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Abstract: Collision avoidance is an important feature in advanced driver-assistance systems, aiming 
at providing correct, timely and reliable warnings before an imminent collision (objects, vehicles, 
pedestrians, etc.). A co-simulation framework is proposed in this paper to address the design and 
evaluation of collision avoidances in a cyber-physical system. The co-simulation framework is 
supported on the interaction between SCANeR and Matlab/Simulink. From the best of authors’ 
knowledge, two main contributions are reported in this paper. Firstly, the modelling and simulation 
of virtual on-chip LIDAR sensors in a cyber-physical system (CPS) considering traffic scenarios is 
presented. The CPS is designed and implemented in SCANeR. Secondly, an obstacle recognition 
library with three specific Artificial Intelligence-based methods is also designed based on sensory 
information database provided by SCANeR. Three methods for collision avoidance detection are 
considered, i.e.; a multi-layer perceptron neural network, a self-organization map and a support 
vector machine. Finally, a comparison among these methods for detecting obstacles before different 
weather conditions is done with very promising results in terms of accuracy. The best results are 
achieved using the multi-layer perceptron in sunny and fog conditions, the support vector machine 
in rainy and self-organized map in snowy conditions. 

Keywords: sensor-in-the-loop; co-simulation framework; virtual CPS; on-chip LiDAR; obstacle 
recognition library   

 

1. Introduction 

Recent developments demonstrate an increasing efficiency, availability and affordability of 
sensors, data acquisition systems, and computer networks [1]. Cyber-Physical Systems (CPSs) are still 
growing in different engineering fields supporting applications across industries, such as: 
manufacturing, healthcare, electric power grids, agriculture, and transportation. Nowadays, dozens 
of contributions are reported in the literature addressing key CPSs issues [2] from connecting 
topologies up to cognitive and self-configuration layers. A detailed review of CPS-architecture 
functionalities is presented in [3] describing the integration of sensors, actuators and protocols [4]. 
Big data analytics and cloud computing platforms are reported in [5] based on methods, software, 
and computer-based infrastructures. The analysis of current practices to predict future behaviour and 
provide security to components, machines and infrastructures are presented in [6]. The concept to 
achieve greater storage for historic data to predict future trends is plausible, however new sensory 
data processing and decision-making technologies are required [7]. The computational requirements 
in relation to operating systems, programming languages, user interfaces, and networking 
technologies have become more sophisticated in relation to software managing, information flow 
control, error control, redundancy, reliability and latency in heterogeneous global networks [8]. 
Furthermore, the knowledge acquisition, the learning [9] and its transformation into physical actions 
to help machines in decision-making activities [10] are priorities in the paradigm of CPSs.  

One of the main application fields for sensoring systems and CPSs is the realistic scenarios for 
advanced driver-assistance systems (ADAS) and autonomous vehicles (AV) [11-13]. According to the 
Accenture LLP report, for the next ten years and beyond, the key areas into the automotive vehicle 
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industry are: (i) cyber security; (ii) product liability for sensors and software and/or algorithms and 
(iii) insuring AV infrastructure [14]. In particular, sensor-in-the-loop system has been reported in 
several studies, with promising expectations in relation to high accuracy and precise six degree-of-
freedom position information for real-time navigation [15, 16]. Many vision based navigation 
algorithms are also available for AV systems [17, 18]. Among them, the Laser Imaging Detection and 
Ranging (LiDAR) and stereo vision cameras are widely used in computer vision for autonomous 
vehicle applications [19-21].  

Obstacle recognition serves to represent the common patterns of road, lane marking, traffic 
signals, vehicles, pedestrians, etc. Nowadays, many classifiers rely on machine-learning approaches 
to exploit data redundancy and abundance to finding out patterns, trends and relations amongst the 
input attributes and the class labels [22]. Within obstacle recognition techniques, vector support 
machines have been widely applied for classification and regression problems [23, 24]. An interesting 
application using machine learning for the pedestrian detection in autonomous vehicles based on HD 
3D LiDAR is reported in [25], providing more accurate data to be successfully used in any kind of 
lighting conditions.  

By the other hand, co-simulation frameworks take into account physical dynamics, control 
software, computational platforms, and communication networks, which is crucial for designing  
CPSs for autonomous driving [26, 27]. Co-simulation is essential for CPSs due to virtual prototyping, 
capable of properly emulate actor-sensor nodes with their own hardware specifications [28]. 
Moreover, virtual prototyping can take advantage of different modelling languages/tools and 
integrate them together for evaluating the behaviour of CPSs. For example, processing elements with 
real-time operating systems [29], communication systems, sensors, actuators, model transformations 
to the final virtual prototype [30] and localization error estimation and compensation [31] can be 
efficiently represented and modelled.  

This paper introduces a co-simulation framework for modelling and simulating a virtual sensor 
network in a cyber-physical system for obstacle recognition in driving assistance. From the best of 
authors knowledge, two contributions are reported in this paper. Firstly, a simulation framework of 
virtual sensors for improving the accuracy of on-chip LiDAR sensors is presented. This simulation 
framework enables to get in-parallel data from connected sensor networks in a CPS. Secondly, the 
design and application of a library with three Artificial Intelligence-based methods for obstacle 
recognition in the co-simulation framework is reported. A multilayer perceptron, a self-organized 
map and a support vector machine are chosen due to the solid mathematical foundations, 
demonstrated ability in modelling in complex scenarios and a wide range of successful applications 
reported in literature.  
Finally, an obstacle database in the CPS for driving assistance was generated from the SCANeR 
simulator to assess the on-chip LiDAR sensor accuracy before different weather conditions. On-chip 
LiDAR concept has driven to a great technological challenge with regard to sensor networks in CPSs. 
Due to its limited measurement range and field of view, it is necessary to obtain in-parallel data from 
other connected sensors to set a more accurate scan of the whole environment. 

The paper consists of five sections. Following this introduction, the second section explains the 
co-simulation framework composed by two modules: SCANeR and Simulink. Subsequently, a case 
study based on the interaction between SCANeR simulator and MatLab in driving assistance scenario 
is explained in section 3, as well as the first preliminary results obtained. After, experimental results 
and discussion by means of a comparative study are addressed in section 4. Finally, the conclusions 
and future research steps are presented. 

 2. CPS co-simulation framework description 

The CPS co-simulation framework consists in a computer-aided system to enable an efficient 
interaction between SCANeR studio and Matlab/Simulink. A set of computational procedures in the 
computer-aided system is in charge of adapting and transferring sensory information from SCANeR 
to MatLab and vice versa. The transfer of data is carried out through different functionalities available 
in SCANeR studio.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 August 2017                   doi:10.20944/preprints201708.0014.v1

Peer-reviewed version available at Sensors 2017, 17, 2109; doi:10.3390/s17092109

http://dx.doi.org/10.20944/preprints201708.0014.v1
http://dx.doi.org/10.3390/s17092109


 3 of 14 

 

 

 
Figure 1. Co-simulation framework architecture. Interaction between SCANeR and SIMULINK 

 
The co-simulation framework is implemented using the software developer kit of SCANeR. For 

example, some of the available functions are created with C/C++, C#, Labview, Matlab/Simulink or 
Python. LiDAR, 3D Stereo vison cameras and GPS sensors can be emulated with this software.  

A two module co-simulation system is introduced in this work. The first module is used to 
generate multiple 3D traffic scenarios composed by different nodes that belong to a sensor network 
by using SCANeR. The second module with three specific Artificial Intelligence-based methods (i.e., 
artificial neural network, self-organized map and support vector machine) is implemented in 
Matlab/Simulink. A classifier is then derived from data cloud points given by virtual sensors in the 
CPS (see Figure 1). Matlab/Simulink can easily interact with SCANeR studio, even in real time, 
thought a SDK module. The main goal of the classifier system is the detection of multiple obstacles 
in traffic scenarios.  

2.1. SCANeR studio module 

SCANER is a simulation engine for automotive applications in a virtual environment. The 
functionalities of SCANeR™ can be extended by an interface with third party modules by means of 
the SDK tool. 

2.1.1. 3D traffic scenario 

A 3D traffic scenario can be created in order to simulate the behaviour of virtual sensor networks 
in CPSs for driver-assistance systems. For example, a simple scenario can be composed by elements 
that represent an urban environment (see Figure 2 (a)). 
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(a) 

(b) 

 
(c) 

Figure 2. Traffic scenario in SCANeR. (a) Aerial view of simulation scenario, (b) vehicle models and 
(b) virtual CPS sensors configuration. 

Moreover, each vehicle model represented in this simulation tool can be equipped with specific 
sensors and actuators models (see Figure 2 (b)). Moreover, a control architecture can be also included 
in this simulation tool. For example, this architecture can be based on a fuzzy logic controller that 
manages individual actions on throttle, brake, and steering wheel, from sensory information [32]. 

2.1.2. Virtual models of CPS components. 

In the same way that 3D simulation scenario and vehicles models, different sensors can be 
represented in order to equip vehicles with these on-board sensors (see Figure 2 (c)). Therefore, 
connected sensor networks can be created in order to emulate the behaviour of virtual sensors or 
actuators in the CPS. The co-simulation allows to design and include new features. For example, key 
steps such as pre-processing (invalid scan points), segmentation (clustered point clouds) and feature 
extraction (identify features for the individual scans) and classification (object type detection) for the 
LiDAR sensor can be designed, conditioned and tailored.  

2.2. Matlab/Simulink module 

The second module consists on a library and classification models, implemented in 
Matlab/Simulink, in order to identify different object types. The framework is composed by a 
knowledge database and a library with three Artificial Intelligence-based methods by default (i.e., 
artificial neural network, self-organized map and support vector machine), although this library can 
be enriched at runtime from data received by all nodes that make up the virtual sensor network. The 
functional blocks are distributed in different nodes according to their functions. The distributed 
mobile nodes are in charge of capturing sensory data and run the classification with the required 
accuracy. Whereas, the main static node incorporates the generated runtime model, the library and 
knowledge database. 

Thee flow diagram of the procedure is shown in Figure 3. The distributed mobile node is also 
composed by the “Cloud point” block that includes the occupancy grid generation and segmentation 
of ground plane and nearby obstacles. These nodes also include the classification block for object 
point detection and feature extraction.  

On the other hand, the main static node contains the default library with some classification 
models. Later on, the library can be enriched from the process simulation. New traffic situations are 
generated providing new clouds of points (environment information) in each interaction between 
sensors and the obstacle detection procedure. Based on this continuous information flow and the 
previous classification (knowledge database), the library executes a parallel learning procedure for 
all the classification models to obtain a personalize setting for each particular scenario. Finally, once 
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a new best configuration is yielded the corresponding classifier in the distributed mode is then 
updated. 

 

 
Figure 3. Block diagram of classification methodology procedure for object type identification 

The decision to select the best classifier model included in the library is carried out by all virtual 
nodes, although some of them have not yet individually detected a decrease in their particular 
classification performance metrics. The performance metric chosen was correctly classified instances 
(CCI). This also generates a knowledge database with the performance of classifier models. By this 
way, the best models for each weather condition can be recorded. 

In this work, the techniques included library are multi-layer perceptron neural network (MLP), 
self-organized map (SOM) and support vector machine (SVM).  

MLP is one of the pioneering and most studied topology of artificial neural networks 
successfully applied in pattern recognition and modelling. The most popular supervised learning 
algorithm is the error backpropagation. The operation in a perceptron is described by the formula: 

 
1

n

i i
i

y f Wp x bp
=

 = + 
 
   (1) 

where, f is a discontinuous step function; n is number of inputs in a neuron; X the input signals; 
Wp the synaptic weights; bp the threshold value or bias and y the neuron output value. 

For training algorithm, the steepest descent is applied: 

 n
n

LWp
Wp

α ∂Δ = −
∂

  (2) 

where ΔWpn is the n-th weight update, α is the learning rate. This process is repeated until some 
stopping criteria is met. A major problem with gradient descent is that it easily gets stuck in local 
minima. This can be mitigated by the addition of a momentum term [33], which effectively adds 
inertia to the motion of the algorithm through weight space, thereby speeding up convergence and 
helping to escape from local minima [34]:  

 1n n
n

LWp m Wp
Wp

α− ∂Δ = Δ −
∂

  (3) 

where m is the momentum parameter. 
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The self-organizing map belongs to unsupervised learning methods, i.e., there are no explicit 
target outputs associated with each input and the goal is to build representations of the input that 
can be used for decision making [35]. The mapping of the SOM is done by feature vectors associated 
with each unit, 1 2( , ,..., )ni i i iWsom Wsom Wsom Wsom= . A sequential description of how to train a 
Kohonen SOM is as follows [36]: 

1. Initialize all weights randomly; 
2. Choose OP randomly in the training set; 
3. Select the winning output unit as the one with the largest similarity measure between all 

weight vectors and the operating point x. The winning unit satisfies the following equation: 

 minc ix Wsom x Wsom− = −   (4) 

4. Define the neighbourhood of the winner, by using a neighbourhood function ( )c iΩ
around a winning unit c. For instance, the Gaussian function can be used as the 
neighbourhood function as follows: 

 
22( ) exp

i cp p

c i
σ

 − 
−  
 Ω =   (5) 

where pi and pc are the positions of the output units i and c respectively, and σ reflects the scope 
of the neighbourhood. After the definition of the neighbourhood function the weight vector ωc of the 
selected neuron and the weight vectors ωi of its neighbours are updated according to the following 
formula: 

 ( ) ( )c iWsomi i x WsomαΔ = ⋅ Ω ⋅ −   (6) 

5. Finally, if the neighbourhood function is bigger the allowed error go to 2; else, stop. 
To achieve convergence, the learning rate and the width of the neighbourhood of the winner 

neuron must shrink to zero with time. A main problem of the SOM algorithm is the fact that the 
number of training steps of the convergence phase has to be fixed a priori and therefore must be set 
to a large value in order to ensure convergence. 

Finally, support vector machines are a group of supervised learning methods very cited in signal 
and image classification tasks. A kernel function (K) : m mK × →  can be described as [37]: 

 ( , ) ( ) ( )t
i j i jK X X X Xφ φ=   (7) 

where, X is a pattern text and φ the mapping representation. 
Given a matrix X the classification function can be represented: 

 ( , ) ( )
i

t
i j j

X S
K X X Ws X bsφ

∈

= +   (8) 

where, S is the set of supported vectors, Ws is the weight and bs the support bias. 
In particular, the Gaussian kernel is one of the most reported SVM techniques in the literature 

to nonlinear decision boundary spaces.  

 
2

2( , )
xi xj

i jK X X e σ
−

−
=   (9) 

Without doubt, these methods are a powerful tool to carry out pattern classification in driving 
intensions and obstacle detection [38]. Nevertheless, the design, simulation and implementation of 
effective solutions beyond the academia is still a big challenge for researchers and engineers. Indeed, 
co-simulation environments play a key role due the high risks of getting actual data from real 
scenarios in realistic driving and traffic conditions.  
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3. Case study with a sensor network in CPS for driving assistance: LiDAR on-chip and GPS 
sensors. 

A particular driving assistance scenario is defined in order to evaluate and to validate the 
proposed co-simulation framework. The scenario emulates the real setup available in the Centre of 
Automation and Robotics (CAR) in Ctra. Campo Real Km. 0.2, Arganda del Rey (Madrid, Spain) that 
is composed by a test track (a roundabout, traffic lights in the central crossing and additional curves 
on the main straight) that simulates an urban environment, a fleet of six fully-automated vehicles 
(distributed mobile nodes) and a main or central static node that is the communications tower [39]. 

In this use case, a LiDAR sensor is modelled, specifically, the 4- layer type Ibeo Lux. Table 1 
shows the specifications of this sensor. The LiDAR specifications are inputs to the sensor model and 
distances between the detection point with regard to the vehicle are outputs of the LiDAR model. 
Furthermore, the relative localization (X, Y, Z) of the detect point are outputs to the sensor model. 

 

 

Figure 4: (a) Aerial view of simulation scenario of the CPS. (b) A fully-automated vehicle model. 

In addition, in order to determine the vehicle localization within the scenario, a DGPS 20 Hz 
receiver (Trimble BD960) is also modelled. In this model configuration, outputs of this model are the 
global coordinates of the vehicle location (latitude, longitude and altitude). Both sensor models have 
been placed on the models of the three vehicles. 

Table 1. Sensor model configuration. Virtual CPS sensor specifications (inputs to model). 

Specifications / inputs Ibeo Lux 4 layers
Horizontal field 120 deg. (35 deg. to -50 deg.) 
Horizontal step 0.125 deg. 

Vertical field 3.2 deg. 
Vertical step 0.8 deg. 

Range 200 m. 
Update frequency 12.5 Hz 

 

Once the CPS is defined, the next step is to define the object type to be identify in this particular 
simulation scenario. These virtual sensors mentioned early are incorporated in all vehicles models 
include in this scenario (see Figure 5 (b)) and can be found different kind of static and dynamic objects 
as obstacles: trees, traffic signs, traffic lights, vehicles, motorcycles, pedestrians, viewed from 
different directions and distances. Among common patterns which can be found in a driving 
assistance scenario, such as road, lane marking, traffic signals, vehicles, pedestrians, etc., only 
pedestrians were considered for the sake of clarity. The procedure to detect an obstacle for one virtual 
sensor in this particular use case is depicted in Figure 5. 
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Figure 5. Obstacle detection close-loop for each virtual CPS sensor.  

3.1 Experimental set up 

The first step for implementing the initial obstacle recognition library aiming at collision 
avoidance is to create a training data set from the information collected by virtual sensors using the 
SCANeR software. The scenario for simulation was set up with three fully automated vehicles 
(distributed mobile nodes) with the on-board particular sensors. Four hours of sensors data provided 
by the virtual sensors data were recorded. The analysis consists in a data processing algorithm which 
begins with fitting the ground plane. It is necessary to search the ground plane and remove ground 
plane points, using a RANSAC algorithm [40]. It is important to note that the weather considered in 
these simulations is a sunny day. 

The next step during the data processing algorithm is to extract the points that correspond to 
nearby obstacles corresponding to specific point cloud sequence. Each scan of LiDAR data is stored 
as a 3-D point cloud. In order to process the sensory data, fast indexing and search capability are 
required. The procedure is performed by means of “pointCloud objects” from the perception with 
Computer Vision toolbox, which internally organizes data using a k-d tree structure [41]. After data 
processing, three sub-sets from experimental population were yielded for training (70% of total 
samples), validation (15% of total samples) and testing (15%). For manually labelling the most 
relevant objects from the sensory information, the frames captured by another model sensor have 
been used. This model sensor is a stereo vision camera which specifications are colour, 0.8 MP, 
resolution of 1032 x 776 and 20 FPS. The methodology is based on determining in the image captured 
by the camera the region of interest in which the object to be classified is located. On the other hand, 
the point cloud provided by the LiDAR are projected onto the image using a coordinate 
transformation and only the points within the region of interest are selected. 

The full data set contains a total of 1500 examples divided in 1050 segments for training the 
classifier, 220 segments for validations and 230 segments for testing. The training part of the data set 
contains 525 segments manually labelled positives (class-1) (LiDAR cloud points segments of 
pedestrian in up-right entire body), and 525 segments without any pedestrian evidence (class-0). 
Instead, the validation part of data set contains 110 segments positives and 110 negatives, also 
labelled (class-0 and class-1). 

Both segments of the training and validation set contains 18 predictors and one result (class 
label) for each observation. Therefore, a matrix or table for each set of n rows by 19 columns has been 
generated, where n is the number of observations corresponding to each set.  

 
Table 2. Training and testing set for obstacle recognition library implementation. 

Full data set Training set Validation set Test set 

1500 segm.  1050 segm.  220 segm.  230 segm.  
Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg. 
750 750 525  525 110 110 115 115 
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3.2 Training and initial test of obstacle recognition library  

As it was already mentioned, the library contains initially some classification models by default 
and later, the content will be enriched in runtime during the process simulation of the scenario. In 
this particular use case, three techniques are then considered, i.e., multi-layer perceptron neural 
network, a self-organization map and a support vector machine. The main rationale for their selection 
is the solid mathematical foundations, demonstrated ability in modelling in complex scenarios and a 
wide range of successful applications. 

The first technique was a multi-layer perceptron neural network with an input layer with 18 
neurons, a hidden layer of 40 neurons and an output layer with a single neuron and linear activation 
function. For training, the method used was gradient descent with momentum and adaptive learning 
rate backpropagation. The initial values of learning rate, and performance goal were 10-7 and 10-8, 
respectively. The network was trained during 50,000 iterations, after which it reached a best 
performance of 0.0216 and a gradient of 0.0021. Using the validation set, values of mean square error 
(MSE) of 0.0409 and correctly classified instances (CCI) equal to 95.91% was reached. 

The second method for the obstacle recognition library is a self-organizing maps. Specifically, a 
topology function that creates neurons in an N-dimensional random pattern was used, and the 
dimensions were 22 x 2. Finally, the Manhattan function was applied as distance function. In addition, 
an input weight equal to the number of observations in the training set was set, i.e. w = 1050. The 
network was trained during a cover step of 10000 and an initial neighbour size of 4, after which it 
reached a MSE of 0.132 and a CCI equal to 89.55% was reached using the validation set. 

Finally, a support vector machine was also implemented in the library. This nonlinear classifier 
uses a Gaussian Kernel function with a kernel scale σ = 0.94 and a box constrain of 9.78e4. The 
supervised learning method was trained during 1255 iterations, until its reason for convergence 
gradient reached a Δ < 0.001. The results obtained during validation were a MSE of 0.0636 and a CCI 
equal to 93.64%. 

 

 
Figure 6: Validation results in pedestrian detection (a) MLP, (b) SVM and (c) SOM 

Figure 6 shows the classifiers outputs of the three models vs. observed classes using the 
validation set. The classifiers outputs indicate whether the detected object is a pedestrian (class 1) or 
not (class 0). The three classifiers showed very good performance indices although the smallest error 
and the highest number of correctly classified instances corresponds to MLP, following by SVM and 
finally the worse result corresponds to SOM. This study is not conclusive and therefore a validation 
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with unknown data set is required using more performance indices in order to make a more complete 
comparative study among the three classifiers. 

3.3 Final validation of obstacle recognition library 

The current testing set in sunny weather conditions contains 230 segments (not known 
beforehand), and detailed annotations regarding the pedestrian appearances (in terms of occlusion), 
namely: occluded/partial pedestrians (class-0) and entire body pedestrians (class-1). A summary of 
the testing data set is shown in Table 2. 

A total of six performance indices were considered in the validation study on the basis of 
experimental run as follows: number of correctly classified instances (CCI), the number of incorrectly 
classified instances (ICI), the mean absolute error (MAE), the root mean squared error (RMSE), the 
relative absolute error (RAE) and the root relative squared error (RRSE). The results of the 
comparative study of the classifiers (MLP, SVM and SOM) are summarized in Table 3. 

Table 3. Comparative study of MLP, SVM and SOM 

Performance 
Index\Approach 

MLP SVM SOM 

CCI(%) 88.19 91.36 90.91 
ICI (%) 11.81 8.64 9.09 
MAE  0.12 0.09 0.09 
RMSE 0.34 0.29 0.30 
RAE (%) 23.64 17.29 18.68 
RRSE (%) 9.274 7.93 8.36 

 

The application of the MLP yielded 23.64% of RAE. On the contrary, SVM and SOM achieved 
an excellent accuracy, for instances 17.29% and 18.68% in RAE, respectively, although not much lower 
in percentage than the MLP error. The excellent behaviour is also endorsed with high correct 
classified instances of 91.36% and 90.91%. However, SOM and in particular SVM do not outperforms 
significantly MLP with regard to all figures of merits considered in this study. 

It should be noted that this study has been carried out in good weather climatological conditions. 

4. Experimental results with other weather conditions 

Additional experimental test for evaluating the co-simulation framework and the performance 
of the library for obstacle detection before different weather conditions was also conducted. Sunny, 
fog, rainy and snowy were taken into account. 

The same simulation time (i.e., 2 h) for each weather condition are considered in each running 
of virtual sensors in the CPS. All virtual objects and its corresponding position are previously known. 
Some of these dynamic objects in scenario are 205 pedestrians, 10 bicycles, 60 motorbikes, 213 small 
and medium vehicles and 20 trucks. The goal is to assess the accuracy for detecting and identifying 
pedestrians in spite of the other obstacles that can be recognized but not classified in this case study. 

Another test set was created for each weather condition (sunny, fog, rainy, and snowy). Each 
data set consists in 1010 samples with 205 samples positively labelled pedestrian detections and 805 
negatively labelled. The three classifiers were evaluated with these four data sets. 

 In order to assess the performance of classifiers, some performance indices are used such as 
Correct Classify Samples or Correct Rate (CCR), Incorrectly classified samples or Error Rate (ECR), 
Correctly Classified Positive Samples / True Positive Samples or Sensitivity (Sn), Correctly Classified 
Negative Samples / True Negative Samples or Specificity (Sp), Correctly Classified Positive Samples 
/ Positive Classified Samples or Positive Predictive Value (PPV), Correctly Classified Negative 
Samples / Negative Classified Samples or Negative Predictive Value (NPV),  Sn / (1 – Sp) or Positive 
Likelihood (PL) and (1 – Sn) / Sp or Negative Likelihood (NL). The resulting performance indices (PI) 
for the four weather conditions (WC) are shown in Table 5. 
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Table 5. Comparative study of Artificial Intelligence-based methods before different weather 

conditions 
PI/WC Sunny Fog Rainy Snowy 
 MLP SVM SOM MLP SVM SOM MLP SVM SOM MLP SVM SOM 
CCR (%) 88.70 87.92 80.79 85.40 84.75 80.79 79.21 80.40 80.00 62.22 77.03 79.90 
ECR (%) 11.30 12.08 19.21 14.60 15.25 19.21 30.79 19.60 20.00 37.78 22.97 20.10 
Sn 0.886 0.886 0.768 0.852 0.868 0.767 0.805 0.859 0.764 0.595 0.906 0.760 
Sp 0.888 0.854 0.966 0.849 0.766 0.971 0.668 0.585 0.942 0.532 0.239 0.951 
PPV 96.90 95.96 98.92 95.74 93.57 99.01 90.53 89.06 98.14 83.33 82.37 98.44 
NPV 66.42 65.54 51.41 59.44 59.70 51.42 46.62 51.50 50.43 25.11 39.20 50.32 
PL 7.894 6.05 22.48 5.635 3.709 26.19 2.427 2.073 13,05 1.271 1.19 15.56 
NL 0.129 0.134 0.241 0.174 0.172 0.241 0.797 0.240 0.251 0.762 0.395 0.252 

 
In the case of CCR, there is clear tendency to decrease the number of correctly classified instances 

due to the interference of weather conditions in the sensors field of view. In sunny and fog conditions, 
MLP and SVM showed better results than SOM. However, MLP showed a more evident deterioration 
with regard to the weather conditions change, unlike SVM and specially SOM that remain more 
stable in spite of the weather condition. In fact, SOM outperforms other topologies in the most 
extreme weather condition that is snowy with the highest specificity value (Sp).  

On the other hand, SVM produces the best classification in rainy conditions although in sunny 
and fog, the results are worse than those given by MLP. Figure 7 depicts the behaviour of CCR, PPV 
and Sp of the three classifiers with regard to the four weather conditions. 

 

 
Figure 7: Behaviour of the performance indices for each classifier with regard to weather conditions 
(a) CCR, (b) NPV and (c) Sp 

It is evident that the best classifier differs according to the weather conditions. The classifier 
based on MLP behaves better than SVM and SOM for sunny and fog conditions, whereas for rainy 
conditions, SVM-based model is the most appropriate. However, for the most extreme weather 
condition (snowy) the SOM-based classifier is the most suitable. Overall, the SOM-based classifier 
depicts the most regular behaviour before all weather conditions. 
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5. Conclusions 

This work presents a co-simulation framework for obstacle recognition on the basis of sensory 
data provided by a virtual sensor network in a cyber-physical system. This co-simulation framework 
is designed and built using SCANeR studio and Matlab/Simulink. An assistance driving scenario is 
created in SCANeR in order to represent and emulate the behaviour of a cyber-physical system. On 
other hand, a library of Artificial Intelligence-based methods for obstacle detection is designed and 
implemented in Matlab/Simulink. The library is composed by three methods i.e., multi-layer 
perceptron neural network, a self-organizing map and a support vector machine.  

The whole system is evaluated in a particular use case built from two types of sensory data 
(LiDAR on-chip and GPS sensors) within a defined scenario. The comparative study demonstrates 
that the proposed obstacles detection methods are powerful strategies for pedestrian detection. In the 
training and validation phase of the classification models, the best results were achieved with the 
multi-layer perceptron and the support vector machine, but not so remarkable to discard self-
organizing map.    

In addition, a second evaluation is also performed which consists in capturing sensory data 
provided by sensors but with different weather conditions. In this second evaluation, all methods are 
able to adequately classify pedestrians. Multi-layer perceptron provides very good results in sunny 
and fog conditions but at the same time they have a tendency to deteriorate its performance before 
other weather conditions. The support vector machine also produces the best result in rainy 
conditions. On the other hand, the self-organizing map produces the worst figures of merits, showing 
a more regular performance from data provided by all virtual on-chip LiDAR sensors.  

The results of this investigation corroborate the high influence of the weather conditions on the 
classifiers accuracy for detecting and classifying pedestrians. Further research is focused on an 
optimal tuning of the library’ methods and the development of a self-organization procedure to select 
the most appropriate method among those available in the library in each particular scenario. Finally, 
the proposed co-simulation system will be embedded and validated in real driving environments as 
part of the contributions to the IoSENSE project1. 
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