QUASIRECOGNITION BY PRIME GRAPH OF THE GROUPS ${ }^{2} D_{2 n}(q)$ WHERE $q<10^{5}$

HOSSEIN MORADI ${ }^{1, A}$ \& MOHAMMAD REZA DARAFSHEH ${ }^{2, B}$ \& ALI IRANMANESH ${ }^{1, C}$

Abstract

Let G be a finite group. The prime graph $\Gamma(G)$ of G is defined as follows: The set of vertices of $\Gamma(G)$ is the set of prime divisors of $|G|$ and two distinct vertices p and p^{\prime} are connected in $\Gamma(G)$, whenever G has an element of order $p p^{\prime}$. A non-abelian simple group P is called recognizable by prime graph if for any finite group G with $\Gamma(G)=\Gamma(P), G$ has a composition factor isomorphic to P. In [4] proved finite simple groups ${ }^{2} D_{n}(q)$, where $n \neq 4 k$ are quasirecognizable by prime graph. Now in this paper we discuss the quasirecognizability by prime graph of the simple groups ${ }^{2} D_{2 k}(q)$, where $k \geq 9$ and q is a prime power less than 10^{5}.

1. Introduction

Let G be a finite group. By $\pi_{e}(G)$ we denote the set of elements orders of G. For an integer n we define $\pi(n)$ as the set of prime divisors of n, and we set $\pi(G)$ for $\pi(|G|)$. The prime graph of the Gruenberg-Kegel graph of G is denoted by $\Gamma(G)$ and is graph with vertices set $\pi(G)$ in which two distinct vertices p and q are joined by an edge if and only if $p q \in \pi(G)$, and in this case we will write $p \sim q$.

A subset of vertices of $\Gamma(G)$ is called an independent subset of $\Gamma(G)$ if its vertices are pairwise nonadjacent. Denote by $t(G)$ the maximal number of primes in $\pi(G)$ pairwise nonadjacent in $\Gamma(G)$. Also we denote by $t(2, G)$ the maximal number of vertices in the independent sets of $\Gamma(G)$ containing 2 . A finite nonabelian simple group P is called quasirecognizable by prime graph, if every finite group G with $\Gamma(G)=\Gamma(P)$ has a composition factor isomorphic to P. Also P is called recognizable by prime graph if $\Gamma(G)=\Gamma(P)$ implies that $G \cong P$.

In [3] and [5], finite groups with the same prime graph as $\Gamma(P S L(2, q))$, where q is a prime power, are determined. In $[7,8,9]$ finite groups with the same prime graph as $\Gamma\left(L_{n}(2)\right), \Gamma\left(U_{n}(2)\right), \Gamma\left(D_{n}(2)\right), \Gamma\left({ }^{2} D_{n}(2)\right)$ and $\Gamma\left({ }^{2} D_{2 k}(3)\right)$ are obtained. Also in [10] it is proved that if p is a prime less than 1000 and for suitable n, the finite sinple groups $L_{n}(p)$, $U_{n}(p)$ are quasirecognizable by prime graph. Now as the main result of this paper, we prove the following theorem:

Main Theorem. The finite simple group ${ }^{2} D_{2 k}(q)$, where $k \geq 9$ and $q<10^{5}$ is quasirecognizable by prime graph.

Throughout this paper, all groups are finite and by a simple group we mean nonabelian simple groups. All further unexplained notations are standard and the reader is refered to [2].

[^0]
2. Preliminary Results

Lemma 2.1. [16, Theorem 1] Let G be a finite group with $t(G) \geq 3$ and $t(2, G) \geq 2$. Then the following hold:
(1) there exists a finite nonabelian simple group S such that

$$
S \leq \bar{G}=G / K \leq \operatorname{Aut}(S)
$$

for the maximal normal soluble subgroup K of G.
(2) for every independent subset ρ of $\pi(G)$ with $|\rho| \geq 3$ at most one prime in ρ divides the product $|K| \cdot|\bar{G} / S|$. In particular, $t(S) \geq t(G)-1$.
(3) one of the following holds:
(a) every prime $r \in \pi(G)$ nonadjacent to 2 in $\Gamma(G)$ does not divide the product $|K| \cdot|\bar{G} / S|$; in particular, $t(2, S) \geq t(2, G)$;
(b) there exists a prime $r \in \pi(K)$ nonadjacent to 2 in $\Gamma(G)$; in which case $t(G)=$ $3, t(2, G)=2$, and $S \cong A_{7}$ or $L_{2}(q)$ for some odd q.
Remark 2.2. In Lemma 2.1, for every odd prime $p \in \pi(S)$, we have $t(p, S) \geq t(p, G)-1$.
If q is a natural number, r is an odd prime and $(q, r)=1$, then by $e(r, q)$ we denote the smallest natural number m such that $q^{m} \equiv 1(\bmod r)$. Given an odd q, put $e(2, q)=1$ if $q \equiv 1(\bmod 4)$ and put $e(2, q)=2$ if $q \equiv-1(\bmod 4)$. Using Fermat's little theorem we can see that if r is an odd prime such that $r \mid\left(q^{n}-1\right)$, then $e(r, q) \mid n$.

Lemma 2.3. [20, Proposition 2.5] Let $G=D_{n}^{\varepsilon}(q)$, where q is power of prime p. Define

$$
\eta(m)= \begin{cases}m, & \text { if } m \text { is odd } ; \\ m / 2, & \text { otherwise } .\end{cases}
$$

Suppose r, s are odd primes and $r, s \in \pi\left(D_{n}^{\varepsilon}(q)\right) \backslash\{p\}$. Put $k=e(r, q), l=e(s, q)$, and $1 \leq \eta(k) \leq \eta(l)$. Then r and s are non-adjacent if and only if $2 \eta(k)+2 \eta(l)>$ $2 n-\left(1-\varepsilon(-1)^{k+l}\right)$ and k and l satisfy the following condition:

$$
\frac{l}{k} \text { is not an odd integer, }
$$

and, if $\varepsilon=+$, then the chain of equalities:

$$
n=l=2 \eta(l)=2 \eta(k)=2 k
$$

is not true.
Lemma 2.4. [20, Proposition 2.3] Let G be one of simple groups of Lie type, $B_{n}(q)$ or $C_{n}(q)$, over a field of characteristic p. Define

$$
\eta(m)= \begin{cases}m, & \text { if } m \text { is odd } \\ m / 2, & \text { otherwise } .\end{cases}
$$

Let r, s be odd primes with $r, s \in \pi(G) \backslash\{p\}$. Put $k=e(r, q)$ and $l=e(s, q)$, and suppose that $1 \leq \eta(k) \leq \eta(l)$. Then r and s are non-adjacent if and only if $\eta(k)+\eta(l)>n$, and k, l satisfy to:

$$
\frac{l}{k} \text { is not an odd natural number. }
$$

Lemma 2.5. [19, Proposition 2.1] Let $G=L_{n}(q)$, where q is power of prime p. Let r and s be odd primes and $r, s \in \pi(G) \backslash\{p\}$. Put $k=e(r, q)$ and $l=e(s, q)$ and assume that $2 \leq k \leq l$. Then r and s are nonadjacent if and only if $k+l>n$ and k does not divide l.

Lemma 2.6. [19, Proposition 2.2] Let $G=U_{n}(q)$, where q is power of prime p. Define

$$
\nu(m)=\left\{\begin{array}{lll}
m, & m \equiv 0 & (\bmod 4) \\
m / 2, & m \equiv 2 & (\bmod 4) \\
2 m, & m \equiv 1 & (\bmod 2)
\end{array}\right.
$$

Let r and s be odd primes and $r, s \in \pi(G) \backslash\{p\}$. Put $k=e(r, q)$ and $l=e(s, q)$ and suppose that $2 \leq \nu(k) \leq \nu(l)$. Then r and s are nonadjacent if and only if $\nu(k)+\nu(l)>n$ and $\nu(k)$ does not divide $\nu(l)$.

For every Lemmas 2.3 and 2.6, simultaneously we define the following function:

$$
\nu^{\prime}(m)= \begin{cases}m, & \varepsilon=+; \\ \nu(m), & \varepsilon=-\end{cases}
$$

which we will use in the proofs. We note that a prime r with $e(r, q)=m$ is called a primitive prime divisor of $q^{m}-1$ (obviously, $q^{m}-1$ can have more than one primitive prime divisor).
Lemma 2.7. (Zsigmondy's theorem) [22] Let p be a prime and let n be a positive integer. Then one of the following holds:
(1) there is a primitive prime p^{\prime} for $p^{n}-1$, that is, $p^{\prime} \mid\left(p^{n}-1\right)$ but $p^{\prime} \nmid\left(p^{m}-1\right)$, for every $1 \leq m<n$,
(2) $p=2, n=1$ or 6 ,
(3) p is a Mersenne prime and $n=2$.

3. Proof of the Main Theorem

Throughout this section, we suppose that $D:={ }^{2} D_{2 k}\left(p^{\alpha}\right)$ where $k \geq 9,2<p^{\alpha}<10^{5}$ and G is a finite group such that $\Gamma(G)=\Gamma(D)$. We denote a primitive prime divisors of $q^{i}-1$ by r_{i} and a primitive prime divisors of $q^{\prime i}-1$ by r_{i}^{\prime}, where $q^{\prime} \neq q$.

By [19, Tables 4, 6, 8], we deduce that $t(D) \geq 14$ and $t(2, D) \geq 2$. Therefore $t(G) \geq 14$ and $t(2, G) \geq 2$. Now by Lemma 2.1, it follows that there exists a finite nonabelian simple group S such that

$$
S \leq \bar{G}:=G / K \leq \operatorname{Aut}(S)
$$

where K is the maximal normal solvable subgroup of G. Also, $t(S) \geq t(G)-1$ and $t(2, S) \geq t(2, G)$ by Lemma 2.1. Therefore $t(S) \geq 13$ and $t(2, S) \geq 2$. On the other hand, by [19, Tables 2, 9], if S is isomorphic to a sporadic or an exceptional simple group of Lie type, then $t(S) \leq 12$. This implies that S is not isomorphic to any sporadic and any exceptional simple group of Lie type.

In the sequel, we consider each possibility for S.
Lemma 3.1. S is not isomorphic to any alternating group.

Proof. Suppose that $S \cong A_{m}$, where $m \geq 5$. Since $t(S) \geq 13$, Lemma 2.1, we get that $m \geq 61$ and so $\{47,59\} \subseteq \pi(S)$.

Case 1. Let $\{47,59\} \nsubseteq \pi\left(q^{2}-1\right)$, where $q=p^{\alpha}<10^{5}$. Therefore we get that $e(47, q) \geq$ 23 or $e(59, q) \geq 29 . \quad\{47,59\} \subseteq \pi(S)$. Hence G contains an element $a \in A_{m}$, such that $e(a, q) \geq 23$, which implies that $n \geq 24$. Now we have $\min \{t(47, G), t(59, G)\} \geq 19$. Hence, according to Remark 2.2, $\min \{t(47, S), t(59, S)\} \geq 18$ in S. On the other hand, 47 is not connected to the prime numbers in the interval $[m-46, m]$ in the prime graph of A_{m} and similarly, 59 is not connected to the prime numbers in the interval $[m-58, m$], in the prime graph of A_{m}. But these intervals contains at most 16 prime numbers, and this implies that $t(S)<t(G)-1$, a contradiction.

Case 2. Let $\{47,59\} \subseteq \pi\left(q^{2}-1\right)$, where $q=p^{\alpha}<10^{5}$. Using GAP, we get that:
$q \in A:=\{11093,21713,27259,28201,38351,38821,39293,44839,55931,61007,66553$, 93811, 99829$\}$.

First let $q \in A \backslash\{21713\}$. Then we have $e(23, q) \geq 11$ and so similarly to Case 1 , we get that $t(23, G)-1>t(23, S)$, a contradiction.

Let $q=21713$. Since $e(19, q)=18$, again similarly to Case 1, we get that a contradiction.

Lemma 3.2. If S is isomorphic to a classical simple group of Lie type over a field of characteristic p, then $S \cong D$.

Proof. Let S be a nonabelian simple group of Lie type over $\mathrm{GF}\left(q^{\prime}\right), q^{\prime}=p^{\beta}$. By the hypothesis,

$$
S \leq \bar{G}:=G / N \leq \operatorname{Aut}(S)
$$

where N is the maximal normal solvable subgroup of G. In the sequel, we denote by r_{i}, a primitive prime divisor of $q^{i}-1$ and denote by r_{i}^{\prime}, a primitive prime divisor of $q^{\prime i}-1$. We remark that $\left\{p, r_{2 n}\right\} \subseteq \pi(S)$ and $|\rho(p, G) \cap \pi(S)| \geq 3$ by Lemma 2.1.

Now we consider the following cases:
Case 1. Let $r_{2 n-2} \in \pi(S)$. Also let p_{1} and p_{2} be two primitive prime divisors of $p^{(2 n-2) \alpha}-1$ and $p^{2 n \alpha}-1$, respectively. So we may assume that p_{1} and p_{2} are $r_{2 n-2}$ and $r_{2 n}$, respectively. This implies that $\left\{r_{2 n-2}, r_{2 n}\right\} \subseteq \pi(S)$. Thus $r_{2 n-2}$ is a primitive prime divisor of $q^{\prime s}-1$ and $r_{2 n}$ is a primitive prime divisor of $q^{\prime t}-1$, where $s=e\left(r_{2 n-2}, p^{\beta}\right)$ and $t=e\left(r_{2 n}, p^{\beta}\right)$. It follows that $(2 n-2) \alpha \mid s \beta$ and $2 n \alpha \mid t \beta$. On the other hand, using Zsigmondy's theorem, we conclude that $t \beta \leq 2 n \alpha$ and so $t \beta=2 n \alpha$. Also since $2 n<2(2 n-2)$, we have $s \beta=(2 n-2) \alpha$ and $s<t$.

Now we consider each possibility for S, separately. If $\rho(p, S)=\left\{r_{i}^{\prime} \mid i \in I\right\} \cup\{p\}$, then using the results in [19], each $r_{j}^{\prime} \in \pi(S)$, where $j \notin I$, is adjacent to p in $\Gamma(S)$.

Subcase 1.1. Let $S \cong L_{m}\left(q^{\prime}\right)$. By [19, Proposition 2.6], we see that each prime divisor of $\left|L_{m}\left(q^{\prime}\right)\right|$ is adjacent to p, except r_{m}^{\prime} and r_{m-1}^{\prime}. Hence $\rho(p, S)=\left\{p, r_{m-1}^{\prime}, r_{m}^{\prime}\right\}$. Therefore p_{1} and p_{2} are some primitive prime divisors of $q^{\prime m}-1$ and $q^{\prime m-1}-1$. Since $s<t$, we conclude that $m=t$ and $m-1=s$. Hence $2 n \alpha=m \beta$ and $(2 n-2) \alpha=(m-1) \beta$. Consequently, we get that $\beta=2 \alpha$ and $m=n$, that is $S \cong L_{n}\left(p^{2 \alpha}\right)$. Then S has a maximal torus of order $\left(p^{2 n \alpha}-1\right) /\left(\left(p^{2 \alpha}-1\right)\left(n, p^{2 \alpha}-1\right)\right)$, say T. Obviously, $r_{n}, r_{2 n} \in \pi(T)$.

QUASIRECOGNITION BY PRIME GRAPH OF THE GROUPS ${ }^{2} D_{2 n}(q)$ WHERE $q<10^{5}$
Therefore $r_{n} \sim r_{2 n}$ in $\Gamma\left(L_{n}\left(p^{2 \alpha}\right)\right)$, whereas $r_{n} \nsim r_{2 n}$ in $\Gamma(G)$, by Lemma 2.3, which is a contradiction.

Subcase 1.2. Let $S \cong U_{m}\left(q^{\prime}\right)$. If $m=3$, then $\rho(p, S)=\left\{p, r_{1}^{\prime} \neq 2, r_{6}^{\prime}\right\}$ and so $s=1$ and $t=6$, hence $(2 n-2) \alpha=\beta$ and $2 n \alpha=6 \beta$. Therefore $n=6 / 5$, a contradiction.
If $m \equiv 0(\bmod 4)$, then $\rho(p, S)=\left\{p, r_{2 m-2}^{\prime}, r_{m}^{\prime}\right\}$ and so $s=m$ and $t=2 m-2$, hence $(2 n-2) \alpha=m \beta$ and $2 n \alpha=(2 m-2) \beta$. Then $n=(2 m-2) /(m-2)$ and so $n=3$, a contradiction.
If $m \equiv 3(\bmod 4)$, then $\rho(p, S)=\left\{p, r_{(m-1) / 2}^{\prime}, r_{2 m}^{\prime}\right\}$. Therefore $s=(m-1) / 2$ and $t=2 m$. Hence $(2 n-2) \alpha=(m-1) \beta / 2$ and $2 n \alpha=2 m \beta$. Now easy computation shows that it is impossible.
If $m \equiv 1,2(\bmod 4)$, then similarly to the above discussion, we get a contradiction.
Subcase 1.3. Let $S \cong B_{m}\left(q^{\prime}\right)$ or $C_{m}\left(q^{\prime}\right)$. Since $t(p, S) \geq 3$, using [19, Tables 4], we get that m is odd. In this case $\rho(p, S)=\left\{p, r_{m}^{\prime}, r_{2 m}^{\prime}\right\}$. Hence $s=m$ and $t=2 m$ and so $(2 n-2) \alpha=m \beta$ and $2 n \alpha=2 m \beta$, which implies that $n=2$, a contradiction.

Let $S \cong{ }^{2} D_{m}\left(q^{\prime}\right)$, where m is odd. Since $\rho(p, S)=\left\{p, r_{2 m-2}^{\prime}, r_{2 m}^{\prime}\right\}$, we conclude that $(2 n-2) \alpha=(2 m-2) \beta$ and $2 n \alpha=2 m \beta$ and so $m=n$, which is impossible, since n is even.

Similarly, we can prove that $S \not ¥^{2} D_{m}\left(q^{\prime}\right)$, where m is even and $S \not \approx D_{m}\left(q^{\prime}\right)$.
Case 2. Let $r_{2 n-2} \notin \pi(S)$. Hence $r_{n-1} \in \pi(S)$. Let p_{1} and p_{2} be as r_{n-1} and $r_{2 n}$, respectively. Therefore r_{n-1} and $r_{2 n}$ are primitive prime divisors of $q^{\prime s}-1$ and $q^{\prime t}-1$, respectively, where $s=e\left(r_{n-1}, p^{\beta}\right)$ and $t=e\left(r_{2 n}, p^{\beta}\right)$. Now we conclude that $(n-1) \alpha \mid s \beta$ and $2 n \alpha \mid t \beta$. On the other hand, using Zsigmondy's theorem, we conclude that $t \beta \leq 2 n \alpha$ and so $t \beta=2 n \alpha$. If $s \beta>(n-1) \alpha$, then using Zsigmondy's theorem we conclude that $s \beta=(2 n-2) \alpha$, which implies that $r_{2 n-2} \in \pi(S)$, which is a contradiction. Hence we suppose that $s \beta=(n-1) \alpha$.

Subcase 2.1. Let $S \cong L_{m}\left(q^{\prime}\right)$, where $q^{\prime}=p^{\beta}$. We know that $\rho(p, S)=\left\{p, r_{m-1}^{\prime}, r_{m}^{\prime}\right\}$. Hence $t=m$ and $s=m-1$ and $2 n \alpha=m \beta$ and $(n-1) \alpha=(m-1) \beta$. These equations imply that $m=2-2 /(n+1)$, which is impossible.

Subcase 2.2. Let $S \cong{ }^{2} D_{m}\left(q^{\prime}\right)$, where m is odd. We note that $\rho(p, S)=\left\{p, r_{2 m-2}^{\prime}, r_{2 m}^{\prime}\right\}$ and so $(n-1) \alpha=(2 m-2) \beta$ and $2 n \alpha=2 m \beta$ and so $m=2-2 /(n+1)$, which is impossible.

Subcase 2.3. Let $S \cong{ }^{2} D_{m}\left(q^{\prime}\right)$, where m is even. Since $\rho(p, S)=\left\{p, r_{m-1}^{\prime}, r_{2 m-2}^{\prime}, r_{2 m}^{\prime}\right\}$, we get that $2 n \alpha=2 m \beta$ and $(n-1) \alpha=(2 m-2) \beta$ or $(n-1) \alpha=(m-1) \beta$. If $(n-$ 1) $\alpha=(2 m-2) \beta$, then we get that $m=2-2 /(n+1)$, which is impossible. Hence $(n-1) \alpha=(m-1) \beta$, which implies that $m=n$ and $\alpha=\beta$, and so $S \cong D$, which is a contradiction, since $r_{2 n-2} \notin \pi(S)$.

We can use a similar proof for groups $U_{m}\left(q^{\prime}\right), B_{m}\left(q^{\prime}\right), C_{m}\left(q^{\prime}\right)$ and $D_{m}\left(q^{\prime}\right)$ and get a contradiction. We omit the proof for convenience.

Lemma 3.3. If S is isomorphic to a classical simple group of Lie type over a field of characteristic $p^{\prime} \neq p$, then $S \nsupseteq D$.

Proof. Let S be isomorphic to a classical simple group of Lie type over a field with q^{\prime} elements, where $q^{\prime}=p^{\prime \beta}$. Using [19, Table 4], $t\left(p^{\prime}, S\right) \leq 4$ and so Lemma 2.1 implies that $t\left(p^{\prime}, G\right) \leq 5$. On the other hand, by Lemma 2.3, we deduce that if $r \in \pi(G) \backslash$ $\left\{r_{1}, r_{2}, r_{3}, r_{4}, r_{6}\right\}$, then $t(r, G)>5$. Hence $p^{\prime} \in\left\{r_{1}, r_{2}, r_{3}, r_{4}, r_{6}\right\}$ and so $p^{\prime} \mid\left(q^{2}+1\right)\left(q^{6}-1\right)$.

Consider $r_{3}^{\prime} \in \pi(S) \subseteq \pi(G)$ and $3=e\left(r_{3}^{\prime}, q^{\prime}\right) \leq e\left(r_{3}^{\prime}, p^{\prime}\right)$. By Lemmas 2.3, 2.4, 2.5 and 2.6 we get that for each classical simple group of Lie type S, we have $t\left(r_{3}^{\prime}, S\right) \leq 6$. On the other hand using Remark 2.2, we have $t\left(r_{3}^{\prime}, G\right) \leq t\left(r_{3}^{\prime}, S\right)+1$ and so $t\left(r_{3}^{\prime}, G\right) \leq 7$. We note that $r_{3}^{\prime} \in \pi(S) \subseteq \pi(G)=\pi\left({ }^{2} D_{2 k}(q)\right)$. Hence, by Lemma 2.3, it follows that $e\left(r_{3}^{\prime}, q\right) \leq 10$. Since $t(S) \geq 13$, we conclude that $r_{i}^{\prime} \in \pi(S)$, where $2 \leq i \leq 10$ and we have similar argument for $r_{i}^{\prime}, 2 \leq i \leq 10$ and $e\left(r_{i}^{\prime}, q\right) \leq 2 i+4$.

Hence according above discussion, if $p^{\prime} \in \pi\left(\left(q^{2}+1\right)\left(q^{6}-1\right)\right)$, then the following condition holds:

If $r_{i}^{\prime} \in \pi\left(p^{\prime i}-1\right)$, then $e\left(r_{i}^{\prime}, q\right) \leq 2 i+4$, where $2 \leq i \leq 10$.
Using GAP, we get that the above condition holds only for $q=54251$, where $p^{\prime}=2$. Since $t(S) \geq 13$, we conclude that $r_{13}^{\prime} \in \pi(S)$. If $p^{\prime}=2$ and $q=54251$, then $r_{13}^{\prime}=8191$ and so $e(8191, q)=1365$, which contradicts to Remark 2.2. Therefore by the above argument, we get that S is not isomorphic to any classical simple group of Lie type over a field of characteristic $p^{\prime} \neq p$.

Using the Classification Theorem of finite simple groups and Lemmas 3.1, 3.2 and 3.3, we get that the finite simple group ${ }^{2} D_{2 k}(q)$, where $k \geq 9$ and $q<10^{5}$ is quasirecognizable by prime graph.

References

[1] A. A. Buturlakin, Spectra of finite linear and unitary groups, Algebra and Logic, 47 (2) (2008), 91-99.
[2] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of finite groups, Oxford University Press, Oxford (1985).
[3] B. Khosravi, n-Recognition by prime graph of the simple group $\operatorname{PSL}(2, q)$, J. Algebra and its Appl., 7 (6) (2008), 735-748.
[4] B. Khosravi, A. Babai, Simple groups with the same prime graph as ${ }^{2} D n(q)$, Publications De Linstitut Mathmatique, 98 (112) (2015), 251263.
[5] B. Khosravi, B. Khosravi and B. Khosravi, 2-Recognizability of $P S L\left(2, p^{2}\right)$ by the prime graph, Sib. Math. J., 49 (4) (2008), 749-757.
[6] B. Khosravi, B. Khosravi and B. Khosravi, On the prime graph of $\operatorname{PSL}(2, p)$ where $p>3$ is a prime number, Acta. Math. Hungarica, 116 (4) (2007), 295-307.
[7] B. Khosravi and H. Moradi, Quasirecognition by prime graph of finite simple groups $L_{n}(2)$ and $U_{n}(2)$, Acta. Math. Hungarica, 132 (1-2) (2011) 140-153.
[8] B. Khosravi and H. Moradi, Quasirecognition by prime graph of some orthogonal groups over the binary field, J. Algebra Appl., 11 (3) (2012) 15 pp..
[9] B. Khosravi and H. Moradi, Quasirecognition by prime graph of finite simple groups ${ }^{2} D_{n}(3)$, International journal of group theory, 3 (4) (2014), pp. 47-56.
[10] A. Mahmoudifar and B. Khosravi, On quasirecognition by prime graph of the simple groups $A_{n}^{+}(p)$ and $A_{n}^{-}(p)$, J. Algebra Appl., 14 (1) (2015) 12 pp..
[11] V. D. Mazurov, Characterizations of groups by arithmetic properties, Algebra Colloq., 11 (1) (2004), 129-140.
[12] V. D. Mazurov, Characterizations of finite groups by sets of their element orders, Algebra Logic, $\mathbf{3 6}$ (1) (1997), 23-32.
[13] V. D. Mazurov and A. V. Zavarnitsine, On element orders in coverings of the simple groups $L_{n}(q)$ and $U_{n}(q)$, Proceedings of the Steklov Institute of Mathematics, Suppl. (1) (2007), 145-154.
[14] E. Stensholt, Certain embedding among finite groups of Lie type, J. Algebra, 53 (1) (1978), 136-187.
[15] A. V. Vasil'ev, On connection between the structure of a finite group and the properties of its prime graph, Sib. Math. J., 46 (3) (2005), 396-404.
[16] A. V. Vasil'ev and I. B. Gorshkov, On recognition of finite groups with connected prime graph, Sib. Math. J., 50 (2) (2009), 233-238.
[17] A.V. Vasil'ev and M.A. Grechkoseeva, On recognition of the finite simple orthogonal groups of the dimension $2^{m}, 2^{m}+1$ and $2^{m}+2$ over a field of characteristic 2, Sib. Math. J., 45 (3) (2004), 420-432.
[18] A.V. Vasil'ev, M.A. Grechkoseeva and V. D. Mazurov, On finite groups isospectral to simple symplectic and orthogonal groups, Sib. Math. J., 50 (6) (2009), 965-981.
[19] A. V. Vasil'ev and E. P. Vdovin, An adjacency criterion for the prime graph of a finite simple group, Algebra Logic, 44 (6) (2005), 381-406.
[20] A. V. Vasil'ev and E. P. Vdovin, Cocliques of maximal size in the prime graph of a finite simple group, Algebra Logic, 50 (4) (2011), 291-322.
[21] A. V. Zavarnitsin, Recognition of finite groups by the prime graph, Algebra Logic, 43 (4) (2006), 220-231.
[22] K. Zsigmondy, Zur theorie der potenzreste, Monatsh. Math. Phys., 3 (1892), 265-284.
1)Department of Mathematics, Tarbiat Modares University, Tehran, Iran, 2) School of mathematics, statistics and computer, College of science, University of Tehran, Tehran, Iran

E-mail address: A) moradi61hh@yahoo.com, B) darafsheh@ut.ac.ir, C) Iranmana@yahoo.com

[^0]: 2000 Mathematics Subject Classification. AMS Classification: 20D05, 20D60, 20D06.
 Key words and phrases. prime graph; simple group; orthogonal groups; quasirecognition.

