QUASIRECOGNITION BY PRIME GRAPH OF THE GROUPS $^2D_{2n}(q)$ WHERE $q < 10^5$

 ${
m HOSSEIN\ MORADI}^{1,A}$ & MOHAMMAD REZA DARAFSHEH 2,B & ALI IRANMANESH 1,C

ABSTRACT. Let G be a finite group. The prime graph $\Gamma(G)$ of G is defined as follows: The set of vertices of $\Gamma(G)$ is the set of prime divisors of |G| and two distinct vertices p and p' are connected in $\Gamma(G)$, whenever G has an element of order pp'. A non-abelian simple group P is called recognizable by prime graph if for any finite group G with $\Gamma(G) = \Gamma(P)$, G has a composition factor isomorphic to P. In [4] proved finite simple groups $^2D_n(q)$, where $n \neq 4k$ are quasirecognizable by prime graph. Now in this paper we discuss the quasirecognizability by prime graph of the simple groups $^2D_{2k}(q)$, where $k \geq 9$ and q is a prime power less than 10^5 .

1. Introduction

Let G be a finite group. By $\pi_e(G)$ we denote the set of elements orders of G. For an integer n we define $\pi(n)$ as the set of prime divisors of n, and we set $\pi(G)$ for $\pi(|G|)$. The prime graph of the Gruenberg-Kegel graph of G is denoted by $\Gamma(G)$ and is graph with vertices set $\pi(G)$ in which two distinct vertices p and q are joined by an edge if and only if $pq \in \pi(G)$, and in this case we will write $p \sim q$.

A subset of vertices of $\Gamma(G)$ is called an independent subset of $\Gamma(G)$ if its vertices are pairwise nonadjacent. Denote by t(G) the maximal number of primes in $\pi(G)$ pairwise nonadjacent in $\Gamma(G)$. Also we denote by t(2,G) the maximal number of vertices in the independent sets of $\Gamma(G)$ containing 2. A finite nonabelian simple group P is called quasirecognizable by prime graph, if every finite group G with $\Gamma(G) = \Gamma(P)$ has a composition factor isomorphic to P. Also P is called recognizable by prime graph if $\Gamma(G) = \Gamma(P)$ implies that $G \cong P$.

In [3] and [5], finite groups with the same prime graph as $\Gamma(PSL(2,q))$, where q is a prime power, are determined. In [7, 8, 9] finite groups with the same prime graph as $\Gamma(L_n(2))$, $\Gamma(U_n(2))$, $\Gamma(D_n(2))$, $\Gamma(^2D_n(2))$ and $\Gamma(^2D_{2k}(3))$ are obtained. Also in [10] it is proved that if p is a prime less than 1000 and for suitable n, the finite simple groups $L_n(p)$, $U_n(p)$ are quasirecognizable by prime graph. Now as the main result of this paper, we prove the following theorem:

Main Theorem. The finite simple group ${}^2D_{2k}(q)$, where $k \geq 9$ and $q < 10^5$ is quasirecognizable by prime graph.

Throughout this paper, all groups are finite and by a simple group we mean nonabelian simple groups. All further unexplained notations are standard and the reader is referred to [2].

²⁰⁰⁰ Mathematics Subject Classification. AMS Classification: 20D05, 20D60, 20D66. Key words and phrases. prime graph; simple group; orthogonal groups; quasirecognition.

2

HOSSEIN MORADI & MOHAMMAD REZA DARAFSHEH & ALI IRANMANESH

2. Preliminary Results

Lemma 2.1. [16, Theorem 1] Let G be a finite group with $t(G) \ge 3$ and $t(2,G) \ge 2$. Then the following hold:

(1) there exists a finite nonabelian simple group S such that

$$S \le \bar{G} = G/K \le Aut(S)$$

for the maximal normal soluble subgroup K of G.

- (2) for every independent subset ρ of $\pi(G)$ with $|\rho| \geq 3$ at most one prime in ρ divides the product $|K| \cdot |\bar{G}/S|$. In particular, t(S) > t(G) 1.
- (3) one of the following holds:
 - (a) every prime $r \in \pi(G)$ nonadjacent to 2 in $\Gamma(G)$ does not divide the product $|K| \cdot |\bar{G}/S|$; in particular, $t(2,S) \geq t(2,G)$;
 - (b) there exists a prime $r \in \pi(K)$ nonadjacent to 2 in $\Gamma(G)$; in which case t(G) = 3, t(2,G) = 2, and $S \cong A_7$ or $L_2(q)$ for some odd q.

Remark 2.2. In Lemma 2.1, for every odd prime $p \in \pi(S)$, we have $t(p, S) \ge t(p, G) - 1$.

If q is a natural number, r is an odd prime and (q,r)=1, then by e(r,q) we denote the smallest natural number m such that $q^m \equiv 1 \pmod{r}$. Given an odd q, put e(2,q)=1 if $q \equiv 1 \pmod{4}$ and put e(2,q)=2 if $q \equiv -1 \pmod{4}$. Using Fermat's little theorem we can see that if r is an odd prime such that $r \mid (q^n-1)$, then $e(r,q) \mid n$.

Lemma 2.3. [20, Proposition 2.5] Let $G = D_n^{\varepsilon}(q)$, where q is power of prime p. Define

$$\eta(m) = \begin{cases} m, & \text{if } m \text{ is odd;} \\ m/2, & \text{otherwise.} \end{cases}$$

Suppose r, s are odd primes and $r, s \in \pi(D_n^{\varepsilon}(q)) \setminus \{p\}$. Put k = e(r,q), l = e(s,q), and $1 \leq \eta(k) \leq \eta(l)$. Then r and s are non-adjacent if and only if $2\eta(k) + 2\eta(l) > 2n - (1 - \varepsilon(-1)^{k+l})$ and k and l satisfy the following condition:

$$\frac{l}{k}$$
 is not an odd integer,

and, if $\varepsilon = +$, then the chain of equalities:

$$n = l = 2\eta(l) = 2\eta(k) = 2k$$

is not true.

Lemma 2.4. [20, Proposition 2.3] Let G be one of simple groups of Lie type, $B_n(q)$ or $C_n(q)$, over a field of characteristic p. Define

$$\eta(m) = \begin{cases} m, & \text{if } m \text{ is odd;} \\ m/2, & \text{otherwise.} \end{cases}$$

Let r, s be odd primes with r, $s \in \pi(G) \setminus \{p\}$. Put k = e(r,q) and l = e(s,q), and suppose that $1 \le \eta(k) \le \eta(l)$. Then r and s are non-adjacent if and only if $\eta(k) + \eta(l) > n$, and k, l satisfy to:

 $\frac{1}{k}$ is not an odd natural number.

QUASIRECOGNITION BY PRIME GRAPH OF THE GROUPS $^2D_{2n}(q)$ WHERE $q < 10^5$ 3 **Lemma 2.5.** [19, Proposition 2.1] Let $G = L_n(q)$, where q is power of prime p. Let r and s be odd primes and $r, s \in \pi(G) \setminus \{p\}$. Put k = e(r,q) and l = e(s,q) and assume that $2 \le k \le l$. Then r and s are nonadjacent if and only if k + l > n and k does not divide l.

Lemma 2.6. [19, Proposition 2.2] Let $G = U_n(q)$, where q is power of prime p. Define

$$\nu(m) = \begin{cases} m, & m \equiv 0 \pmod{4}; \\ m/2, & m \equiv 2 \pmod{4}; \\ 2m, & m \equiv 1 \pmod{2}. \end{cases}$$

Let r and s be odd primes and r, $s \in \pi(G) \setminus \{p\}$. Put k = e(r,q) and l = e(s,q) and suppose that $2 \le \nu(k) \le \nu(l)$. Then r and s are nonadjacent if and only if $\nu(k) + \nu(l) > n$ and $\nu(k)$ does not divide $\nu(l)$.

For every Lemmas 2.3 and 2.6, simultaneously we define the following function:

$$\nu'(m) = \left\{ \begin{array}{ll} m, & \varepsilon = +; \\ \nu(m), & \varepsilon = -. \end{array} \right.$$

which we will use in the proofs. We note that a prime r with e(r,q) = m is called a primitive prime divisor of $q^m - 1$ (obviously, $q^m - 1$ can have more than one primitive prime divisor).

Lemma 2.7. (Zsigmondy's theorem) [22] Let p be a prime and let n be a positive integer. Then one of the following holds:

- (1) there is a primitive prime p' for $p^n 1$, that is, $p' \mid (p^n 1)$ but $p' \nmid (p^m 1)$, for every $1 \le m < n$,
- (2) p = 2, n = 1 or 6,
- (3) p is a Mersenne prime and n = 2.

3. Proof of the Main Theorem

Throughout this section, we suppose that $D := {}^2D_{2k}(p^{\alpha})$ where $k \geq 9$, $2 < p^{\alpha} < 10^5$ and G is a finite group such that $\Gamma(G) = \Gamma(D)$. We denote a primitive prime divisors of $q^i - 1$ by r_i and a primitive prime divisors of $q'^i - 1$ by r_i' , where $q' \neq q$.

By [19, Tables 4, 6, 8], we deduce that $t(D) \ge 14$ and $t(2, D) \ge 2$. Therefore $t(G) \ge 14$ and $t(2, G) \ge 2$. Now by Lemma 2.1, it follows that there exists a finite nonabelian simple group S such that

$$S \leq \bar{G} := G/K \leq \operatorname{Aut}(S)$$

where K is the maximal normal solvable subgroup of G. Also, $t(S) \geq t(G) - 1$ and $t(2, S) \geq t(2, G)$ by Lemma 2.1. Therefore $t(S) \geq 13$ and $t(2, S) \geq 2$. On the other hand, by [19, Tables 2, 9], if S is isomorphic to a sporadic or an exceptional simple group of Lie type, then $t(S) \leq 12$. This implies that S is not isomorphic to any sporadic and any exceptional simple group of Lie type.

In the sequel, we consider each possibility for S.

Lemma 3.1. S is not isomorphic to any alternating group.

HOSSEIN MORADI & MOHAMMAD REZA DARAFSHEH & ALI IRANMANESH

Proof. Suppose that $S \cong A_m$, where $m \geq 5$. Since $t(S) \geq 13$, Lemma 2.1, we get that $m \geq 61$ and so $\{47, 59\} \subseteq \pi(S)$.

Case 1. Let $\{47, 59\} \nsubseteq \pi(q^2-1)$, where $q = p^{\alpha} < 10^5$. Therefore we get that $e(47, q) \ge 23$ or $e(59, q) \ge 29$. $\{47, 59\} \subseteq \pi(S)$. Hence G contains an element $a \in A_m$, such that $e(a, q) \ge 23$, which implies that $n \ge 24$. Now we have $\min\{t(47, G), t(59, G)\} \ge 19$. Hence, according to Remark 2.2, $\min\{t(47, S), t(59, S)\} \ge 18$ in S. On the other hand, 47 is not connected to the prime numbers in the interval [m - 46, m] in the prime graph of A_m and similarly, 59 is not connected to the prime numbers in the interval [m - 58, m], in the prime graph of A_m . But these intervals contains at most 16 prime numbers, and this implies that t(S) < t(G) - 1, a contradiction.

Case 2. Let $\{47, 59\} \subseteq \pi(q^2 - 1)$, where $q = p^{\alpha} < 10^5$. Using GAP, we get that: $q \in A := \{11093, 21713, 27259, 28201, 38351, 38821, 39293, 44839, 55931, 61007, 66553, 93811, 99829\}.$

First let $q \in A \setminus \{21713\}$. Then we have $e(23, q) \ge 11$ and so similarly to Case 1, we get that t(23, G) - 1 > t(23, S), a contradiction.

Let q = 21713. Since e(19, q) = 18, again similarly to Case 1, we get that a contradiction.

Lemma 3.2. If S is isomorphic to a classical simple group of Lie type over a field of characteristic p, then $S \cong D$.

Proof. Let S be a nonabelian simple group of Lie type over GF(q'), $q' = p^{\beta}$. By the hypothesis,

$$S \le \bar{G} := G/N \le \operatorname{Aut}(S),$$

where N is the maximal normal solvable subgroup of G. In the sequel, we denote by r_i , a primitive prime divisor of $q^i - 1$ and denote by r'_i , a primitive prime divisor of $q'^i - 1$. We remark that $\{p, r_{2n}\} \subseteq \pi(S)$ and $|\rho(p, G) \cap \pi(S)| \ge 3$ by Lemma 2.1.

Now we consider the following cases:

Case 1. Let $r_{2n-2} \in \pi(S)$. Also let p_1 and p_2 be two primitive prime divisors of $p^{(2n-2)\alpha}-1$ and $p^{2n\alpha}-1$, respectively. So we may assume that p_1 and p_2 are r_{2n-2} and r_{2n} , respectively. This implies that $\{r_{2n-2}, r_{2n}\} \subseteq \pi(S)$. Thus r_{2n-2} is a primitive prime divisor of q'^s-1 and r_{2n} is a primitive prime divisor of q'^t-1 , where $s=e(r_{2n-2},p^\beta)$ and $t=e(r_{2n},p^\beta)$. It follows that $(2n-2)\alpha \mid s\beta$ and $2n\alpha \mid t\beta$. On the other hand, using Zsigmondy's theorem, we conclude that $t\beta \leq 2n\alpha$ and so $t\beta = 2n\alpha$. Also since 2n < 2(2n-2), we have $s\beta = (2n-2)\alpha$ and s < t.

Now we consider each possibility for S, separately. If $\rho(p, S) = \{r'_i \mid i \in I\} \cup \{p\}$, then using the results in [19], each $r'_i \in \pi(S)$, where $j \notin I$, is adjacent to p in $\Gamma(S)$.

Subcase 1.1. Let $S \cong L_m(q')$. By [19, Proposition 2.6], we see that each prime divisor of $|L_m(q')|$ is adjacent to p, except r'_m and r'_{m-1} . Hence $\rho(p,S) = \{p,r'_{m-1},r'_m\}$. Therefore p_1 and p_2 are some primitive prime divisors of $q'^m - 1$ and $q'^{m-1} - 1$. Since s < t, we conclude that m = t and m - 1 = s. Hence $2n\alpha = m\beta$ and $(2n - 2)\alpha = (m - 1)\beta$. Consequently, we get that $\beta = 2\alpha$ and m = n, that is $S \cong L_n(p^{2\alpha})$. Then S has a maximal torus of order $(p^{2n\alpha} - 1)/((p^{2\alpha} - 1)(n, p^{2\alpha} - 1))$, say T. Obviously, $r_n, r_{2n} \in \pi(T)$.

QUASIRECOGNITION BY PRIME GRAPH OF THE GROUPS $^2D_{2n}(q)$ WHERE $q < 10^5$ 5 Therefore $r_n \sim r_{2n}$ in $\Gamma(L_n(p^{2\alpha}))$, whereas $r_n \nsim r_{2n}$ in $\Gamma(G)$, by Lemma 2.3, which is a contradiction

Subcase 1.2. Let $S \cong U_m(q')$. If m = 3, then $\rho(p, S) = \{p, r'_1 \neq 2, r'_6\}$ and so s = 1 and t = 6, hence $(2n - 2)\alpha = \beta$ and $2n\alpha = 6\beta$. Therefore n = 6/5, a contradiction.

If $m \equiv 0 \pmod{4}$, then $\rho(p,S) = \{p, r'_{2m-2}, r'_m\}$ and so s = m and t = 2m - 2, hence $(2n-2)\alpha = m\beta$ and $2n\alpha = (2m-2)\beta$. Then n = (2m-2)/(m-2) and so n = 3, a contradiction.

If $m \equiv 3 \pmod{4}$, then $\rho(p,S) = \{p, r'_{(m-1)/2}, r'_{2m}\}$. Therefore s = (m-1)/2 and t = 2m. Hence $(2n-2)\alpha = (m-1)\beta/2$ and $2n\alpha = 2m\beta$. Now easy computation shows that it is impossible.

If $m \equiv 1, 2 \pmod{4}$, then similarly to the above discussion, we get a contradiction.

Subcase 1.3. Let $S \cong B_m(q')$ or $C_m(q')$. Since $t(p,S) \geq 3$, using [19, Tables 4], we get that m is odd. In this case $\rho(p,S) = \{p, r'_m, r'_{2m}\}$. Hence s = m and t = 2m and so $(2n-2)\alpha = m\beta$ and $2n\alpha = 2m\beta$, which implies that n = 2, a contradiction.

Let $S \cong {}^2D_m(q')$, where m is odd. Since $\rho(p,S) = \{p, r'_{2m-2}, r'_{2m}\}$, we conclude that $(2n-2)\alpha = (2m-2)\beta$ and $2n\alpha = 2m\beta$ and so m=n, which is impossible, since n is even.

Similarly, we can prove that $S \ncong {}^2D_m(q')$, where m is even and $S \ncong D_m(q')$.

Case 2. Let $r_{2n-2} \notin \pi(S)$. Hence $r_{n-1} \in \pi(S)$. Let p_1 and p_2 be as r_{n-1} and r_{2n} , respectively. Therefore r_{n-1} and r_{2n} are primitive prime divisors of $q'^s - 1$ and $q'^t - 1$, respectively, where $s = e(r_{n-1}, p^{\beta})$ and $t = e(r_{2n}, p^{\beta})$. Now we conclude that $(n-1)\alpha \mid s\beta$ and $2n\alpha \mid t\beta$. On the other hand, using Zsigmondy's theorem, we conclude that $t\beta \leq 2n\alpha$ and so $t\beta = 2n\alpha$. If $s\beta > (n-1)\alpha$, then using Zsigmondy's theorem we conclude that $s\beta = (2n-2)\alpha$, which implies that $r_{2n-2} \in \pi(S)$, which is a contradiction. Hence we suppose that $s\beta = (n-1)\alpha$.

Subcase 2.1. Let $S \cong L_m(q')$, where $q' = p^{\beta}$. We know that $\rho(p, S) = \{p, r'_{m-1}, r'_m\}$. Hence t = m and s = m - 1 and $2n\alpha = m\beta$ and $(n - 1)\alpha = (m - 1)\beta$. These equations imply that m = 2 - 2/(n + 1), which is impossible.

Subcase 2.2. Let $S \cong {}^2D_m(q')$, where m is odd. We note that $\rho(p, S) = \{p, r'_{2m-2}, r'_{2m}\}$ and so $(n-1)\alpha = (2m-2)\beta$ and $2n\alpha = 2m\beta$ and so m = 2-2/(n+1), which is impossible.

Subcase 2.3. Let $S \cong {}^2D_m(q')$, where m is even. Since $\rho(p,S) = \{p, r'_{m-1}, r'_{2m-2}, r'_{2m}\}$, we get that $2n\alpha = 2m\beta$ and $(n-1)\alpha = (2m-2)\beta$ or $(n-1)\alpha = (m-1)\beta$. If $(n-1)\alpha = (2m-2)\beta$, then we get that m = 2 - 2/(n+1), which is impossible. Hence $(n-1)\alpha = (m-1)\beta$, which implies that m = n and $\alpha = \beta$, and so $S \cong D$, which is a contradiction, since $r_{2n-2} \notin \pi(S)$.

We can use a similar proof for groups $U_m(q')$, $B_m(q')$, $C_m(q')$ and $D_m(q')$ and get a contradiction. We omit the proof for convenience.

Lemma 3.3. If S is isomorphic to a classical simple group of Lie type over a field of characteristic $p' \neq p$, then $S \ncong D$.

Proof. Let S be isomorphic to a classical simple group of Lie type over a field with q' elements, where $q' = p'^{\beta}$. Using [19, Table 4], $t(p', S) \leq 4$ and so Lemma 2.1 implies that $t(p', G) \leq 5$. On the other hand, by Lemma 2.3, we deduce that if $r \in \pi(G) \setminus \{r_1, r_2, r_3, r_4, r_6\}$, then t(r, G) > 5. Hence $p' \in \{r_1, r_2, r_3, r_4, r_6\}$ and so $p' \mid (q^2 + 1)(q^6 - 1)$.

HOSSEIN MORADI & MOHAMMAD REZA DARAFSHEH & ALI IRANMANESH

Consider $r'_3 \in \pi(S) \subseteq \pi(G)$ and $3 = e(r'_3, q') \le e(r'_3, p')$. By Lemmas 2.3, 2.4, 2.5 and 2.6 we get that for each classical simple group of Lie type S, we have $t(r_3', S) \leq 6$. On the other hand using Remark 2.2, we have $t(r_3', G) \leq t(r_3', S) + 1$ and so $t(r_3', G) \leq 7$. We note that $r_3' \in \pi(S) \subseteq \pi(G) = \pi(^2D_{2k}(q))$. Hence, by Lemma 2.3, it follows that $e(r'_3,q) \leq 10$. Since $t(S) \geq 13$, we conclude that $r'_i \in \pi(S)$, where $2 \leq i \leq 10$ and we have similar argument for r_i' , $2 \le i \le 10$ and $e(r_i', q) \le 2i + 4$. Hence according above discussion, if $p' \in \pi((q^2 + 1)(q^6 - 1))$, then the following condi-

tion holds:

If
$$r'_{i} \in \pi(p'^{i} - 1)$$
, then $e(r'_{i}, q) \le 2i + 4$, where $2 \le i \le 10$.

Using GAP, we get that the above condition holds only for q = 54251, where p' = 2. Since $t(S) \ge 13$, we conclude that $r'_{13} \in \pi(S)$. If p' = 2 and q = 54251, then $r'_{13} = 8191$ and so e(8191,q) = 1365, which contradicts to Remark 2.2. Therefore by the above argument, we get that S is not isomorphic to any classical simple group of Lie type over a field of characteristic $p' \neq p$.

Using the Classification Theorem of finite simple groups and Lemmas 3.1, 3.2 and 3.3, we get that the finite simple group ${}^{2}D_{2k}(q)$, where $k \geq 9$ and $q < 10^{5}$ is quasirecognizable by prime graph.

References

- [1] A. A. Buturlakin, Spectra of finite linear and unitary groups, Algebra and Logic, 47 (2) (2008), 91 - 99.
- [2] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of finite groups, Oxford University Press, Oxford (1985).
- [3] B. Khosravi, n-Recognition by prime graph of the simple group PSL(2,q), J. Algebra and its Appl., **7 (6)** (2008), 735–748.
- [4] B. Khosravi, A. Babai, Simple groups with the same prime graph as ${}^{2}Dn(q)$, Publications De Linstitut Mathmatique, 98 (112) (2015), 251263.
- [5] B. Khosravi, B. Khosravi and B. Khosravi, 2-Recognizability of $PSL(2, p^2)$ by the prime graph, Sib. Math. J., 49 (4) (2008), 749–757.
- B. Khosravi, B. Khosravi and B. Khosravi, On the prime graph of PSL(2, p) where p > 3 is a prime number, Acta. Math. Hungarica, 116 (4) (2007), 295–307.
- [7] B. Khosravi and H. Moradi, Quasirecognition by prime graph of finite simple groups $L_n(2)$ and $U_n(2)$, Acta. Math. Hungarica, **132** (1-2) (2011) 140-153.
- [8] B. Khosravi and H. Moradi, Quasirecognition by prime graph of some orthogonal groups over the binary field, J. Algebra Appl., **11** (3) (2012) 15 pp...
- [9] B. Khosravi and H. Moradi, Quasire cognition by prime graph of finite simple groups $^2D_n(3)$, International journal of group theory, **3 (4)** (2014), pp. 47–56.
- [10] A. Mahmoudifar and B. Khosravi, On quasirecognition by prime graph of the simple groups $A_n^+(p)$ and $A_n^-(p)$, J. Algebra Appl., **14** (1) (2015) 12 pp...
- [11] V. D. Mazurov, Characterizations of groups by arithmetic properties, Algebra Colloq., 11 (1) (2004), 129-140.
- [12] V. D. Mazurov, Characterizations of finite groups by sets of their element orders, Algebra Logic, 36 **(1)** (1997), 23–32.
- [13] V. D. Mazurov and A. V. Zavarnitsine, On element orders in coverings of the simple groups $L_n(q)$ and $U_n(q)$, Proceedings of the Steklov Institute of Mathematics, Suppl. (1) (2007), 145–154.
- [14] E. Stensholt, Certain embedding among finite groups of Lie type, J. Algebra, 53 (1) (1978), 136–187.
- [15] A. V. Vasil'ev, On connection between the structure of a finite group and the properties of its prime graph, Sib. Math. J., 46 (3) (2005), 396–404.

QUASIRECOGNITION BY PRIME GRAPH OF THE GROUPS $^2D_{2n}(q)$ WHERE $q < 10^5$

- [16] A. V. Vasil'ev and I. B. Gorshkov, On recognition of finite groups with connected prime graph, Sib. Math. J., 50 (2) (2009), 233–238.
- [17] A.V. Vasil'ev and M.A. Grechkoseeva, On recognition of the finite simple orthogonal groups of the dimension 2^m , $2^m + 1$ and $2^m + 2$ over a field of characteristic 2, Sib. Math. J., **45** (3) (2004), 420–432.
- [18] A.V. Vasil'ev, M.A. Grechkoseeva and V. D. Mazurov, On finite groups isospectral to simple symplectic and orthogonal groups, *Sib. Math. J.*, **50** (6) (2009), 965–981.
- [19] A. V. Vasil'ev and E. P. Vdovin, An adjacency criterion for the prime graph of a finite simple group, *Algebra Logic*, **44 (6)** (2005), 381–406.
- [20] A. V. Vasil'ev and E. P. Vdovin, Cocliques of maximal size in the prime graph of a finite simple group, *Algebra Logic*, **50** (4) (2011), 291–322.
- [21] A. V. Zavarnitsin, Recognition of finite groups by the prime graph, Algebra Logic, 43 (4) (2006), 220–231.
- [22] K. Zsigmondy, Zur theorie der potenzreste, Monatsh. Math. Phys., 3 (1892), 265–284.
- 1) Department of Mathematics, Tarbiat Modares University, Tehran, Iran, 2) School of Mathematics, statistics and computer, College of Science, University of Tehran, Tehran, Iran

E-mail address: A) moradi61hh@yahoo.com, B) darafsheh@ut.ac.ir, C) Iranmana@yahoo.com