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Abstract: The primary measure of the quality of sea surface temperature (SST) fields obtained
from satellite-borne infrared sensors has been the bias and variance of matchups with co-located
in-situ values. Because such matchups tend to be widely separated, these bias and variance
estimates are not necessarily a good measure of small scale (several pixels) gradients in these
fields because one of the primary contributors to the uncertainty in satellite retrievals is
atmospheric contamination, which tends to have large spatial scales compared with the pixel
separation of infrared sensors. Hence, there is not a good measure to use in selecting SST fields
appropriate for the study of submesoscale processes and, in particular, of processes associated
with near-surface fronts, both of which have recently seen a rapid increase in interest. In this
study, two methods are examined to address this problem, one based on spectra of the SST data
and the other on their variograms. To evaluate the methods, instrument noise was estimated in
Level-2 VIIRS and AVHRR SST fields of the Sargasso Sea. The two methods provided very nearly
identical results for AVHRR: along-scan values of approximately 0.18 K for both day and night
and along-track values of 0.21 K also for day and night. By contrast, the instrument noise
estimated for VIIRS varied by method, scan geometry and day-night. Specifically, daytime,
along-scan (along-track), spectral estimates were found to be approximately 0.05 K (0.08 K) and
the corresponding nighttime values of 0.02 K (0.03 K). Daytime estimates based on the variogram
were found to be 0.08 K (0.10 K) with the corresponding nighttime values of 0.04 K (0.06 K). Taken
together: AVHRR instrument noise is significantly larger than VIIRS instrument noise, along-track
noise is larger than along-scan noise and daytime levels are higher than nighttime levels. Given
the similarity of results and the less stringent preprocessing requirements, the variogram is the
preferred method although there is a suggestion that this approach overestimates the noise for
high quality data in dynamically quiet regions. Finally, simulations of the impact of noise on the
determination of SST gradients show that on average the gradient magnitude for typical ocean
gradients will be accurately estimated with VIIRS but substantially overestimated with AVHRR.
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1. Introduction

To date, a great deal of attention has been focused on the accuracy of satellite-derived sea
surface temperature (SST) fields. By contrast, their local precision’ has only been addressed by
Tandeo et al. [1] (Tan14 hereafter), and that peripherally in an analysis of the anisotropy of SST
fields in the global ocean. Specifically, the primary measure of the quality of SST fields has been the
bias and variance of pixel SST values relative to co-located in situ values. Because of cloud cover

1 The distinction between accuracy and local precision is discussed in more detail later in the introduction.
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and the paucity of in situ data, satellite-in situ matchups are generally widely separated in space
and time. But a significant contribution to the uncertainty in satellite retrievals results from
atmospheric contamination, the spatial scale of which is, in general, large compared with the pixel
separation of infrared sensors, hence the pixel-to-pixel uncertainty may be substantially smaller
than the accuracy determined from in situ match-ups. The lack of knowledge related to the local
precision of SST fields makes selection of satellite-derived datasets for studies at the one to ten pixel
spatial scale problematic at best.

We refer to the uncertainty of the retrieved SST relative to the actual SST as the values accuracy.
By contrast, we refer to the uncertainty in SST following removal of a bias in the field associated with
long-wavelength phenomena as the local precision of the field. The latter is important in studies
related to the SST gradient, while the former to processes for which the specific value is important,
such as those directly related to air-sea fluxes of a variety of properties. One might also refer to the
temporal precision of the retrievals — the uncertainty of SST retrievals at a given location between
consecutive satellite passes of the sensor from which the fields are being derived. But the time scale
separating consecutive retrievals for most satellite-borne infrared sensors is large relative to the time
scale associated with atmospheric phenomena, hence the temporal precision will be close to the
accuracy as described above.

In this study, we investigate the local precision of Level-22 (L2) SST fields obtained from the
Visible-Infrared Imager-Radiometer Suite (VIIRS) carried on the Suomi-National Polar-orbiting
Partnership (Suomi-NPP) spacecraft launched in October 2012 and L2 SST fields obtained from the
Advanced Very High Resolution Radiometer (AVHRR) carried on NOAA-15. VIIRS fields were
selected because of their high local precision as will be shown in Section 5.1. AVHRR fields were
chosen because AVHRR instruments comprise the longest, global satellite-derived SST record,
dating back to late 2011. L2 data were selected because they form the basis of all higher order
products obtained from these sensors, hence provide a lower limit for the small-scale retrieval noise
to be expected in their products. The contribution of instrument noise® to the local precision for each
of these datasets will be determined using two methods, one based on spectra, the other on
variograms of the fields [1].

In Section 2 we describe the datasets, the study area and the period covered by the analysis.
This is followed in Section 3 by a discussion of the preprocessing of the datasets and then of the two
approaches used to estimate the ‘instrument’ noise and from that the local precision under
cloud-free conditions. The results of the analyses are in Section 4 and the related discussions are in
Section 5.

But first, we describe the error budget associated with satellite-derived SST fields.

1.1. The Error Budget of Satellite-Derived SST Fields

A number of factors contribute to the uncertainty in satellite-derived SST fields. These are
described in a White Paper prepared by the NASA-NOAA SST Science Team* and summarized in
Figure 1. Although the accuracy of an L2 skin temperature dataset is determined by the
accumulation of the error elements shown in the upper gray box of Figure 1, which also shows the
relationship between these errors and the level of processing, it is generally dominated by
contributions from the atmosphere — the green block. As noted above, atmospheric retrieval errors
tend to be long wavelength, with an e-folding distance of many pixels in the case of infrared
retrievals. The local precision, on the other hand, is dominated by instrument noise and classification
errors (e.g., cloud-contaminated pixels passing as clear pixels) for skin temperature L2 and L3U
datasets®. For L3C, L3S and L4 datasets the collation and interpolation schemes used will likely

2 “Level-2” refers to the processing level of the data, a nomenclature used extensively for satellite-derived
datasets, although the precise meaning of the level of processing varies by organization. The definition
promulgated by the Group for High Resolution Sea Surface Temperature (GHRSST) is used here:
http://science.nasa.gov/earth-science/earth-science-data/data-processing-levels-for-eosdis-data-products/

3 Contributors to the SST error budget, relevant to this work are discussed in the next section.

* https://works.bepress.com/peter-cornillon/1/

5 In the case of ‘buoy’ temperature L2 and L3U datasets, the error in extrapolating from the skin temperature,
the quantity actually measured by the satellite, to the temperature at the depth of the buoy, generally 1 m below
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contribute to a decrease in local precision — an increase in the pixel-to-pixel errors — but the degree to
which this is the case has yet to be documented. Important in the analysis presented herein is the
distinction between instrument noise (elements in the yellow block of Figure 1) and the noise
associated with classification errors (one of the elements in the green block). Classification errors
generally refer to the improper masking of cloud-contaminated pixels and this misclassification is
thought to be dependent on cloud cover — the larger the fraction of the area contaminated by clouds,
the larger the fraction of misclassified pixels. The contribution of misclassified pixels to the local
error is also likely to depend on cloud type. Together, these observations suggest that the
classification error may vary significantly geographically. For this reason our focus is on instrument
noise, which we assume to be less dependent on location; i.e., the estimates of instrument noise
obtained in this work are thought to be good estimates in regions of low cloud cover and a lower
bound in general.
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Figure 1. The error budget developed by the NASA-NOAA SST Science Team for satellite-derived
SST fields.

2. Data

This study makes use of one dataset consisting of thermosalinograph (TEX) sections, one L2 SST
dataset obtained from VIIRS radiances and one L2 SST dataset obtained from AVHRR radiances.
These are discussed below along with the study area and period.

2.1. In situ Temperature

the surface, additional contributions to the local precision may result from the horizontal variability in the
vertical temperature step, the orange block in the figure. Only L2 skin temperature SST fields are considered in
this study, hence horizontal gradients in the surface to buoy depth temperature difference do not contribute to
the uncertainty in retrievals discussed herein.
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The thermosalinograph, on which the in situ data are based, was mounted on the MV Oleander,
a container ship making weekly round trips between Port Elizabeth, New Jersey, USA and Hamilton
Harbor, Bermuda (Figure 2). Thermosalinograph temperature measurements were obtained from
two thermistors, one from the seawater intake in the interior of the ship and the second directly at
the intake; i.e., “external” to the hull. The exterior measure (referred to as TEX for “exterior”
temperatures) is thought to be the most accurate [2] ( Sch16 hereafter), hence only these are used in
the work presented here. The SBE38 remote temperature sensor, on which the TEX data are based,
has an accuracy of 0.0001 K, a resolution of 0.00025 K (although the TEX instrument noise is
estimated to be 0.00069 K based on the variogram approach discussed in Section 3.3), and a response
time of 0.5 s. The TEX sensor sampled every 10 s resulting in an approximate spatial resolution of 75
m at the typical 16 knots cruise speed of the Oleander. TEX data for the period September 2007 to fall
2013 were obtained from the Atlantic Oceanographic and Meteorological Laboratory. The quality
control procedures used to screen these data are described in Sch16.

2.2. Visible-Infrared Imager-Radiometer Suite (VIIRS)

The L2 VIIRS SST retrievals used here were derived from the VIIRS “Moderate Resolution
Bands”, which has a resolution of approximately 750 m at nadir. Because of the way in which the
instrument samples, the resolution decreases very slowly (compared with other satellite-borne
instruments, Figure 3) to approximately 1600 m at the scan edge, a ground distance of approximately
1500 km from nadir [3, 4].

For this study, we used the VIIRS SST product obtained from NOAA’s Comprehensive Large
Array-data Stewardship System (CLASS)® produced with the Joint Polar Satellite System (JPSS).
Only quality level 1 data, the ‘best” quality level, were used. Although screening at this level ideally
removes all cloud contaminated pixels, some are still included in the analysis, leading to the
misclassification error discussed above.

2.3. AVHRR Pathfinder SST

The AVHRR product used was derived with the Pathfinder retrieval algorithm developed at
the University of Miami [5]. The algorithm was applied to the High Resolution Picture Transmission
(HRPT) data stream obtained from the AVHRR on NOAA-15. Retrievals were performed at the
University of Rhode Island. Only pixels with a quality level of 3 or higher were used. The nominal
pixel spacing is 1.1 km although, as can be seen in Figure 3, it increases significantly from this value.
This increase is what motivated use of pixels within 500 km of nadir as discussed below.

VIIRS 12 May 2012 17:37 GMT
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100km
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6 The VIIRS Sea Surface Temperature Environmental Data Record (EDR) obtained from:
http://www .nsof.class.noaa.gov/saa/products/search?datatype_family=VIIRS_EDR
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Figure 2. VIIRS SST image from 12 May 2012. The long black line (73.5W, 40N to 64.8W, 32.6N)
indicates the nominal Oleander track. Blue frame denotes the region of the Sargasso Sea considered
in this study. Shades of gray denote the location of sections extracted from VIIRS SST fields —
discussed in Section 3.1.1. The gray scale indicates distance from nadir (discussed in detail in
subsequent sections). Sections with a constant gray level are along-track sections; those with a
gradient in gray are along-scan. Along-track (along-scan) sections with a negative slope and
along-scan (along-track) sections with a positive slope are daytime (nighttime) sections. The SST field
is simply provided as a background reference field and corresponds to only one of the images used.
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Figure 3. Spacing in the along-scan direction for AVHRR and VIIRS pixels in L2 fields as a function
of distance from nadir.

2.4. The Study Area

MV Oleander traverses several distinct dynamical regimes: the shelf, the Slope Sea, the Gulf
Stream, and the Sargasso Sea. In that the focus of this analysis is on the spatial resolving power of
satellite-derived SST datasets, it is important to select a region in which the geophysical variability of
the SST field does not overwhelm the uncertainty associated with the SST retrievals, be they driven
by misclassification errors (the green block in Figure 1) or instrument/calibration issues (the yellow
block). Specifically, this means selecting a dynamically “quiet” region in the ocean. The Sargasso
Sea portion of the Oleander track between 32°N and 36°N meets this requirement. In order to
increase the amount of satellite-derived data with what we believe to be similar statistics to those
along the Oleander track in the Sargasso Sea, we consider longitudes from 63'W to 72°'W (Figure 2).
As shown in Sch16, spectra including the Gulf Stream are substantially more energetic than those for
SST in the Sargasso Sea.

2.5. The Study Period

The analyses presented here are based on SST fields from the summer of 2012 only — June, July
and August. Sch16 show that spring (March, April and May) and summer spectra tend to be about
twice as energetic, over the spectral range examined, 1 to 100 km, as fall and winter spectra
suggesting that the latter would be more appropriate for the evaluation proposed here, but the
summer months are also substantially less cloud contaminated than the other seasons. Furthermore,
the increased spectral energy is likely due in part to diurnal warming, the effect of which may be
mitigated by selecting nighttime fields only as shown in Section 4.2. This raises a concern with
regard to the TEX data because TEX sections are not synoptic, taking approximately 20 hours to
cross the study area. However, since the TEX samples between 5 and 6 m below the surface, diurnal
warming is not thought to be a significant problem [6].
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3. Methodology

3.1. The Spectral Approach

The spectral method, to determine retrieval noise at the pixel level, is based on an analysis of
the large wavenumber tail of the power spectral density of SST temperature sections extracted from
the SST fields. Spectra are based on the Discrete Fourier Transform (DFT) determined from the Fast
Fourier Transform (FFT) (see Sch16 or Wang [7], who also used the DFT to analyze TEX spectra). The
FFT requires equally spaced, gap-free data; i.e., gaps, if they exist in the original series, must be filled
and the data must be interpolated to equal spacing, if not already equally spaced, prior to applying
the FFT algorithm. For satellite-derived fields, gaps result from cloud cover, intervening land values
(not an issue for the region studied here) or missing scans while pixel spacing depends on the
product. (The filling of gaps is discussed the Section 3.1.1.) In the case of L2 products the spacing of
pixels in the along-scan direction varies with distance from nadir (Figure 3), as does the along-track
spacing, although much less so (<0.5% change from nadir to the swath edge for both AVHRR and
VIIRS). For the in situ data, intermittent system failures resulted in gaps although not to the extent of
those in the satellite data and sample spacing depends on the ship speed, which varies.

Of importance to the analysis presented here is that interpolation, either to fill gaps or to
regularize the spacing of samples on a section, impacts the resulting spectrum, with the impact
generally increasing as the wavenumber increases; i.e., in the spatial range of most importance to the
analysis here. Furthermore, the impact is a function both of the fraction of “good” values (defined as
Q by Sch16), and the degree to which the “missing” data are clustered (referred to as cohesion and
assigned the symbol C by Cayula and Cornillon [8]). Sch16 found that “...spectral slopes are
increasingly biased low as @ decreases and C increases, and this effect becomes more pronounced
as the true spectral slope increases”. Based on this they only considered VIIRS spectra for Q —C >
0.1 and Q > 0.5 in their analysis. We found these thresholds to be too permissive for our
purposes; the impact of interpolation on spectra in the 1 to 10 pixel range can overwhelm the
underlying spectrum as will be shown below. We therefore chose more stringent constraints on Q,
generally resulting in Q > 0.9. At this level, the cohesion of the data has a relatively small impact
on the spectra for slopes in the range of those observed in the Sargasso Sea (Sch16), so we did not
impose an additional constraint on cohesion.

3.1.1. Selection of the Sections

Satellite-Derived Fields. The satellite-derived SST fields evaluated here are obtained from
scanning radiometers, the characteristics of which may differ in the along-scan versus along-track
directions. This is indeed the case for VIIRS due to the use of multiple detectors for each scan, which
results in striping of the fields [9]. The decision was therefore made to separate the data into
along-scan and along-track sections. The data were farther divided into day and night fields to allow
analysis of the possible effect of diurnal warming on the spectral characteristics of the fields. This is
of particular importance given the selection of the Sargasso Sea in summer months, a period when
diurnal warming is significant [10].

Also with regard to the selection of sections from the L2 datasets is their distance from nadir.
Both the area of each pixel” and the spacing of pixels along the scan increases away from nadir
(Figure 3). Both of these factors impact along-scan spectra at small scales, while the increase in pixel
size impacts along-track spectra, again at these scales. Although the pixel spacing of along-track
sections is virtually independent of the distance from nadir, the size of the pixel is not; i.e., the SST
values associated with pixels is averaged over increasingly larger areas away from nadir. This is
similar to smoothing along-track with a moving average, which in turn depresses the power spectral
density at small scales, this, independent of the preprocessing performed on the data and it affects
along-track and along-scan spectra equally. Along-track interpolation (discussed below) to address
the change in pixel spacing in the along-scan direction (Figure 3) also impacts the resulting spectra.

7 Pixel area is approximately the along-track spacing, 741 m for VIIRS and 1,115 m for AVHRR, times the
along-scan spacing
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In order to reduce the impact of both of these effects, only sections within 500 km of nadir are used
for this analysis.

The final criterion used to select sections from the L2 fields relates to the gappiness of the data.
For clarity, we combine this step with the interpolation to fill missing pixel values in the study area.
The actual implementation of the algorithm is slightly different to reduce processing time but the
result is the same. Missing values in the study area were replaced using a Barnes filter if 13 of the 24
pixels in a 5x5 pixel square surrounding the pixel of interest are cloud-free, otherwise the pixel
remains flagged as missing. This corresponds to a decay scale associated with the averaging of 1.5
km for VIIRS and 2 km for AVHRR and follows the approach taken by Sch16. Following this gap
filling, all complete (no missing values) 256 pixel, non-overlapping sections in the along-track
direction meeting the distance from nadir criterion were selected as were all non-overlapping
along-scan sections. Only a small fraction of sections used in the final analysis had more than 15
missing pixels in the original data (more than 6% of the pixels were filled on <10% sections). The
impact of this on the final spectra was evaluated by using the Barnes filter to fill every point on a
section® — the worst case scenario — not just the pixels with missing values. The result suggests that
the gap filling performed only for pixels with missing values has little impact on the final spectra,
because the number of missing values is in general small; less than 0.6% of all values contributing
were replaced with the Barnes filter.

Oleander Sections. Only TEX sections that met the selection criteria of Sch16 were considered. Of
these only sections with a maximum pixel separation of 150 m in the Sargasso Sea were selected®.
Barnes filtering with a decay scale of 0.2 km was used to fill these gaps and the resulting sections
were nearest neighbor interpolated to a mean spacing of 74.9 m, the mean spacing averaged over all
sections; the mean spacing varies from section-to-section with a minimum of 74.6 m and a maximum
of 75.0 m [11].

Table 1 lists the number of satellite-derived sections by along-scan/along-track, day/night
combination for the summer (June-August) of 2012 and the number of Oleander TEX sections for the
summers of 2008-2013.

Table 1. Number of sections meeting the given selection criteria discussed in this section and in

Sections 2.4 and 2.5.
Day Night
Along-Scan  Along-Track Along-Scan  Along-Track
VIIRS 126 517 561 615
AVHRR 266 256 104 193
Oleander 42

3.1.2. Interpolation to Equal Spacing

Satellite-Derived Fields. As previously noted the pixel separation in the along-scan direction
changes with distance from nadir. Because the spectral energy determined with the standard FFT is
a function of pixel spacing and the number of pixels in the section, combining data with different
spatial resolutions tends to add noise to the spectra. To address this, along-scan sections were
divided into three groups each for VIIRS and AVHRR based on mean pixel spacing. First, all
adjacent temperature sections for a given satellite pass were grouped into subgroups and the mean
separation of pixels for the subgroup was calculated. (The subgroups ranged in size from 1 to O
(100) sections depending on cloud cover.) Each subgroup was then assigned to the group indicated
in Table 2 based on the mean pixel spacing of the subgroup. All of the temperature sections falling in
a given group were then interpolated to the same pixel spacing, also shown in Table 2. This pixel
spacing was determined from the mean pixel spacing determined from the contributing temperature

8 Gap filling was still possible in that adjacent pixels were left as is; i.e., not set to missing values.

% Selection of temperature sections with maximum sample spacing in excess of 150 m resulted in a significant
steepening of the spectral slope for wavelengths smaller than approximately 1 km. This is due to the nearest
neighbor interpolation to 75 m spacing, which repeats samples for these large separations.
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sections for the given group. This, together with the relatively small size of the ranges, tended to
eliminate problems associated with different spatial sampling and with an interference between the
sampling frequency along the original section and that along the interpolated section. Nearest
neighbor interpolation was used. Figure 4 shows the effective transfer function of three different
interpolation algorithms available in Matlab: linear, nearest neighbor and cubic spline’. To
determine the most appropriate resampling strategy, SST values on the VIIRS sections were replaced
with white noise and interpolated. Linear interpolation smooths the field the most resulting in a
significant loss of energy at small wavelengths, the portion of the spectrum of most interest here.
Cubic spline does better but still results in a loss of energy at small wavelengths. Nearest neighbor
interpolation does not significantly alter the distribution of values but does alter the effective
wavelength — by shifting the values in space. However, the effect on the spectrum is small since the
values have been shifted to locations, which are on average relatively close to the original values —
the use of the mean spacing of pixels (which varies from group-to-group) rather than a fixed spacing
for all sections.

Table 2. Grouping of along-scan sections based on mean pixel spacing of the temperature section.
The values indicated correspond to the lower limit on the range — the value to which temperatures
sections in this range are interpolated — the upper limit on the range.

Group1l(m) Group2(m) Group 3 (m)

VIIRS 770-805-820  860-885-910  940-995-980
AVHRR 760-765-810  820-865-920  940-947-980

1I;;andom Noise PSD by Interpolation Method

—— Cubic spline
—— Nearest neighbor
——Linear

10°

Power Spectral Density (K2/m)

105 1
10° 1w 10 10%
Wavenumber (m")

Figure 4. Spectral response of the interpolation methods applied to white noise.

3.1.3. Detrending

Typically, a windowing function is applied to time series (or temperature sections in this case)
prior to obtaining the spectrum so as to reduce leakage between frequencies and the introduction of
spectral energy due to step changes at the ends of the section. However, windowing functions tend
to depress the amount of energy in the spectrum, which results in an underestimate of the
instrument noise, so we elected not to window the data. Specifically, several different windowing

10 The roll-off at small wavenumbers results from the detrending. The roll-off at large wavenumbers results
from the different interpolations.
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functions, as well as simple detrending, were applied to simulations generated by adding white
noise to randomly generated temperature sections with a linear power spectral density (in log-log
space) typical of the spectra obtained from the SST sections but with random phase of the spectral
elements between -7t and +m. Detrending provided the most accurate estimate of the imposed noise
when compared to analysis of the data with the various windowing functions or to analysis of the
data with no preprocessing.

3.1.4. FFT

Finally, the FFT function available in Matlab was used to obtain the spectra from the detrended
temperature sections. For the along-scan direction, power spectral densities were ensemble averaged
over each of the subgroups defined in Section 3.1.1. This resulted in a total of approximately 100
subgroups for all groups of the AVHRR/VIIRS, day/night combinations; i.e., there was an average of
eight subgroups for each of the defined groups. Similar averaging was performed for the subgroups
of the along-track direction.

Oleander spectra were ensemble averaged over all of the selected sections.

3.2. Estimation of Instrument Noise

Instrument noise in the satellite-derived fields is estimated from the shape of the power spectral
density on the short wavelength (large wavenumber) end of the retrieved spectra. To better
understand the approach, consider the factors contributing to this portion of the spectrum. If
adjacent values on a given temperature section are independent with no noise, then the shape of the
spectrum is defined by the geophysical processes in the region. If the field has been smoothed or
averaged over a significant region, there is little additional information in the value of one point
relative to an adjacent one and the spectrum falls off more rapidly than the shape associated with
geophysical processes. This is what we found for the spectra of the AVHRR SST fields associated
with large scan angles (not shown here) as well as with the oversampled TEX sections with
maximum spacing of samples in excess of 150 m resampled to a spacing of 75 m discussed in Section
3.1.1. To avoid the roll-off of the spectra at small wavelengths the data were not smoothed. If the
field is not smoothed and, white noise is added to the values at individual pixels, the spectrum will
tend to level off; the point at which it begins to do so being a function of the level of the added noise.
Finally, if energy remains in the geophysical spectrum at wavenumbers larger than those at the end
of the retrieved satellite-derived spectra, the spectra will also tend to level off near their end as a
result of energy aliased from the larger wavenumbers. This is likely the reason the ensemble
averaged Oleander TEX spectrum levels off (Figure 5). (It is not clear whether the slight fall off in the
TEX spectrum beginning at approximately 1 km is a result of a fall-off in the geophysical signal or
some form of averaging of the TEX data. However, this roll-off is very slight and ignored here.) In
summary, the large wavenumber tail of the satellite-derived spectra is subject to the following:

¢ An increase in the magnitude of the slope of the spectrum due to averaging over the footprint
of the sensor,

e A decrease in the slope due to geophysical noise aliased into the spectrum, especially at high
wavenumbers, and

® A decrease in the slope due to instrument noise, the quantity of interest here.


http://dx.doi.org/10.20944/preprints201707.0066.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2017 d0i:10.20944/preprints201707.0066.v1

10 of 19

Oleander Spectrum

10° ‘

——Detrend PSD
105L —Best fit straight line from 10° to 10° m™ ||
10

= = = -
(=] o o o
=) — ™ ©
L L

Power Spectral Density (K2 m'1)
5

10 10° 107 10° 102
Wavenumber (m'1)

Figure 5. Power spectral density from Oleander TEX for all Oleander summer sections
(June-August) of 2008 through 2013 with maximum sample separation less than 150 m.
Temperature sections detrended prior to determining and ensemble averaging the spectra. Straight
red line: least squares best fit straight line (slope = -2.12) of logi (PSD) to logi (wavenumber)
between 10 and 10 m™..

In order to determine the instrument noise, i.e., to separate it from the other factors cited above,
we defined a two steps process based on the following three assumptions:

1. loguo of the geophysical power spectral density in the study area falls off linearly with logio
of the wavenumber over the spectral range sampled by the satellite-borne sensors (1.5 km to O [100
km]).

2. The spectrum continues to roll-off with approximately the same slope, at wavenumbers
larger than those associated with the Nyquist frequency of the satellite temperature sections. This
and the previous assumption are borne out by the mean TEX spectrum shown in Figure 5 as well as
from the analysis of the spectra from the two sensors.

3. The instrument noise for both sensors is white; i.e. that it contributes equally at all
wavenumbers associated with the given temperature sections. This is not quite the case for VIIRS
hence one has to take a bit more caution with the results presented herein.

In the first step, the slope, intercept and noise level of a hypothetical spectrum yielding the best
fit to the satellite spectrum is determined in a least squares sense. This is done by minimizing
gamma, the sum of the squared difference between the hypothetical spectrum and the satellite
spectrum:

. 2
y(slope, intercept,noise) = YN, ((10(S“’pe*“’glo"i*mte”em) + noise) — PSDL-S‘”) o)

where slope and intercept define the straight line portion of the best fit spectrum in log-log space
(assumption 1 above), noise is the noise level (assumption 3) also in spectral space, kiis the
wavenumber of the ith spectral component and PSD{* the corresponding power spectral density of
the satellite spectrum. In the second step, the constant noise level used to generate the spectrum in Eq.
1 is related to white noise in the spatial domain. Specifically, 1000 noise-free temperature sections,
with one tenth the sample spacing of that associated with the sensor of interest, are generated by
inverse Fourier transforming spectra with the same slope and intercept found with Eq. 1 but with the
phase of each spectral component randomly selected between - and ©. A 10-point moving average
is then applied to each temperature section and the result is decimated by 10. Gaussian white noise
of magnitude o is then added to each point on each section, the sections are Fourier transformed,
ensemble averaged and a new figure of merit is obtained:
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where PSDF™Wated(q) js the ensemble averaged power spectral density of the simulated
temperature sections and PSDf estf it(slope, intevcept) is the linear (in spectral space) power
spectral density associated with the best fit slope and intercept values found with Eq. 1. This is
repeated over a range of white noise levels ¢ to find the level, which best corresponds to the noise
level obtained with Eq. 1. Of importance, is that generating temperature sections with 1/10 the
spacing of the data associated with the sensors of interest, the energy at higher wavenumbers than
those resolved by the instrument are aliased into the results thus allowing for a more accurate
estimate of the instrument noise. Also, averaging the oversampled temperature section simulates
averaging performed over the footprint of the sensor. However, this does not take into account
additional averaging, which takes place in the 2n¢ dimension of the sensor’s footprint. This is not
thought to contribute significantly to the determination of instrument noise outlined above.

3.3. The Variogram Approach

To determine instrument noise from variograms, a model, which includes instrument noise as
one of its parameters, is fit to the empirical variogram. The model is intended to reflect the spatial
characteristics of the underlying data, hence selection of an appropriate model for the data of
interest is critical. A variety of models have been identified in the literature [12]. Tan14 used an
exponential model of the form:

Axory

V(Axory) =0} +02(1_e(_ L >) 3)
where ¢2, referred to as the nugget, is the variance of the difference in the retrieval at a given
location from that at a neighboring location as the separation between the two locations goes to
zero; i.e., the instrument noise in this case, o2, referred to as the sill, is the variance associated with
the variability for a spatial separation of L, the decorrelation scale. Note that the sill is a measure of
the geophysical variance of the field plus the ‘large’ scale retrieval variance, which depends on the
variance in the atmosphere, the variance of the surface emissivity, instrument noise, etc. So,
ol ~ G;BO + (Fetrievat = ) (4)
where 07rievar iS the total variance of the retrieval.

The formulation used by Tan14 works well for relatively homogeneous datasets for which the
underlying variogram has an exponential form [1]. However, in the Sargasso Sea, the shape of the
empirical variograms, for the L2 SST fields of interest, differ from subregion-to-subregion, not only
in terms of parameters but also in terms of the model itself, with an exponential model fitting in
some cases and a Gaussian model in others. In light of this we have elected to use the “stable
semivariogram” [12], a slightly modified single model, of the form:

Ax or y)w

y(Axory) =02+02(1-eC1

®)

Note in comparison with Eq. 3, that Eq. 5 includes an extra parameter, w, which ranges from 1 for
the exponential form to 2 for the Gaussian form. Although variograms can be developed in two
dimensions for the model of interest, we chose to use variograms for the along-scan and along-track
directions separately for much the same reasons presented in the discussion of the preliminary
processing of the data,

As in Tan14 we use the formulation given by Cressie to estimate the variogram [13]:

2
Z(Si_sj)(SST(si)—SST(s D)

2n

?(Ax or y) = (6)

where SST(s;) is SST at location s;, Ax or y is the spatial separation in kilometers of (s;,s;) pairs
in the along-scan (x) and along-track (y) directions, and n is the number of such pairs, which varies
with 4, ,,, and the number of cloud contaminated pixels.
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For each of the combinations of interest (along-scan/along-track, day/night), a variogram was
obtained (Eq. 6) for each of the interpolated, equally spaced temperature sections used in the
spectral approach and described in Sections 0 and 0. Next, for each variogram, the values of g,, 02,
L and w of Eq. 5, which minimized the weighted squared difference between Eq. 5 and the
variaogram, were obtained. The fit was performed over separations up to 20 km!.. The weight
assigned to each separation was equal to the number of pairs at that separation over the total
number of separations contributing to the variogram; i.e., the weight assigned to a given separation
decreased as the separation increased. The best-fit nuggets were then averaged for all temperature
sections corresponding to a given sensor/day-night combination to obtain the estimate for
instrument noise for that combination. Nuggets were also averaged by the subgroups identified in
Section 3.1.1.

4. Results

The local precision of satellite-derived SST retrievals, the noise resulting from processes in the
yellow and green boxes of Figure 1, which we refer to as instrument noise here, is shown in Table 3
for each of the along-scan/along-track, day/night combinations. The first row for each sensor
(labeled Spectra) corresponds to the estimates obtained from the spectral method. Only subgroups
consisting of five or more temperature sections and with a spectral slope steeper than -1 were used.
The instrument noise for subgroups with shallower spectral slopes tended to dominate the
geophysical signal increasing the uncertainty in the fit of Eq. 1. The noise estimates provided in the
table are the means of the estimates associated with each subgroup. The uncertainty is the square
root of the variance of these means over the number of contributing subgroups. Variogram estimates
follow in the next row (labeled Variogram) for each sensor, the mean of the estimates from the same
subgroups used in the spectral approach and the uncertainty is calculated as for the spectral
approach. The final row of the table (labeled Upper Limit) for each sensor is an ‘upper limit’ on the
instrument noise assuming that the pixel-to-pixel noise is white. This was obtained by noting that
the variance of the difference of adjacent SST values, 0%(Axy;y), is the sum of the variances of the
noise of each of the two values, 207, plus the contribution due to the geophysical variance between
the two values, 07, (AxXpmin):

U(Axmin) (7)

UZ(Axmin) = 2o-iz + o-gzeo(Axmin) = 0; < 7z

If the noise is not white, for example, the actual level of noise may, in fact, be larger than the “upper
limit'.

4.1. AVHRR

Day-versus-night, along-scan instrument noise levels obtained for the AVHRR data are not
statistically distinguishable. Nor are the along-track levels. The levels for the variogram estimates
based on the same subgroups as the spectral estimates (2°¢ row) are also statistically similar.
Furthermore, although somewhat larger the variogram estimates are quite close to the spectral
estimates and all of the estimates are close to the ‘upper’ limit for the given
sensor/day-night/scan-track combination suggesting that the instrument noise is white. It is possible
that the pixel noise is correlated at small scales but, again, the mechanism for this is not obvious.

11 The nugget did not vary significantly for fits up to approximately 40 km. However, fitting to a larger range
generally resulted in an increase in the nugget, which was thought to be unrealistic — the nugget wandered
away from the variance at the smallest observed separation.
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Table 3. Estimated instrument noise in satellite-derived SST fields. Numbers in parentheses are the
number of subgroups from which the means are determined. The indicated uncertainty of the
means is the square root of the variance of the contributing subgroups over the number of

subgroups.
Day (K) Night (K)
h
Method Along- Scan  Along-Track  Along-Scan  Along-Track
Spectra 0.172+0.001 0.209+0.001 0.173+0.003 0.209+0.008
©) @) @) (4)
AVHRR . 0.185+0.004 0.21940.006 0.183+0.001 0.219+0.006
Variogram
& ) ) @) )
Upper Limit 0.189 0.218 0.194 0.208
Spectra 0.0460.001 0.076+0.002 0.021+0.001 0.032+0.002
(4) (10) (24) (14)
VIIRS . 0.081+0.013 0.097+0.006 0.042+0.004 0.056+0.004
Variogram
8 (4) (10) (24) (13)
Upper Limit 0.078 0.101 0.050 0.057

The along-scan AVHRR spectra are shown in Figure 6 for a daytime subgroup and a nighttime
subgroup. Also shown in the figure are the best-fit linear spectra with noise, obtained as discussed
in Section 3.2. Figure 7 shows the corresponding along-track AVHRR spectra. In all four cases, noise
is seen to impact the spectrum for wavelengths (wavenumbers) up (down) to approximately 25 km
(0.04 km™). Also apparent from these plots is that the approximately linear portion of the AVHRR
spectrum corresponds to a small fraction (~10%) of the 129 spectral values. This means that
relatively small changes in the low wavenumber end of these spectra will have a more significant
impact on the estimated background slope than for spectra less impacted by noise. However, the
spectral method for determining instrument noise is relatively insensitive to this; significant
changes in slope and intercept result in virtually identical values of instrument noise. For example,
for the spectrum shown in the left panel of Figure 7, a slope, offset combination of (-1.7570, -6.2730)
yields the same level of instrument noise. This is because the instrument noise is one to two orders
of magnitude larger that the assumed geophysical signal, the straight line portion of the spectrum,
over a significant fraction of the spectrum (remember the fits are in regular, not log-log space) so
changes in the slope do not result in a significant difference in the squared sum of the differences
between the model and the observed spectrum. For spectra that level off substantially at large
wavenumbers, the noise is effectively determined by the power spectral density level at these
wavenumbers. This is readily seen in Figure 6 and 7; the high wavenumber end of the simulated
spectra with noise are at a similar level for the along-scan sections and at a slightly higher level for
the along-track sections. Care must be taken however when the level of instrument noise is similar,
or smaller, in magnitude to the geophysical signal at these wavenumbers, as will become clear in
the analysis of the VIIRS spectra.
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Figure 6. Mean AVHRR spectra for contiguous along-scan sections (black). Best-fit linear spectra
with noise to the mean VIIRS spectra (green). Best-fit linear portion of the best-fit linear spectra with
noise (red). Mean TEX spectrum shifted vertically to allow for comparison (magenta).
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Figure 7. Mean AVHRR spectra similar to Figure 6 except for along-track sections. Daytime
spectrum for 21:08 GMT on 10 June 2012. Nighttime spectrum for 09:34 GMT on 23 June 2012.

AVHRR along-track instrument noise is approximately 20% larger than along-scan instrument
noise. This is presumably due to the line-by-line calibration undertaken in the development of the
L1b data product used as input to the L2 retrieval algorithm.

4.2. VIIRS

Mean VIIRS spectra similar to those shown for AVHRR in Figure 6 and Figure 7 are shown in
Figure 8 and Figure 9, respectively. The spectra in these figures differ in several key ways from those
associated with AVHRR. First, the level of instrument noise is, in all cases, substantially lower than
that for AVHRR. Second, spectral peaks, especially in the daytime spectra, are evident at 1.5, 2.2, and
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2.9 km as well as a broad peak at 12 km in the along-track spectra (Figure 9). There are 16 detectors
for each of the VIIRS moderate resolution bands used for SST retrievals, hence, one scan of the
instrument consists of 16 scan lines. The gain of these detectors may differ slightly and this
difference is not regular; i.e., it changes along-scan and between scans. This is what gives rise to the
observed peaks; the peaks at 1.5, 2.2, and 2.9 km correspond to a separation of one, two and three
pixels and the peak at 12 km corresponds to the 16 pixel repeat scans of the instrument (750 m x 16
detectors = 12 km). Reassuringly, the along-scan spectra do not show these peaks. Also note that the
noise from the different detectors contributes to a general elevation of the large wavenumber end of
the spectrum — the simulated spectra with noise in Figure 9 tend to separate from the associated
straight line spectrum at wavelengths smaller than approximately 8 km for along-track sections
compared with approximately 5 km for along-scan sections. The point of separation is, of course, a
function of the magnitude of the geophysical signal. In regions with a significantly larger
geophysical signal, in the vicinity of the Gulf Stream for example, instrument noise will likely have
no effect on the spectrum, with the possible exception of a few of the peaks.

The third significant difference between AVHRR and VIIRS spectra relates to the daytime
spectra compared with the nighttime spectra. Specifically, there is a statistically significant
difference between daytime and nighttime VIIRS spectra, with the daytime spectra being more
energetic at wavelengths smaller than approximately 100 km. This is likely due to diurnal warming,
which occurs frequently in the Sargasso Sea in summer months [6, 10]. Also note that the slope of
nighttime spectra for both along-scan and along-track sections is closer to that of the TEX spectrum
than the daytime spectra. Surprisingly, the level of instrument noise is also larger at daytime than at
nighttime as is evident both from the figures and from Table 3. This may result from the sensitivity
of the banding to the energy in the SST field. Banding is difficult to correct for because it is not the
entire scan line that has higher values than its neighbors, but rather, what appear to be randomly
located segments of a given scan line. Furthermore, the magnitude of the difference in these regions
appears to be related to the magnitude of the retrieved temperature.

Finally, the level of instrument noise estimated with the spectral approach is substantially
smaller than (as much as one half) that estimated based on the variogram. The reason for this is not
clear. Although the spectral approach provides slightly better estimates of the noise added to
simulated temperature sections than the approach based on the variogram, the estimates do not
differ by the amounts seen in the actual data for VIIRS.

VIIRS Day Along-Scan VIIRS Night Along-Scan

o ‘ 10 i
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Figure 8. Mean VIIRS spectra similar to the AVHRR spectra in Figure 6.
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Figure 9. Mean VIIRS spectra similar to the AVHRR spectra in Figure 7.

5. Discussions

5.1. Comparison of the AVHRR L2 instrument noise estimates Tandeo et al’s results

Tan14 estimated the nugget in the L3 Meteosat AVHRR data set produced by the O&SI SAF
Project Team [1, 14]. This product was assembled by remapping the full resolution nighttime
AVHRR fields onto a regular 0.05° x 0.05° global grid and averaging the results into 12 h fields.
They found o, = 0.14 K for the study area. This is larger than would be expected if instrument noise
of the full resolution Meteosat AVHRR data is similar to that found for NOAA-15 AVHRR (on the
order of 0.20 K) and if this noise is uncorrelated from pixel-to-pixel, the assumption made in the
analyses presented herein. Specifically, we would expect the noise for the L3 product to be
approximately 0.05 K since order 25 pixels are averaged for each 0.05° x 0.05° SST estimate. It is
possible that the level of instrument noise (elements in the yellow block of Fig. 1) associated with
the AVHRR on Meteosat is higher than that of NOAA-15. More likely however is that the difference
results from misclassification errors associated with cloud flagging (the most significant element in
the green block). Specifically, Tan14) processed all of the data for one year, 2008; i.e., they did not
constrain their analysis to relatively cloud free fields as we did. Cloud-contaminated L2 pixels were,
of course, excluded from the production of the L3 fields and Tan14 also excluded pixels flagged as
cloud-contaminated. However, the likelihood of misclassification, cloud-contaminated pixels not
being flagged as such, increases as the fraction of cloud cover increases. Furthermore, classification
errors tend to be small-scale errors, a small number of pixels here, a small number of pixels there, as
opposed to large regions, which are misclassified. This means that such errors will likely contribute
to noise at small spatial scales. A histogram of Tanl4 nuggets (not shown) shows a broad
distribution ranging from o, in the 0.05 K range to order 0.3 K with a peak around 0.14 K. If the
nugget resulted primarily from instrument errors (those in the yellow block), one would expect a
relatively narrow peak; the instrument noise is unlikely to vary substantially for the region. Thus the
broad o, range suggests that it is a combination of classification errors and instrument noise. Because
our analysis required long sections of cloud-free pixels the data were likely much more clear, on
average, than those of Tan14. Also contributing to the difference between our estimate of local noise
and that of Tan14 is that noise may be added through the combination of L2 fields to obtain the L3
product. Using nighttime only data, as Tan14 have done, will minimize, but not completely remove,
this. Finally, we found that the model, which best fits the SST field in the Sargasso Sea, varies from
an exponential form to a Gaussian form, hence our use of the standard model. Tan14 used the
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exponential form. This will likely also contribute to an overestimate of the instrument noise in
regions in which a mixed form is more appropriate.

5.2. Impact of noise on Sobel Gradient

Of interest is how levels of noise, typical of the values found thus far, impact gradients and
fronts. In order to address this, we simulated 10,000 3 x 3 pixel squares for a given gradient in X,
added Gaussian white noise to each of the elements, applied the 3 x 3 Sobel gradient operator in x
and y to these squares and then determined the mean gradient and the standard deviation of the
gradient. This was done for gradients ranging from 0.001 to 0.01 K km-, values typical in the ocean,
and for levels of instrument noise ranging from 0.001 K to 0.02 K. Figure 10 and 11 show the means
and standard deviations of the x- and y-components of the gradient, respectively. The mean x- and
y-components are unaffected by the noise; the mean x-component is the same as the initial value
and the mean y-component is very nearly zero. The standard deviation of the components is very
nearly independent of the imposed noise. For a noise level typical of VIIRS, 0.05 K, the vertical
white lines in the figures, the uncertainty of each of the components is approximately 0.022 K and
for a level typical of AVHRR, 0.2 K, the uncertainty in the components is 0.09 K. In general, the
uncertainty in the given component is approximately one half of the level of imposed noise.

Mean Gradient in X (K/km)

0.1

VO 06 I 0.05

_ :

Slgma
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: 0.08
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0.04
0.02

Figure 10. Simulated impact of Gaussian white noise of magnitude sigma imposed on a field with
an x-gradient indicated on the vertical axis. The vertical white line is an imposed noise level typical
of VIIRS values.
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Figure 11. As in Figure 10 except for the
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Figure 12. As for Figure 10 except for the gradient
magnitude.
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The impact on the gradient magnitude (Figure 12) is more dramatic. The mean of the estimated
gradient is no longer equal to the magnitude of the imposed gradient. For example, for a relatively
robust gradient of 0.05 K/km, the mean of the estimated gradient ranges from 0.05 to in excess of 0.1
K/km as the imposed noise ranges from 0 to 0.2 K/km. Note that contours of the estimated gradient
tend to become level for imposed noise levels less than approximately 0.07 K. This means that
VIIRS estimates of the mean gradient magnitude will be centered on the actual value of the
gradient, but that the gradient magnitude will be substantially overestimated in AVHRR fields. The
uncertainty of the estimated gradient magnitude increases with the imposed noise, nearly doubling
from the value associated with a zero imposed gradient to an imposed gradient of 0.1 K/km. These
observations do not mean that a front with a gradient of this magnitude (0.05 K/km) is undetectable
in a field with an AVHRR noise level but detection will be problematic. Simulations using front
detection algorithms need to be undertaken to evaluate this. Although none of this is surprising, we
are not aware of any studies involving the gradient magnitude of satellite-derived SST fields
accounting for this — including many of our own.

6. Conclusions

The accuracy with which the local gradient of any digital field can be determined is a function
of the local precision of the underlying data, where the local precision is defined as the square root
of the variance of individual pixel values following removal of real trends in the data and removal
of noise that is correlated over scales that are large compared with the scale used to calculate the
gradient. In the case of fields obtained from satellite-borne sensors this noise is attributed to
characteristics of the sensor, ‘instrument noise’, and to the retrieval process, ‘retrieval noise'. Two
approaches, a spectral-based approach and a variogram-based approach, were used to estimate the
instrument portion of this noise in L2 AVHRR and VIIRS SST fields. In order to reduce the
non-instrument portion of the local noise in the analysis, only cloud free sections were used, the
assumption being that the dominant contribution to the non-instrument local noise is due to the
misclassification of clouds. Because instrument noise was thought to differ between the along-scan
and along-track directions and because the geophysical variance was thought to differ between day
and night, the analysis was performed separately for the four along-scan/along-track and day/night
combinations.

Both methods yielded similar results for AVHRR, with daytime and nighttime along-scan
values of ~0.18 K and along-track values of 0.21 K. VIIRS instrument noise, on the other hand, was
found to differ by method, scan geometry and day-vs-night — ranging from 0.021 K for the nighttime,
along-scan spectral estimate to 0.097 K for the daytime, along-track variogram estimate. Day and
night along-scan estimates based on the spectral approach are close to one half those based on the
variogram. For both methods, the nighttime estimates are also roughly one half the corresponding
daytime estimates. Finally, the along-track estimates are roughly 50% larger than the along-scan
estimates for the spectral approach but only about 25% larger when based on the variogram. In all
cases, the estimates were smaller than the ‘upper’ limit.

In summary: VIIRS instrument noise is substantially smaller than AVHRR instrument noise,
with levels as low as 0.02 K in the along-scan direction at nighttime. In fact, VIIRS instrument noise
under these conditions is near the level of the geophysical signal in the dynamically quietest
regions in the ocean.
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