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1. MOTIVATIONS

In [4, Theorem 2.2], it was inductively and recursively established that the family
of differential equations

B n ” i
F“@)ijm(g_u)fw> )
i=0
forn>0,r €N, and v € C\ {1} has a solution
1 T
F(t) = F(t, = 2
(0 =Fro = () @
where ag(n) = (—r)™,
n—i ’nf’ifk‘i n kai7<~-k2 . i
ai(n) = (=D)"r+i—1); Y > - Y ek e+ oM (3)
ki=0 k;_1=0 k1=0 =1
for 1 <i <n, and
n—1
zz+1)(ze+2)---(x+n—-1), n>1
<mn—Ihx+@—{ﬁ Jre)ed o=
=0 , n=20

is the rising factorial. Hereafter, the following results were deduced.
(1) For k,n > 0, we have

12,00 = Yo (25 ) 1)
where H ,gr), which can be generated by

(1—u> ZH(T) kw

stand for the Frobenius—Euler numbers of order r. See [4, Theorem 2.3].
(2) For k,n > 0, we have

r - 1 ‘ r+1

=0

where E,(:), which can be generated by

2 7'_ o0 (T)tk
<et+1) _ZEk kU

k=0

stand for the Euler numbers of order r. See [4, Corollary 2.5].
(3) When 0<k<r—1land k>r+mn,
T 1 . r+1
B'=——~ 3 B (ks
(k—=7)n
i=max{n—=k,0}
when r <k <r—1+n,

n

S amBE (k)ami =0

i=max{n—=k,0}
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where B,(C ), which can be generated by

(ett—1>r ZB(T)t

k 1
k=0 K
stand for the Bernoulli numbers of order r. See [4, Theorem 2.7]

In [5] Theorem 2.1], it was inductively and recursively proved that the family of
differential equations

0 on () T = Sobr

(4)
for u € C and r € N has a solution F(t) defined in where by(n)

n—i n—i—k; n—i—k;—-—ko 1
—Z Z : Z H<r+n—z—1— Zk+€>
ki=0 k;—1=0 k1=0 ke

Jj=0+1
X <r+nilzkj>
j=1
and

—(r+n-1),

niifzé‘:lkj
(@) = H(w—@_{f(x_l)(x_%”'(x_”ﬂ)a n>1
{=0 )

n=20
is the falling factorial of x € R for n € {0} UN. Hereafter, the following conclusions
were derived.

(1) For k,n >0, we have

0o (1) B = b )

k+1
=0
See [5, Theorem 3.1]. In particular, taking u = —1 in (6] leads to

1

n—1 (r+n) _

10 (-3) B zb
See [5, Corollary 3.3

k+z
(2) When 0 < k <n+r—1, we have

1 min{r+n—1—k,n}
B = (-1

e 2 B

(k+1i—n—ryk!

k+i—n s | )
i=max{n—=k,0} (k t TL)
when k£ > n + r, we have
1 & (k+i—n—r)k!
B(rJrn) _(_ bz B(r i
k r)n ; ktiz=n (k4+i—n)!
See [5, Theorem 3.4]

(3) The matrices (a;(j))

0<ij<n and (%)OQKH are inverse to each
other for all n. See [5, Remark 3.2]
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It is easy to see that expressions (3) and (5] of the quantities a;(n) and b;(n)
are too complicated to be understood by common man’s brain or to be computed
by hand and computer software. Can one find simple, meaningful, and significant
expressions for the quantities (3) and (5)?

2. LEMMAS

For answering the above question and proving our main results, we need the
following lemmas.

Lemma 2.1 ([T, p. 134, Theorem A] and [1, p. 139, Theorem C]). Formn >k > 0,
the Bell polynomials of the second kind, or say, partial Bell polynomials, denoted
by By (21,22, ..., Tn_k+1), are defined by

n—k+1

n! T;
Bok(z1,22,. .. Tppy1) = E m H (7:)
it :

ly,02,...,0,€{0}UN i=1 i=1

£

i=1 ZZL:’IL
?:1 Li=k
The Fad di Bruno formula can be described in terms of the Bell polynomials of the
second kind By, (21,2, ..., Tpn_ky1) bY
d” -
—foh(t) = ®) () Bk (W (£), K (t), ..., " FED (1)),
az ! 01O = X FOBOBos (KO O ®).

Lemma 2.2 ([1, p. 135]). Forn >k > 0, we have
Bk (abxl, ab’zs, ... ,ab"ikﬂxn_kﬂ) = ak‘b"Bn,k(xl, Xy Tpkt1) (8)
and
B,k(1,1,...,1) = S(n, k), (9)
where a and b are any complex numbers.
Lemma 2.3 ([I7, p. 171, Theorem 12.1]). If b, and aj are a collection of constants

independent of n, then

n

Gn = Z S(n, )by, if and only if b, = Zs(n, k)ay.
a=0

k=0

Lemma 2.4 ([17, p. 83, Eq. (7.12)]). If ar and by for k > 0 are a collection of
constants independent of n, then

n

a(n) =Y (~1)* <Z> b(k) if and only if b(n) = zn:(q)k <Z> a(k).

k=0 k=0
3. MAIN RESULTS AND THEIR PROOFS

Now we are in a position to answer the above question and to state and prove
our main results.

Theorem 3.1. Forn > 0, r € R, and u € C, the function F(t) defined by (2)

satisfies
FM () = zn: lzn: (2) S(n, k)<—r>k] (et ?i u)eF(t) (10)

£=0 Lk=¢
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and

i;[ ) ( )&fj}ﬂ’“)(t) = “”"(etqiu)nF(t). (11)

Proof. Let F(t)= - and w = w(t) = w(t;u) = e —u. Then, by the Faa di Bruno
formula and he 1dent1t1es and @[) in sequence,

FM () = Z() Bi(elel, ... eh)
w

k=0

:Z%}rﬁ: MB,e(1,1,...,1)
k=0
S (=) k

= (et _u)T+ke tS(’I’L,k)
k=0

k=0 £=0
n n u 14
= F(t) ; Lz_;_mksm, k) (’;)] (et — u) .

Therefore, the identity follows immediately.
From the above proof of the identity (10), it can be deduced that

E ok u ¢
F(" = ZSnk Z(é)(&u)’ n > 0.

£=0

Utilizing Lemma arrives at

=0
which can be rearranged as

n ¢ n

n U
E (—1)Z<)<— ) E s(n, KYF® (1), n>0.
(=0 ¢ e —u ”k—o

Further making use of Lemma [2.4] derives

14

zn:(—ne(;l) m S s, k) PO (1) = <_et " u>n n>0

=0 k=0

which can be rewritten as . The required proof is complete. [
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4. REMARKS

In this section, we give several remarks and some explanation about our main
results.

Remark 4.1. Theorem [3.1] extends the range of r from N to R.

Remark 4.2. Comparing (1) with (10) reveals that
ai(n):kz:; (i>5(n,k)<—r>k, 0<i<n. (12)

This implies that the identity (10) is more meaningful, more significant, more com-
putable than the one (1).

Remark 4.3. It is not difficult to see that
n
ao(n) = Z S(?’l, k)<—7’>k = (_T)na n 2 0.
k=0
Then it is natural to ask a question: is the finite sum
n
k
% = S ak - ) 1 S ) S
a;(n) Z(J (n, k){—r) i<n

k=i
summarizable?

Remark 4.4. Comparing (4) with (11) discloses

bi(n) = (r)n > (~1)"* (Z) SD s s, (13)

—i (=7)e’

This means that the identity (11) is more meaningful, more significant, more com-
putable than (4).

Remark 4.5. By virtue of the expressions and (L3), all the above mentioned
results in the papers [4, 5] can be reformulated simpler, more meaningfully, and
more significantly. For the sake of saving the space and shortening the length of
this paper, we do not rewrite them in details here.

Remark 4.6. Till now we can see that the method used in this paper is simpler,
shorter, nicer, more meaningful, and more significant than the inductive and recur-
sive method used in [4, 5].

Remark 4.7. In the papers and preprints [2], Bl 6}, [7, 8, @1 10, [1T], [12] 13}, (14 [15] 16, 18],

there are similar ideas, methods, techniques, and purposes to this paper.
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