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Abstract: Structure from Motion with Multi-View Stereo photogrammetry (SfM) is increasingly 
utilised in geoscience investigations as a cost-effective method of acquiring high resolution (sub-
meter) topographic data, but has not been thoroughly tested in gullied savanna systems. The aim of 
this study was to test the accuracy of topographic models derived from aerial (via an Unmanned 
Aerial Vehicle, ‘UAV’) and ground-based (via a handheld digital camera, ‘Ground’) SfM in 
modelling a hillslope gully system in dry-tropical savanna, and to assess the strengths and 
limitations of the approach at different scales. A UAV survey covered an entire hillslope gully 
system (0.715 km2), whereas a Ground survey covered a single gully within the broader system (650 
m2). SfM topographic models, including Digital Surface Models (DSM) and dense point clouds, were 
compared against RTK-GPS point data and a pre-existing airborne LiDAR Digital Elevation Model 
(DEM). Results indicate UAV SfM can deliver topographic models with a resolution and accuracy 
suitable to define gully systems at a hillslope scale (e.g., 0.1 m resolution with ~ 0.5 – 1.3 m elevation 
error), while ground-based SfM is more capable of quantifying gully morphology (e.g., 0.01 m 
resolution with ~ 0.1 m elevation error). Key strengths of SfM for these applications include: the 
production of high resolution 3D topographic models and ortho-photo mosaics, low survey 
instrument costs (< $AUD 3,000); and rapid survey time (4 and 2 hours for UAV and Ground survey 
respectively). Current limitations of SfM include: difficulties in reconstructing vegetated surfaces; 
uncertainty as to optimal survey and processing designs; and high computational demands. 
Overall, this study has demonstrated great potential for SfM to be used as a cost-effective tool to aid 
in the mapping, modelling and management of hillslope gully systems at different scales, in tropical 
savanna landscapes and elsewhere. 

Keywords: digital elevation model; DEM; digital surface model; DSM; great barrier reef; gully 
erosion; multi-view stereo; point cloud; unmanned aerial vehicle 

1. Introduction

Gully erosion is a globally significant land degradation process that has detrimental 
environmental, ecological and economic impacts across a range of landscape systems [1-7]. Effective 
management of gully erosion requires high resolution topographic information that can be used to 
accurately quantify the spatial distribution and density of gully systems, gully morphology and 
morphologic change, and the catchment characteristics that influence gully evolution [2,8-10]. Recent 
advances in remote sensing techniques have greatly improved our ability to collect high resolution 
topographic data at a range of scales [11-13]. Light Detection and Ranging (LiDAR), for example, has 
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become a major source of digital terrain information [11,12,14,15], and can be deployed from both 
airborne (e.g., airborne laser scanning, ALS) and terrestrial (e.g., terrestrial laser scanning, TLS) 
platforms. A major limitation of LiDAR is the high instrument and survey costs [13]. Structure from 
Motion with Multi-View Stereo photogrammetry (hereafter referred to as SfM) is increasingly utilised 
as a cost-effective alternative method of rapidly acquiring very-high resolution (sub-meter) and 
hyper resolution (sub-centimeter) topographic data [13,16-19].  

SfM allows the creation of three-dimensional (3D) topographic models from a set of conventional 
digital photographs. In addition to topographic data, SfM also produces very high resolution ortho-
photo mosaics, providing a wealth of information for use in physical geography [13]. Over the past 
10 years, SfM has been applied in a variety of geoscience investigations, including but not limited to; 
glaciology [20,21]; landslides [22,23]; volcanology [17,24]; structural geology [25]; fluvial morphology 
and flood reconstruction [26-29]; coastal morphology and coral reef studies [30-34]; and soil micro-
topography [35-37]. SfM is also increasingly utilised in gully studies, with work conducted in: Spain 
[38-41]; the Iberian Peninsula [18]; Italy [42]; Morocco [43-45]; the European Loess Belt [46]; upland 
sites across the UK [47]; California [48] and Iowa [49,50] in the United States; Northern Ethiopia 
[46,51]; and China [52-54]. These studies have generally found SfM to be of comparable accuracy to 
LiDAR systems, demonstrating great potential for it to be used in geomorphic investigations. Yet, the 
studies have also documented some important challenges of the methodology, which may limit its 
application. Further testing of the accuracy of SfM topographic models in different landscapes and 
geomorphic settings is therefore needed. 

Currently, no studies have applied SfM to assess gully erosion in tropical savanna landscapes. 
Tropical savannas are particularly susceptible to gully erosion [9,55,56], but compared to temperate 
landscapes, have received relatively little attention [3,56,57]. In this environment, accurately 
surveying gullies is challenging due to the complex spatial arrangement and distribution of 
vegetation, complex gully morphologic features (e.g., overhangs, undercuts, steep walls), and the 
large geographic extent in which gullies occur [15]. Gully erosion is a particularly significant issue in 
the grazed dry-tropical savanna catchments tributary to the Great Barrier Reef (GBR), Australia [57-
60]. In these catchments, more than 80,000 km of gully features have been identified [61], primarily 
on land in beef cattle production, which occupies about 75% of the total GBR catchment area (~423,000 
km2) [62]. Increasing evidence suggests gully erosion on these grazing lands is the dominant source 
of sediments and particulate nutrients (sorbed onto sediments) to coastal waters in the region [59,63-
68]. High loads of sediments and nutrients in coastal waterways are believed to be major contributing 
factors to the declining health of the coral reef ecosystem [58,59,69]. Gully erosion on grazed savanna 
landscapes is therefore a priority for management intervention [59,60,70,71]. 

In the GBR catchments, predictive models which relate gully density to landscape factors (e.g., 
geology, soil, topography, vegetation, land use) and climate have been used to quantify the extent of 
gully erosion at both local and regional scales [72,73]. The outputs of these models have then been 
used as inputs to broad scale catchment sediment budget models [Sediment River Network Model, 
74,75,76], to identify primary erosion processes, estimate end-of-catchment sediment loads, and 
inform management interventions [71,77]. A key limitation of this approach has been a lack of high 
resolution topographic data with which to accurately quantify the extent of gully systems across the 
landscape [76,78,79]. Further, few studies have quantitatively measured gully morphology and 
morphologic change [56,57,80,81], leading to uncertainty about the volume and mass of sediment 
fractions delivered to the stream network from gully erosion [76]. Finally, understanding of the key 
landscape factors and processes controlling gully erosion in this environment remains limited 
[57,58,81-83]. Yet, this information is critical for prioritising gully erosion hotspots, understanding 
gully erosion processes and dynamics, and for designing, monitoring and evaluating gully 
remediation activities [1,2]. Addressing such data and knowledge gaps requires the utilization of a 
range of methods at various spatial and temporal scales [3,15,58]. This study tests the accuracy of 
topographic models derived from aerial (via an Unmanned Aerial Vehicle, ‘UAV’) and ground-based 
(via a handheld digital camera) SfM in modelling a hillslope gully system located in a grazed dry-
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tropical savanna catchment tributary to the GBR, and assesses the strengths and limitations of the 
approach at different scales.  

2. Materials and Methods  

2.1 Study site 

The study site is located within the Weany Creek sub-catchment (13.6 km2), within the Upper 
Burdekin Catchment (~36,000 km2), and part of the Burdekin River Basin (130,000 km2), which drains 
to the GBR in northeast Australia (Figure 1). The area has granodiorite lithology [84,85] and is 
dominated by chromosol soil, a sandy clay loam, known locally as red goldfields soil. Chromosol 
soils, which cover approximately 12% of the Burdekin River basin, contain numerous gullies and are 
therefore a priority for management intervention [86]. The terrain is dissected by many drainage 
depressions, although relief and slope gradients are low (median gradient is 2.3% [87]). The climate 
is dry-tropical with two distinct seasons; a summer wet season between October and March, and a 
dry season between April and September [88]. The mean-annual rainfall (1900–2012) is 686 mm y-1, 
but exhibits high interannual variability linked to the phase of the Southern Oscillation, with drought 
conditions coinciding with El Niño/Southern Oscillation (ENSO), and wetter periods accompanying 
anti-ENSO (La Niña) events [89,90]. Vegetation is generally characterised by a discontinuous upper 
stratum of Eucalyptus spp. and a more continuous understory of annual and perennial grasses, forbs 
and small shrubs [91] (Figure 2, inset c). Vegetation grows rapidly during the wet season, followed 
by a period of desiccation during the dry season [92-94]. Cattle grazing commenced in the area after 
1850 and remains the dominant land use today. 

 

 
Figure 1. Map showing the location of the study site within the Weany Creek sub-catchment, within the 
Upper Burdekin catchment and part of the Burdekin River Basin. The gully probability mapping is 
reproduced from Gilad et al. [86] and shows high to very high probability of gullies in the Upper Burdekin 
catchment. The Weany Creek DEM and the Hillslope DEM are derived from airborne LiDAR captured in 
2013, outlined in Tindall et al. [79].    

Within the Weany Creek sub-catchment, measurements were focused at two scales: a hillslope 
scale (0.715 km2), surveyed via an UAV; and a gully scale (650 m2), surveyed via a hand-held digital 
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camera, with images captured from ground-level, ‘Ground’ (Figure 2). The hillslope site was selected 
as it contains a diversity of gully features and has ground cover considered representative of the 
Weany Creek sub-catchment. The gully site was selected as it has been previously studied [57,95] and 
is actively eroding.  

The gully site contains a V- shaped gully with steep sidewalls (45 - 90°), a narrow gully floor (0.2 
– 1 m wide) and two distinct headcuts (Figure 3). The headcuts are slightly over-hanging in the upper 
0.5 – 1 m of the incision profile, with total headcut heights ranging from 1 – 1.5 m. Evidence of mass 
wasting at the headcuts is clearly visible, with scouring around the base of the head wall, and large 
sediment deposits on the gully floor. Rill fluting occurs along portions of gully sides. Weathered 
bedrock is exposed in sections of gully wall, typically in the lower 0.5 m of the profile. At the time of 
the Ground survey (October 2016), grass (predominantly Indian Couch (Bothriochloa pertusa) and 
woody legumes (Stylosanthes spp.); height of ~ 30 - 50 cm) occupied much of the area along the gully 
edge and in some sections of the more gently sloping gully wall, obscuring the bare soil. Leaves, bark 
and woody debris also partially covered the ground. Grass was not present in the gully floor. Thicker 
pockets of low-lying shrubs (~ 1 m tall x 1 m wide) occupied some sections of gully edge and walls.  

 

 

 

 

Figure 2. (a) Map showing the catchment area of the hillslope site and the gully site, and the gully extent. 
Background map is a UAV ortho-photo mosaic of the hillslope site. (b) UAV image of the gully site. (c) 
Ground image of typical savanna vegetation in the contributing area of the gully site.  
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2.2 Datasets 

2.2.1 LiDAR 

The airborne LiDAR data, covering the area around and including the hillslope site, was 
acquired in 2013 as part of a larger airborne LiDAR survey campaign by the Queensland Department 
of Science, Information Technology, Innovation and the Arts [79]. The sensors were configured to 
sample the gully environment with an average pulse density of 4.2 m2 (each pulse recorded up to 5 
returns) and an overlap of 50% between flight runs to minimise the impact of occlusion from variable 
terrain and vegetation. This resulted in an average of 8 pulses per m2. DEM surfaces were interpolated 
using the natural neighbor algorithm [96] at a spatial resolution of 0.5 m using the LiDAR returns 
classified as ground. The DEM has a reported elevation accuracy of 0.2 m ± 0.1 m. More detail on 
LiDAR capture specifications, DEM generation and accuracy are given in Tindall et al., [79].   

2.2.2 UAV and Ground survey 

In August 2016, the UAV survey of the hillslope site was conducted using a DJI Phantom 3 
Professional Drone [97], fitted with a DJI FC300X camera and a DJI 3.61 mm lens (20 mm focal length 
on a 35 mm camera equivalent). The flying mission was planned using the Map Pilot App by Maps 
Made Easy (https://www.mapsmadeeasy.com/). Seven Ground Control Points (GCPs) were 
distributed across the study area (Figure 4a). The GCPs consisted of a 1.2 x 1.2 m black and white 
“iron cross” vinyl marker. The GCPs and an additional 341 random validation points, were surveyed 
using a CHC X91 Real Time Kinematic GPS (RTK GPS) receiver. The RTK GPS had a mean horizontal 
error of 0.014 m (standard deviation, SD of 0.004 m), and a mean vertical error of 0.030 m (SD of 0.010 
m). The UAV survey took approximately 4 hours. Further details about the UAV survey are outlined 
in Table 1.  

In October 2016, the Ground survey of the gully site was conducted using a Panasonic GH3 
digital camera, fitted with a Panasonic Lumix G 20 mm F1.7 II ASPH prime lens, set to P-mode (i.e., 
automatic mode with no flash). Ten GCPs were distributed on the ground surface throughout the 
gully system along the gully walls and floor (Figure 4b). The GCPs consisted of a laminated A4 page 
with 4 coded circular targets, produced using the ‘Print Markers’ tool within AgiSoft PhotoScan 
Professional V1.3 (PhotoScan) [98]. The GCPs and an additional 134 random validation points were 
surveyed using an Ashtech Magellan Promark 500 RTK GPS. The RTK GPS had a mean horizontal 
error of 0.018 m (SD of 0.003 m) and a mean vertical error of 0.026 m (SD of 0.004 m).  

Figure 3. Ground Digital Surface Model (DSM) of the gully site with inset photographs at specific 
points, used in SfM reconstruction. Note, the scale bar does not relate to inset photographs. 
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Initial attempts at the Ground survey, involving significantly fewer photos and a non-systematic 
approach to image capture (e.g. random path of photographer, images captured non-consecutively) 
resulted in poor surface reconstruction. Here we outline the method of image capture found to 
produce the best surface reconstruction (Figure 4c,d). The photographer started at the gully head 
approximately 3 m from the gully edge, and worked their way along the gully perimeter, capturing 
one image approximately every meter, focusing obliquely on the opposite bank toward the 
downstream end. Upon reaching the gully outlet, the photographer followed a similar path back 
toward the gully head, again focusing obliquely on the opposite bank, but this time toward the 
upstream end. Upon reaching the gully head (i.e., the starting point), the photographer moved to the 
gully edge and repeated the process. Once images were captured on both sides of the gully periphery, 
the photographer then captured images through the center of the gully, walking along the gully bed. 
Images were captured along three lines: one line focused directly downstream and upstream; and 
two lines focused obliquely toward the left and right bank respectively, upstream and downstream. 
Following guidance provided by Smith et al. [13], the photographer tried to achieve full 360° coverage 
of gully features with a high degree of overlap between images; avoided large angular changes of 
>25–30° between adjacent camera locations and large jumps in scale; and minimized the interval 
between images to reduce the effect of changes in lighting and shadow conditions. The gully took 
approximately two hours to survey.  

Table 1. UAV and Ground survey details.  

Survey Image 
resolution 

(MP) 

Altitude 
of 

image 
capture 

(m) 

Forward 
overlap 

(%) 

Side 
overlap 

(%) 

Image 
overlap 
(number 

of 
images) 

No. of 
images 

Area 
covered 

(m2) 

Ground 
resolution 
(cm pix-1) 

UAV 12 90 80 75 >9 938 715,000 3.31 
Ground 8 1.5 - - >9 1747 650 0.129 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3 Data post-processing 

2.3.1 SfM workflow, 3D model, and ortho-photo generation 

Agisoft PhotoScan software was used to implement the SfM workflow. Details of the processing 
parameters and processing times are provided in Supplementary Table 1. The SfM workflow, 
described in detail elsewhere [13,19], can be summarized into three main steps. The first step 

Figure 4. Camera and GCP locations and image overlap of (a) UAV survey; and (b) Ground survey. (c) 
Theoretical path of photographer (blue arrows) and direction of image capture (black arrows) during Ground 
survey. The brown line diagrammatically defines the gully edge. (d) Photographer during a Ground survey. 
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involves: (i) the identification and matching of features in a set of images, utilising an algorithm based 
on the scale invariant feature transform (SIFT) object recognition system [99]; and (ii) the 
implementation of bundle adjustment algorithms to estimate the 3D geometry (or structure) of a 
scene, as well as the internal and external camera orientation parameters [98], producing a sparse, 
unscaled 3D point cloud in arbitrary units. The second step involves: (i) a linear similarity 
transformation to scale and georeference the point cloud, utilising reference coordinates of GCPs 
distributed throughout the study site; and (ii) point cloud optimization, a process in which camera 
parameters and 3D points are adjusted to minimise the sum of the reprojection error and the 
georeferencing error [98]. The final step involves the implementation of multi-view stereo (MVS) 
image matching algorithms to build a dense 3D point cloud. A fourth step can be added to the SfM 
workflow to generate textured 3D models and ortho-photo mosaics derived from the dense point 
clouds. In this study, PhotoScan processing ran on a computer which carried an 8GB NVIDIA Quadro 
K5200 graphics card, two Intel Xeon CPU E5 K5200 v2 @2.5 GHZ processors, and 128 GB RAM. Total 
processing time for the UAV and Ground survey data were ~31 and ~110 hours respectively.  

2.3.2 Digital Surface Model (DSM) generation 

DSMs, derived from the dense point clouds, were generated using the ‘rasterize’ tool in 
CloudCompare (v2.8) [100]. The minimum elevation point at each pixel was used to model the terrain 
surface, as it has the greatest chance to represent the surface within vegetated areas [26], in the 
absence of vegetation filtering of the point cloud. The UAV DSM was generated at 0.1 m pixel size, 
whereas the Ground DSM was generated at 0.01 m pixel size.  

2.3.3 Conversion to the Australian Height Datum  

The airborne LiDAR DEM elevation values were referenced to the Australian Height Datum 
(AHD), whereas the RTK validation points and UAV and Ground DSMs had elevation values 
referenced to the ellipsoid GDA94. To allow comparison among the datasets, the elevation values of 
the DSMs and RTK validation points were converted to AHD, using the AusGeoid09 transformation 
(http://www.ga.gov.au/ausgeoid/nvalcomp.jsp), prior to accuracy assessment.  

2.3.4 Elevation accuracy of SfM topographic models  

The elevation accuracy of the SfM topographic models was evaluated using point-to-raster, 
point-to-point, and raster-to-raster comparisons. In the point-to-raster comparison, elevation values 
were extracted from the DSM and compared to concordant RTK validation points. In the point-to-
point comparison, elevation values were extracted from the dense point cloud (prior to rasterization) 
and compared to concordant RTK validation points, using the ‘compute cloud/cloud distance’ tool in 
CloudCompare. Point-to-point comparison is useful in topographically complex environments [101] 
such as gullies, where steep sides and overhangs are common [46], as a given set of x and y 
coordinates can have multiple z values [42,102]. In the raster-to-raster comparison, the UAV DSM 
was subtracted from the airborne LiDAR DEM, allowing examination of the spatial distribution of 
error. Here we assume the airborne LiDAR DEM was more accurate the UAV DSM. 

Elevation accuracy is evaluated for: (i) all validation points (excluding GCPs) within the hillslope 
site; (ii) all validation points (excluding GCPs) within the gully site; and (iii) individual cross-sections 
across the gully site. Accuracy metrics include: root mean square error (RMSE), mean absolute error 
(MAE); mean error (ME); and standard deviation of error (STDE) [102]. 

A vertical shift was applied to points extracted from the UAV DSM. The vertical shift was based 
on a linear regression between the RTK validation points and the corresponding points extracted 
from the UAV DSM, according to the equation: 

Y = 1.0342x - 8.6882 (r2 = 0.976) 

where Y = elevation value after linear regression; and x = elevation value prior to linear regression. 
This dataset is referred to as UAV DSM Shift. Error is evaluated before and after the shift was applied.  
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3. Results 
At the hillslope scale (0.715 km2), the UAV DSM has relatively large elevation errors (RMSE = 

1.307 m, MAE = 1.220 m, Table 2), despite the very low georeferencing error of the GCPs (Table 3). 
The distribution of errors is negatively skewed (Figure 5a), with about 91% of the error between 0.01 
and 2 m (i.e., lower than the RTK validation points). Comparison of the UAV DSM to the airborne 
LiDAR DEM reveals systematic error across the hillslope (Figure 6a), which appears to be related to 
the location of GCPs. In the upper half of the hillslope, and through the centre of the lower hillslope, 
the UAV DSM is generally lower than the LiDAR DEM (0.1 – 2 m difference). The magnitude of 
difference increases towards the centre of the upper hillslope, with increasing distance from GCPs. 
In contrast, the outer edges of the upper hillslope, and middle and outer sections of the lower 
hillslope, are generally higher than the LiDAR DEM (0.1 – 2 m difference). These results suggest the 
number and distribution of GCPs across the large survey area may have been insufficient to properly 
parameterize the SfM model during bundle adjustment, resulting in model deformation.  

Applying a vertical shift to the elevation values of points extracted from the UAV DSM reduces 
the skewness of the error distribution (Figure 5b) and significantly improves overall error (Table 2). 
At the hillslope scale, UAV DSM elevation error is reduced to 0.550 m, while at the individual gully 
scale, error is reduced to 0.404 m. 

Table 2. Summary of elevation errors in the comparison of RTK validation points and UAV and Ground DSMs 

Site 

# RTK 
points 
(UAV)  

# RTK 
points 

(Ground)  

RMSE MAE ME 

UAV 
DSM 

UAV 
DSM 
Shift 

Ground 
DSM 

UAV 
DSM 

UAV 
DSM 
Shift 

Ground 
DSM 

UAV 
DSM 

UAV 
DSM 
Shift 

Ground 
DSM 

XS1 21 15 1.522 0.367 0.059 1.519 0.347 0.048 1.519 0.347 -0.047 
XS2 19 11 1.568 0.440 0.076 1.556 0.384 0.050 1.556 0.381 -0.007 
XS3 20 12 1.466 0.335 0.073 1.455 0.277 0.059 1.455 0.268 -0.030 
XS4 19 11 1.439 0.288 0.073 1.432 0.241 0.068 1.432 0.240 -0.068 
XS5 21 12 1.403 0.279 0.093 1.393 0.225 0.082 1.393 0.193 -0.082 
Gully  151 151 1.538 0.404 0.092 1.527 0.362 0.052 1.527 0.343 -0.014 
Hillslope 471 151 1.307 0.550 NA 1.220 0.422 NA 1.180 -0.011 NA 

Note, # = number of. SDE not shown. XS refers to cross-sections. Cross-section locations shown in Figure 7a.  

Table 3. Georeferencing error (RMSE) of GCPs for the UAV and Ground Survey (m) 

 

 
 
 

 
    
 
 

Coordinate UAV Ground
X 0.007 0.011 
Y 0.009 0.006 
Z 0.025 0.018 

Total error 0.027 0.022 

Figure 5. Distribution of elevation error between RTK validation points and: (a) UAV DSM (before vertical 
shift); (b) UAV DSM (after vertical shift); and (c) Ground DSM. Red line indicates 0 m, dashed lines indicate ± 
0.1 m. 
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Figure 6. (a) Map showing the difference between the airborne LiDAR DEM and the UAV DSM across the 
hillslope site. (b) Difference between RTK validation points and points extracted from UAV DSM.  

 Comparison of the UAV dense point cloud to the RTK validation dataset reduced the elevation 
error at the hillslope scale by about 0.3 m (Table 4), suggesting some error may have also been 
introduced during point cloud rasterization. One explanation for this is that an individual point is 
more likely to represent the true ground surface than a point extracted from a rasterized cell, which 
may be affected by vegetation. Vegetation is estimated to cover ~ 80-90% of the survey area and 
includes irregularly distributed grass, shrubs and trees. Visual inspection of the spatial variability of 
error across the ortho-photo mosaics (Figure 6b) does not reveal any distinct patterns related to 
vegetation effects on error; high errors are observed in both bare and vegetated patches. It is possible 
the high degree of vegetation cover at the time of the survey may have introduced broad-scale error 
into the topographic model during image processing that could mask the vegetation effect at smaller 
scales. 

Table 4. Summary of the elevation errors in the comparison of RTK validation points and UAV and Ground 
dense point clouds  

Site 

# val. 
points 
(UAV)  

RMSE (m) MAE (m) ME (m) SDE (m) 

UAV Ground UAV Ground UAV Ground UAV Ground 

Gully 151 0.915 0.039 0.844 0.031 0.840 -0.020 0.364 0.034 
Hillslope 471 0.959 NA 0.870 NA 0.832 NA 0.476 NA 

 
At the individual gully scale (650 m2), the Ground DSM has a much lower elevation error (RMSE 

of 0.092 m; MAE of 0.052 m, Table 2) than the UAV DSM. Similar to the UAV DSM, comparison of 
the Ground dense point cloud with the RTK validation dataset reduced the elevation error to about 
0.04 m (Table 4), suggesting the dense point cloud better represents the complex 3D gully geometry 
than the DSM.   Ninety five percent of Ground validation points have an error of between -0.1 m and 
0.1 m (Figure 5c), with no discernible error pattern related to landscape position (Figure 7a). 
Examination of individual cross-sections across the gully site clearly show a vertical offset of around 
1.5 m between points extracted from the UAV DSM and the RTK validation points (Figure 7b,c). This 
offset is reduced to about 0.5 m after the vertical shift is applied. The amount of offset varies 
depending on position in the profile, being greater in the gully bed and smaller on the gully walls. 
Despite the vertical offset, the UAV DSM broadly follows the shape of the RTK cross-sectional profile. 
The Ground DSM cross-sectional profiles closely follow the shape of the RTK profiles and therefore 
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provide the best representation of gully shape. For each DSM, there was some variation in error 
metrics among cross-sectional profiles (e.g., RMSE values varied by up to 37%, Table 2), likely due to 
the small number of validation points in each cross section. Therefore, error estimates over the entire 
gully system can be regarded as more reliable than error estimates for individual cross-sections.  

 

 
 

 

 

4. Discussion 

Here we evaluate the strengths and limitations of UAV and Ground SfM in modelling hillslope 
gully systems in tropical savanna. The strengths, limitations and opportunities, together with a 
comparison of the time and resource requirements of each approach, are summarized in Table 5.  

4. 1 Strengths 

4.1.1 Resolution and accuracy 

Results from our study indicate UAV SfM can deliver topographic models with a resolution and 
accuracy suitable to define gully systems at a hillslope scale (e.g. 0.1 m resolution with ~ 0.5 – 1.3 m 
elevation error), while Ground SfM is more suitable for quantifying gully morphology at an 
individual gully scale (e.g. 0.01 m resolution with ~ 0.1 m elevation error). These results are in line 
with other studies that have used aerial platforms to capture images across large areas in complex 
terrain (RMSE values ranging from ~ 0.05 m to ~ 1 m [18,36,47,101-103]), and ground-based 
approaches to model gully systems (RMSE values ranging from 0.025 m to 0.155 m [40-
42,46,47,49,104,105]). While the overall elevation errors of the UAV topographic models were large 
relative to a pre-existing airborne LiDAR dataset and RTK validation points, cross-sectional analysis 
revealed a vertical offset which, when corrected, substantially reduced elevation error to levels 

Figure 7. (a) Map showing the difference in elevation between RTK validation points and points extracted 
from the Ground DSM. XS refers to cross-section locations. (b) Comparison of cross-sectional profile between 
different survey platforms at XS3; and (c) XS5. Note, the Ground DSMs are spatially constrained and do not 
represent the complete cross-sectional profile. 
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comparable to airborne LiDAR. The elevation errors of the Ground topographic models were 
substantially lower than those derived from UAV, and are similar to those reported by recent TLS 
surveys of gully systems in the region [errors of ~ 0.05 m, 15,106]. While further work is needed to 
ascertain survey repeatability and the ability to detect geomorphic change [15,50,80,106], our results 
suggest there is great potential for both UAV and Ground SfM to deliver high resolution topographic 
information in gullied savanna catchments.  

4.1.2 High resolution ortho-photo mosaics and 3D models 

High resolution ortho-photo mosaics and 3D models produced as part of the SfM workflow 
provide a wealth of additional information which can be used to improve understanding of hillslope 
processes and aid in gully erosion management. Visual interpretation of the 3D model of the gully 
site for example, allows detailed description of gully morphology and erosion features in a more 
systematic way than can be achieved in the field (Figure 3). Similarly, the ortho-photo mosaics 
provide valuable insights into landscape factors which may influence gully development (e.g., 
ground cover type and spatial arrangement, cattle trails, roads). Ortho-photo mosaics and 3D models 
also provide excellent resources to visually communicate the benefits of improved land management 
to a range of stakeholders. 

4.1.3 Low survey instrument costs and survey time 

A major strength of SfM is the low survey instrument costs. In our study, we utilised a 
lightweight UAV (< 2kg) and camera (total cost including accessories was ~ $AUD 2000) to capture 
aerial imagery at the hillslope scale, and a digital single-lens reflex camera (total cost including 
accessories was ~ $AUD 2500) to capture ground-based imagery at the individual gully scale. The 
SfM instrument costs are considerably lower than airborne LiDAR and TLS, both of which cost > 
$AUD 100,000 to purchase outright or, if data are provided by an external consultant, can cost 
between $AUD 1000 and 2000 per km2 [106]. The low SfM survey instrument costs mean they can be 
purchased outright and deployed rapidly. In Australia, lightweight drones (< 2 kg) can be used 
without a remote pilot license [107], representing a substantial cost saving of several thousand 
dollars. In our study, the UAV and Ground survey took approximately four and two hours of survey 
time, respectively, somewhat faster than survey times of equivalent LiDAR approaches [106]. 
Information generated from SfM survey therefore has the potential to enable cost-effective 
prioritization of gully erosion hotspots at a hillslope scale (via aerial surveys), and to be used as a tool 
in the design, monitoring and evaluation of gully remediation activities at individual gully scales (via 
ground-based survey). 

4.2 Limitations 

4.2.1 Vegetation 

Vegetation presents a significant challenge for the generation of accurate topographic models 
for use in environmental modelling [108]. Vegetation is particularly problematic for SfM in tropical 
savannas, which are characterised by a grassy understory of variable density and structure and a 
discontinuous layer of trees and shrubs. Vegetation obstructs the view of the ground, is prone to 
movement (key-point matching algorithms rely on a static scene), and has a complex structure that 
is difficult to reconstruct [13,101,102]. While visual inspection of the DSMs did not reveal any distinct 
patterns in errors between bare and vegetated patches, it is likely that the high ground cover at the 
time of survey reduced the accuracy of the topographic models as highlighted in other studies 
[18,26,101,103]. For example, Cook [101] found that in sparsely vegetated areas, the SfM point cloud 
closely matched the ground returns of LiDAR, but struggled to accurately represent ground surface 
in areas of denser grass, bush, and trees. Similarly, Javernick [26] reported much higher RMSE values 
for vegetated surfaces (0.78 m) compared to bare areas (0.17 m). We tested several methods of 
vegetation classification and removal (e.g., using PhotoScan’s ‘classification’ procedure [98,109]), 
resampling the point cloud at larger grid sizes where vegetation clusters are observed, and extracting 
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the minimum value within the wider area [26], and point cloud classification based on multi-scale 
dimensionality criteria [110]). None of these methods adequately classified vegetation across our 
study site. Vegetation filtering from the SfM datasets was not the focus of this study, but is an active 
area of research [e.g., 111,112,113]. If suitable vegetation filtering methods can be developed and 
easily applied to SfM datasets, it will greatly enhance the ability of SfM to accurately reconstruct 
ground topography in densely vegetated areas.   

4.2.2 Methodological uncertainty 

While implementation of the SfM workflow is relatively straightforward, accuracy of the final 
topographic models depends on the methodological approach used. General guidelines for SfM 
surveys have been described [e.g., 18], but there remains much uncertainty as to optimal survey and 
processing designs for different landscapes and geomorphological conditions and applications. SfM 
practitioners must therefore test and adapt their methodological approach to suit their particular 
landscape and survey goals prior to implementing broad-scale surveys. Here we highlight two key 
methodological considerations, namely: the number and distribution of GCPs and the method of 
image capture. 

 The number and distribution of GCPs has a strong influence on survey time and the quality of 
surface reconstruction [13,19,44,102,114]. In our UAV dataset, despite very low georeferencing error 
of GCPs, much greater elevation errors were observed in the final topographic model. It is likely that 
the number and distribution of GCPs was insufficient to properly parameterize the 3D model during 
bundle adjustment (explained in [18]). While a minimum of three GCPs are required to account for 
model rotation, translation, and scale during the implementation of bundle adjustment algorithms, 
research suggests that collection of more GCPs is better and these should adequately cover the area 
of interest [17,44,115,116]. Specific GCP requirements will, however, vary depending on site 
characteristics, quality of the image network used in surface reconstruction, and required accuracy 
of the final topographic model [19,44]. Given the effect of GCPs on surface reconstruction quality and 
the considerable field effort required to collect them, determining the optimal number and 
distribution of GCPs remains an important research priority. 

The method of image capture also has a strong bearing on survey and processing time and the 
quality of surface reconstruction. For example, during the Ground survey, we captured successive 
images approximately every meter along multiple path lines and viewing directions with slight 
angular changes (Figure 4c). While this approach required a large number of images and long 
processing times (~110 hours), it resulted in a model with few holes (with no data) and generally 
accurate surface reconstruction. Earlier attempts at image capture following a less systematic 
approach, significantly reduced the quality of surface reconstruction. During the UAV survey, 
images were captured at height of ~90 m above the ground, with a single nadir (vertical) viewing 
direction, and a single orthographic grid flight path. This flight strategy was selected as it provided 
a good compromise between the extent of the survey area covered, and survey time. Recent studies 
have reported a decrease in model accuracy with increasing survey distance [18,19] and also 
demonstrated that using vertical imagery alone can introduce systematic broad-scale error into 
topographic models, expressed as vertical ‘doming’ [44,115,117]. The addition of convergent (non-
nadir) imagery into aerial surveys has recently been shown to improve model accuracy [18,115]. 
Further testing to determine the optimum number, overlap, height and angle of image of acquisition 
would enable faster and more efficient survey and processing time and help to improve model 
accuracy. 

4.2.3 Computational demands 

The high number and resolution of images captured during SfM surveys means that data storage, 
processing and analysis is computationally demanding. For example, data from the UAV and 
Ground survey took approximately 31 hours and 110 hours respectively to process on a computer 
with 8GB graphics card, two CPU cores, and 128 GB RAM. Such computational demands may limit 
the scale at which SfM is currently applied and to practioners who have access to high performance 
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computers.  However, rapid advances in computing capability, for example through improvements 
to Graphics Processing Units and the implementation of parallel computing, are revolutionizing SfM 
workflows [19]. As high performance computers become more readily available, broader-scale 
implementation of both aerial and ground-based SfM approaches can be expected. 

Table 5: Comparison of time and resource requirements (numbers in bracket represent normalized values 
per ha), and strengths and limitations of UAV vs. Ground SfM and opportunities for further research.  

 UAV SfM Ground SfM 

Area (ha) 71.5 0.065 
Field data capture time  
[site surveying, image 
capture] (hours) 

4 (0.06) 2 (30.77) 

Processing CPU time  
[SfM, geo-referencing, MVS, 
3D model and ortho-photo 
mosaic generation] (hours) 

31 (0.043) 110 (1692.31) 

Post-processing person time  
[Data cleaning, DSM 
generation] (hours) 

4 (0.06) 4 (61.54) 

Approximate cost of 
hardware  
[UAV, Camera + Lens, 
Batteries] ($AUD) 

2,000 2,500 

Approximate cost of software  
 ($AUD) 

550 550 

Spatial resolution (m) 0.1 m 0.01 m 
Error (m) ~ 0.5 – 1.3 m ~ 0.1 m 
Application Cost-effective high resolution (0.1 m) 

gully and ground cover mapping at a 
hillslope scale (e.g., 1-100 ha). 

Cost-effective very high resolution (0.01 m) 
3D modelling of gully morphology at an 
individual gully scale (e.g., 0.01 – 0.2 ha). 

Strengths • Provides high resolution DSMs at a 
hillslope scale, with elevation error 
comparable to airborne LiDAR.   

• Provides high resolution ortho-photo 
mosaics which can be used to assess 
ground cover (e.g. ground cover 
spatial arrangement, cattle trails, 
roads) and is valuable for land 
management communication.  

• Instrument costs and survey time are 
low compared to airborne LiDAR. 

• Provides very high resolution DSMs at 
an individual gully scale, with elevation 
error comparable to TLS.  

• Provides very high resolution 3D models 
which can be used to assess gully 
morphology and describe key erosion 
features. 

• Instrument costs and survey time are 
low compared to TLS. 
 

Limitations • The complex structure, pattern and movement of vegetation in tropical savanna 
negatively affects model accuracy.  

• The accuracy of the final topographic models strongly depends on the 
methodological approach implemented. There remains much uncertainty as to 
optimal survey and processing designs for different landscapes and 
geomorphological applications.  

• The high number of images captured, mean that data storage, processing and 
analysis is computationally demanding. 

Opportunities Further research is needed to: 
• Determine SfM survey repeatability and it’s the ability to detect geomorphic change.  
• Develop effective and easily applied methods of vegetation filtering from SfM 

datasets.  
• Determine the optimal number and distribution of GCPs across the landscape. 
• Determine the optimum number, overlap, height and angle of image of acquisition.  

 

5.0 Conclusion 

Structure from Motion with Multi-View Stereo photogrammetry (SfM) is increasingly utilised as a 
cost-effective method of rapidly acquiring high resolution topographic data across a range of scales 
and in diverse landscapes and geomorphic settings, but has not been thoroughly tested in gullied 
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tropical savanna systems.  The aim of this study was to test the accuracy of topographic models 
derived from aerial (via an Unmanned Aerial Vehicle, ‘UAV’) and ground-based (via a handheld 
digital camera, ‘Ground’) SfM in modelling a hillslope gully system in grazed dry-tropical savanna, 
and to assess the strengths and limitations of the approach applied at different scales. Our results 
indicate UAV SfM can deliver topographic models with a resolution and accuracy suitable to define 
gully systems at a hillslope scale (e.g., 0.1 m resolution with ~ 0.5 – 1.3 m elevation error), while 
ground-based SfM is more capable of quantifying gully morphology (e.g., 0.01 m resolution with ~ 
0.1 m elevation error). High resolution 3D topographic models and ortho-photo mosaics, produced 
as part of the SfM workflow, allow detailed description of gully morphology and contributing area 
characteristics (e.g., ground cover type and spatial arrangement), providing valuable information for 
land management. Very low survey instrument costs (< $AUD 3,000) and rapid survey time (4 and 2 
hours for UAV and Ground survey respectively) mean that SfM is highly cost-effective, compared to 
equivalent Light Detection and Ranging (LiDAR) techniques. While SfM offers great potential, this 
study has also identified some important limitations of the methodology. For example, accurately 
reconstructing ground topography in densely vegetated areas, common across tropical savanna 
landscapes, remains a major challenge for SfM workflows, and requires the development of 
improved vegetation filtering methods. The accuracy of the final topographic models also depends 
on the methodological approach used, and there remains uncertainty as to optimal survey and 
processing designs. Further testing and refinement of different methodological approaches would 
help to improve model accuracy and reduce processing times, and would be of great value to non-
expert SfM practitioners. Finally, high computational demands for image processing may limit the 
spatial scale at which SfM is currently implemented, and the number of practioners who can apply 
it. However, as high performance computing becomes more readily available, broader-scale 
application of SfM can be expected. Overall, this study has demonstrated great potential for SfM to 
be used as a cost-effective tool to aid in the mapping, modelling, and management of complex 
hillslope gully systems at different scales, in tropical savanna landscapes and elsewhere. 
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Supplementary material: The following are available online at www.mdpi.com/link 

Table S1: PhotoScan processing parameters and times for UAV and Ground survey datasets. 

Table S1. PhotoScan processing parameters and times for UAV and Ground survey datasets 

*Values in brackets indicate estimated true processing time. As multiple gully systems were analysed 
simultaneously, processing times (reported by PhotoScan) for individual gully systems are significantly higher 
than what would be expected if gullies were processed individually.  
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 UAV Ground 
Structure from motion    
Number of cameras (images) 938 1747 
Number of aligned cameras 938 1702 
Alignment parameters   
   Accuracy High High 
   Pair preselection Generic Generic 
   Key point limit 40,000 40,000 
   Tie point limit 4,000 4,000 
   Constrain features by mask No No 
   Adaptive camera model fitting Yes Yes 
Sparse point cloud number of points  468,222 1,320,348 
RMS reprojection error 0.302 (0.997 pix) 0.106 (0.535 pix) 
Max reprojection error 1.251 (54.852 pix) 0.671 (27.301 pix) 
Matching time (hr) 2.08 7.0 
Alignment time (hr) 1.95 0.63 
Scaling, Georeferencing,  Optimization   
Number of Ground Control Points 7 10 
Camera accuracy (m) 10 10 
Camera accuracy (deg) 2 2 
Marker accuracy (m) 0.002 0.002 
Marker accuracy (pix) 0.1 0.1 
Tie point accuracy (pix) 1 1 
Optimization parameters f, b1, b2, cx, cy, k1-k4, 

p1, p2 
f, b1, b2, cx, cy, k1-k4, 

p1, p2 
Optimization time (hr) 0.05 0.11 
Multi-View Stereo   
Reconstruction parameters   
   Quality High High 
   Depth filtering Aggressive Aggressive 
Dense point cloud number of points 189,299,097 112,896,341 
Depth maps generation time (hr) 9.67 19.18 (3.2)* 
Dense cloud generation time (hr) 2.28 471.0 (78.5)* 
Textured 3D model, and Ortho-photo mosaic   
Mesh generation processing time 0.68 5.30 (2.65)* 
Texturing processing time 4.06 7.10 (3.55)* 
Ortho-photo mosaic generation processing time 10.0 28.0 (14)* 
Total processing time (hr) 31 110 
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