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1. Motivations

In [4, Theorem 2.2], it was inductively and recursively established that the family
of differential equations

F (n)(t) =

[
n∑
i=0

ai(n)

(
u

et − u

)i]
F (t) (1)

for n ≥ 0, r ∈ N, and u ∈ C \ {1} has a solution

F (t) = F (t; r, u) =

(
1

et − u

)r
, (2)

where a0(n) = (−r)n,

ai(n) = (−1)n(r + i− 1)i

n−i∑
ki=0

n−i−ki∑
ki−1=0

· · ·
n−i−ki−···k2∑

k1=0

rn−i−
∑i

`=1 k`

i∏
`=1

(r + `)k` (3)

for 1 ≤ i ≤ n, and

(x)n =

n−1∏
`=0

(x+ `) =

{
x(x+ 1)(x+ 2) · · · (x+ n− 1), n ≥ 1

1, n = 0

is the rising factorial. Hereafter, the following results were deduced.

(1) For k, n ≥ 0, we have

H
(r)
k+n(u) =

n∑
i=0

ai(n)

(
u

1− u

)i
H

(r+i)
k (u),

where H
(r)
k , which can be generated by(

1− u
et − u

)r
=

∞∑
k=0

H
(r)
k (u)

tk

k!
,

stand for the Frobenius–Euler numbers of order r. See [4, Theorem 2.3].
(2) For k, n ≥ 0, we have

E
(r)
k+n =

n∑
i=0

(
−1

2

)i
ai(n)E

(r+i)
k ,

where E
(r)
k , which can be generated by(

2

et + 1

)r
=

∞∑
k=0

E
(r)
k

tk

k!
,

stand for the Euler numbers of order r. See [4, Corollary 2.5].
(3) When 0 ≤ k ≤ r − 1 and k ≥ r + n,

B
(r)
k =

1

(k − r)n

n∑
i=max{n−k,0}

ai(n)B
(r+i)
k+i−n(k)n−i;

when r ≤ k ≤ r − 1 + n,
n∑

i=max{n−k,0}

ai(n)B
(r+i)
k+i−n(k)n−i = 0;
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where B
(r)
k , which can be generated by(

t

et − 1

)r
=

∞∑
k=0

B
(r)
k

tk

k!
,

stand for the Bernoulli numbers of order r. See [4, Theorem 2.7].

In [5, Theorem 2.1], it was inductively and recursively proved that the family of
differential equations

(−1)n−1(r)n

(
u

et − u

)n
F (t) =

n∑
i=0

bi(n)F (i)(t) (4)

for u ∈ C and r ∈ N has a solution F (t) defined in (2), where b0(n) = −〈r+n−1〉n,

bi(n) = −
n−i∑
ki=0

n−i−ki∑
ki−1=0

· · ·
n−i−ki−···−k2∑

k1=0

i∏
`=1

〈
r + n− i− 1−

i∑
j=`+1

kj + `

〉
k`

×

〈
r + n− i− 1−

i∑
j=1

kj

〉
n−i−

∑i
j=1 kj

, 1 ≤ i ≤ n, (5)

and

〈x〉n =

n−1∏
`=0

(x− `) =

{
x(x− 1)(x− 2) · · · (x− n+ 1), n ≥ 1

1, n = 0

is the falling factorial of x ∈ R for n ∈ {0}∪N. Hereafter, the following conclusions
were derived.

(1) For k, n ≥ 0, we have

(−1)n−1(r)n

(
u

1− u

)n
H

(r+n)
k (u) =

n∑
i=0

bi(n)H
(r)
k+i(u). (6)

See [5, Theorem 3.1]. In particular, taking u = −1 in (6) leads to

(−1)n−1(r)n

(
−1

2

)n
E

(r+n)
k =

n∑
i=0

bi(n)E
(r)
k+i.

See [5, Corollary 3.3].
(2) When 0 ≤ k ≤ n+ r − 1, we have

B
(r+n)
k = (−1)n−1

1

(r)n

min{r+n−1−k,n}∑
i=max{n−k,0}

bi(n)B
(r)
k+i−n

〈k + i− n− r〉ik!

(k + i− n)!
;

when k ≥ n+ r, we have

B
(r+n)
k = (−1)n−1

1

(r)n

n∑
i=0

bi(n)B
(r)
k+i−n

〈k + i− n− r〉ik!

(k + i− n)!
.

See [5, Theorem 3.4].

(3) The matrices
(
ai(j)

)
0≤i,j≤n and

(
bi(j)

(−1)j−1(r)j

)
0≤i,j≤n

are inverse to each

other for all n. See [5, Remark 3.2].
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4 F. QI, D.-W. NIU, AND B.-N. GUO

It is easy to see that expressions (3) and (5) of the quantities ai(n) and bi(n)
are too complicated to be understood by common man’s brain or to be computed
by hand and computer software. Can one find simple, meaningful, and significant
expressions for the quantities (3) and (5)?

2. Lemmas

For answering the above question and proving our main results, we need the
following lemmas.

Lemma 2.1 ([1, p. 134, Theorem A] and [1, p. 139, Theorem C]). For n ≥ k ≥ 0,
the Bell polynomials of the second kind, or say, partial Bell polynomials, denoted
by Bn,k(x1, x2, . . . , xn−k+1), are defined by

Bn,k(x1, x2, . . . , xn−k+1) =
∑

`1,`2,...,`n∈{0}∪N∑n
i=1 i`i=n∑n
i=1 `i=k

n!∏n−k+1
i=1 `i!

n−k+1∏
i=1

(xi
i!

)`i
.

The Faà di Bruno formula can be described in terms of the Bell polynomials of the
second kind Bn,k(x1, x2, . . . , xn−k+1) by

dn

d tn
f ◦ h(t) =

n∑
k=0

f (k)(h(t))Bn,k
(
h′(t), h′′(t), . . . , h(n−k+1)(t)

)
. (7)

Lemma 2.2 ([1, p. 135]). For n ≥ k ≥ 0, we have

Bn,k
(
abx1, ab

2x2, . . . , ab
n−k+1xn−k+1

)
= akbnBn,k(x1, x2, . . . , xn−k+1) (8)

and

Bn,k(1, 1, . . . , 1) = S(n, k), (9)

where a and b are any complex numbers.

Lemma 2.3 ([17, p. 171, Theorem 12.1]). If bα and ak are a collection of constants
independent of n, then

an =

n∑
α=0

S(n, α)bα if and only if bn =

n∑
k=0

s(n, k)ak.

Lemma 2.4 ([17, p. 83, Eq. (7.12)]). If ak and bk for k ≥ 0 are a collection of
constants independent of n, then

a(n) =

n∑
k=0

(−1)k
(
n

k

)
b(k) if and only if b(n) =

n∑
k=0

(−1)k
(
n

k

)
a(k).

3. Main results and their proofs

Now we are in a position to answer the above question and to state and prove
our main results.

Theorem 3.1. For n ≥ 0, r ∈ R, and u ∈ C, the function F (t) defined by (2)
satisfies

F (n)(t) =

n∑
`=0

[
n∑
k=`

(
k

`

)
S(n, k)〈−r〉k

](
u

et − u

)`
F (t) (10)
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and
n∑
k=0

[
n∑
`=k

(−1)`
(
n

`

)
s(`, k)

〈−r〉`

]
F (k)(t) = (−1)n

(
u

et − u

)n
F (t). (11)

Proof. Let F (t) = 1
wr and w = w(t) = w(t;u) = et−u. Then, by the Faà di Bruno

formula (7) and the identities (8) and (9) in sequence,

F (n)(t) =

n∑
k=0

(
1

wr

)(k)

Bn,k(et, et, . . . , et)

=

n∑
k=0

〈−r〉k
wr+k

ektBn,k(1, 1, . . . , 1)

=

n∑
k=0

〈−r〉k
(et − u)r+k

ektS(n, k)

=
1

(et − u)r

n∑
k=0

〈−r〉k
(et − u)k

ektS(n, k)

= F (t)

n∑
k=0

〈−r〉kS(n, k)

(
et

et − u

)k
= F (t)

n∑
k=0

〈−r〉kS(n, k)

(
1 +

u

et − u

)k

= F (t)

n∑
k=0

〈−r〉kS(n, k)

k∑
`=0

(
k

`

)(
u

et − u

)`
= F (t)

n∑
`=0

[
n∑
k=`

〈−r〉kS(n, k)

(
k

`

)](
u

et − u

)`
.

Therefore, the identity (10) follows immediately.
From the above proof of the identity (10), it can be deduced that

F (n)(t) = F (t)

n∑
k=0

S(n, k)〈−r〉k
k∑
`=0

(
k

`

)(
u

et − u

)`
, n ≥ 0.

Utilizing Lemma 2.3 arrives at

F (t)〈−r〉n
n∑
`=0

(
n

`

)(
u

et − u

)`
=

n∑
k=0

s(n, k)F (k)(t), n ≥ 0

which can be rearranged as

n∑
`=0

(−1)`
(
n

`

)(
− u

et − u

)`
=

1

F (t)〈−r〉n

n∑
k=0

s(n, k)F (k)(t), n ≥ 0.

Further making use of Lemma 2.4 derives

n∑
`=0

(−1)`
(
n

`

)
1

F (t)〈−r〉`

∑̀
k=0

s(`, k)F (k)(t) =

(
− u

et − u

)n
, n ≥ 0

which can be rewritten as (11). The required proof is complete. �
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6 F. QI, D.-W. NIU, AND B.-N. GUO

4. Remarks

In this section, we give several remarks and some explanation about our main
results.

Remark 4.1. Theorem 3.1 extends the range of r from N to R.

Remark 4.2. Comparing (1) with (10) reveals that

ai(n) =

n∑
k=i

(
k

i

)
S(n, k)〈−r〉k, 0 ≤ i ≤ n. (12)

This implies that the identity (10) is more meaningful, more significant, more com-
putable than the one (1).

Remark 4.3. It is not difficult to see that

a0(n) =

n∑
k=0

S(n, k)〈−r〉k = (−r)n, n ≥ 0.

Then it is natural to ask a question: is the finite sum

ai(n) =

n∑
k=i

(
k

i

)
S(n, k)〈−r〉k, 1 ≤ i ≤ n

summarizable?

Remark 4.4. Comparing (4) with (11) discloses

bi(n) = (r)n

n∑
`=i

(−1)`+1

(
n

`

)
s(`, i)

〈−r〉`
, n ≥ i ≥ 0. (13)

This means that the identity (11) is more meaningful, more significant, more com-
putable than (4).

Remark 4.5. By virtue of the expressions (12) and (13), all the above mentioned
results in the papers [4, 5] can be reformulated simpler, more meaningfully, and
more significantly. For the sake of saving the space and shortening the length of
this paper, we do not rewrite them in details here.

Remark 4.6. Till now we can see that the method used in this paper is simpler,
shorter, nicer, more meaningful, and more significant than the inductive and recur-
sive method used in [4, 5].

Remark 4.7. In the papers and preprints [2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18],
there are similar ideas, methods, techniques, and purposes to this paper.

Acknowledgements. The authors thank Professor Taekyun Kim at Kwangwoon
University in South Korea for his supplying electronic versions of the papers [4, 5]
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