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Abstract. Let G be a finite group. The prime graph Γ(G) of G is defined as follows:
The set of vertices of Γ(G) is the set of prime divisors of |G| and two distinct vertices p
and p′ are connected in Γ(G), whenever G has an element of order pp′. A non-abelian
simple group P is called recognizable by prime graph if for any finite group G with
Γ(G) = Γ(P ), G has a composition factor isomorphic to P . In [4] proved finite simple
groups 2Dn(q), where n 6= 4k are quasirecognizable by prime graph. Now in this paper
we discuss the quasirecognizability by prime graph of the simple groups 2D2k(q), where
k ≥ 9 and q is a prime power less than 105.

1. Introduction

Let G be a finite group. By πe(G) we denote the set of elements orders of G. For an
integer n we define π(n) as the set of prime divisors of n , and we set π(G) for π(|G|).
The prime graph of the Gruenberg-Kegel graph of G is denoted by Γ(G) and is graph
with vertices set π(G) in which two distinct vertices p and q are joined by an edge if and
only if pq ∈ π(G), and in this case we will write p ∼ q.

A subset of vertices of Γ(G) is called an independent subset of Γ(G) if its vertices
are pairwise nonadjacent. Denote by t(G) the maximal number of primes in π(G) pair-
wise nonadjacent in Γ(G). Also we denote by t(2, G) the maximal number of vertices
in the independent sets of Γ(G) containing 2. A finite nonabelian simple group P is
called quasirecognizable by prime graph, if every finite group G with Γ(G) = Γ(P ) has
a composition factor isomorphic to P . Also P is called recognizable by prime graph if
Γ(G) = Γ(P ) implies that G ∼= P .

In [3] and [5], finite groups with the same prime graph as Γ(PSL(2, q)), where q is a
prime power, are determined. In [7, 8, 9] finite groups with the same prime graph as
Γ(Ln(2)), Γ(Un(2)), Γ(Dn(2)), Γ(2Dn(2)) and Γ(2D2k(3)) are obtained. Also in [10] it is
proved that if p is a prime less than 1000 and for suitable n, the finite sinple groups Ln(p),
Un(p) are quasirecognizable by prime graph. Now as the main result of this paper, we
prove the following theorem:

Main Theorem. The finite simple group 2D2k(q), where k ≥ 9 and q < 105 is quasirec-
ognizable by prime graph.

Throughout this paper, all groups are finite and by a simple group we mean nonabelian
simple groups. All further unexplained notations are standard and the reader is refered
to [2].
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2. Preliminary Results

Lemma 2.1. [16, Theorem 1] Let G be a finite group with t(G) ≥ 3 and t(2, G) ≥ 2.
Then the following hold:

(1) there exists a finite nonabelian simple group S such that

S ≤ Ḡ = G/K ≤ Aut(S)

for the maximal normal soluble subgroup K of G.
(2) for every independent subset ρ of π(G) with |ρ| ≥ 3 at most one prime in ρ divides

the product |K| · |Ḡ/S|. In particular, t(S) ≥ t(G)− 1.
(3) one of the following holds:

(a) every prime r ∈ π(G) nonadjacent to 2 in Γ(G) does not divide the product
|K| · |Ḡ/S|; in particular, t(2, S) ≥ t(2, G);

(b) there exists a prime r ∈ π(K) nonadjacent to 2 in Γ(G); in which case t(G) =
3, t(2, G) = 2, and S ∼= A7 or L2(q) for some odd q.

Remark 2.2. In Lemma 2.1, for every odd prime p ∈ π(S), we have t(p, S) ≥ t(p,G)−1.

If q is a natural number, r is an odd prime and (q, r) = 1, then by e(r, q) we denote the
smallest natural number m such that qm ≡ 1 (mod r). Given an odd q, put e(2, q) = 1 if
q ≡ 1 (mod 4) and put e(2, q) = 2 if q ≡ −1 (mod 4). Using Fermat’s little theorem we
can see that if r is an odd prime such that r | (qn − 1), then e(r, q) | n.

Lemma 2.3. [20, Proposition 2.5] Let G = Dε
n(q), where q is power of prime p. Define

η(m) =

{
m, if m is odd;
m/2, otherwise.

Suppose r, s are odd primes and r, s ∈ π(Dε
n(q)) \ {p}. Put k = e(r, q), l = e(s, q),

and 1 ≤ η(k) ≤ η(l). Then r and s are non-adjacent if and only if 2η(k) + 2η(l) >
2n− (1− ε(−1)k+l) and k and l satisfy the following condition:

l
k

is not an odd integer,

and, if ε = +, then the chain of equalities:

n = l = 2η(l) = 2η(k) = 2k

is not true.

Lemma 2.4. [20, Proposition 2.3] Let G be one of simple groups of Lie type, Bn(q) or
Cn(q), over a field of characteristic p. Define

η(m) =

{
m, if m is odd;
m/2, otherwise.

Let r, s be odd primes with r, s ∈ π(G)\{p}. Put k = e(r, q) and l = e(s, q), and suppose
that 1 ≤ η(k) ≤ η(l). Then r and s are non-adjacent if and only if η(k) + η(l) > n, and
k, l satisfy to:

l
k

is not an odd natural number.
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Lemma 2.5. [19, Proposition 2.1] Let G = Ln(q), where q is power of prime p. Let r
and s be odd primes and r, s ∈ π(G) \ {p}. Put k = e(r, q) and l = e(s, q) and assume
that 2 ≤ k ≤ l. Then r and s are nonadjacent if and only if k + l > n and k does not
divide l.

Lemma 2.6. [19, Proposition 2.2] Let G = Un(q), where q is power of prime p. Define

ν(m) =

 m, m ≡ 0 (mod 4);
m/2, m ≡ 2 (mod 4);
2m, m ≡ 1 (mod 2).

Let r and s be odd primes and r, s ∈ π(G) \ {p}. Put k = e(r, q) and l = e(s, q) and
suppose that 2 ≤ ν(k) ≤ ν(l). Then r and s are nonadjacent if and only if ν(k)+ν(l) > n
and ν(k) does not divide ν(l).

For every Lemmas 2.3 and 2.6, simultaneously we define the following function:

ν ′(m) =

{
m, ε = +;
ν(m), ε = −.

which we will use in the proofs. We note that a prime r with e(r, q) = m is called a
primitive prime divisor of qm − 1 (obviously, qm − 1 can have more than one primitive
prime divisor).

Lemma 2.7. (Zsigmondy’s theorem) [22] Let p be a prime and let n be a positive integer.
Then one of the following holds:

(1) there is a primitive prime p′ for pn − 1, that is , p′ | (pn − 1) but p′ - (pm − 1), for
every 1 ≤ m < n,

(2) p = 2, n = 1 or 6,
(3) p is a Mersenne prime and n = 2.

3. Proof of the Main Theorem

Throughout this section, we suppose that D := 2D2k(p
α) where k ≥ 9, 2 < pα < 105

and G is a finite group such that Γ(G) = Γ(D). We denote a primitive prime divisors of
qi − 1 by ri and a primitive prime divisors of q′i − 1 by r′i, where q′ 6= q.

By [19, Tables 4, 6, 8], we deduce that t(D) ≥ 14 and t(2, D) ≥ 2. Therefore t(G) ≥ 14
and t(2, G) ≥ 2. Now by Lemma 2.1, it follows that there exists a finite nonabelian simple
group S such that

S ≤ Ḡ := G/K ≤ Aut(S)

where K is the maximal normal solvable subgroup of G. Also, t(S) ≥ t(G) − 1 and
t(2, S) ≥ t(2, G) by Lemma 2.1. Therefore t(S) ≥ 13 and t(2, S) ≥ 2. On the other hand,
by [19, Tables 2, 9], if S is isomorphic to a sporadic or an exceptional simple group of
Lie type, then t(S) ≤ 12. This implies that S is not isomorphic to any sporadic and any
exceptional simple group of Lie type.

In the sequel, we consider each possibility for S.

Lemma 3.1. S is not isomorphic to any alternating group.
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Proof. Suppose that S ∼= Am, where m ≥ 5. Since t(S) ≥ 13, Lemma 2.1, we get that
m ≥ 61 and so {47, 59} ⊆ π(S).
Case 1. Let {47, 59} * π(q2−1), where q = pα < 105. Therefore we get that e(47, q) ≥

23 or e(59, q) ≥ 29. . {47, 59} ⊆ π(S). Hence G contains an element a ∈ Am, such that
e(a, q) ≥ 23, which implies that n ≥ 24. Now we have min{t(47, G), t(59, G)} ≥ 19.
Hence, according to Remark 2.2, min{t(47, S), t(59, S)} ≥ 18 in S. On the other hand,
47 is not connected to the prime numbers in the interval [m− 46,m] in the prime graph
of Am and similarly, 59 is not connected to the prime numbers in the interval [m−58,m],
in the prime graph of Am. But these intervals contains at most 16 prime numbers, and
this implies that t(S) < t(G)− 1, a contradiction.

Case 2. Let {47, 59} ⊆ π(q2 − 1), where q = pα < 105. Using GAP, we get that:
q ∈ A := {11093, 21713, 27259, 28201, 38351, 38821, 39293, 44839, 55931, 61007, 66553,

93811, 99829}.
First let q ∈ A \ {21713}. Then we have e(23, q) ≥ 11 and so similarly to Case 1, we

get that t(23, G)− 1 > t(23, S), a contradiction.
Let q = 21713. Since e(19, q) = 18, again similarly to Case 1, we get that a contradic-

tion. �

Lemma 3.2. If S is isomorphic to a classical simple group of Lie type over a field of
characteristic p, then S ∼= D.

Proof. Let S be a nonabelian simple group of Lie type over GF(q′), q′ = pβ. By the
hypothesis,

S ≤ Ḡ := G/N ≤ Aut(S),

where N is the maximal normal solvable subgroup of G. In the sequel, we denote by ri,
a primitive prime divisor of qi − 1 and denote by r′i, a primitive prime divisor of q′i − 1.
We remark that {p, r2n} ⊆ π(S) and |ρ(p,G) ∩ π(S)| ≥ 3 by Lemma 2.1.

Now we consider the following cases:
Case 1. Let r2n−2 ∈ π(S). Also let p1 and p2 be two primitive prime divisors of

p(2n−2)α − 1 and p2nα − 1, respectively. So we may assume that p1 and p2 are r2n−2 and
r2n, respectively. This implies that {r2n−2, r2n} ⊆ π(S). Thus r2n−2 is a primitive prime
divisor of q′s − 1 and r2n is a primitive prime divisor of q′t − 1, where s = e(r2n−2, p

β)
and t = e(r2n, p

β). It follows that (2n − 2)α | sβ and 2nα | tβ. On the other hand,
using Zsigmondy’s theorem, we conclude that tβ ≤ 2nα and so tβ = 2nα. Also since
2n < 2(2n− 2), we have sβ = (2n− 2)α and s < t.

Now we consider each possibility for S, separately. If ρ(p, S) = {r′i | i ∈ I} ∪ {p}, then
using the results in [19], each r′j ∈ π(S), where j 6∈ I, is adjacent to p in Γ(S).

Subcase 1.1. Let S ∼= Lm(q′). By [19, Proposition 2.6], we see that each prime divisor
of |Lm(q′)| is adjacent to p, except r′m and r′m−1. Hence ρ(p, S) = {p, r′m−1, r′m}. Therefore
p1 and p2 are some primitive prime divisors of q′m − 1 and q′m−1 − 1. Since s < t, we
conclude that m = t and m − 1 = s. Hence 2nα = mβ and (2n − 2)α = (m − 1)β.
Consequently, we get that β = 2α and m = n, that is S ∼= Ln(p2α). Then S has a
maximal torus of order (p2nα−1)/((p2α−1)(n, p2α−1)), say T . Obviously, rn, r2n ∈ π(T ).
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Therefore rn ∼ r2n in Γ(Ln(p2α)), whereas rn � r2n in Γ(G), by Lemma 2.3, which is a
contradiction.

Subcase 1.2. Let S ∼= Um(q′). If m = 3, then ρ(p, S) = {p, r′1 6= 2, r′6} and so s = 1
and t = 6, hence (2n− 2)α = β and 2nα = 6β. Therefore n = 6/5, a contradiction.
If m ≡ 0 (mod 4), then ρ(p, S) = {p, r′2m−2, r′m} and so s = m and t = 2m − 2, hence
(2n − 2)α = mβ and 2nα = (2m − 2)β. Then n = (2m − 2)/(m − 2) and so n = 3, a
contradiction.
If m ≡ 3 (mod 4), then ρ(p, S) = {p, r′(m−1)/2, r′2m}. Therefore s = (m− 1)/2 and t = 2m.

Hence (2n− 2)α = (m− 1)β/2 and 2nα = 2mβ. Now easy computation shows that it is
impossible.
If m ≡ 1, 2 (mod 4), then similarly to the above discussion, we get a contradiction.

Subcase 1.3. Let S ∼= Bm(q′) or Cm(q′). Since t(p, S) ≥ 3, using [19, Tables 4], we
get that m is odd. In this case ρ(p, S) = {p, r′m, r′2m}. Hence s = m and t = 2m and so
(2n− 2)α = mβ and 2nα = 2mβ, which implies that n = 2, a contradiction.

Let S ∼= 2Dm(q′), where m is odd. Since ρ(p, S) = {p, r′2m−2, r′2m}, we conclude that
(2n − 2)α = (2m − 2)β and 2nα = 2mβ and so m = n, which is impossible, since n is
even.

Similarly, we can prove that S � 2Dm(q′), where m is even and S � Dm(q′).
Case 2. Let r2n−2 6∈ π(S). Hence rn−1 ∈ π(S). Let p1 and p2 be as rn−1 and r2n,

respectively. Therefore rn−1 and r2n are primitive prime divisors of q′s − 1 and q′t − 1,
respectively, where s = e(rn−1, p

β) and t = e(r2n, p
β). Now we conclude that (n−1)α | sβ

and 2nα | tβ. On the other hand, using Zsigmondy’s theorem, we conclude that tβ ≤ 2nα
and so tβ = 2nα. If sβ > (n − 1)α, then using Zsigmondy’s theorem we conclude that
sβ = (2n − 2)α, which implies that r2n−2 ∈ π(S), which is a contradiction. Hence we
suppose that sβ = (n− 1)α.
Subcase 2.1. Let S ∼= Lm(q′), where q′ = pβ. We know that ρ(p, S) = {p, r′m−1, r′m}.

Hence t = m and s = m − 1 and 2nα = mβ and (n − 1)α = (m − 1)β. These equations
imply that m = 2− 2/(n+ 1), which is impossible.

Subcase 2.2. Let S ∼= 2Dm(q′), where m is odd. We note that ρ(p, S) = {p, r′2m−2, r′2m}
and so (n−1)α = (2m−2)β and 2nα = 2mβ and so m = 2−2/(n+1), which is impossible.
Subcase 2.3. Let S ∼= 2Dm(q′), where m is even. Since ρ(p, S) = {p, r′m−1, r′2m−2, r′2m},

we get that 2nα = 2mβ and (n − 1)α = (2m − 2)β or (n − 1)α = (m − 1)β. If (n −
1)α = (2m − 2)β, then we get that m = 2 − 2/(n + 1), which is impossible. Hence
(n − 1)α = (m − 1)β, which implies that m = n and α = β, and so S ∼= D, which is a
contradiction, since r2n−2 6∈ π(S).

We can use a similar proof for groups Um(q′), Bm(q′), Cm(q′) and Dm(q′) and get a
contradiction. We omit the proof for convenience. �

Lemma 3.3. If S is isomorphic to a classical simple group of Lie type over a field of
characteristic p′ 6= p, then S � D.

Proof. Let S be isomorphic to a classical simple group of Lie type over a field with q′

elements, where q′ = p′β. Using [19, Table 4], t(p′, S) ≤ 4 and so Lemma 2.1 implies
that t(p′, G) ≤ 5. On the other hand, by Lemma 2.3, we deduce that if r ∈ π(G) \
{r1, r2, r3, r4, r6}, then t(r,G) > 5. Hence p′ ∈ {r1, r2, r3, r4, r6} and so p′ | (q2+1)(q6−1).
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Consider r′3 ∈ π(S) ⊆ π(G) and 3 = e(r′3, q
′) ≤ e(r′3, p

′). By Lemmas 2.3, 2.4, 2.5 and
2.6 we get that for each classical simple group of Lie type S, we have t(r′3, S) ≤ 6. On
the other hand using Remark 2.2, we have t(r′3, G) ≤ t(r′3, S) + 1 and so t(r′3, G) ≤ 7.
We note that r′3 ∈ π(S) ⊆ π(G) = π(2D2k(q)). Hence, by Lemma 2.3, it follows that
e(r′3, q) ≤ 10. Since t(S) ≥ 13, we conclude that r′i ∈ π(S), where 2 ≤ i ≤ 10 and we have
similar argument for r′i, 2 ≤ i ≤ 10 and e(r′i, q) ≤ 2i+ 4.

Hence according above discussion, if p′ ∈ π((q2 + 1)(q6 − 1)), then the following condi-
tion holds:

If r′i ∈ π(p′i − 1), then e(r′i, q) ≤ 2i+ 4, where 2 ≤ i ≤ 10.

Using GAP, we get that the above condition holds only for q = 54251, where p′ = 2.
Since t(S) ≥ 13, we conclude that r′13 ∈ π(S). If p′ = 2 and q = 54251, then r′13 = 8191
and so e(8191, q) = 1365, which contradicts to Remark 2.2. Therefore by the above
argument, we get that S is not isomorphic to any classical simple group of Lie type over
a field of characteristic p′ 6= p. �

Using the Classification Theorem of finite simple groups and Lemmas 3.1, 3.2 and 3.3,
we get that the finite simple group 2D2k(q), where k ≥ 9 and q < 105 is quasirecognizable
by prime graph.

References

[1] A. A. Buturlakin, Spectra of finite linear and unitary groups, Algebra and Logic, 47 (2) (2008),
91–99.

[2] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of finite groups,
Oxford University Press, Oxford (1985).

[3] B. Khosravi, n-Recognition by prime graph of the simple group PSL(2, q), J. Algebra and its Appl.,
7 (6) (2008), 735–748.

[4] B. Khosravi, A. Babai, Simple groups with the same prime graph as 2Dn(q), Publications De Linstitut
Mathmatique, 98 (112) (2015), 251263.

[5] B. Khosravi, B. Khosravi and B. Khosravi, 2-Recognizability of PSL(2, p2) by the prime graph, Sib.
Math. J., 49 (4) (2008), 749–757.

[6] B. Khosravi, B. Khosravi and B. Khosravi, On the prime graph of PSL(2, p) where p > 3 is a prime
number, Acta. Math. Hungarica, 116 (4) (2007), 295–307.

[7] B. Khosravi and H. Moradi, Quasirecognition by prime graph of finite simple groups Ln(2) and
Un(2), Acta. Math. Hungarica, 132 (1-2) (2011) 140-153.

[8] B. Khosravi and H. Moradi, Quasirecognition by prime graph of some orthogonal groups over the
binary field, J. Algebra Appl., 11 (3) (2012) 15 pp..

[9] B. Khosravi and H. Moradi, Quasirecognition by prime graph of finite simple groups 2Dn(3), Inter-
national journal of group theory, 3 (4) (2014), pp. 47–56.

[10] A. Mahmoudifar and B. Khosravi, On quasirecognition by prime graph of the simple groups A+
n (p)

and A−n (p), J. Algebra Appl., 14 (1) (2015) 12 pp..
[11] V. D. Mazurov, Characterizations of groups by arithmetic properties, Algebra Colloq., 11 (1) (2004),

129–140.
[12] V. D. Mazurov, Characterizations of finite groups by sets of their element orders, Algebra Logic, 36

(1) (1997), 23–32.
[13] V. D. Mazurov and A. V. Zavarnitsine, On element orders in coverings of the simple groups Ln(q)

and Un(q), Proceedings of the Steklov Institute of Mathematics, Suppl. (1) (2007), 145–154.
[14] E. Stensholt, Certain embedding among finite groups of Lie type, J. Algebra, 53 (1) (1978), 136–187.
[15] A. V. Vasil’ev, On connection between the structure of a finite group and the properties of its prime

graph, Sib. Math. J., 46 (3) (2005), 396–404.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 July 2017                   doi:10.20944/preprints201707.0017.v1

http://dx.doi.org/10.20944/preprints201707.0017.v1


QUASIRECOGNITION BY PRIME GRAPH OF THE GROUPS 2D2n(q) WHERE q < 105 7

[16] A. V. Vasil’ev and I. B. Gorshkov, On recognition of finite groups with connected prime graph, Sib.
Math. J., 50 (2) (2009), 233–238.

[17] A.V. Vasil’ev and M.A. Grechkoseeva, On recognition of the finite simple orthogonal groups of the
dimension 2m, 2m + 1 and 2m + 2 over a field of characteristic 2, Sib. Math. J., 45 (3) (2004),
420–432.

[18] A.V. Vasil’ev, M.A. Grechkoseeva and V. D. Mazurov, On finite groups isospectral to simple sym-
plectic and orthogonal groups, Sib. Math. J., 50 (6) (2009), 965–981.

[19] A. V. Vasil’ev and E. P. Vdovin, An adjacency criterion for the prime graph of a finite simple group,
Algebra Logic, 44 (6) (2005), 381–406.

[20] A. V. Vasil’ev and E. P. Vdovin, Cocliques of maximal size in the prime graph of a finite simple
group,Algebra Logic, 50 (4) (2011), 291–322.

[21] A. V. Zavarnitsin, Recognition of finite groups by the prime graph, Algebra Logic, 43 (4) (2006),
220–231.

[22] K. Zsigmondy, Zur theorie der potenzreste, Monatsh. Math. Phys., 3 (1892), 265–284.

1)Department of Mathematics, Tarbiat Modares University, Tehran, Iran, 2) School
of mathematics, statistics and computer, College of science, University of Tehran,
Tehran, Iran

E-mail address: A) moradi61hh@yahoo.com, B) darafsheh@ut.ac.ir, C) Iranmana@yahoo.com

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 July 2017                   doi:10.20944/preprints201707.0017.v1

http://dx.doi.org/10.20944/preprints201707.0017.v1

