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Abstract: In this paper, an improved system to efficiently utilize the low-temperature waste heat 
(WHUS) from the flue gas of coal-fired power plants is proposed based on heat cascade. The essence 
of the proposed system is that the waste heat of exhausted flue gas is not only used to preheat air 
for assisting coal combustion as usual but also to heat up feedwater and the low-pressure steam 
extraction. Preheated by both the exhaust flue gas in the boiler island and the low-pressure steam 
extraction in the turbine island, thereby part of the flue gas heat in the air preheater can be saved 
and introduced to heat the feedwater and the high-temperature condensed water. Consequently, 
part of the high-pressure steam is saved for further expansion in the steam turbine, which obtains 
additional net power output. Based on the design data of a typical 1000 MW ultra-supercritical coal-
fired power plant in China, in-depth analysis of the energy-saving characteristics of the optimized 
WHUS and the conventional WHUS is conducted. When the optimized WHUS is adopted in a 
typical 1000 MW unit, net power output increases by 19.51 MW, exergy efficiency improves to 
45.46%, and net annual revenue reaches 4.741 million USD. In terms of the conventional WHUS, 
these aforementioned performance parameters are only 5.83 MW, 44.80% and 1.244 million USD, 
respectively. The research of this paper can provide a feasible energy-saving option for coal-fired 
power plants. 

Keywords: coal-fired power plants; waste heat utilization; thermodynamic analysis; exergy 
analysis; techno-economic analysis 

 

0. Introduction 

The power generation in China depends highly on coal-fired power plants, which contributes 
around 70% of the total installed power capacity (1.25 billion kW by the end of 2013) and 
approximately 78% of the total electricity generation (5.25 trillion kWh) [1,2]. More importantly, the 
generation capacity still increases with an annual increment of 30-50 million kW [1]. Therefore, coal-
fired power plants continue to dominate the power generation in China even for a long term [3,4]. 
However, since coal power generation is energy-intensive and with high pollutant emission [5-7], it 
has been a significant common sense, particularly with the increasing fuel price and strict energy-
saving environment protection policy, to further reduce the fuel consumption which could 
simultaneously reduce the pollutant emission for the same amount power generated [6]. 

Except for those traditional measures to improve the performance of the steam cycle design [8,9], 
e.g., employing more feedwater preheaters or reheaters [8,10-12] and applying optimal steam cycle 
design [8,13,14], another effective way, which has been a hot topic in recent years [15,16], is the in-
depth utilization of low-temperature waste heat from the exhausted flue gas. To achieve this goal, 
mostly low-temperature economizers (LTE) are configured after or parallel to the air preheater to 
recover the waste heat from the flue gas to heat up a part of the condensate water [17,18]. From the 
viewpoint of thermodynamics, this measure can directly suppress the utilization of steam extraction 
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for feedwater preheating, thus allows more steam to expand throughout the whole turbine and to 
generate more power. Consequently, the net efficiency of the whole plant can be improved.  

So far, the academic research on efficient utilization of flue-gas waste heat mainly concentrates 
on novel layouts of the recovery system and special heat exchanger meeting the demanding 
conditions of flue gas from coal combustion. For example, Espatolero et. al. [19] explored the effects 
of the temperature of exhausted flue gas and the heat-exchanger performance on waste heat recovery, 
and evaluated the energy-saving effect for the boiler cold-end. Chen et. al. [20] investigated several 
new technologies to exploit low-grade heat recovery from humid flue gas, taking the latent heat of 
water vapor condensation into account. Xu et. al. [21,22] proposed a novel waste heat recovery system 
by dividing the air preheater into high-temperature and low-temperature preheaters. An additional 
low-temperature economizer is placed between the electrostatic precipitator and the low-
temperature air preheater. This proposal achieves a net additional power output of 9 MW for a 1000 
MW coal-fired power plant. Wang et. al. [23] developed an advanced waste heat and water recovery 
technology by nanoporous ceramic membrane to extract a portion of the water vapor and its latent 
heat from flue gases.  

For the industrial applications of flue-gas waste heat recovery, several projects have been 
launched or are currently ongoing. For example, the German Schwarze Pumpe power plant (2×800 
MW lignite generation unit) implemented a flue gas division system after the electrostatic 
precipitator and recovered low-grade heat to heat up the condensed feedwater. Significant energy-
saving effect has been reported [24,25]. In China, several 1000 MW scale coal-fired power plants, such 
as the most efficient coal-fired power plant in the world (Waigaoqiao 3rd power plant in Shanghai) 
[26], have adopted the waste heat utilization system (WHUS) to heat up the condensed water. The 
employed low-temperature economizer promotes the boiler efficiency by 2 percentage points and the 
net plant efficiency by 0.8 to 0.9 percentage point [27-29]. 

There have been two major issues to be addressed for low-grade heat recovery from flue gas: 1). 
Most of the proposed concepts depend on a low-temperature economizer, which mostly work near 
or even below the acid dew point and thus suffers from severe material corrosion. 2) The temperature 
of exhaust flue gas has been rather low and the small temperature difference of heat transfer leads to 
large heat exchanger area and investment cost. Thus, in-depth research of the waste heat utilization 
is of great importance to find the best trade-off design between the efficiency improvement and the 
capital investment. 

With the above context and following our previous research on low-grade waste heat for power 
plant, we propose originally a novel waste heat recovery system and improve the origin system based 
on the comprehensive understanding of the performance relevance between air preheating process 
in the boiler island and feedwater preheating process in the turbine island. Cascade utilization of heat 
is realized between different working fluids (flue gas, steam extraction, air, etc.). The paper is 
organized as follows: In section 2, the basic concept of waste heat recovery and its evaluation criteria 
are introduced. Then, in section 3, the conventional heat recovery system is analyzed to highlight the 
existing bottleneck for in-depth utilization of potential waste heat. Subsequently, in section 4, we 
propose an improved WHUS system and evaluate the system by both thermodynamic and economic 
criteria. Finally, the conclusions are drawn (section 5). 

1. Waste heat recovery and the evaluation criteria 

The basic concept of recovering waste heat from exhausted flue gas to heat up the low-
temperature feedwater is illustrated in Figure 1. With the recovered heat, the requirement of steam 
extraction for heating up feedwater preheater is reduced, thus more steam can expand fully to the 
condensate pressure for additional power generation. 
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Figure 1. Simplified schematic diagram of the WHUS. 

 

1.1 Thermodynamics of Waste heat recovery 

The amount of heat recovered from the exhausted flue gas is calculated as follows: ܳଵሶ = ݉௚(ℎ௚,௜௡ − ℎ௚,௢௨௧） (1)
where ݉௚ is the flow rate of the flue gas (kg/s); ℎ௚,௜௡ and ℎ௚,௢௨௧ refer to the input and output flue 
gas enthalpy, respectively (kJ/kg). Note that the enthalpy change in Eq. 1 has already taken the latent 
heat during water condensation into account. 

The energy balance of a feedwater preheater can be expressed by Eq. 2, if no external heat is 
introduced to the feedwater preheater considered: 

, , , , s s , , , ,( )w out w out w in w in d in d in d out d outm h m h m h m h m h− = + − (2)
If certain heat recovered is utilized in the feedwater preheater, the heat balance in Eq. 2 then becomes 
below: 

, , , , s s , , 1 , ,( )w out w out w in w in d in d in d out d outm h m h m h m h Q m h′ ′ ′ ′ ′ ′ ′ ′ ′ ′− = + + − (3)
where ݉, ℎ, and ܳଵሶ  are the mass, enthalpy, and the heat recovered from the flue gas, respectively.  

We assume that the power plant considered operates at steady states with or without the heat 
recovery system and we consider only the system design but no partial-load operation. Thus, the 
following equations are established: ݉௪,௢௨௧ = ݉௪,௢௨௧ᇱ , 	ℎ௪,௢௨௧ = ℎ௪,௢௨௧ᇱ , ݉ௗ,௜௡ = ݉ௗ,௜௡ᇱ , ℎௗ,௜௡ = ℎௗ,௜௡ᇱ , ℎ௦ = ℎ௦ᇱ , ݉௪,௢௨௧ᇱ = ݉௪,௜௡ᇱ + ݉௦ᇱ , ݉௪,௢௨௧ = ݉௪,௜௡ + ݉௦ , ݉ௗ,௢௨௧ᇱ = ݉ௗ,௜௡ᇱ + ݉௦ᇱ , and ݉ௗ,௢௨௧ = ݉ௗ,௜௡ + ݉௦ . 
Thus, the amount of steam extraction suppressed by introducing waste heat for the feedwater 
preheater, ∆݉, can be formulated as below [30]: 

s sm m m′Δ = − (4)

1.2 Additional work 

The additional work generated by the expansion of the extra stream can be calculated as: 

0( )
3600

sm h h
P

Δ ⋅ −Δ = (5)

where ℎ௦ and ℎ଴ stand for the enthalpy of the steam extraction considered and the exhaust steam, 
respectively (kJ/kg). 

Taking the change of power consumption of the auxiliary devices, ∆ ௙ܲ, into account, the net 
additional power output of the whole power plant can be expressed as follows: 
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net fP P PΔ = Δ − Δ (6)
The increment of auxiliary power consumption is mainly due to the induced draft fans 

configured in the boiler rear flue gas duct to compensate the pressure loss of flue gas when flowing 
through the additional heat exchangers for heat recovery. The increase in the fan power can be 
calculated as follows: 

1000
r

f
f

D P
P

η
⋅ ΔΔ = (7)

where ∆ ௥ܲ  is the increase in the pressure drop of exhausted flue gas (kPa), ߟ௙  is the isentropic 
efficiency of the induced draft fan (ߟ௙= 0.85) [31, 32] and D is the volumetric flow rate of the flue gas 
(m3/s).  

1.3 Heat rate reduction 

The power industry usually uses the heat rate as a common indicator to evaluate the 
performance of a power generation unit. The heat rate ݍ represents the amount of fuel energy input 
per 1 kWh net electricity output. Given the net additional power generation ∆ ௡ܲ௘௧, the reduction in 
the plant heat rate is thus represented by Eq. 8 [33]: 

 

1 13600 total
net net net

q E
P P P

 
Δ = − + Δ 

(8)

where the ܧ௧௢௧௔௟ refers to the total input energy (MW), while the ௡ܲ௘௧ is the net electricity output 
(MW). 

2. Description of conventional waste heat utilization system  

2.1. Reference coal-fired power generation unit 

In the presented paper, we select a typical 1000 MW ultra-supercritical power generation unit in 
China as a case study to quantify the benefit from the waste heat recovery from flue gas. The net 
power output reaches 942 MW. At full load, the plant operates with the pressure of main steam of 
26.25 MPa, the temperature of main and reheated steam at 600 °C. The plant is designed for a 
bituminous coal with the element analysis of 56.26% carbon, 3.79% hydrogen, 12.11% oxygen, 0.82% 
nitrogen, 0.17% sulfur and 18.1% water. The layout of the power plant has been given in Figure 2 and 
the stream data of all regenerative heaters (RHs), when the heat recovery system is not considered, is 
listed in Table 2 for the operating condition THA (THA refers to the turbine heat rate acceptance 
condition and it is a design condition without water supply.). 

 
Figure 2. Schematic of the considered coal-fired power plant with a conventional heat recovery system. 
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Table 1. Major stream data relevant to all feedwater prehaters under the THA condition. 

Item Unit RH1 RH2 RH3 DEA RH5 RH6 RH7 RH8 
Temperature of steam extraction °C 393.0 351.2 482.6 380.5 288.6 192.1 86.1 63.6 

Pressure of steam extraction MPa 7.26 5.39 2.29 1.11 0.56 0.23 0.06 0.02 

Temperature of outgoing feedwater  °C 290.0 268.7 219.4 183.8 153.3 122.1 83.3 60.8 

Pressure of outgoing feedwater  MPa 32.70 32.80 32.90 1.09 1.29 1.34 1.39 1.44 

Temperature of incoming feedwater  °C 268.7 219.4 189.9 153.3 122.1 83.3 60.8 36.2 

Pressure of the incoming feedwater MPa 32.80 32.90 33.00 1.29 1.34 1.39 1.44 1.53 

Temperature of the drainage °C 274.3 225.0 195.5 — 127.6 124.6 86.1 63.6 
 

2.2. Conventional waste heat recovery system 

In the coal-fired power generation unit, a large amount of steam with different parameters needs 
to be extracted to heat the feedwater and the condensed water, that is, the regenerative process. In 
this process, the temperatures of the feedwater and the condensed water will be increased, which is 
beneficial to improve the thermodynamic cycle efficiency. However, the working ability of the steam, 
which is extracted from the turbine to heat the feedwater and the condensed water, will be destructed 
since it can no longer continue to expand in the steam turbine. In the conventional WHUS, the exhaust 
energy of the flue gas is utilized to heat the condensed water, part of the steam extraction is thus 
saved and can be continue to expand for more power output. As a result, it will raise the gross power 
output and improve the thermal conversion efficiency. 

Figure 2 depicts the configuration of the conventional WHUS. The LTE is arranged in the 
downstream of the air preheater in flue gas duct, which is parallel to the RH6. Part of the condensed 
water at the inlet of the RH6 will enter the LTE and return to the regenerative system after absorbing 
the flue gas waste heat. Afterward, the condensed water will converge with the main condensed 
water at the outlet of the RH6. In this way, the 6th-stage steam extraction can be partly saved. 

Table 2 presents the thermodynamic analysis results of the conventional WHUS. The inlet flue 
gas temperature of the LTE is equal to that of the exhaust flue gas from the air preheater, which is 
131 °C. Meanwhile, due to the relatively low sulfur content of the coal (approximately 0.17%), as well 
as the acid steam wraparound effect brought by the flying ash, the outlet flue gas temperature of  the 
LTE can be reduced to 100°C without serious corrosion problem.. According to the relevant 
thermodynamics theories, the smaller the temperature difference between the working mediums, the 
smaller heat transfer exergy destruction. In this case, higher condensed water temperature is 
preferred, given the fixed flue gas temperature range. In related heat transfer and techno-economic 
theories, however, a small heat transfer temperature difference increases the heat transfer area and 
the volume of the heat exchange device. As a result, investment in the heat exchanger is heightened. 
To balance the thermodynamic performance and equipment investment in the conventional WHUS, 
LTE adopts the counter-current arrangement and is connected in parallel to RH6. By this 
arrangement, on the one hand, provided that the engineering constraint is allowed, the condensed 
water temperature is enhanced as high as possible. As seen in Table 2, considering the flue gas 
temperature of the LTE is only 131–100 °C, which can only be used to heat the condensed water of 
RH6 at most (83.3–122.1 °C). On the other hand, the outlet condensed water temperature of LTE is 
set to 116 °C, slightly lower than 122.1 °C, which ensures the minimum heat transfer temperature 
difference of the LTE is maintained over 15 °C [17]. Overall, the total investment of the conventional 
WHUS could be maintained at a relatively acceptable level. Meanwhile, the net power output is 
increased by 5.83MW, whereas the heat rate of the generation unit is reduced by 42.56 kJ /kWh.  

In the LTE, the energy donor is the exhaust flue gas and the energy acceptor is the condensed 
water of the regenerative system. Therefore, WHUS performance is affected not only by the 
characteristic of the flue gas, but also by the parameters of the steam cycle. Specifically, power output 
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and economic benefits are not only affected by the quantities of heat released by the flue gas, but also 
by the parameters of saved steam extraction. In the conventional WHUS, the LTE is installed in the 
outlet of the air preheater, the inlet flue gas temperature of the LTE is only 131 °C, which can replace 
the 6th-stage steam extraction at most, as shown in Figure 3. The 6th-stage steam extraction is 
characterized by a relatively low working ability since its pressure is only 0.23 MPa, which is the 
limited factor for improving the energy-saving effects of recycling the flue gas waste heat. 

Table 2. The thermodynamic analysis results of the conventional WHUS. 

Item Unit Conventional WHUS 
Inlet flue gas temperature °C 131 

Outlet flue gas temperature °C 100 
Inlet condensed water temperature °C 83.3 

Outlet condensed water temperature °C 116 
Additional auxiliary power consumption  MW 1.25 

Gross work output MW 1007.15 
Additional gross work output MW 7.15 

Net work output MW 947.83 
Additional net work output MW 5.83 

Reduction of heat rate  kJ /kWh 42.56 

 

 

Figure 3. The heat transfer curve of the conventional WHUS. 

3. Proposal and performance analysis of the optimized WHUS 

3.1 Description of the optimized WHUS 

According to the analysis above, to further improve the energy conservation effects of the 
WHUS, it is essential to enhance the flue gas temperature that entering the LTE. Meanwhile, noting 
that the logarithmic mean temperature difference of the air preheating process is relatively large (over 
60 °C). Thus, to utilize the energy rationally, an optimized WHUS is proposed in this section. 

Figure 4 illustrates the optimized WHUS. This system adds a bypass flue gas duct which is 
paralleled with the main air preheater. In the bypass flue gas duct, two gas-water heat exchangers 
are successively installed, approximately one third of the outlet flue gas of the economizer enters the 
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high-temperature gas-water heat exchanger and the low-temperature gas-water heat exchanger of 
the bypass flue gas duct in sequence, to heat the feedwater (189.9-290 °C) and the condensed water 
(83.3-153.3 °C), respectively. Since the heat of the flue gas entering the main air preheater reduces in 
the optimized WHUS, two additional heat exchangers are added to maintain the inlet air temperature 
of the furnace. Among them, the first-stage heat exchanger utilizes the low-pressure steam extraction 
to heat the air, while the second one applies the waste flue gas (131-100 °C) to heat the air. The 
parameters of main heat exchange equipment are shown in Table 3. 

 
Figure 4. Schematic of the thermal system of a power plant with the optimized WHUS. 

Table 3. Main heat exchange equipment parameters. 

Item Unit 
High-temperature 

Gas-water Heat 
Exchanger 

Low-temperature
Gas-water Heat 

Exchanger 

First-stage Heat 
Exchanger 

Second-stage 
Heat Exchanger 

Inlet flue gas  °C 372 204.8 — 131 

Outlet flue gas  °C 204.8 131 — 100 

Inlet water/steam °C 189.8 83.3 86.1(1*) — 

Outlet water/steam °C 290 153.3 86.1(0*) — 

Inlet air °C — — 25 60 

Outlet air °C — — 60 100 
Logarithmic mean 

temperature 
difference 

°C 39.44 49.58 41.15 35.54 

*Note: figures in the bracket indicate the dryness 
 
Figure 5 presents the heat transfer curve of the optimized WHUS. As indicated both in this figure 

and in Table 3, the optimized WHUS fully realizes the energy grade match among the exhaust flue 
gas, air and the condensed water. By adopting two additional heat exchangers, the 7th-stage steam 
extraction and low-temperature flue gas are utilized to heat the air before it enters the main air 
preheater, which guarantee the logarithmic mean temperature difference of the air preheating 
process can be controlled within 36 °C. Subsequently, approximately one third of the flue gas with 
the temperature of 372-131 °C is saved and introduced into the bypass flue gas duct to heat the 
feedwater and the condensed water. Part of 1-3th, 5th and 6th-stage steam extractions could be saved 
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and continued to expand for more power output in the steam turbine. Evidently, the energy saving 
effects of the optimized WHUS is improved remarkably. 

 
Figure 5. The heat transfer curve of the optimized WHUS. 

3.2 Thermodynamic performance results 

The thermodynamic analysis comparison between the conventional WHUS (as shown in Figure 
2) and the optimized WHUS (as presented in Figure 4) is conducted in Table 4. The gross work output 
of the optimized WHUS increases by 22.01 MW. This increase is mainly attributed to that the 
temperature of the flue gas used to heat the feedwater and the condensed water reaches 372-131 °C 
in the optimized WHUS, which is much higher than that of the conventional WHUS (131-100 °C). 
The high-grade steam extraction can thus be replaced. As a result, gross work output improves 
significantly. 

However, since several additional heat exchangers are adopted in the optimized WHUS, some 
pumps and fans are required to overcome the resistance of the water, air and flue gas. As indicated 
in Table 4, the auxiliary power in the optimized WHUS increases by 2.28 MW. Overall, the increment 
in net work output is 19.51 MW in the optimized WHUS, and the reduction in heat consumption rate 
is 143.35 kJ/kWh; whereas for the conventional WHUS, the aforementioned performance parameters 
are only 5.83 MW and 42.56 kJ/kWh, respectively. Thus, the thermal efficiency of the optimized 
WHUS is significantly improved. 
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Table 4. The thermodynamic results of conventional WHUS and optimized WHUS. 

Item Unit 
Conventional 

WHUS 
Optimized 

WHUS 
High-temperature gas-water heat 

exchanger 
MW — 46.13 

Low-temperature gas-water heat 
exchanger 

MW — 19.59 

Second-stage heat exchanger MW — 34.87 

First-stage heat exchanger MW — 30.85 

Low-temperature economizer MW 34.87 — 

Auxiliary power increment MW 1.25 2.28 

Gross work output MW 1007.15 1022.01 

Additional gross work output MW 7.15 22.01 

Net work output MW 947.83 961.51 

Additional net power output MW 5.83 19.51 

Reduction in heat rate kJ /kWh 42.56 143.35 

 

3.3 Variation in the steam extraction and work output 

Figure 6 shows the effects of waste heat utilization on the steam extraction and the work output 
of different systems. The column chart with slash line represents the variation in the multistage steam 
extractions of the regenerative heaters. When the steam extraction is reduced, the column is located 
above the x axis; conversely, the column is located below the x axis if steam extraction is increased. 
The column chart with shadow denotes the variation in work, if there is an increment in work, the 
column is located above the x axis, and vice versa. The following conclusions can be drawn from 
Figure 6: 
1. In the conventional WHUS, by adopting the LTE, the flue gas with the temperature of 131-100 

°C is utilized to heat the condensed water from the inlet of the RH6, as a consequence of which, 
the 6th-stage steam extraction is saved by 14.06 kg/s and the power output is increased by 7.37 
MW. Meanwhile, it has to be noted that the 7th and 8th-stage steam extractions show a slight 
increase, this can be mainly attributed to the fact that the reduction in the 6th-stage steam 
extraction limits the drainage water flowing into RH7 and RH8 accordingly. However, 
considering the variation in the 7th and 8th-stage steam extractions is relatively small, the 
resultant power output variation can almost be neglected. In summary, the total steam extraction 
of the conventional WHUS decreases by 13.12 kg/s whereas the power output increases by 7.15 
MW. 

2. In the optimized WHUS, there are obvious changes in the 1-3th, 5th and 6th-stage steam 
extractions. The reason is that the gas-water heat exchangers arranged in the bypass flue gas 
duct utilize part of the flue gas with the temperature of 372-131°C to heat the feedwater of RH1–
RH3 and the condensed water of RH5-RH6. As a result, the steam extractions of these 
regenerative heaters reduce considerably. The 7th-stage steam extraction is increased by 13.72 
kg/s, which is utilized to preheat the air in the first-stage heat exchanger. Besides, the steam 
extraction of DEA is increased whereas the 8th-stage steam extraction is reduced, this is because 
the drainage water flowing into DEA and RH8 is affected by the steam extraction of prior stage 
regenerative heater, which will further affect the steam extraction of DEA and RH8. Overall, in 
the optimized WHUS, the total reduction of steam extraction is 11.87 kg/s whereas the power 
output increases by 22.01 MW. 
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(a) 

 
(b) 

Figure 6. Effects of waste heat utilization on the steam turbine regenerative heaters. (a) Description of 
what is contained in the Conventional WHUS; (b) Description of what is contained in the Optimized 
WHUS. 

3. In the heat regenerative system, there is a huge working ability difference between the steam 
extractions from different stages of regenerative heaters. For instance, the working abilities of 
the 1-3th, 5th and 6th-stage steam extractions are obviously higher than that of the 7th-stage 
steam extraction. As can be seen from Figure 6, by saving 1 kg steam extraction of RH1, RH2 and 
RH3, the corresponding additional power outputs are 1.21MW, 1.15MW, and 0.94MW, 
respectively. Whereas saving 1 kg 6th-stage steam extraction can only improve the power output 
by 0.45 MW, as for RH7, the power output is only decreased by 0.25 MW if the steam extraction 
consumption is increased by 1 kg.  

4. The overall reductions in the steam extractions of the conventional WHUS and optimized WHUS 
varied slightly (13.12 kg/s vs. 11.87 kg/s). And the exhaust flue gas temperature of these two 
systems is equally set to 100 °C, which means the same amount of waste heat is recovered. 
Nevertheless, in the conventional WHUS, the flue gas waste heat is used to save the 6th-stage 
steam extraction, and the results show that its gross work output increment is 7.15 MW. 
However, the 1-3th, 5th and 6th-stage steam extractions are significantly reduced in the 
optimized WHUS despite the increase in the 7th-stage steam extraction. Finally, the gross work 
output increment reaches 22.01 MW, which is approximately three times as that of the 
conventional WHUS. In conclusion, with the reasonable utilization of the low-grade energy from 
both the boiler island and the turbine island, more high-grade steam extraction is saved in the 
optimized WHUS, better thermodynamic and waste heat recycling performances can be 
obtained, given that the same amount of waste heat is recovered in two systems. 

4. Exergy analysis 

To reveal the internal phenomena of the optimized WHUS [18-21], an exergy analysis is 
performed in this section for both the optimized WHUS and the conventional WHUS. The results are 
listed in Table 5. 

As shown in Table 5, the exergy efficiency of the optimized WHUS is 45.46%, which is 0.66% 
higher than that of the conventional WHUS. Comparing the exergy distribution of the optimized 
WHUS with the conventional WHUS, it can be found that, the exergy destruction of the optimized 
WHUS is reduced by 10.9MW in the boiler island and 3.96MW in the turbine island. Hence, the 
reduced exergy destruction of the optimized WHUS is mainly attributed to the boiler island. 

To be specific, the exergy destruction in the boiler island is significantly affected by the air 
preheating process. This influence is ascribed to the fact that the optimized WHUS utilizes low-
pressure steam extraction and low-temperature flue gas to heat the air in sequence. Therefore, the 
heat transfer temperature difference decreases significantly in the air preheating process. As a result, 
the heat transfer exergy destruction decreases by 14.43 MW. However, by adopting the bypass flue 
gas duct, the exergy destruction in the boiler island increases by 4.39 MW. By taking the exergy 
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destruction of other parts in the boiler island into account, the exergy destruction in the boiler island 
of the optimized WHUS is reduced by 10.9 MW compared to that of the conventional WHUS. 

As for the turbine island, the variation in exergy destruction mainly takes place in the 
regenerative process. The reason accounting for this is that: in the optimized WHUS, more feedwater 
and condensed water is heated via the gas-water heat exchangers adopted in the bypass flue gas duct 
in the boiler island, thereby the water volume flowing through the regenerative system is reduced 
significantly, and the exergy destruction is reduced by 3.97 MW accordingly. Besides, with 
consideration of the exergy destruction in other parts such as condenser and pipeline etc, the total 
exergy destruction in the turbine island of the optimized WHUS is reduced by 3.96 MW, compared 
to that of the conventional WHUS. 

From the analysis above, it is obvious that the optimized WHUS utilizes the low temperature 
energy in both the boiler island and the turbine island reasonably, thereby realizes the energy grade 
improvement of the waste heat utilization process. Essentially speaking, the exhaust flue gas 
temperature of the optimized WHUS keeps the same with that of the conventional WHUS, but the 
exergy destruction of the air preheating is significantly reduced. Finally, the exergy efficiency of the 
optimized WHUS is improved by 0.66%, which seems very small numerically, noting that the 
denominator of efficiency calculation is extremely large (2248.06MW), thereby the resultant energy-
saving effects are actually rather considerable. As presented in Table 4, given the same fuel input, the 
additional power output of the optimized WHUS is 19.51 MW, reaching over 3 times as the 
conventional WHUS (5.83MW), reflecting the remarkable energy-saving benefits of the optimized 
WHUS. 

Table 5. Exergy analysis of conventional WHUS and optimized WHUS. 

Items Conventional WHUS Optimized WHUS 

Unit MW % MW % 
Exergy input   

Fuel input 2248.06 100.00% 2248.06 100.00% 
Exergy output   

Gross power output 1007.15 44.80% 1022.01 45.46% 
Exergy destruction   

exhaust flue gas 156.48 6.96% 156.48 6.96% 
Boiler island   

Air preheater 26.80 1.19% 5.86 0.26% 
Bypass flue gas duct — — 4.39 0.20% 

Low-temperature economizer 0.86 0.04% — — 
Second-stage heat exchanger — — 3.05 0.14% 

First-stage heat exchanger — — 3.46 0.15% 
Other equipment 915.92 40.74% 915.92 40.74% 

Total exergy destruction in the boiler island 943.58 41.97% 932.68 41.49% 
Turbine island   

Cylinder stator 66.35 2.95% 66.83 2.97% 

Condenser 36.38 1.62% 36.37 1.62% 
Regenerative system 26.09 1.16% 22.12 0.98% 

Other equipment 12.03 0.54% 11.57 0.52% 
Total exergy destruction in the turbine island 140.85 6.27% 136.89 6.09% 

Exergy efficiency（%） 44.80% 45.46% 
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5. Techno-economic analysis 

To further evaluate the energy-saving benefits of the optimized WHUS in actual engineering 
application, the techno-economic analysis is conducted in the section, the following assumptions are 
adopted during the analysis: (1)the on-grid power tariff is set at 0.061 USD/kWh; (2) the annual 
operation hours of the power generation unit is 5000 hours [22]. Here, the annual operation hours 
stand for the equivalent operation hours of the power generation unit under the rated capacity. 
Hence, for the power unit that operates below the rated capacity constantly, its annual operation 
hours are relatively low in spite of the high actual operation hours. Considering that nowadays it is 
very common for the large-scale coal-fired power units in China to participate in peak load 
regulation, which means that they are operated below the rated capacity in a long term, thus the 
annual operation hours of the coal-fired power units in China are comparatively low; (3) the 
operation and maintenance (O&M) cost accounts for 4% of the total investment annually [23, 24]; and 
(4) the exchange rate is set to 6.25 CNY/USD. 

5.1 Estimation of the total investment cost 

Based on the scaling up method [5, 25, 26], the investment of the new added equipment and the 
related pump are estimated by the following equation: 

 
,( ) ( )= × × ×fa

install b
b

Size
TIC GDP CE I K

Size
(9)

where TIC is the total investment cost of system optimization; IInstall,b is the investment cost for the 
benchmark equipment; Sizea and Sizeb are the size parameters of the equipment and the benchmark 
equipment, respectively; f is the size factor; GDP is the variation factor; CE is the price index factor 
for the chemical equipment; K is the region factor. The detailed reference data are listed in Table 6 

Table 6. Reference data for component in the two systems. 

Component Scaling parameter IInstall,b(MS) Sizeb fe GDPd CEd Kd notes 

Air preheater Area 3.82  3.395╳105 m2 0.67 1 1 1 a 

Heater Area 0.693 1.315╳102 m2 0.67 1 1 1 b 

Pump Outlet pressure 0.093 80 bar 0.67 1 1 1 c 
a: Cost is estimated using data from China Electric Power Planning and Design Institute [27]. b: Cost is taken 
from a feasibility study of flue gas waste heat recovery project in China 2009 [28]. c: Cost is quoted from Moaseri 
[29]. d: The parameters are based on [15].e: The parameters are based on [26, 30]. 

The specific investment costs for added equipment of the optimized WHUS are listed in Table 
7, the costs for pipeline and engineering installation are estimated to be 5% and 17% of the total 
equipment investment cost [31], respectively. For the conventional WHUS, introducing the LTE adds 
2.993 million USD to the original total investment, with consideration of other investments such as 
pumps, pipeline, construction and installation, its TIC is 3.765 million USD. While for the optimized 
WHUS, as the logarithmic heat transfer temperature difference of the air preheater decreases because 
of the increasing inlet air temperature, its heat transfer area and investment cost will be increased, 
thus extra 0.632 million USD is required for the air preheater, as shown in Table 7. Moreover, 
adopting the gas-water heat exchangers and two-stage heat exchangers introduces 1.911 million USD 
and 4.175 million USD, respectively. Taking other relevant investments into account, the TIC of the 
optimized WHUS reaches 8.536 million USD. 
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Table 7. The investment cost of the added equipment. 

Item Unit Conventional WHUS Optimized WHUS 

Air preheater million USD — 0.632 
High-temperature gas-
water heat exchanger 

million USD — 1.227 

Low-temperature gas-
water heat exchanger 

million USD — 0.684 

Second-stage heat 
exchanger 

million USD — 3.416 

First-stage heat 
exchanger 

million USD — 0.759 

Low-temperature 
economizer 

million USD 2.993 — 

Pumps million USD 0.093 0.279 

Pipeline million USD 0.154 0.35 
Engineering cost of 

installation 
million USD 0.525 1.189 

Total investment cost million USD 3.765 8.536 

 

5.2 Economic performance index 

Based on the investment estimation results, this section analyzes the feasibility of the optimized 
WHUS from the perspective of economic benefits. The net annual revenue (NAR) is calculated based 
on the dynamic analysis, the construction investment and the operation cost estimation. The specific 
formula is as follows： 

 TIC O&MNAR EAI C C= − − (10)
where EAI is the additional income per year generated by the system optimization, which is 
calculated as: 

net eq eEAI P h C= Δ (11)
where heq is the equivalent operation hours per year and ܥ௘is the on-grid power tariff.  
In addition, the annualized investment capital cost (்ܥூ஼) can be calculated as follows [32, 33]: 

 

(1 )
(1 ) 1

n

TIC n

i i
C TIC

i

+=
+ −

(12)

where i refers to the fraction interest rate per year, which is set at 8%; and n represents the system 
lifespan, which is presumably 20 years. 
Table 8 provides the techno-economic analysis results. The EAI of the optimized WHUS is almost 
5.951 million USD, which is more than three times of the conventional WHUS. The CTIC and CO&M of 
the optimized WHUS are larger than that of the conventional WHUS, reaching 0.869 million USD 
and 0.341 million USD, respectively. Nevertheless, the net additional power output in the optimized 
WHUS is much higher than that in the conventional WHUS and it will affect the NAR majorly. 
Consequently, the NAR of the optimized WHUS reaches 4.741 million USD per year, which presents 
its excellent economic performance. 

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 July 2017                   doi:10.20944/preprints201707.0029.v1

Peer-reviewed version available at Entropy 2017, 19, 423; doi:10.3390/e19080423

http://dx.doi.org/10.20944/preprints201707.0029.v1
http://dx.doi.org/10.3390/e19080423


 14 of 17 

 

Table 8. Techno-economic analysis results. 

Item Unit 
Conventional 

WHUS 
Optimized WHUS 

Net additional power output MW 5.83 19.51 

Extra annual income(EAI) million USD 1.778 5.951 

Annualized investment capital 
cost(CTIC) 

million USD 0.383 0.869 

Operation & maintenance cost(CO&M) million USD 0.151 0.341 

Net annual revenue(NAR) million USD 1.244 4.741 

 

6. Conclusion 

In this study, an optimized low-temperature flue gas waste heat utilization system is proposed 
based on the energy cascade utilization principles. In-depth analyzes on the thermodynamic and 
techno-economic characteristics of the optimized WHUS are conducted. The following conclusions 
can be drawn: 
1. In the conventional WHUS, in order to recycle the flue gas waste heat, LTE is adopted and 

arranged in the downstream of the air preheater in the flue gas duct. Since the inlet flue gas 
temperature of the LTE is 131 °C, which can replace part of the 6th-stage steam extraction. 
Combined with the engineering constraints, the heat rate of the power generation unit is only 
reduced by 42.56 kJ/(kW·h) . Furthermore, the energy-saving effects are limited. 

2. In the optimized WHUS, the low-temperature heat from both the boiler island and the turbine 
island is utilized reasonably to preheat the air. In this way, not only the inlet air temperature of 
the air preheater is increased, also the saved high temperature flue gas (372-131 °C) can be 
introduced to the bypass flue gas duct to heat the feedwater and the condensed water, as a 
consequence of which, part of the high-pressure steam extraction is saved, leading to the net 
work output of the optimized WHUS is increased by 19.51 MW, while the heat rate is reduced 
by 143.35 kJ/(kW·h). The energy-saving effects of the optimized WHUS are remarkable. 

3. In the conventional WHUS, the 6th-stage steam extraction is saved, while in the optimized 
WHUS, the 1–3th, 5th and 6th-stage steam extractions are saved. In general, the working ability 
of the high pressure steam extraction is much larger than that of the low pressure steam 
extraction. Therefore, the resultant energy-saving effects differ distinctly although the total 
amounts of steam saved by both systems are almost similar. 

4. For the conventional WHUS, the logarithmic mean temperature difference in the air preheating 
process reaches 60 °C. However, in the optimized WHUS, the logarithmic mean temperature 
difference is less than 36 °C because the air is successively heated by low-pressure steam 
extraction and low-temperature flue gas. In this case, the exergy destruction of the air preheating 
process is reduced by 14.43 MW, which becomes the main reason for decreasing the total exergy 
destruction of the optimized WHUS. Ultimately, the exergy efficiency of the optimized WHUS 
improves to 45.46%. 

5. Techno-economic analysis results show that the total investment of the optimized WHUS is 8.536 
million USD, which is doubled compared to that of the conventional WHUS. Nevertheless, the 
net additional power output in the optimized WHUS is 19.51 MW, which is over three times of 
the conventional WHUS. Consequently, the net annual revenue of the optimized WHUS can 
reach 4.741 million USD per year, which is approximately four times as large as the conventional 
WHUS. 
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