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Abstract: Topological indices have been used to modeling biological and chemical properties of 
molecules in quantitive structure property relationship studies and quantitive structure activity 
studies. All the degree based topological indices have been defined via classical degree concept. In 
this paper we define a novel degree concept for a vertex of a simple connected graph: S degree. And 
also we define S indices of a simple connected graph by using the S degree concept. We compute 
the S indices for well-known simple connected graphs such as paths, stars, complete graphs and 
cycles. 
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1. Introduction 

Graph theory has many applications to modeling real world situations from the basic sciences 
to engineering and social sciences. Chemical graph theory has an important effect on the 
development of the chemical sciences by using topological indices. A topological index, which is a 
graph invariant it does not depend on the labeling or pictorial representation of the graph, is a 
numerical parameter mathematically derived from the graph structure. The topological indices of 
molecular graphs are widely used for establishing correlations between the structure of a molecular 
compound and its physicochemical properties or biological activity. These indices are used in 
quantitive structure property relations (QSPR) research. Topological indices are important tools for 
analyzing some physicochemical properties of molecules without performing any experiment. The 
first distance based topological index was proposed by Wiener (1947) for modeling physical 
properties of alcanes, and after him, hundred topological indices were defined by chemists and 
mathematicians and so many properties of chemical structures were studied [1]. More than forty 
years ago Gutman & Trinajstić (1971) defined Zagreb indices which are degree based topological 
indices [2]. These topological indices were proposed to be measures of branching of the carbon-atom 
skeleton in [3]. The Randic and Zagreb indices are the most used topological indices in chemical and 
mathematical literature so far. For detailed discussions of both these indices and other well-known 
topological indices, we refer the interested reader [4-14] and [33-38] references therein. In 1998, 
Estrada et al modelled  the enthalpy of formation of alkanes by using atom- bond connectivity(ABC) 
index [15]. The ABC index for a connected graph G  defined as; (ܩ)ܥܤܣ = ∑ ටୢୣ୥(௨)ାୢୣ୥(௩)ିଶୢୣ୥(௨)×ୢୣ୥	(௩)௨௩∈ா(ீ)                                      (1) 

There are many open problems related to ABC index in the mathematical chemistry literature. 
We refer the interested reader the sudies of the last two years [16-20]. 

In 2009, Vukičević and Furtula defined geometric-arithmetic(GA) index and compared GA index 
with the well-known Randić index [21]. The authors showed that the GA index give better correlation 
to modelling standard enthalpy of vaporization of octane isomers. The GA index for a connected 
graph G defined as; (ܩ)ܣܩ = ∑ ଶඥୢୣ୥	(௨)×ୢୣ୥	(௩)ୢୣ୥(௨)ାୢୣ୥	(௩)௨௩∈ா(ீ)                                         (2) 
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After that many studies related to GA index were conducted in view of mathematical chemistry 
and QSPR researches [22-26].  

The harmonic index was defined by Zhong in 2012 [27]. The H index for a connected graph G 
defined as; (ܩ)ܪ = ∑ ଶୢୣ୥(௨)ାୢୣ୥	(௩)௨௩∈ா(ீ) 	                                       (3) 

The relationships between harmonic index and domination like parameters were investigated 
by Li et al. [28] We refer the interested reader for the  article related to H index by Ilić and the 
references therein [29].  

The sum-connectivity index (χ) were defined by Zhou  and Trinajstić in 2009 [30].  The χ index 
for a connected graph G defined as; ߯(ܩ) = ∑ (deg(ݑ) + deg(ݒ))ିଵ ଶ⁄௨௩∈ா(ீ)                            (4) 

Farahani computed the sum-connectivity index of carpa designed cycle [31] and Akhter et al 
investigated the sum-connectivity index of cacti [32]. 

As of now in the chemical and mathematical literature all degree based topological indices have 
been defined by using classical degree concept.  

In this study our aim is to define a novel degree concept namely, S degrees. Also by using S 
degrees, we define the first, the second and the third S indices for a simple connected graph.  

2. S Degrees and S Indices 

In this section we give basic definitions and facts about above mentioned graph invariants.  A 
graph ܩ = (ܸ, (ܧ  consists of two nonempty sets ܸ	and 2-element subsets of ܸ  namely ܧ	 . The 
elements of ܸ are called vertices and the elements of ܧ  are called edges. For a vertex	ݒ, deg	(ݒ) 
show the number of edges that incident to ݒ. The set of all vertices which adjacent to ݒ  is called the 
open neighborhood of ݒ and denoted by	ܰ(ݒ). If we add the vertex ݒ to ܰ(ݒ), then we get the 
closed neighborhood of ݒ,   .[ݒ]ܰ

For a vertex	ݒ, ܵ௩ = ∑ ௨∈ே(௩)(ݑ)݃݁݀ . For conveince, we name ܵ௩  as “the sum degree of v” or 
briefly “sum degree”. For a vertex	ݒ ௩ܯ , = ∏ ௨∈ே(௩)(ݑ)݃݁݀ . For conveince, we name ܯ௩  as “the 
multiplication degree of v” or briefly “multiplication degree”.  
Definition 2.1. The S degree of a vertex ݒ of a simple connected graph ܩ defined as; (ݒ)ݏ = ௩ܯ| − ܵ௩|                                                    (5) 

Definition 2.3. The first S index of a simple connected graph ܩ defined as; ܵଵ(ܩ) = ∑ (ீ)ଶ௩∈௏(ݒ)ݏ                                                     (6) 

Definition 2.4. The second S index of a simple connected graph ܩ defined as; ܵଶ(ܩ) = ∑ (ீ)௨௩∈ா(ݒ)ݏ(ݑ)ݏ                                          (7) 

Definition 2.5. The third S index of a simple connected graph ܩ defined as; ܵଷ(ܩ) = ∑ (ݑ)ݏ] + (ீ)௨௩∈ா[(ݒ)ݏ                                    (8) 

Proposition 2.6. Let ܭ௡ 	be a complete graph with ݊ vertices (݊ ≥ 3). Then;  

a. ܵଵ(ܭ௡) = ݊. ൫	(݊ − 1)ଶ((݊ − 1)௡ିଷ − 1)൯ଶ 

b. ܵଶ(ܭ௡) = ଵଶ ݊(݊ − 1)ହ((݊ − 1)௡ିଷ − 1)ଶ 

c. ܵଷ(ܭ௡) = ݊(݊ − 1)ଷ((݊ − 1)௡ିଷ − 1) 
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Proof. Let ݒ ∈ ௡ܭ . Then ܵ௩ = (݊ − 1)(݊ − 1) = (݊ − 1)ଶ  and ܯ௩ = (݊ − 1)௡ିଵ . Therefore (ݒ)ݏ ௩ܯ|= − ܵ௩| = (݊ − 1)ଶ((݊ − 1)௡ିଷ − 1). We can begin to compute since all the vertices of complete 
graph have same S degree. 

a. ܵଵ(ܭ௡) = ∑ ଶ௩∈௏(௄೙)(ݒ)ݏ = ݊. ൫	(݊ − 1)ଶ((݊ − 1)௡ିଷ − 1)൯ଶ 

b. ܵଶ(ܭ௡) = ∑ ௨௩∈ா(௄೙)(ݒ)ݏ(ݑ)ݏ = ௡(௡ିଵ)ଶ ൫	(݊ − 1)ଶ((݊ − 1)௡ିଷ − 1)൯ଶ = 12݊(݊ − 1)ହ((݊ − 1)௡ିଷ − 1)ଶ 

c. ܵଷ(ܭ௡) = ∑ (ݑ)ݏ] + [(ݒ)ݏ =௨௩∈ா(௄೙) ௡(௡ିଵ)ଶ 2(݊ − 1)ଶ((݊ − 1)௡ିଷ − 1) = ݊(݊ − 1)ଷ((݊ − 1)௡ିଷ − 1) 
Proposition 2.7. Let ܥ௡ 	be a cycle graph with ݊ vertices (݊ ≥ 3). Then;  

a. ܵଵ(ܥ௡) = 0 

b. ܵଶ(ܥ௡) = 0 

c. ܵଷ(ܥ௡) = 0 

Proof. Let ݒ ∈ ௡. Then ܵ௩ܥ = 2 + 2 = 4 and ܯ௩ = 2.2 = 4. Therefore (ݒ)ݏ = ௩ܯ| − ܵ௩| = 0 and . We 
can begin to compute since all the vertices of cycle graph have same S degrees. 

a. ܵଵ(ܥ௡) = ∑ ଶ௩∈௏(஼೙)(ݒ)ݏ = 0 

b. ܵଶ(ܥ௡) = ∑ ௨௩∈ா(஼೙)(ݒ)ݏ(ݑ)ݏ = 0 

c. ܵଷ(ܥ௡) = ∑ (ݑ)ݏ] + [(ݒ)ݏ =௨௩∈ா(஼೙) 0 

Proposition 2.8. Let ௡ܲ 	be a path graph with ݊ vertices (݊ ≥ 3). Then;  a. ܵଵ( ௡ܲ) = ݊ + 5 2⁄ 	
b. ܵଶ( ௡ܲ) = ݊ + 1 

c. ܵଷ( ௡ܲ) = 2݊ − 10 3⁄  

Proof. Let ܸ( ௡ܲ) = ,ଵݒ} ,ଶݒ … , {௡ݒ  and ܧ( ௡ܲ) = ,ଶݒଵݒ} ,ଷݒଶݒ … , ,௡ିଵݒ௡ିଶݒ {௡ݒ௡ିଵݒ . Then ܵ௩భ = ܵ௩೙ = 2 
and ܯ௩ = 2 . Therefore ݏ(ݒଵ) = (௡ݒ)ݏ = 0 . Also ܵ௩మ = ܵ௩೙షభ = 3  and ܯ௩మ = ௩೙షభܯ = 2  . Therefore ݏ(ݒଵ) = (௡ݒ)ݏ = 1  and ܵ௩య = ܵ௩ర = ⋯ = ܵ௩೙షయ = ܵ௩೙షమ = 4  and ܯ௩య = ௩రܯ = ⋯ = ௩೙షయܯ = ௩೙షమܯ = 4  . 

Therefore ݏ(ݒଷ) = (ସݒ)ݏ = ⋯ = (௡ିଷݒ)ݏ = (௡ିଶݒ)ݏ = 0. Note that ௡ܲ  has ݊-vertex and ݊ − 1 edges. We 
can begin our computations. 

a. ܵଵ( ௡ܲ) = ∑ ଶ௩∈௏(௉೙)(ݒ)ݏ = 1 + 1 = 2 

b. ܵଶ( ௡ܲ) = ∑ ௨௩∈ா(௉೙)(ݒ)ݏ(ݑ)ݏ = 0 
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c. ܵଷ( ௡ܲ) = ∑ (ݑ)ݏ] + [(ݒ)ݏ =௨௩∈ா(௉೙) 2 

Proposition 2.8. Let ܵ௡ 	be a star graph with ݊ vertices (݊ ≥ 3). Then;  a. ܵଵ(ܵ௡) = ݊(݊ − 1)	
b. ܵଶ(ܵ௡) = (݊ − 1)ଶ 

c. ܵଷ(ܵ௡) = ݊(݊ − 1) 
Proof. There are two kind of vertices. For the central vertex ݒ, deg(ݒ) = ݊ − 1 and for any pendent 
vertex ݑ , deg(ݑ) = 1.	  Then ܵ௩ = ݊ − 1 and ܯ௩ = 1. Also for any pendent vertex ݑ , ܵ௨ = ݊ − 1 
and ܯ௨ = ݊ − 1. Therefore (ݒ)ݏ = ݊ − 2. Also (ݑ)ݏ = 0. 
Note that ܵ௡ has ݊-vertex and ݊ − 1 edges. We can begin our computations. 

a. ܵଵ(ܵ௡) = ∑ ଶ௩∈௏(ௌ೙)(ݒ)ݏ = (݊ − 2)ଶ 

b. ܵଶ(ܵ௡) = ∑ ௨௩∈ா(ௌ೙)(ݒ)ݏ(ݑ)ݏ = 0 

c. ܵଷ(ܵ௡) = ∑ (ݑ)ݏ] + [(ݒ)ݏ =௨௩∈ா(ௌ೙) (݊ − 1). (݊ − 2) 
Conclusion 

There are many problems for further study about the S indices. The mathematical properties and 
relations between S indices and other topological indices are interesting problems worth to study. 
Also QSPR analysis of S indices may be attract attention of some mathematical chemists. 
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