zhan and Shuguang 
Deng wrote the paper.All authors contributed to revising the manuscript. 

Conflicts of Interest: The authors declare no conflict of interest.  

References 

1. Han, J.; Kamber, M.; Pei, J. 10 - cluster analysis: Basic concepts and methods. In Data mining (third 

edition), Morgan Kaufmann: Boston, 2012; pp 443-495. 

2. Chen, J.; Lin, X.; Zheng, H.; Bao, X. A novel cluster center fast determination clustering algorithm. 

Applied Soft Computing 2017, 57, 539-555. 

3. Deng, M.; Liu, Q.; Cheng, T.; Shi, Y. An adaptive spatial clustering algorithm based on delaunay 

triangulation. Computers, Environment and Urban Systems 2011, 35, 320-332. 

4. Liu, Q.; Deng, M.; Shi, Y. Adaptive spatial clustering in the presence of obstacles and facilitators. 

Computers & Geosciences 2013, 56, 104-118. 

5. Bouguettaya, A.; Yu, Q.; Liu, X.; Zhou, X.; Song, A. Efficient agglomerative hierarchical clustering. 

Expert Systems with Applications 2015, 42, 2785-2797. 

6. MacQueen, J. In Some methods for classification and analysis of multivariate observations, Proceedings of the 

Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics, Berkeley, 

Calif., 1967, 1967; University of California Press: Berkeley, Calif., pp 281-297. 

7. Ng, R.T.; Han, J. Efficient and effective clustering methods for spatial data mining. In Proceedings of the 

20th International Conference on Very Large Data Bases, Morgan Kaufmann Publishers Inc.: 1994; pp 

144-155. 

8. Guha, S.; Rastogi, R.; Shim, K. Cure: An efficient clustering algorithm for large databases ☆. 

Information Systems 1998, 26, 35-58. 

9. Zhang, T. Birch: An efficient data clustering method for very large databases. Acm Sigmod Record 1999, 

25, 103-114. 

10. Karypis, G.; Han, E.-H.; Kumar, V. Chameleon: Hierarchical clustering using dynamic modeling. 

Computer 1999, 32, 68-75. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 August 2017                   doi:10.20944/preprints201708.0040.v1

http://dx.doi.org/10.20944/preprints201708.0040.v1


 16 of 21 

 

11. Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. In A density-based algorithm for discovering clusters in large 

spatial databases with noise, Proc. of 2nd International Conference on Knowledge Discovery and, 1996; 

pp 226-231. 

12. Ankerst, M.; Breunig, M.M.; Kriegel, H.-P.; #246; Sander, r. Optics: Ordering points to identify the 

clustering structure. In Proceedings of the 1999 ACM SIGMOD international conference on Management of 

data, ACM: Philadelphia, Pennsylvania, USA, 1999; pp 49-60. 

13. Hinneburg, A.; Keim, D.A. In An efficient approach to clustering in large multimedia databases with noise, 

KDD, 1998; Agrawal, R.; Stolorz, P.E.; Piatetsky-Shapiro, G., Eds. AAAI Press: pp 58-65. 

14. Zahn, C.T. Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Transactions 

on Computers 1971, C-20, 68-86. 

15. Estivill-Castro, V.; Lee, I. In Autoclust: Automatic clustering via boundary extraction for mining massive 

point-data sets, In Proceedings of the 5th International Conference on Geocomputation, 2000. 

16. Kang, I.-S.; Kim, T.-w.; Li, K.-J. A spatial data mining method by delaunay triangulation. In Proceedings 

of the 5th ACM international workshop on Advances in geographic information systems, ACM: Las Vegas, 

Nevada, USA, 1997; pp 35-39. 

17. Wang, W.; Yang, J.; Muntz, R.R. Sting: A statistical information grid approach to spatial data mining. 

In Proceedings of the 23rd International Conference on Very Large Data Bases, Morgan Kaufmann Publishers 

Inc.: 1997; pp 186-195. 

18. Sheikholeslami, G.; Chatterjee, S.; Zhang, A. Wavecluster: A multi-resolution clustering approach for 

very large spatial databases. In Proceedings of the 24rd International Conference on Very Large Data Bases, 

Morgan Kaufmann Publishers Inc.: 1998; pp 428-439. 

19. Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the em 

algorithm. Journal of the Royal Statistical Society. Series B (Methodological) 1977, 39, 1-38. 

20. Gennari, J.H.; Langley, P.; Fisher, D. Models of incremental concept formation. Artificial Intelligence 

1989, 40, 11-61. 

21. Kohonen, T. Self-organized formation of topologically correct feature maps. Biological Cybernetics 1982, 

43, 59-69. 

22. Schikuta, E. In Grid-clustering: An efficient hierarchical clustering method for very large data sets, Pattern 

Recognition, 1996., Proceedings of the 13th International Conference on, 25-29 Aug 1996, 1996; pp 

101-105 vol.102. 

23. Pei, T.; Zhu, A.X.; Zhou, C.; Li, B.; Qin, C. A new approach to the nearest-neighbour method to 

discover cluster features in overlaid spatial point processes. International Journal of Geographical 

Information Science 2006, 20, 153-168. 

24. Tsai, C.-F.; Tsai, C.-W.; Wu, H.-C.; Yang, T. Acodf: A novel data clustering approach for data mining in 

large databases. Journal of Systems and Software 2004, 73, 133-145. 

25. Estivill-Castro, V.; Lee, I. Amoeba: Hierarchical clustering based on spatial proximity using delaunaty 

diagram. 2000. 

26. Estivill-Castro, V.; Lee, I. Argument free clustering for large spatial point-data sets via boundary 

extraction from delaunay diagram. Computers Environment & Urban Systems 2002, 26, 315–334. 

27. Wei, C.P.; Lee, Y.H.; Hsu, C.M. Empirical comparison of fast partitioning-based clustering algorithms 

for large data sets. Expert Systems with Applications 2003, 24, 351-363. 

28. Li, D.; Yang, X.; Cui, W.; Gong, J.; Wu, H. A novel spatial clustering algorithm based on delaunay 

triangulation</title>. 2008, 7285, 728530-728530-728539. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 August 2017                   doi:10.20944/preprints201708.0040.v1

http://dx.doi.org/10.20944/preprints201708.0040.v1


 17 of 21 

 

29. Liu, D.; Nosovskiy, G.V.; Sourina, O. Effective clustering and boundary detection algorithm based on 

delaunay triangulation. Pattern Recognition Letters 2008, 29, 1261-1273. 

30. Nosovskiy, G.V.; Liu, D.; Sourina, O. Automatic clustering and boundary detection algorithm based 

on adaptive influence function. Pattern Recognition 2008, 41, 2757-2776. 

31. Xu, D.; Tian, Y. A comprehensive survey of clustering algorithms. Annals of Data Science 2015, 2, 

165-193. 

32. Zhao, Q.; Shi, Y.; Liu, Q.; Fränti, P. A grid-growing clustering algorithm for geo-spatial data. Pattern 

Recognition Letters 2015, 53, 77-84. 

33. Bolaños, M.; Forrest, J.; Hahsler, M. Clustering large datasets using data stream clustering techniques. 

In Data analysis, machine learning and knowledge discovery, Spiliopoulou, M.; Schmidt-Thieme, L.; 

Janning, R., Eds. Springer International Publishing: Cham, 2014; pp 135-143. 

34. Preparata, F.P.; Ian, S.M. Computational geometry:An introduction. 1985. 

35. Žalik, B. An efficient sweep-line delaunay triangulation algorithm. Computer-Aided Design 2005, 37, 

1027-1038. 

36. Alfred, U. A mathematician's progress. The Mathematics Teacher 1966, 59, 722-727. 

37. Shamos, M.I.; Hoey, D. Geometric intersection problems. Foundations of Computer Science Annual 

Symposium on 1976, 208-215. 

38. Bentley, J.L.; Ottmann, T.A. Algorithms for reporting and counting geometric intersections. Computers 

IEEE Transactions on 1979, C-28, 643-647. 

39. Fortune, S. A sweepline algorithm for voronoi diagrams. Algorithmica 1987, 2, 153-174. 

40. Zhou, P. Computational geometry algorithm design and analysis(fourth edition). In Computational 

geometry algorithm design and analysis(fourth edition), Beijing:Tsinghua University Press: 2011. 

41. Žalik, K.R.; Žalik, B. A sweep-line algorithm for spatial clustering. Advances in Engineering Software 

2009, 40, 445-451. 

42. Biniaz, A.; Dastghaibyfard, G. A faster circle-sweep delaunay triangulation algorithm. Advances in 

Engineering Software 2012, 43, 1-13. 

43. Adam, B.; Kauffmann, P.; Schmitt, D.; Spehner, J.-C. In An increasing-circle sweep-algorithm to construct 

the delaunay diagram in the plane, CCCG, 1997. 

44. Guha, S.; Mishra, N.; Motwani, R.; O'Callaghan, L. In Clustering data streams, Symposium on 

Foundations of Computer Science, 2000; pp 359-366. 

45. O'Callaghan, L.; Mishra, N.; Meyerson, A.; Guha, S.; Motwani, R. In Streaming-data algorithms for 

high-quality clustering, Data Engineering, 2002. Proceedings. 18th International Conference on, 2002; pp 

685-694. 

46. Zengyou, H.E.; Xiaofei, X.U.; Deng, S. Squeezer: An efficient algorithm for clustering categorical data. 

Journal of Computer Science & Technology 2002, 17, 611-624. 

47. Guha, S.; Meyerson, A.; Mishra, N.; Motwani, R.; O'Callaghan, L. Clustering data streams: Theory and 

practice. Knowledge & Data Engineering IEEE Transactions on 2003, 15, 515-528. 

48. Ding, S.; Zhang, J.; Jia, H.; Qian, J. An adaptive density data stream clustering algorithm. Cognitive 

Computation 2016, 8, 30-38. 

49. Zheng, L.; Huo, H.; Guo, Y.; Fang, T. Supervised adaptive incremental clustering for data stream of 

chunks. Neurocomputing 2016. 

50. Tobler, W.R. A computer movie simulating urban growth in the detroit region. Economic Geography 

1970, 46, 234-240. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 August 2017                   doi:10.20944/preprints201708.0040.v1

http://dx.doi.org/10.20944/preprints201708.0040.v1


 18 of 21 

 

51. Ellis, W.D. A source book of gestalt psychology. Kegan Paul, Trench, Trubner & Company: London, 

England, 1938; p xiv, 403. 

52. Hathaway, R.J.; Bezdek, J.C. Extending fuzzy and probabilistic clustering to very large data sets. 

Computational Statistics & Data Analysis 2006, 51, 215-234. 

53. Cho, K.; Jo, S.; Jang, H.; Kim, S.M.; Song, J. Dcf: An efficient data stream clustering framework for 

streaming applications. In Database and expert systems applications: 17th international conference, dexa 2006, 

kraków, poland, september 4-8, 2006. Proceedings, Bressan, S.; Küng, J.; Wagner, R., Eds. Springer Berlin 

Heidelberg: Berlin, Heidelberg, 2006; pp 114-122. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 August 2017                   doi:10.20944/preprints201708.0040.v1

http://dx.doi.org/10.20944/preprints201708.0040.v1

