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Abstract. In the paper, the authors establish two identities, which can be

regarded as nonlinear differential equations, for the generating function of
Eulerian polynomials, find two identities for the Stirling numbers of the sec-

ond kind, and present two identities for Eulerian polynomials and higher order
Eulerian polynomials, pose two open problems about summability of two fi-

nite sums involving the Stirling numbers of the second kind. Some of these

conclusions meaningfully and significantly simplify several known results.

1. Motivations

In [6, 7], Kims stated that Eulerian polynomials An(t) for n ≥ 0 can be generated
by

1− t
ex(t−1) − t

=

∞∑
n=0

An(t)
xn

n!
, t 6= 1
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and that higher order Eulerian polynomials A
(α)
n (t) for integers n ≥ 0 and real

numbers α > 0 can be generated by[
1− t

ex(t−1) − t

]α
=

∞∑
n=0

A(α)
n (t)

xn

n!
, t 6= 1.

This generation of An(t) is same as the one in [1, p. 2], but different from the one

1− u
et(u−1) − u

= 1 +

∞∑
n=1

An(u)

u

tn

n!
.

in [2, p. 244, Eq. [5j]].
In [7, Theorem 1], Kims established inductively and recurrently that the gener-

ating function

F (t, x) =
1

ex(t−1) − t
, t 6= 1 (1)

satisfies the nonlinear ordinary differential equation

∂nF (t, x)

∂xn
= (1− t)n

n+1∑
i=1

ai−1(n, t)F i(t, x), n ∈ {0} ∪ N, (2)

where
a0(n, t) = a0(n− 1, t) = · · · = a0(1, t) = a0(0, t) = 1 (3)

and

ai(n, t) = it

n−i∑
j=0

(i+ 1)jai−1(n− j − 1, t), 1 ≤ j ≤ n. (4)

In [7, Theorems 2 and 3], Kims presented that

Ak+n(t) = (1− t)n+1
n+1∑
i=1

ai−1(n, t)
A

(i)
k (t)

(1− t)i

and
∞∑
j=0

tj(j + 1)k+n =
1

(1− t)k
n+1∑
i=1

ai−1(n, t)
A

(i)
k (t)

(1− t)i

for k, n ∈ {0} ∪ N. From (3) and (4), Kims derived inductively that

ai(n, t) = i!ti
n−i∑

ji−1=0

n−ji−1−i∑
ji−2=0

· · ·
n−ji−1−···−j2−i∑

j1=0

(i+ 1)ji−1

× iji−2 · · · 3j1
(
2n−ji−1−ji−2−···−j1−i+1 − 1

) (5)

for 1 ≤ i ≤ n.
It is clear that the above formulas (4) and (5) for ai(n, t) cannot be computed

easily either by hand or by computer software. Can one find a simple expression
for the quantities ai(n, t)? For supplying a solution to this problem, the first and
third authors obtained in [20] and its preprint [19] the following three theorems.

Theorem 1.1 ([20, Theorem 1]). Eulerian polynomials An(t) and higher order

Eulerian polynomials A
(α)
n (t) can be computed by

An(t) =

n∑
k=0

k!S(n, k)(t− 1)n−k (6)
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and

A(α)
n (t) =

1

Γ(α)

n∑
k=0

Γ(k + α)S(n, k)(t− 1)n−k, (7)

where n ≥ 0 is an integer, α > 0 is a real number, S(n, k), which can be generated
by the exponential function

(ex − 1)k

k!
=

∞∑
n=k

S(n, k)
xn

n!

and can be computed by the explicit formula

S(n, k) =
1

k!

k∑
`=1

(−1)k−`
(
k

`

)
`n,

stand for the Stirling numbers of the second kind, and Γ(z) denotes the classical
gamma function which can be defined by

Γ(z) = lim
n→∞

n!nz∏n
k=0(z + k)

, z ∈ C \ {0,−1,−2, . . . }

or

Γ(z) =

∫ ∞
0

tz−1e−t d t, <(z) > 0.

Theorem 1.2 ([20, Theorem 2]). The generating function F (t, x) satisfies the
nonlinear ordinary differential equations

∂nF (t, x)

∂xn
= (t− 1)n

n∑
i=0

[
n∑
k=i

(−1)kk!S(n, k)

(
k

i

)]
tiF i+1(t, x) (8)

and, generally,

∂nFα(t, x)

∂xn
=

(t− 1)n

Γ(α)

n∑
i=0

[
n∑
k=i

(−1)kΓ(k + α)S(n, k)

(
k

i

)]
tiFα+i(t, x), (9)

where n ≥ 0 is an integer and α > 0 is a real number.

Theorem 1.3 ([20, Theorem 3]). For n ∈ N and α > 0, the higher order Eulerian

polynomials A
(α)
n (t) satisfy the recurrence relation

n∑
k=0

(
n

k

)[n−k∑
`=0

S(n− k, `) 〈α〉`
(1− t)`

]
A

(α)
k (t)

(t− 1)k
= 0, (10)

where

〈α〉n =

n−1∏
k=0

(α− k) =

{
α(α− 1) · · · (α− n+ 1), n ≥ 1

1, n = 0

is called the falling factorial. In particular, when α = 1,

n∑
k=0

(−1)k
(
n

k

)[
S(n− k, 0)

(1− t)k−1
+
S(n− k, 1)

(1− t)k

]
Ak(t) = 0.
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It is easy to see that the equation (8) simplifies the one (2). As stated in [20,
Remarks 1 and 2], comparing the equation (2) with (8) reveals that

ai(n, t) =

[
n∑
k=i

(−1)kk!S(n, k)

(
k

i

)]
ti, 0 ≤ i ≤ n. (11)

This expression is simpler, more significant, more meaningful than the one in (5).
It is easier to compute the quantities in the brackets of the nonlinear ordinary
differential equations (8) and (9) than to compute the quantity ai(n, t) in [7].

In [6, Theorem 1], it was obtained inductively and recursively that the nonlinear
differential equations

n!tn(1− t)nFn+1(t, x) =

n∑
i=0

ai(n)(1− t)n−i ∂
iF (t, x)

∂xi
, n ∈ N (12)

have a solution F (t, x) defined by (1) for t 6= 1, where a0(n) = (−1)nn!,

ai(n) = (−1)n−in!Hn,i, 1 ≤ i ≤ n, (13)

with Hn,0 = 1 for n ∈ N, Hn,1 = Hn =
∑n
k=1

1
k for n ∈ N, and

Hn,i =

n∑
k=i

Hk−1,i−1

k
, 2 ≤ i ≤ n.

For more information on Hn,i, please refer to [30, Remark 1], [32, Remark 1], and
closely related references therein. Therefore, the following results were derived in [6,
Theorems 2 and 3]:

(1) For n, k ≥ 0,

n!tnA
(n+1)
k (t) =

n∑
i=0

ai(n)(1− t)n−iAk+i(t).

(2) For k ≥ 1,

n!tnA
(n+1)
k (t) =

k+n−1∑
m=0

n∑
i=0

m∑
`=0

(−1)`
(
n+ k + 1

`

)
(m− `+ 1)k+iai(n)tm

and
n∑
i=0

m∑
`=0

(−1)`
(
n+ k + 1

`

)
(m− `+ 1)k+iai(n) = 0

for m ≥ k + n.
(3) For k = 0,

n!tnA
(n+1)
0 (t) =

n∑
m=0

n∑
i=0

m∑
`=0

(−1)`
(
n+ 1

`

)
(m− `+ 1)iai(n)tm

and
n∑
i=0

m∑
`=0

(−1)`
(
n+ 1

`

)
(m− `+ 1)iai(n) = 0

for m ≥ n+ 1.
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We observe that the equations (2) and (12) can be rewritten respectively as

1

(1− t)n
∂nF (t, x)

∂xn
=

n∑
i=0

ai(n, t)F
i+1(t, x), n ∈ {0} ∪ N

and

n!tnFn+1(t, x) =

n∑
i=0

ai(n)
1

(1− t)i
∂iF (t, x)

∂xi
, n ∈ {0} ∪ N. (14)

Consequently, the equations (2) and (12) are essentially inversive each other. This
motivates us to consider two questions:

(1) can one simplify the expression of the quantities ai(n) significantly and
meaningfully?

(2) what are the inversive ones of the equations (8) and (9)?

2. Main results and their proofs

Now we are in a position to state and prove our main results.

Theorem 2.1. For n ≥ 0, the function F (t, x) defined by (1) satisfies nonlinear
differential equations

Fn+1(t, x) =
1

n!tn

n∑
i=0

s(n+ 1, i+ 1)

(1− t)i
∂iF (t, x)

∂xi
, (15)

where s(n, k), which can be generated by

[ln(1 + x)]k

k!
=

∞∑
n=k

s(n, k)
xn

n!
, |x| < 1,

stand for the Stirling numbers of the first kind.

Proof. In [24, 25] and [30, 32], it was obtained that

(−1)n+ks(n, k) = (n− 1)!Hn−1,k−1, n ≥ k ≥ 1. (16)

Substututing the relations (13) and (16) into (12) or (14) yields

n!tnFn+1(t, x) =

n∑
i=0

(−1)n−in!Hn,i
1

(1− t)i
∂iF (t, x)

∂xi

=

n∑
i=0

s(n+ 1, i+ 1)
1

(1− t)i
∂iF (t, x)

∂xi

for n ≥ 0. The proof of Theorem 2.1 is complete. �

Theorem 2.2. For n ≥ 0, the function F (t, x) defined by (1) satisfies nonlinear
differential equations

∂nF (t, x)

∂xn
= (1− t)n

n∑
k=0

S(n+ 1, k + 1)k!tkF k+1(t, x). (17)

Consequently, identities
n∑
`=k

(−1)`
(
`

k

)
`!S(n, `) = (−1)nk!S(n+ 1, k + 1), n ≥ k ≥ 0 (18)
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and
n∑
`=k

(−1)`
(
`− 1

k

)
`!S(n, `) = (−1)n(k + 1)!S(n, k + 1), n > k ≥ 0 (19)

are true under conventions
(
p
q

)
= 0 for q > p and S(p, q) = 0 for q > p ≥ 0.

Proof. Rewriting the equations in (15) as
F (t, x)
tF 2(t, x)

2!t2F 3(t, x)
...

n!tnFn+1(t, x)

 = M(n+1)×(n+1)



F (t, x)
1

1−t
∂F (t,x)
∂x

1
(1−t)2

∂2F (t,x)
∂x2

...
1

(1−t)n
∂nF (t,x)
∂xn

 ,

where the (n+ 1)× (n+ 1) matrix

M(n+1)×(n+1) =


s(1, 1) 0 0 · · · 0
s(2, 1) s(2, 2) 0 · · · 0
s(3, 1) s(3, 2) s(3, 3) · · · 0

· · · · · · · · ·
. . . · · ·

s(n+ 1, 1) s(n+ 1, 2) s(n+ 1, 3) · · · s(n+ 1, n+ 1)

 .

Since the inverse matrix

M−1(n+1)×(n+1) =


S(1, 1) 0 0 · · · 0
S(2, 1) S(2, 2) 0 · · · 0
S(3, 1) S(3, 2) S(3, 3) · · · 0

· · · · · · · · ·
. . . · · ·

S(n+ 1, 1) S(n+ 1, 2) S(n+ 1, 3) · · · S(n+ 1, n+ 1)

 ,

see [2, p. 213, eq. [5c]], it follows immediately that

F (t, x)
1

1−t
∂F (t,x)
∂x

1
(1−t)2

∂2F (t,x)
∂x2

...
1

(1−t)n
∂nF (t,x)
∂xn

 = M−1(n+1)×(n+1)


F (t, x)
tF 2(t, x)

2!t2F 3(t, x)
...

n!tnFn+1(t, x)

 ,

that is,

1

(1− t)n
∂nF (t, x)

∂xn
=

n+1∑
k=1

S(n+ 1, k)(k − 1)!tk−1F k(t, x), n ≥ 0.

This is equivalent to (17).
Comparing (17) with (8) leads to (18).
In [34, p. 118, Eq. (9.18)], it was proved that

n∑
j=α

(−1)n−j
(
j − 1

α− 1

)
j!S(n, j) = α!S(n, α), n ≥ α ≥ 0. (20)
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By virtue of (18) and (20), we obtain

n∑
`=k

(−1)`
[(

`

k

)
−
(
`− 1

k − 1

)]
`!S(n, `) = (−1)nk![S(n+ 1, k + 1)− S(n, k)].

Since the recurrence relations(
x

j

)
=

(
x− 1

j

)
+

(
x− 1

j − 1

)
, x ∈ C, j ∈ {0} ∪ N

and

S(n+ 1, k) = kS(n, k) + S(n, k − 1), 0 ≤ k − 1 ≤ n,
see [34, p. 8, Eq. (1.27)] and [34, p. 114, Eq. (9.1)], we arrive at the identity (19)
straightforwardly. The proof of Theorem 2.2 is complete. �

Theorem 2.3. For n ≥ 0, Eulerian polynomials An(t) and higher order Eulerian

polynomials A
(α)
k (t) satisfy

n∑
k=0

s(n, k)

(t− 1)k
Ak(t) =

n!

(t− 1)n
(21)

and
n∑
k=0

s(n, k)

(t− 1)k
A

(α)
k (t) =

Γ(n+ α)

Γ(α)

1

(t− 1)n
. (22)

Proof. Theorem 12.1 in [34, p. 171] reads that, if bα and ak are a collection of
constants independent of n, then

an =

n∑
α=0

S(n, α)bα if and only if bn =

n∑
k=0

s(n, k)ak.

The identity (6) can be rearranged as

An(t)

(t− 1)n
=

n∑
k=0

S(n, k)
k!

(t− 1)k
.

Consequently, it follows that

n!

(t− 1)n
=

n∑
k=0

s(n, k)
Ak(t)

(t− 1)k

which can be rewritten as (21).
Similarly, the identity (7) can also be reformulated as

Γ(α)A
(α)
n (t)

(t− 1)n
=

n∑
k=0

S(n, k)
Γ(k + α)

(t− 1)k

and, consequently,

Γ(n+ α)

(t− 1)n
=

n∑
k=0

s(n, k)
Γ(α)A

(α)
k (t)

(t− 1)k

which can be rearranged as (22). �
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3. Remarks

In this section, among other things, we give several remarks about our main
results and pose two open problems.

Remark 3.1. The expressions (11) and (13) for ai(n, t) and ai(n) can be meaning-
fully and significantly simplified as

ai(n, t) = (−1)ni!S(n+ 1, i+ 1)ti, 0 ≤ i ≤ n
and

ai(n) = s(n+ 1, i+ 1).

As a result, those main results in [6, 7], mentioned in the first section, can be
meaningfully and significantly simplified. For the sake of saving the space and
shortening the length of this paper, we do not rewrite them in details here. This
answers the first question posed in the first section of this paper.

Remark 3.2. The identity (15) in Theorem 2.1 partially answers the second question
posed in the first section of this paper.

Remark 3.3. Theorem 1.3 is a simplified and reformulated version of Theorem 3
in [20].

Remark 3.4. The identity (17) in Theorem 2.2 simplifies the one (8) in Theorem 1.2.

Remark 3.5. To the best of our knowledge, identities (18) and (19) are new.

Remark 3.6. Motivated by identities (18), (19), and (20), we naturally pose another
open problem: for n ≥ k ≥ 0 and α > 0, is the finite sum

n∑
k=i

(−1)k
(
k

i

)
Γ(k + α)S(n, k)

in the bracket of the identity (9) summable? The solution of this problem can be
used to partially answer the second question posed in the first section of this paper.

Remark 3.7. Theorem 12.2 in [34, p. 171] states that, if bj and ak are a collection
of constants which are independent of n and if α is a nonnegative integer such that
α ≥ n, then

an =

α∑
j=0

S(j, n)bj if and only if bn =

α∑
k=0

s(k, n)ak.

Motivated by the above mentioned Theorems 12.1 and 12.2 in [34, p. 171] and by
identities (18), (19), and (20), we naturally pose an open problem: is the finite sum

n−k∑
`=0

S(n− k, `) 〈α〉`
(1− t)`

in the bracket of the identity (10), or equivalently,
n∑
`=0

S(n, `)
〈α〉`

(1− t)`
,

summable?

Remark 3.8. For some new results on the gamma function Γ(z), please refer to [8,
16, 18, 21, 27] and closely-related references therein.
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Remark 3.9. For some recent development of the Stirling numbers of the first and
send kinds, please refer to [3, 4, 5, 9, 10, 11, 12, 13, 15, 17, 28] and closely related
references therein.

Remark 3.10. The motivation of this paper is same as the one in [14, 22, 23, 25,
26, 29, 31, 33, 35] and closely related references therein.
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