

Article

Co-simulation framework for on-chip LiDAR sensors
in a cyber-physical system
Fernando Castano 1,*, Gerardo Beruvides 1, Rodolfo Haber 1 and Antonio Artuñedo 1

1 Centre for Automation and Robotics, UPM-CSIC, Arganda del Rey, Spain
* Correspondence: fernando.castano@car.upm-csic.es; Tel.: +34-918-717-050

Abstract: Collision avoidance is an important feature in advanced driver-assistance systems, aiming
at providing correct, timely and reliable warnings before an imminent collision (objects, vehicles,
pedestrians, etc.). A co-simulation framework is proposed in this paper to address the design and
evaluation of collision avoidances in a cyber-physical system. The co-simulation framework is
supported on the interaction between SCANeR and Matlab/Simulink. From the best of authors’
knowledge, two main contributions are reported in this paper. Firstly, the modelling and simulation
of virtual on-chip LIDAR sensors in a cyber-physical system (CPS) considering traffic scenarios is
presented. The CPS is designed and implemented in SCANeR. Secondly, an obstacle recognition
library with three specific Artificial Intelligence-based methods is also designed based on sensory
information database provided by SCANeR. Three methods for collision avoidance detection are
considered, i.e.; a multi-layer perceptron neural network, a self-organization map and a support
vector machine. Finally, a comparison among these methods for detecting obstacles before different
weather conditions is done with very promising results in terms of accuracy. The best results are
achieved using the multi-layer perceptron in sunny and fog conditions, the support vector machine
in rainy and self-organized map in snowy conditions.

Keywords: sensor-in-the-loop; co-simulation framework; virtual CPS; on-chip LiDAR; obstacle
recognition library

1. Introduction

Recent developments demonstrate an increasing efficiency, availability and affordability of
sensors, data acquisition systems, and computer networks [1]. Cyber-Physical Systems (CPSs) are still
growing in different engineering fields supporting applications across industries, such as:
manufacturing, healthcare, electric power grids, agriculture, and transportation. Nowadays, dozens
of contributions are reported in the literature addressing key CPSs issues [2] from connecting
topologies up to cognitive and self-configuration layers. A detailed review of CPS-architecture
functionalities is presented in [3] describing the integration of sensors, actuators and protocols [4].
Big data analytics and cloud computing platforms are reported in [5] based on methods, software,
and computer-based infrastructures. The analysis of current practices to predict future behaviour and
provide security to components, machines and infrastructures are presented in [6]. The concept to
achieve greater storage for historic data to predict future trends is plausible, however new sensory
data processing and decision-making technologies are required [7]. The computational requirements
in relation to operating systems, programming languages, user interfaces, and networking
technologies have become more sophisticated in relation to software managing, information flow
control, error control, redundancy, reliability and latency in heterogeneous global networks [8].
Furthermore, the knowledge acquisition, the learning [9] and its transformation into physical actions
to help machines in decision-making activities [10] are priorities in the paradigm of CPSs.

One of the main application fields for sensoring systems and CPSs is the realistic scenarios for
advanced driver-assistance systems (ADAS) and autonomous vehicles (AV) [11-13]. According to the
Accenture LLP report, for the next ten years and beyond, the key areas into the automotive vehicle

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 August 2017 doi:10.20944/preprints201708.0014.v1

© 2017 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at Sensors 2017, 17, 2109; doi:10.3390/s17092109

http://dx.doi.org/10.20944/preprints201708.0014.v1
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3390/s17092109

 2 of 14

industry are: (i) cyber security; (ii) product liability for sensors and software and/or algorithms and
(iii) insuring AV infrastructure [14]. In particular, sensor-in-the-loop system has been reported in
several studies, with promising expectations in relation to high accuracy and precise six degree-of-
freedom position information for real-time navigation [15, 16]. Many vision based navigation
algorithms are also available for AV systems [17, 18]. Among them, the Laser Imaging Detection and
Ranging (LiDAR) and stereo vision cameras are widely used in computer vision for autonomous
vehicle applications [19-21].

Obstacle recognition serves to represent the common patterns of road, lane marking, traffic
signals, vehicles, pedestrians, etc. Nowadays, many classifiers rely on machine-learning approaches
to exploit data redundancy and abundance to finding out patterns, trends and relations amongst the
input attributes and the class labels [22]. Within obstacle recognition techniques, vector support
machines have been widely applied for classification and regression problems [23, 24]. An interesting
application using machine learning for the pedestrian detection in autonomous vehicles based on HD
3D LiDAR is reported in [25], providing more accurate data to be successfully used in any kind of
lighting conditions.

By the other hand, co-simulation frameworks take into account physical dynamics, control
software, computational platforms, and communication networks, which is crucial for designing
CPSs for autonomous driving [26, 27]. Co-simulation is essential for CPSs due to virtual prototyping,
capable of properly emulate actor-sensor nodes with their own hardware specifications [28].
Moreover, virtual prototyping can take advantage of different modelling languages/tools and
integrate them together for evaluating the behaviour of CPSs. For example, processing elements with
real-time operating systems [29], communication systems, sensors, actuators, model transformations
to the final virtual prototype [30] and localization error estimation and compensation [31] can be
efficiently represented and modelled.

This paper introduces a co-simulation framework for modelling and simulating a virtual sensor
network in a cyber-physical system for obstacle recognition in driving assistance. From the best of
authors knowledge, two contributions are reported in this paper. Firstly, a simulation framework of
virtual sensors for improving the accuracy of on-chip LiDAR sensors is presented. This simulation
framework enables to get in-parallel data from connected sensor networks in a CPS. Secondly, the
design and application of a library with three Artificial Intelligence-based methods for obstacle
recognition in the co-simulation framework is reported. A multilayer perceptron, a self-organized
map and a support vector machine are chosen due to the solid mathematical foundations,
demonstrated ability in modelling in complex scenarios and a wide range of successful applications
reported in literature.
Finally, an obstacle database in the CPS for driving assistance was generated from the SCANeR
simulator to assess the on-chip LiDAR sensor accuracy before different weather conditions. On-chip
LiDAR concept has driven to a great technological challenge with regard to sensor networks in CPSs.
Due to its limited measurement range and field of view, it is necessary to obtain in-parallel data from
other connected sensors to set a more accurate scan of the whole environment.

The paper consists of five sections. Following this introduction, the second section explains the
co-simulation framework composed by two modules: SCANeR and Simulink. Subsequently, a case
study based on the interaction between SCANeR simulator and MatLab in driving assistance scenario
is explained in section 3, as well as the first preliminary results obtained. After, experimental results
and discussion by means of a comparative study are addressed in section 4. Finally, the conclusions
and future research steps are presented.

 2. CPS co-simulation framework description

The CPS co-simulation framework consists in a computer-aided system to enable an efficient
interaction between SCANeR studio and Matlab/Simulink. A set of computational procedures in the
computer-aided system is in charge of adapting and transferring sensory information from SCANeR
to MatLab and vice versa. The transfer of data is carried out through different functionalities available
in SCANeR studio.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 August 2017 doi:10.20944/preprints201708.0014.v1

Peer-reviewed version available at Sensors 2017, 17, 2109; doi:10.3390/s17092109

http://dx.doi.org/10.20944/preprints201708.0014.v1
http://dx.doi.org/10.3390/s17092109

 3 of 14

Figure 1. Co-simulation framework architecture. Interaction between SCANeR and SIMULINK

The co-simulation framework is implemented using the software developer kit of SCANeR. For

example, some of the available functions are created with C/C++, C#, Labview, Matlab/Simulink or
Python. LiDAR, 3D Stereo vison cameras and GPS sensors can be emulated with this software.

A two module co-simulation system is introduced in this work. The first module is used to
generate multiple 3D traffic scenarios composed by different nodes that belong to a sensor network
by using SCANeR. The second module with three specific Artificial Intelligence-based methods (i.e.,
artificial neural network, self-organized map and support vector machine) is implemented in
Matlab/Simulink. A classifier is then derived from data cloud points given by virtual sensors in the
CPS (see Figure 1). Matlab/Simulink can easily interact with SCANeR studio, even in real time,
thought a SDK module. The main goal of the classifier system is the detection of multiple obstacles
in traffic scenarios.

2.1. SCANeR studio module

SCANER is a simulation engine for automotive applications in a virtual environment. The
functionalities of SCANeR™ can be extended by an interface with third party modules by means of
the SDK tool.

2.1.1. 3D traffic scenario

A 3D traffic scenario can be created in order to simulate the behaviour of virtual sensor networks
in CPSs for driver-assistance systems. For example, a simple scenario can be composed by elements
that represent an urban environment (see Figure 2 (a)).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 August 2017 doi:10.20944/preprints201708.0014.v1

Peer-reviewed version available at Sensors 2017, 17, 2109; doi:10.3390/s17092109

http://dx.doi.org/10.20944/preprints201708.0014.v1
http://dx.doi.org/10.3390/s17092109

 4 of 14

(a)

(b)

(c)

Figure 2. Traffic scenario in SCANeR. (a) Aerial view of simulation scenario, (b) vehicle models and
(b) virtual CPS sensors configuration.

Moreover, each vehicle model represented in this simulation tool can be equipped with specific
sensors and actuators models (see Figure 2 (b)). Moreover, a control architecture can be also included
in this simulation tool. For example, this architecture can be based on a fuzzy logic controller that
manages individual actions on throttle, brake, and steering wheel, from sensory information [32].

2.1.2. Virtual models of CPS components.

In the same way that 3D simulation scenario and vehicles models, different sensors can be
represented in order to equip vehicles with these on-board sensors (see Figure 2 (c)). Therefore,
connected sensor networks can be created in order to emulate the behaviour of virtual sensors or
actuators in the CPS. The co-simulation allows to design and include new features. For example, key
steps such as pre-processing (invalid scan points), segmentation (clustered point clouds) and feature
extraction (identify features for the individual scans) and classification (object type detection) for the
LiDAR sensor can be designed, conditioned and tailored.

2.2. Matlab/Simulink module

The second module consists on a library and classification models, implemented in
Matlab/Simulink, in order to identify different object types. The framework is composed by a
knowledge database and a library with three Artificial Intelligence-based methods by default (i.e.,
artificial neural network, self-organized map and support vector machine), although this library can
be enriched at runtime from data received by all nodes that make up the virtual sensor network. The
functional blocks are distributed in different nodes according to their functions. The distributed
mobile nodes are in charge of capturing sensory data and run the classification with the required
accuracy. Whereas, the main static node incorporates the generated runtime model, the library and
knowledge database.

Thee flow diagram of the procedure is shown in Figure 3. The distributed mobile node is also
composed by the “Cloud point” block that includes the occupancy grid generation and segmentation
of ground plane and nearby obstacles. These nodes also include the classification block for object
point detection and feature extraction.

On the other hand, the main static node contains the default library with some classification
models. Later on, the library can be enriched from the process simulation. New traffic situations are
generated providing new clouds of points (environment information) in each interaction between
sensors and the obstacle detection procedure. Based on this continuous information flow and the
previous classification (knowledge database), the library executes a parallel learning procedure for
all the classification models to obtain a personalize setting for each particular scenario. Finally, once

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 August 2017 doi:10.20944/preprints201708.0014.v1

Peer-reviewed version available at Sensors 2017, 17, 2109; doi:10.3390/s17092109

http://dx.doi.org/10.20944/preprints201708.0014.v1
http://dx.doi.org/10.3390/s17092109

 5 of 14

a new best configuration is yielded the corresponding classifier in the distributed mode is then
updated.

Figure 3. Block diagram of classification methodology procedure for object type identification

The decision to select the best classifier model included in the library is carried out by all virtual
nodes, although some of them have not yet individually detected a decrease in their particular
classification performance metrics. The performance metric chosen was correctly classified instances
(CCI). This also generates a knowledge database with the performance of classifier models. By this
way, the best models for each weather condition can be recorded.

In this work, the techniques included library are multi-layer perceptron neural network (MLP),
self-organized map (SOM) and support vector machine (SVM).

MLP is one of the pioneering and most studied topology of artificial neural networks
successfully applied in pattern recognition and modelling. The most popular supervised learning
algorithm is the error backpropagation. The operation in a perceptron is described by the formula:

1

n

i i
i

y f Wp x bp
=

 = +

 (1)

where, f is a discontinuous step function; n is number of inputs in a neuron; X the input signals;
Wp the synaptic weights; bp the threshold value or bias and y the neuron output value.

For training algorithm, the steepest descent is applied:

 n
n

LWp
Wp

α ∂Δ = −
∂

 (2)

where ΔWpn is the n-th weight update, α is the learning rate. This process is repeated until some
stopping criteria is met. A major problem with gradient descent is that it easily gets stuck in local
minima. This can be mitigated by the addition of a momentum term [33], which effectively adds
inertia to the motion of the algorithm through weight space, thereby speeding up convergence and
helping to escape from local minima [34]:

 1n n
n

LWp m Wp
Wp

α− ∂Δ = Δ −
∂

 (3)

where m is the momentum parameter.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 August 2017 doi:10.20944/preprints201708.0014.v1

Peer-reviewed version available at Sensors 2017, 17, 2109; doi:10.3390/s17092109

http://dx.doi.org/10.20944/preprints201708.0014.v1
http://dx.doi.org/10.3390/s17092109

 6 of 14

The self-organizing map belongs to unsupervised learning methods, i.e., there are no explicit
target outputs associated with each input and the goal is to build representations of the input that
can be used for decision making [35]. The mapping of the SOM is done by feature vectors associated
with each unit, 1 2(, ,...,)ni i i iWsom Wsom Wsom Wsom= . A sequential description of how to train a
Kohonen SOM is as follows [36]:

1. Initialize all weights randomly;
2. Choose OP randomly in the training set;
3. Select the winning output unit as the one with the largest similarity measure between all

weight vectors and the operating point x. The winning unit satisfies the following equation:

 minc ix Wsom x Wsom− = − (4)

4. Define the neighbourhood of the winner, by using a neighbourhood function ()c iΩ
around a winning unit c. For instance, the Gaussian function can be used as the
neighbourhood function as follows:

22() exp

i cp p

c i
σ

 −
−
 Ω = (5)

where pi and pc are the positions of the output units i and c respectively, and σ reflects the scope
of the neighbourhood. After the definition of the neighbourhood function the weight vector ωc of the
selected neuron and the weight vectors ωi of its neighbours are updated according to the following
formula:

 () ()c iWsomi i x WsomαΔ = ⋅ Ω ⋅ − (6)

5. Finally, if the neighbourhood function is bigger the allowed error go to 2; else, stop.
To achieve convergence, the learning rate and the width of the neighbourhood of the winner

neuron must shrink to zero with time. A main problem of the SOM algorithm is the fact that the
number of training steps of the convergence phase has to be fixed a priori and therefore must be set
to a large value in order to ensure convergence.

Finally, support vector machines are a group of supervised learning methods very cited in signal
and image classification tasks. A kernel function (K) : m mK × → can be described as [37]:

 (,) () ()t
i j i jK X X X Xφ φ= (7)

where, X is a pattern text and φ the mapping representation.
Given a matrix X the classification function can be represented:

 (,) ()
i

t
i j j

X S
K X X Ws X bsφ

∈

= + (8)

where, S is the set of supported vectors, Ws is the weight and bs the support bias.
In particular, the Gaussian kernel is one of the most reported SVM techniques in the literature

to nonlinear decision boundary spaces.

2

2(,)
xi xj

i jK X X e σ
−

−
= (9)

Without doubt, these methods are a powerful tool to carry out pattern classification in driving
intensions and obstacle detection [38]. Nevertheless, the design, simulation and implementation of
effective solutions beyond the academia is still a big challenge for researchers and engineers. Indeed,
co-simulation environments play a key role due the high risks of getting actual data from real
scenarios in realistic driving and traffic conditions.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 August 2017 doi:10.20944/preprints201708.0014.v1

Peer-reviewed version available at Sensors 2017, 17, 2109; doi:10.3390/s17092109

http://dx.doi.org/10.20944/preprints201708.0014.v1
http://dx.doi.org/10.3390/s17092109

 7 of 14

3. Case study with a sensor network in CPS for driving assistance: LiDAR on-chip and GPS
sensors.

A particular driving assistance scenario is defined in order to evaluate and to validate the
proposed co-simulation framework. The scenario emulates the real setup available in the Centre of
Automation and Robotics (CAR) in Ctra. Campo Real Km. 0.2, Arganda del Rey (Madrid, Spain) that
is composed by a test track (a roundabout, traffic lights in the central crossing and additional curves
on the main straight) that simulates an urban environment, a fleet of six fully-automated vehicles
(distributed mobile nodes) and a main or central static node that is the communications tower [39].

In this use case, a LiDAR sensor is modelled, specifically, the 4- layer type Ibeo Lux. Table 1
shows the specifications of this sensor. The LiDAR specifications are inputs to the sensor model and
distances between the detection point with regard to the vehicle are outputs of the LiDAR model.
Furthermore, the relative localization (X, Y, Z) of the detect point are outputs to the sensor model.

Figure 4: (a) Aerial view of simulation scenario of the CPS. (b) A fully-automated vehicle model.

In addition, in order to determine the vehicle localization within the scenario, a DGPS 20 Hz
receiver (Trimble BD960) is also modelled. In this model configuration, outputs of this model are the
global coordinates of the vehicle location (latitude, longitude and altitude). Both sensor models have
been placed on the models of the three vehicles.

Table 1. Sensor model configuration. Virtual CPS sensor specifications (inputs to model).

Specifications / inputs Ibeo Lux 4 layers
Horizontal field 120 deg. (35 deg. to -50 deg.)
Horizontal step 0.125 deg.

Vertical field 3.2 deg.
Vertical step 0.8 deg.

Range 200 m.
Update frequency 12.5 Hz

Once the CPS is defined, the next step is to define the object type to be identify in this particular
simulation scenario. These virtual sensors mentioned early are incorporated in all vehicles models
include in this scenario (see Figure 5 (b)) and can be found different kind of static and dynamic objects
as obstacles: trees, traffic signs, traffic lights, vehicles, motorcycles, pedestrians, viewed from
different directions and distances. Among common patterns which can be found in a driving
assistance scenario, such as road, lane marking, traffic signals, vehicles, pedestrians, etc., only
pedestrians were considered for the sake of clarity. The procedure to detect an obstacle for one virtual
sensor in this particular use case is depicted in Figure 5.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 August 2017 doi:10.20944/preprints201708.0014.v1

Peer-reviewed version available at Sensors 2017, 17, 2109; doi:10.3390/s17092109

http://dx.doi.org/10.20944/preprints201708.0014.v1
http://dx.doi.org/10.3390/s17092109

 8 of 14

Figure 5. Obstacle detection close-loop for each virtual CPS sensor.

3.1 Experimental set up

The first step for implementing the initial obstacle recognition library aiming at collision
avoidance is to create a training data set from the information collected by virtual sensors using the
SCANeR software. The scenario for simulation was set up with three fully automated vehicles
(distributed mobile nodes) with the on-board particular sensors. Four hours of sensors data provided
by the virtual sensors data were recorded. The analysis consists in a data processing algorithm which
begins with fitting the ground plane. It is necessary to search the ground plane and remove ground
plane points, using a RANSAC algorithm [40]. It is important to note that the weather considered in
these simulations is a sunny day.

The next step during the data processing algorithm is to extract the points that correspond to
nearby obstacles corresponding to specific point cloud sequence. Each scan of LiDAR data is stored
as a 3-D point cloud. In order to process the sensory data, fast indexing and search capability are
required. The procedure is performed by means of “pointCloud objects” from the perception with
Computer Vision toolbox, which internally organizes data using a k-d tree structure [41]. After data
processing, three sub-sets from experimental population were yielded for training (70% of total
samples), validation (15% of total samples) and testing (15%). For manually labelling the most
relevant objects from the sensory information, the frames captured by another model sensor have
been used. This model sensor is a stereo vision camera which specifications are colour, 0.8 MP,
resolution of 1032 x 776 and 20 FPS. The methodology is based on determining in the image captured
by the camera the region of interest in which the object to be classified is located. On the other hand,
the point cloud provided by the LiDAR are projected onto the image using a coordinate
transformation and only the points within the region of interest are selected.

The full data set contains a total of 1500 examples divided in 1050 segments for training the
classifier, 220 segments for validations and 230 segments for testing. The training part of the data set
contains 525 segments manually labelled positives (class-1) (LiDAR cloud points segments of
pedestrian in up-right entire body), and 525 segments without any pedestrian evidence (class-0).
Instead, the validation part of data set contains 110 segments positives and 110 negatives, also
labelled (class-0 and class-1).

Both segments of the training and validation set contains 18 predictors and one result (class
label) for each observation. Therefore, a matrix or table for each set of n rows by 19 columns has been
generated, where n is the number of observations corresponding to each set.

Table 2. Training and testing set for obstacle recognition library implementation.

Full data set Training set Validation set Test set

1500 segm. 1050 segm. 220 segm. 230 segm.
Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg.
750 750 525 525 110 110 115 115

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 August 2017 doi:10.20944/preprints201708.0014.v1

Peer-reviewed version available at Sensors 2017, 17, 2109; doi:10.3390/s17092109

http://dx.doi.org/10.20944/preprints201708.0014.v1
http://dx.doi.org/10.3390/s17092109

 9 of 14

3.2 Training and initial test of obstacle recognition library

As it was already mentioned, the library contains initially some classification models by default
and later, the content will be enriched in runtime during the process simulation of the scenario. In
this particular use case, three techniques are then considered, i.e., multi-layer perceptron neural
network, a self-organization map and a support vector machine. The main rationale for their selection
is the solid mathematical foundations, demonstrated ability in modelling in complex scenarios and a
wide range of successful applications.

The first technique was a multi-layer perceptron neural network with an input layer with 18
neurons, a hidden layer of 40 neurons and an output layer with a single neuron and linear activation
function. For training, the method used was gradient descent with momentum and adaptive learning
rate backpropagation. The initial values of learning rate, and performance goal were 10-7 and 10-8,
respectively. The network was trained during 50,000 iterations, after which it reached a best
performance of 0.0216 and a gradient of 0.0021. Using the validation set, values of mean square error
(MSE) of 0.0409 and correctly classified instances (CCI) equal to 95.91% was reached.

The second method for the obstacle recognition library is a self-organizing maps. Specifically, a
topology function that creates neurons in an N-dimensional random pattern was used, and the
dimensions were 22 x 2. Finally, the Manhattan function was applied as distance function. In addition,
an input weight equal to the number of observations in the training set was set, i.e. w = 1050. The
network was trained during a cover step of 10000 and an initial neighbour size of 4, after which it
reached a MSE of 0.132 and a CCI equal to 89.55% was reached using the validation set.

Finally, a support vector machine was also implemented in the library. This nonlinear classifier
uses a Gaussian Kernel function with a kernel scale σ = 0.94 and a box constrain of 9.78e4. The
supervised learning method was trained during 1255 iterations, until its reason for convergence
gradient reached a Δ < 0.001. The results obtained during validation were a MSE of 0.0636 and a CCI
equal to 93.64%.

Figure 6: Validation results in pedestrian detection (a) MLP, (b) SVM and (c) SOM

Figure 6 shows the classifiers outputs of the three models vs. observed classes using the
validation set. The classifiers outputs indicate whether the detected object is a pedestrian (class 1) or
not (class 0). The three classifiers showed very good performance indices although the smallest error
and the highest number of correctly classified instances corresponds to MLP, following by SVM and
finally the worse result corresponds to SOM. This study is not conclusive and therefore a validation

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 August 2017 doi:10.20944/preprints201708.0014.v1

Peer-reviewed version available at Sensors 2017, 17, 2109; doi:10.3390/s17092109

http://dx.doi.org/10.20944/preprints201708.0014.v1
http://dx.doi.org/10.3390/s17092109

 10 of 14

with unknown data set is required using more performance indices in order to make a more complete
comparative study among the three classifiers.

3.3 Final validation of obstacle recognition library

The current testing set in sunny weather conditions contains 230 segments (not known
beforehand), and detailed annotations regarding the pedestrian appearances (in terms of occlusion),
namely: occluded/partial pedestrians (class-0) and entire body pedestrians (class-1). A summary of
the testing data set is shown in Table 2.

A total of six performance indices were considered in the validation study on the basis of
experimental run as follows: number of correctly classified instances (CCI), the number of incorrectly
classified instances (ICI), the mean absolute error (MAE), the root mean squared error (RMSE), the
relative absolute error (RAE) and the root relative squared error (RRSE). The results of the
comparative study of the classifiers (MLP, SVM and SOM) are summarized in Table 3.

Table 3. Comparative study of MLP, SVM and SOM

Performance
Index\Approach

MLP SVM SOM

CCI(%) 88.19 91.36 90.91
ICI (%) 11.81 8.64 9.09
MAE 0.12 0.09 0.09
RMSE 0.34 0.29 0.30
RAE (%) 23.64 17.29 18.68
RRSE (%) 9.274 7.93 8.36

The application of the MLP yielded 23.64% of RAE. On the contrary, SVM and SOM achieved
an excellent accuracy, for instances 17.29% and 18.68% in RAE, respectively, although not much lower
in percentage than the MLP error. The excellent behaviour is also endorsed with high correct
classified instances of 91.36% and 90.91%. However, SOM and in particular SVM do not outperforms
significantly MLP with regard to all figures of merits considered in this study.

It should be noted that this study has been carried out in good weather climatological conditions.

4. Experimental results with other weather conditions

Additional experimental test for evaluating the co-simulation framework and the performance
of the library for obstacle detection before different weather conditions was also conducted. Sunny,
fog, rainy and snowy were taken into account.

The same simulation time (i.e., 2 h) for each weather condition are considered in each running
of virtual sensors in the CPS. All virtual objects and its corresponding position are previously known.
Some of these dynamic objects in scenario are 205 pedestrians, 10 bicycles, 60 motorbikes, 213 small
and medium vehicles and 20 trucks. The goal is to assess the accuracy for detecting and identifying
pedestrians in spite of the other obstacles that can be recognized but not classified in this case study.

Another test set was created for each weather condition (sunny, fog, rainy, and snowy). Each
data set consists in 1010 samples with 205 samples positively labelled pedestrian detections and 805
negatively labelled. The three classifiers were evaluated with these four data sets.

 In order to assess the performance of classifiers, some performance indices are used such as
Correct Classify Samples or Correct Rate (CCR), Incorrectly classified samples or Error Rate (ECR),
Correctly Classified Positive Samples / True Positive Samples or Sensitivity (Sn), Correctly Classified
Negative Samples / True Negative Samples or Specificity (Sp), Correctly Classified Positive Samples
/ Positive Classified Samples or Positive Predictive Value (PPV), Correctly Classified Negative
Samples / Negative Classified Samples or Negative Predictive Value (NPV), Sn / (1 – Sp) or Positive
Likelihood (PL) and (1 – Sn) / Sp or Negative Likelihood (NL). The resulting performance indices (PI)
for the four weather conditions (WC) are shown in Table 5.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 August 2017 doi:10.20944/preprints201708.0014.v1

Peer-reviewed version available at Sensors 2017, 17, 2109; doi:10.3390/s17092109

http://dx.doi.org/10.20944/preprints201708.0014.v1
http://dx.doi.org/10.3390/s17092109

 11 of 14

Table 5. Comparative study of Artificial Intelligence-based methods before different weather

conditions
PI/WC Sunny Fog Rainy Snowy
 MLP SVM SOM MLP SVM SOM MLP SVM SOM MLP SVM SOM
CCR (%) 88.70 87.92 80.79 85.40 84.75 80.79 79.21 80.40 80.00 62.22 77.03 79.90
ECR (%) 11.30 12.08 19.21 14.60 15.25 19.21 30.79 19.60 20.00 37.78 22.97 20.10
Sn 0.886 0.886 0.768 0.852 0.868 0.767 0.805 0.859 0.764 0.595 0.906 0.760
Sp 0.888 0.854 0.966 0.849 0.766 0.971 0.668 0.585 0.942 0.532 0.239 0.951
PPV 96.90 95.96 98.92 95.74 93.57 99.01 90.53 89.06 98.14 83.33 82.37 98.44
NPV 66.42 65.54 51.41 59.44 59.70 51.42 46.62 51.50 50.43 25.11 39.20 50.32
PL 7.894 6.05 22.48 5.635 3.709 26.19 2.427 2.073 13,05 1.271 1.19 15.56
NL 0.129 0.134 0.241 0.174 0.172 0.241 0.797 0.240 0.251 0.762 0.395 0.252

In the case of CCR, there is clear tendency to decrease the number of correctly classified instances

due to the interference of weather conditions in the sensors field of view. In sunny and fog conditions,
MLP and SVM showed better results than SOM. However, MLP showed a more evident deterioration
with regard to the weather conditions change, unlike SVM and specially SOM that remain more
stable in spite of the weather condition. In fact, SOM outperforms other topologies in the most
extreme weather condition that is snowy with the highest specificity value (Sp).

On the other hand, SVM produces the best classification in rainy conditions although in sunny
and fog, the results are worse than those given by MLP. Figure 7 depicts the behaviour of CCR, PPV
and Sp of the three classifiers with regard to the four weather conditions.

Figure 7: Behaviour of the performance indices for each classifier with regard to weather conditions
(a) CCR, (b) NPV and (c) Sp

It is evident that the best classifier differs according to the weather conditions. The classifier
based on MLP behaves better than SVM and SOM for sunny and fog conditions, whereas for rainy
conditions, SVM-based model is the most appropriate. However, for the most extreme weather
condition (snowy) the SOM-based classifier is the most suitable. Overall, the SOM-based classifier
depicts the most regular behaviour before all weather conditions.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 August 2017 doi:10.20944/preprints201708.0014.v1

Peer-reviewed version available at Sensors 2017, 17, 2109; doi:10.3390/s17092109

http://dx.doi.org/10.20944/preprints201708.0014.v1
http://dx.doi.org/10.3390/s17092109

 12 of 14

5. Conclusions

This work presents a co-simulation framework for obstacle recognition on the basis of sensory
data provided by a virtual sensor network in a cyber-physical system. This co-simulation framework
is designed and built using SCANeR studio and Matlab/Simulink. An assistance driving scenario is
created in SCANeR in order to represent and emulate the behaviour of a cyber-physical system. On
other hand, a library of Artificial Intelligence-based methods for obstacle detection is designed and
implemented in Matlab/Simulink. The library is composed by three methods i.e., multi-layer
perceptron neural network, a self-organizing map and a support vector machine.

The whole system is evaluated in a particular use case built from two types of sensory data
(LiDAR on-chip and GPS sensors) within a defined scenario. The comparative study demonstrates
that the proposed obstacles detection methods are powerful strategies for pedestrian detection. In the
training and validation phase of the classification models, the best results were achieved with the
multi-layer perceptron and the support vector machine, but not so remarkable to discard self-
organizing map.

In addition, a second evaluation is also performed which consists in capturing sensory data
provided by sensors but with different weather conditions. In this second evaluation, all methods are
able to adequately classify pedestrians. Multi-layer perceptron provides very good results in sunny
and fog conditions but at the same time they have a tendency to deteriorate its performance before
other weather conditions. The support vector machine also produces the best result in rainy
conditions. On the other hand, the self-organizing map produces the worst figures of merits, showing
a more regular performance from data provided by all virtual on-chip LiDAR sensors.

The results of this investigation corroborate the high influence of the weather conditions on the
classifiers accuracy for detecting and classifying pedestrians. Further research is focused on an
optimal tuning of the library’ methods and the development of a self-organization procedure to select
the most appropriate method among those available in the library in each particular scenario. Finally,
the proposed co-simulation system will be embedded and validated in real driving environments as
part of the contributions to the IoSENSE project1.

Acknowledgments: Authors wish to thank the support given by the project 1IoSENSE: Flexible FE/BE Sensor
Pilot Line for the Internet of Everything, funded by the Electronic Component Systems for European Leadership
Joint (ECSEL) Undertaking under grant agreement No 692480. http://www.iosense.eu/

Author Contributions: Rodolfo Haber contributed with a technical and scientific review of the article whole.
Antonio Artuñedo was in charge of review of technical words related to automotive applications and he
collaborated with the design of co-simulation framework. Fernando Castano and Gerardo Beruvides are
designed and implemented the scenario, co-simulation framework architecture and machine learning library,
and wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Trappey, A. J. C.; Trappey, C. V.; Govindarajan, U. H.; Sun, J. J.; Chuang, A. C., A Review of
Technology Standards and Patent Portfolios for Enabling Cyber-Physical Systems in Advanced
Manufacturing. IEEE Access 2016, 4, 7356-7382.
2. Bures, T.; Weyns, D.; Klein, M.; Haber, R. E. In 1st International Workshop on Software Engineering for
Smart Cyber-Physical Systems (SEsCPS 2015), 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, 16-24 May 2015, 2015; 2015; pp 1009-1010.
3. Lee, J.; Bagheri, B.; Kao, H.-A., A cyber-physical systems architecture for industry 4.0-based
manufacturing systems. Manuf. Let. 2015, 3, 18-23.
4. Sanislav, T.; Miclea, L., Cyber-physical systems-concept, challenges and research areas. Journal of
Control Engineering and Applied Informatics 2012, 14, (2), 28-33.
5. Bhave, A.; Krogh, B. H.; Garlan, D.; Schmerl, B. In View consistency in architectures for cyber-physical
systems, Proceedings of the 2011 IEEE/ACM Second International Conference on Cyber-Physical Systems,
2011; IEEE Computer Society: 2011; pp 151-160.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 August 2017 doi:10.20944/preprints201708.0014.v1

Peer-reviewed version available at Sensors 2017, 17, 2109; doi:10.3390/s17092109

http://dx.doi.org/10.20944/preprints201708.0014.v1
http://dx.doi.org/10.3390/s17092109

 13 of 14

6. Gölzer, P.; Cato, P.; Amberg, M. In Data Processing Requirements of Industry 4.0-Use Cases for Big Data
Applications, ECIS, 2015; 2015.
7. Yuan, X.; Anumba, C. J.; Parfitt, K. M., Review of the potential for a cyber-physical system approach
to temporary structures monitoring. International Journal of Architectural Research: ArchNet-IJAR 2015, 9, (3),
26-44.
8. Watteyne, T.; Handziski, V.; Vilajosana, X.; Duquennoy, S.; Hahm, O.; Baccelli, E.; Wolisz, A.,
Industrial wireless ip-based cyber–physical systems. Proceedings of the IEEE 2016, 104, (5), 1025-1038.
9. Wan, J.; Zhang, D.; Zhao, S.; Yang, L.; Lloret, J., Context-aware vehicular cyber-physical systems with
cloud support: architecture, challenges, and solutions. IEEE Communications Magazine 2014, 52, (8), 106-113.
10. Ruan, J.; Yu, W.; Yang, Y.; Hu, J. In Design and realize of tire production process monitoring system based
on cyber-physical systems, Computer Science and Mechanical Automation (CSMA), 2015 International
Conference on, 2015; IEEE: 2015; pp 175-179.
11. Iovine, A.; Valentini, F.; De Santis, E.; Di Benedetto, M. D.; Pratesi, M., Safe human-inspired
mesoscopic hybrid automaton for autonomous vehicles. Nonlinear Analysis: Hybrid Systems 2017, 25, 192-
210.
12. Zhao, X.; Mu, K.; Hui, F.; Prehofer, C., A cooperative vehicle-infrastructure based urban driving
environment perception method using a D-S theory-based credibility map. Optik - International Journal for
Light and Electron Optics 2017, 138, 407-415.
13. Reiser, D.; Paraforos, D.; Khan, M.; Griepentrog, H.; Vázquez-Arellano, M., Autonomous field
navigation, data acquisition and node location in wireless sensor networks. Precision Agriculture 2016, 1-14.
14. Rapberger, W., The emergence of autonomous vehicles. In Accenture: 2017.
15. Martínez, C.; Richardson, T.; Thomas, P.; Du Bois, J. L.; Campoy, P., A vision-based strategy for
autonomous aerial refueling tasks. Robotics and Autonomous Systems 2013, 61, (8), 876-895.
16. Morrison, A.; Renaudin, V.; Bancroft, J. B.; Lachapelle, G., Design and testing of a multi-sensor
pedestrian location and navigation platform. Sensors 2012, 12, (3), 3720-3738.
17. Yang, S.; Scherer, S. A.; Schauwecker, K.; Zell, A., Autonomous landing of MAVs on an arbitrarily
textured landing site using onboard monocular vision. Journal of Intelligent & Robotic Systems 2014, 74, (1-2),
27.
18. Lee, H.; Kim, H. J., Trajectory tracking control of multirotors from modelling to experiments: A
survey. International Journal of Control, Automation and Systems 2017, 1-12.
19. Sim, S.; Sock, J.; Kwak, K., Indirect Correspondence-Based Robust Extrinsic Calibration of LiDAR and
Camera. Sensors 2016, 16, (6), 933.
20. Pandey, G.; McBride, J. R.; Savarese, S.; Eustice, R. M., Automatic extrinsic calibration of vision and
lidar by maximizing mutual information. Journal of Field Robotics 2015, 32, (5), 696-722.
21. Chen, C.-I.; Koseluk, R.; Buchanan, C.; Duerner, A.; Jeppesen, B.; Laux, H., Autonomous Aerial
Refueling Ground Test Demonstration—A Sensor-in-the-Loop, Non-Tracking Method. Sensors 2015, 15, (5),
10948-10972.
22. Kala, R., 3 - Perception in Autonomous Vehicles. In On-Road Intelligent Vehicles, Butterworth-
Heinemann: 2016; pp 36-58.
23. Taghavifar, H.; Mardani, A.; Karim Maslak, H., A comparative study between artificial neural
networks and support vector regression for modeling of the dissipated energy through tire-obstacle
collision dynamics. Energy 2015, 89, 358-364.
24. Apatean, A.; Rogozan, A.; Bensrhair, A., Visible-infrared fusion schemes for road obstacle
classification. Transportation Research Part C: Emerging Technologies 2013, 35, 180-192.
25. Navarro, P. J.; Fernández, C.; Borraz, R.; Alonso, D., A machine learning approach to pedestrian
detection for autonomous vehicles using high-definition 3D range data. Sensors 2016, 17, (1), 18.
26. Zhang, Z.; Eyisi, E.; Koutsoukos, X.; Porter, J.; Karsai, G.; Sztipanovits, J., A co-simulation framework
for design of time-triggered automotive cyber physical systems. Simulation Modelling Practice and Theory
2014, 43, 16-33.
27. Artuñedo, A.; Godoy, J.; Haber, R.; Villagrá, J.; Toro, R. M. d. In Advanced Co-simulation Framework for
Cooperative Maneuvers Among Vehicles, 2015 IEEE 18th International Conference on Intelligent Transportation
Systems, 15-18 Sept. 2015, 2015; 2015; pp 1436-1441.
28. Ferracuti, F.; Freddi, A.; Monteriù, A.; Prist, M., An integrated simulation module for cyber-physical
automation systems. Sensors 2016, 16, (5), 645.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 August 2017 doi:10.20944/preprints201708.0014.v1

Peer-reviewed version available at Sensors 2017, 17, 2109; doi:10.3390/s17092109

http://dx.doi.org/10.20944/preprints201708.0014.v1
http://dx.doi.org/10.3390/s17092109

 14 of 14

29. de Souza, I. D.; Silva, S. N.; Teles, R. M.; Fernandes, M. A., Platform for Real-Time Simulation of
Dynamic Systems and Hardware-in-the-Loop for Control Algorithms. Sensors 2014, 14, (10), 19176-19199.
30. Mozumdar, M.; Song, Z. Y.; Lavagno, L.; Sangiovanni-Vincentelli, A. L., A model-based approach for
bridging virtual and physical sensor nodes in a hybrid simulation framework. Sensors 2014, 14, (6), 11070-
11096.
31. Lee, B.-H.; Song, J.-H.; Im, J.-H.; Im, S.-H.; Heo, M.-B.; Jee, G.-I., GPS/DR error estimation for
autonomous vehicle localization. Sensors 2015, 15, (8), 20779-20798.
32. Godoy, J.; Pérez, J.; Onieva, E.; Villagrá, J.; Milanés, V.; Haber, R., A driverless vehicle demonstration
on motorways and in urban environments. Transport 2015, 30, (3), 253-263.
33. Plaut, D. C., Experiments on Learning by Back Propagation. 1986.
34. Graves, A., Neural Networks. In Supervised Sequence Labelling with Recurrent Neural Networks, Springer
Berlin Heidelberg: Berlin, Heidelberg, 2012; pp 15-35.
35. Kohonen, T.; Schroeder, M.; Huang, T., Self-Organizing Maps. Springer-Verlag New York: Inc.,
Secaucus, NJ, 2001; Vol. 43, p 2.
36. Voumvoulakis, E. M.; Hatziargyriou, N. D., Decision trees-aided self-organized maps for corrective
dynamic security. IEEE Transactions on Power Systems 2008, 23, (2), 622-630.
37. Murty, M. N.; Raghava, R., Kernel-Based SVM. In Support Vector Machines and Perceptrons: Learning,
Optimization, Classification, and Application to Social Networks, Springer International Publishing: Cham, 2016;
pp 57-67.
38. Kim, I.-H.; Bong, J.-H.; Park, J.; Park, S., Prediction of Driver’s Intention of Lane Change by
Augmenting Sensor Information Using Machine Learning Techniques. Sensors 2017, 17, (6), 1350.
39. Artuñedo, A.; del Toro, R.; Haber, R., Consensus-Based Cooperative Control Based on Pollution
Sensing and Traffic Information for Urban Traffic Networks. Sensors 2017, 17, (5), 953.
40. Derpanis, K. G., Overview of the RANSAC Algorithm. Image Rochester NY 2010, 4, (1), 2-3.
41. Hunt, W.; Mark, W. R.; Stoll, G. In Fast kd-tree construction with an adaptive error-bounded heuristic,
Interactive Ray Tracing 2006, IEEE Symposium on, 2006; IEEE: 2006; pp 81-88.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 August 2017 doi:10.20944/preprints201708.0014.v1

Peer-reviewed version available at Sensors 2017, 17, 2109; doi:10.3390/s17092109

http://dx.doi.org/10.20944/preprints201708.0014.v1
http://dx.doi.org/10.3390/s17092109

