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Abstract: In modern mathematics, many concepts and ideas are described in terms of category
theory. From this viewpoint, it is desirable to analyze what can be determined if, instead of the basic
category of sets, we consider a similar category of fuzzy sets. In this paper, we describe a natural
fuzzy analog of the category of sets and functions, and we show that, in this category, fuzzy relations
(a natural fuzzy analogue of functions) can be determined in category terms – of course, modulo 1-1
mapping of the corresponding universe of discourse and 1-1 re-scaling of fuzzy degrees.
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1. Introduction

What are categories: a brief reminder. While set theory remains the foundations for mathematics, in
modern mathematics, many concepts and ideas are described in terms of category theory.

A category is a tuple (Ob, Mor, :, id, ◦), where:

• Ob is the set whose elements are called objects,
• Mor is a set whose elements are called morphisms,
• : Mor → Ob × Ob is a mapping that assigns, to each morphism f ∈ Mor a pair of objects
(a, b) ∈ Ob×Ob; this is denoted by f : a → b; the object a is called f ’s domain, and b is called
f ’s range;

• id is a mapping that assigns, to each object a ∈ Ob, a morphism ida : a→ a; and
• ◦ is a mapping that assigns, to each pair of morphisms f : a → b and g : b → c for which the

range of f is equal to the domain of g, a new morphism g ◦ f : a→ c so that for every f : a→ b,
we have idb ◦ f = f ◦ ida = f .

For example:

• We can have a category Set in which objects are sets and morphisms are functions.
• We can have a category Top in which objects are topological spaces and morphisms are

continuous mappings.
• We can have a category Lin, in which objects are linear spaces, and morphisms are linear

mappings, etc.

Many mathematical concepts can be reformulated in terms of an appropriate category.

What happens in the fuzzy case? If we allow fuzzy sets (see, e.g., see, e.g., [2–6]), what is a natural
analog of the category Set? In the category Set, morphisms from a to b are functions. In the crisp case,
for each function f : a→ b and for each element x ∈ a, we have a unique value of y = f (x) ∈ b.

Fuzzy means that for each x ∈ a, instead of a single value y = f (x) ∈ b, we may have different
possible values y ∈ b, with different degrees of confidence. In general, we can have all possible values
y ∈ b. For each x ∈ a and for each y ∈ b, we have a degree R f (x, y) to which y is a possible value of
f (x). Thus, a natural fuzzy analog of a function is a fuzzy relation.
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Composition g ◦ f of fuzzy relations f : a → b and g : b → c can be defined in the usual way.
Namely, we want to know, for each pair of elements x ∈ a and c ∈ z, to what extent there exists a
y ∈ b for which f brings us from a to b and g brings us from y to z. If we interpret “and” as min and
there exists (an infinite “or”) as max, then the above description translates into the following formula:

Rg◦ f (x, z) = max
y

min(R f (x, y), Rg(y, z)). (1)

Since we have fuzzy relations, there is no need to explicitly describe the domain of each
morphism: if for some x 6∈ a, the value f (x) is not defined, this simply means that for this x, we
have R f (x, y) = 0 for all y ∈ b. Similarly, there is no need to describe the range,

Thus, without losing generality, we can assume that the relation R f (x, y) is defined for all x ∈ U
and y ∈ U.

Thus, without losing generality, we can assume that we have only one object – the universal set
U. Morphisms are then fuzzy relations, with the usual composition relation (1).

Need for an ordered category. In the crisp case, every property is either true or false.
As we gain more information, we may get more confident in our knowledge. For example, we

may start with the situation in which, for a given x, several different values f (x) are possible, but after
acquiring new information, we are becoming more and confident that there is only one possible value
y0 of f (x). This means that for the remaining value y0, the degree of possibility R f (x, y0) remains the
same, but for all y 6= y0, the corresponding degree Ff (x, y) decreases. To capture this phenomenon, it
is reasonable to supplement the category structure with the corresponding component-wise ordering
between fuzzy relations (morphisms): f ≤ f ′ if and only if R f (x, y) ≤ R f ′(x, y) for all x and y.

Formulation of the problem. What can be defined based on this category-theory formulation? Can
we uniquely determine the elements of the Universe of discourse U and the corresponding relations
based on the categorical information?

2. Results

Towards a precise formulation of the problem. It is easy to see that if we have a 1-1 mapping
π : U → U of the Universe of discourse U onto itself (i.e., a bijection), then the corresponding
mapping, then the corresponding transformation R(x, y) → R(π(x), π(y)) is an automorphism of the
corresponding category in the sense that it preserves the identity, composition, and order.

Similarly, if we have a 1-1 monotonic mapping H : [0, 1] → [0, 1], then the transformation
R(x, y) → H(R(x, y)) is also such an automorphism. Indeed, since we only only consider order
between degrees, monotonic transformation of degrees should not change anything.

It turns out that modulo this simple equivalence, we can uniquely determine all the elements
x ∈ U and all the relations R(x, y) from the ordered category, i.e., in precise terms, that every
automorphism is a composition of the automorphisms of the above two types. The proof of this
result will be based on an explicit description of elements of U and relations R f (x, y) in category
terms.

Let us describe the problem in precise terms.

Definition 1. By an ordered category, we mean a category in which for every two objects a and b, there is a
partial order ≤ on the set Mor(a, b) of all morphisms from a to b.

Definition 2. Let U be a set; we will call it the Universe of discourse. By a U-fuzzy ordered category, we
mean an ordered category in which:

• the only object is the set U,
• morphisms are fuzzy relations, i.e., mappings R : U ×U → [0, 1],
• the morphism id is defined as the mapping for which id(x, x) = 1 and id(x, y) = 0 for x 6= y,
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• the composition of morphisms is defined by the formula

(g ◦ f )(x, z) = max
y

min( f (x, y), g(y, z)),

and
• the order between the morphisms is the componentwise order: f ≤ g means that f (x, y) ≤ g(x, y) for

all x and y.

The U-fuzzy ordered category will be denoted by FU .

Comment. One can easily see that this is indeed a category, i.e., that the composition of morphisms
is associative, and the composition of any morphism f with the identity morphism id is equal to f :
f ◦ id = id ◦ f = f .

Definition 3. An automorphism of an ordered category is a pair consisting of bijections F : Ob → Ob and
G : Mor→ Mor for which:

• for all f , a, and b, we have f : a→ b if and only if G( f ) : F(a)→ F(b);
• for all f and g, we have G( f ◦ g) = G( f ) ◦ G(g),
• for all a, we have G(ida) = idF(a), and
• for all f and g, we have f ≤ g if and only if G( f ) ≤ G(g).

Proposition. Let π : U → U be a bijection of U, and let H : [0, 1] → [0, 1] be an increasing bijection of the
interval [0, 1]. Then, the mapping Gπ,H that maps each morphism f (x, y) into a morphism (Gπ,H( f ))(x, y) =
H(π(x), π(y)) is an automorphism of the category FU .

Our main result is that these are the only automorphisms of the category FU .

Theorem. For every set U, every automorphism of the ordered category FU has the form Gπ,H for
some bijection π : U → U and for some monotonic bijection H : [0, 1]→ [0, 1].

Comment. This may not be very clear from the formulation of the result, but the proof will show that
we can determine elements of the set U and values of the mappings f (x, y) in category terms, i.e., we
can indeed define fuzzy relations – a natural fuzzy analogue of functions – in category terms.

3. Proofs

3.1. Proof of the Proposition

This proposition is easy to prove: a permutation π does not change anything, and the increasing
bijection does not change the order.

3.2. Proof of the Theorem

1◦. First, we can describe the morphism f0 for which f0(x, y) = 0 for all x and y in ordered-category
terms, as the only morphism f for which f ≤ g for all morphisms g.

Indeed, clearly f0 ≤ g for all g. Vice versa, if f ≤ g for all g, then, in particular, f ≤ f0, i.e.,
f (x, y) ≤ f0(x, y) = 0 for all x and y, and since f (x, y) ∈ [0, 1], this means that indeed f (x, y) = 0 for
all x and y.

2◦. Let us first characterize all the morphisms f 6= f0 for which the set {g : g ≤ f } is linearly ordered.
Since an automorphism preserves order, every automorphism maps such morphisms into morphisms
with the same property.

Specifically, we will prove that a morphism has this property if and only if we have f (x, y) > 0
only for one pair (x, y), and we have f (x′, y′) = 0 for all other pairs (x′, y′).

Indeed, one can easily check that for such morphisms f , the only morphisms g ≤ f are the
morphisms which also have g(x′, y′) = 0 for all pairs (x′, y′) 6= (x, y). Such morphisms g are uniquely
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described by the corresponding value g(x, y). For every two such morphisms g and g′, depending on
whether g(x, y) ≤ g′(x, y) or g′(x, y) ≤ g(x, y), we have g ≤ g′ or g′ ≤ g, i.e., the set {g : g ≤ f } is
indeed linearly ordered.

Vice versa, let us prove that if a morphism has this property, then it has f (x, y) > 0 only for one
pairs (x, y). Indeed, if we have f (x, y) > 0 and f (x′, y′) > 0 for two different pairs (x, y) 6= (x′, y′),
then we would be able to construct two different morphisms g ≤ f and g′ ≤ f for which g 6≤ g′ and
g′ 6≤ g. Namely, we take:

• g(x, y) = f (x, y) > 0 and g(x′′, y′′) = 0 for all pairs (x′′, y′′) 6= (x, y), and
• g′(x, y) = f (x′, y′) > 0 and g(x′′, y′′) = 0 for all pairs (x′′, y′′) 6= (x′, y′).

This contradicts our assumption that the set {g : g ≤ f } is linearly ordered.

3◦. Let us now describe, in ordered-category terms, morphisms f for which f (x, x) > 0 for some
a ∈ U and f (x′, y′) for all other pairs (x′, y′) 6= (x, x).

Indeed, out of all morphisms described in Part 2 of this proof, such morphisms can be
determined by the additional condition that f ◦ f = f . This condition is clearly satisfied for such
morphisms, while for morphisms for which f (x, y) > 0 for some b 6= a, the composition f ◦ f is, as
one can see, identically 0 and thus, different from f .

4◦. One can see that two morphisms f and f ′ of the type described in Part 3 are connected by the
relation ≤ (i.e., f ≤ f ′ or f ′ ≤ f ) if and only if they correspond to the same element a ∈ U.

Thus, we can describe elements of the set U in ordered-category terms: as equivalent classes of
morphisms of the type described in Part 3 with respect to the relation ( f ≤ f ′) ∨ ( f ′ ≤ f ).

Hence, if we have an automorphism, elements are mapped into elements in a 1-1 way, i.e., indeed
we have a bijection of the Universe of discourse.

5◦. Let us now show that the degrees from the interval [0, 1] can also be described – modulo increasing
bijections of this interval – in ordered-category terms.

5.1◦. Indeed, for each element a ∈ U, different degrees v ∈ [0, 1] can be associated with different
morphisms f described in Part 3 of this proof, i.e., morphisms for which:

• f (x, x) > 0 for this element a and
• f (x′, y′) for all pairs (x′, y′) 6= (x, x).

Different degrees are then simply associated with different values v = f (x, x).
This construction provides us with degrees at each element a ∈ U. To get a general description

of degrees, we need to relate the values corresponding to different elements x, x′ ∈ U.

5.2◦. Let us denote, by fx,v, the morphism for which:

• fx,v(x, x) = v and
• fv(x′, y′) = 0 for all pairs (x′, y′) 6= (x, x).

We want, for every a 6= b, to connect the values v and w corresponding to functions fx,v and fy,w. This
connection comes from the following auxiliary result:

w ≤ v⇔ ∃ fx→y ∃ fy→x ( fx→y ◦ fx,v · fy→x = fy,w).

Indeed, by definition of a composition, the values of the composition g ◦ f cannot exceed the largest
value of each of the composed relations g and f . Thus, if fx→y ◦ fx,v · fy→x = fy,w, then the value
fy,w(b, b) = w cannot exceed the maximum value v of the function fx,v; thus, w ≤ v.

Vice versa, if w ≤ v, then we can take the following morphisms fx→y and fy→x:

• fx→y(x, y) = w and fx→y(x′, y′) = 0 for all other pairs (x′, y′) 6= (x, y), and, similarly,
• fy→x(y, x) = w and fy→x(x′, y′) = 0 for all other pairs (x′, y′) 6= (y, x).
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In this case, as one can easily check, we have fx→y ◦ fx,v · fy→x = fy,w.

5.3◦. Now that we know how to describe the relation w ≤ v for functions fx,v and fy,w in
ordered-category form, we can describe equality v = w between the degrees v and w corresponding
to morphisms fx,v and fy,w as (v ≤ w)& (w ≤ v), i.e., in view of Part 5.2, as:

(∃ fx→y ∃ fy→x ( fx→y ◦ fx,v · fy→x = fy,w))& (∃gy→x ∃gx→y (gy→x ◦ fy,w · gx→y = fx,v)).

This enables us to identify degrees v ∈ [0, 1] in ordered-category terms – by identifying them
with the functions fx,v and taking into account the above possibility to compare degrees at different
elements a.

Hence, if we have an automorphism, degrees are mapped into degrees in a 1-1 and
order-preserving way, i.e., indeed we have a monotonic bijection H : [0, 1]→ [0, 1].

6◦. To complete the proof, we need to show how, for each morphism f and for every two elements a
and b, we can describe the value f (x, y) in ordered-category terms. This will complete the proof that
the given automorphism has the form Gπ,H for the mappings π and H as identified in Sections 4 and
5 of this proof.

6.1◦. Let us first prove the following auxiliary result:

∃ fy→x ( fy→x ◦ fy,1 ◦ f ◦ fx,1 = fx,v)⇔ v ≤ f (x, y).

Indeed, by definition of a composition, the composition c def
= f ◦ fx,1 has the following form:

• c(x, y′) = f (x, y′) for all y′ and
• c(x′, y′) = 0 for all y′ and for all x′ 6= a.

Similarly, the composition c′ def
= fy,1 ◦ f ◦ fx,1 = fy,1 ◦ c has the following form:

• c′(x, y) = f (x, y), and
• c′(x′, y′) = 0 for all other pairs (x′, y′) 6= (x, y).

As we have argued in Part 5 of this proof, the value of a composition function cannot exceed the
maximum value of each of the composed morphisms. Thus, for the composition fy→x ◦ fy,1 ◦ f ◦ fx,1 =

fy→x ◦ c′, the maximum value cannot exceed the maximum value f (x, y) of the morphism c′. Thus, if
fy→x ◦ c′ = fx,v, the maximum value v of the morphism fx,v cannot exceed f (x, y): v ≤ f (x, y).

Vice versa, for every v ≤ f (x, y), we can construct a morphism fy→x for which fy→x ◦ c′ = fx,v:
namely, we can take:

• fy→x(y, x) = v, and
• fy→x(x′, y′) = 0 for all pairs (x′, y′) 6= (y, x).

One can easily check that in this case indeed fy→x ◦ c′ = fx,v.

6.2◦. For each morphism f and for every two elements a and b, we can identify the degree f (x, y) as
the largest degree v for which the inequality v ≤ f (x, y) holds.

Since, according to Part 6.1 of this proof, the inequality v ≤ f (x, y) can be described in
ordered-category terms, we can thus conclude that the degree f (x, y) can also be described in
ordered-category terms.

The proposition is proven.

4. Conclusions

Many concepts of modern mathematics, starting from the basic notions of sets and functions, are
described in terms of category theory. It is therefore reasonable to ask whether similar fuzzy notions
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can also be described in category terms. In this paper, we show that fuzzy relations – i.e., fuzzy
analogues of functions – can indeed be described in category terms.
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