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Abstract: This article addresses reinsurance decision making process, which involves the insurance 8 
company and the reinsurance company, and is negotiated through reinsurance intermediaries. The 9 
article proposes a decision flow to model the reinsurance design and selection process. In contrast 10 
to existing literature on pure proportional reinsurance or stop-loss reinsurance, this article focuses 11 
on the combination into Proportional-Stop-loss reinsurance design which better addresses interest 12 
of both parties. In terms of methodology, the significant contribution of the study is to incorporate 13 
Multiple Attribute Decision Making (MADM) into modelling the reinsurance selection. The Multi-14 
Objective Decision Making (MODM) model is applied in designing reinsurance alternatives. Then 15 
MADM is applied to aid insurance companies in choosing the most appropriate reinsurance 16 
contract. To illustrate the feasibility of incorporating intelligent decision supporting system in 17 
reinsurance market, the study includes a numerical case study using simulation software @Risk in 18 
modeling insurance claims, and programming in MATLAB to realize MADM. Managerial 19 
implications could be drawn from the case study results. More specifically, when choosing the most 20 
appropriate reinsurance, insurance companies should base their decision on multiple 21 
measurements instead of single-criteria decision making models for their decisions to be more 22 
robust.  23 

Keywords: multi-attribute decision making; reinsurance; proportional reinsurance; non-24 
proportional reinsurance; TOPSIS  25 

 26 

1. Introduction 27 

1.1 Background 28 

Reinsurance is generally known as “the insurance for insurance”. Following similar concepts 29 
and principles as insurance, it provides financial compensation to insurance companies for the risk 30 
of large losses. The reinsured (or “insurance companies”) buys reinsurance from the reinsurer (or 31 
“reinsurance companies”) in exchange for loss limitation, revenue protection and free up capital. In 32 
recent years, reinsurance has grown in both market value and diversity due to global trends such as 33 
the global climate change, increase in insurance mega losses, volatility in equity markets and 34 
emerging risks such as terrorism. Regardless of the financial size, an insurance company rarely 35 
retains all of their risk. Thus it is of interest to understand the decision making process of reinsurance 36 
contract, which in reality is usually done with the negotiation intermediaries, i.e. the reinsurance 37 
brokers. Typically, there are two categories of reinsurance decisions, both of which will be addressed 38 
in this study: 39 

• Optimal reinsurance form under given criteria; 40 
• Given the reinsurance form of decision, decide on the reinsurance parameters. (e.g. optimal 41 

retention portion for proportional reinsurance, optimal retention limit for stop-loss reinsurance, 42 
etc.) 43 
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The common forms of reinsurance are shown in Figure A1 and their complete definitions are 44 
included in Appendix A. This study focuses on treaty reinsurance which covers an entire portfolio 45 
with multiple single risks. Both facultative and treaty reinsurance could be further broken down into 46 
proportional reinsurance and non-proportional reinsurance (Carter 1979). Early research has shown 47 
that under variance risk measurement with fixed premium, stop-loss contract is the optimal 48 
reinsurance form for reinsurance buyers ((Borck 1960) and (Hürlimann 2011)), whereas that quota-49 
share best addresses the interest of the reinsurer (Vajda 1962). Clearly, there would be conflicts of 50 
choice between two parties. Thus, this study addresses a combinational form of proportional and 51 
stop-loss treaty reinsurance (See Section 2.2), following the definition by Samson and Thomas (1985). 52 
Quota-share reinsurance and stop-loss reinsurance could be considered as special cases of 53 
Proportional-Stop-Loss reinsurance. In deciding the optimal reinsurance parameters, this study 54 
attempts to utilize Multiple Attribute Decision Making (MADM) which improves from previous 55 
literatures on single criterion. 56 

1.2 Papaer Development 57 

The paper is organized as follows. Section 2 recalls recent research that this study is built upon. 58 
Section 3 develops the decision flow based on the form of Proportional-Stop-loss Reinsurance and 59 
determines the optimal reinsurance parameters using Multi-Objective Decision Making (MODM). 60 
Section 4 includes a numerical case study, which models claims using @Risk and implements MADM 61 
for buyer’s selection using MATLAB. Section 5 discusses the contributions, limitations, further 62 
directions and concludes the study. 63 

1.3 Literature Review 64 

Decision analysis models on single criterion have been extensively discussed both for the reinsurer 65 
(see Appendix B.1) in structuring reinsurance and for the reinsured (see Appendix B.2) for evaluating 66 
and selecting the most appropriate reinsurance product (Samson and Thomas 1985). Only recently did 67 
researchers begin to look into the cooperative behavior of both parties to reach a joint-party optimality 68 
(see Appendix B.3). In addition, recent growth of promising decision analysis based on multiple criteria 69 
has ignited sparks in the reinsurance field of study (See Appendix B.2.4). Complete review of existing 70 
decision-making methodologies in reinsurance is included in this study in Appendix B. In particular, 71 
this study is developed upon three recent researches ((Bazaz and Najafabadi 2015), (Bulut Karageyik 72 
and Şahin 2017) and (Payandeh-Najafabadi and Panahi-Bazaz 2017)) which focus on Multi-Attribute 73 
Decision Making (MADM) and Proportional-Stop-loss Reinsurance. 74 

Basak and David (2015) first proposes to use MADM to the problem of selecting optimal 75 
reinsurance level under competing criteria. In choosing the input alternatives, they use ruin probability 76 
as a constraint, i.e. the insurance company should not have a probability of ruin greater than 1%. Loss 77 
distribution was modeled as the translated gamma process and the reinsurance forms considered was 78 
pure proportional and pure stop-loss reinsurance. The study also includes comparison with single 79 
criterion decision making and concludes that MADM is extremely insightful for selecting optimal 80 
reinsurance. 81 

Later, Basak and Sule (2017) improves on the research to include Value-at-Risk (VaR) 82 
measurement into consideration, specifically targeting at optimal retention level in excess-of-loss 83 
reinsurance design. Key measurement criteria are expected profit, expected shortfall, finite time ruin 84 
probability and variance of risk. By comparing and contrasting different MADM techniques, the 85 
authors safely conclude that under the case of reinsurance where correlation between measurements 86 
are low enough, different MADM techniques will generate similar optimal retention level. 87 

However, both studies were focusing either pure proportional reinsurance or pure non-88 
proportional reinsurance, with neither considering the combination of both. The only comprehensive 89 
discussion of proportional-stop-loss reinsurance up-to-date is conducted by Hürlimann (2017), which 90 
took a viewpoint from both the insurer and the reinsurer. However, the limitation of this research is 91 
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that it has a narrow focus on only VaR measurement to arrive at a closed-form determination of optimal 92 
reinsurance. 93 

To the best of my knowledge, there is no previous research conducting analysis of proportional-94 
stop-loss reinsurance based on multiple measurement schemes and considering decisions from both 95 
parties. Thus, this study serves the purpose of filling this gap. More specifically, Section 3 will 96 
incorporate reinsurance into the trade procedure of deals done between two parties. Decision making 97 
models with single measurement of variance of risk will be used in modeling reinsurer offerings and 98 
MADM model will be used for best reinsurance selection by insurance company. 99 

2. Materials and Methods  100 

2.1 Decision Flow 101 

As reinsurance decision making involves the seller party (the reinsurance company, or the 102 
reinsurer) and the buyer party (the insurance company, or the reinsured), it could be safely viewed 103 
as a two-sided trade process, which involves negotiation between the selling and buying party. 104 
Furthermore, reinsurance deals could adapt to established two-sided trade matching models 105 
P1(Figure 1) or P2 (Figure 2) with the existence of a broker (Liang 2014). 106 

 107 

Figure 1. Trade procedure P1 (Liang, 2014) 108 

 109 

Figure 2. Trade procedure P2 (Liang, 2014) 110 

For the first trade procedure P1, both reinsurer and the reinsured exchange information through 111 
the broker. Previous researches have suggested to model P1 using two-sided cooperative game with 112 
incomplete information (See (Borch 1960) and (Wang 2003)), while little literature has discussed about 113 
the reinsurance deals settled under procedure P2. Under P2, the seller (the reinsurer) will provide 114 
several plans for the buyer to choose from. However, noticing the prevalence of procedure P2 in 115 
reinsurance trading practice, this study attempts to model reinsurance scenario under P2 by using 116 
MODM in providing reinsurance alternatives and by using MADM in selecting appropriate 117 
reinsurance design for the reinsured. Thus, the research design develops as follows in Flowchart 3 118 
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 119 

Figure 3. Research development flowchart 120 

2.2 The Proportional-Stop-Loss Reinsurance Model 121 

The paper discusses Proportional-Stop-Loss reinsurance adopting definitions from (Samson and 122 
Thomas 1985), (Hürlimann 2011) and (Payandeh-Najafabadi and Panahi-Bazaz 2017). Under which, 123 
given a single loss of X and a reinsurance arrangement with parameters (ܽ,ܯ) the reinsurer is 124 
bonded to pay a claim amount of: 125 ܺ௥ = ܽ(ܺ ା(ܯ− ⇔ ܺ௥ = ൜ 0 ݂݅ܺ ≤ ܺ)ܽܯ (ܯ− ݂݅ܺ >  (1) ܯ

where a is the fraction ceded to the reinsurer and M is the retention limit. The reinsured will pay the 126 
rest of the claim ௜ܺ = ܺ − ܺ௥. When M=0, the Proportional-Stop-Loss model becomes the classical 127 
quota-share reinsurance model, and when a=1, it becomes the classical stop-loss reinsurance model. 128 

2.4 Variable Definition 129 

To ensure the consistency of notations in this paper, we define the key variables as Table 3.1. 130 
Almost all definitions follow previous literature, and necessary elaborations will be given in later 131 
sections. 132 

Table 1. Key variable definitions 133 

Variable Variable Explanationݐ the time period of one contract, in our case study ݐ = 1; ܰ the number of claims incurred in period t (during one contract); ܹ(ݐ) the wealth holding by insurance company at time t; ߞ the loading factor of reinsurance premium paid reinsurer; ߠ the loading factor of the premium paid to the reinsured; ܺ the claim amount of one single loss; ௜ܺ the claim amount payable by insurance company (reinsured); ܺ௥ the claim amount payable by reinsurance company (reinsurer); ܵ(ݐ) the aggregate loss of an insurance portfolio; ௜ܵ(ݐ) the aggregate claim (loss) incurred to insurance company (reinsured); ܵ௥(ݐ) the aggregate claim (loss) incurred to reinsurance company (reinsurer); 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 July 2017                   doi:10.20944/preprints201707.0015.v1

http://dx.doi.org/10.20944/preprints201707.0015.v1


 5 of 21 

 

ௌܨ ;ௌ(ܺ) the cumulative distribution function of Sܨ = 1 − ,the Proportional-Stop-Loss reinsurance parameter (ܯ,ܽ) ;ௌ(ܺ) the survival distribution function of Sܨ ܺ௥ = ܽ(ܺ ܫܨܱܴܲ ;ߙ ఈ the expected shortfall with a confidence level ofܵܧ ;ା; ܿ the total premium per unit time; ܿ௜ the premium gained by the insurance company; ܿ௥ the premium payable to the reinsurer(ܯ− ௜ܶ the expected profit gained by insurance company; ߰(݅) the ruin probability of insurance company’s wealth ܷ(ݐ); ௜ܷ(ݐ) the utility of insurance company at the end of period t; 

2.5 Providing Alternatives Using MODM 134 

Considering the reinsurance practices and following previous research on joint-party 135 
reinsurance problem, this study attempts to model the reinsurer pricing objectives under Value-at-136 
Risk (VaR) measurement. We attempt to formulate a model maximizing the reinsurer expected profit 137 
while minimizing the variance of profit. In deciding a reinsurance design, the reinsurer needs to 138 
specify the premium and the arrangement of reinsurance claim amount, in other words, the 139 
reinsurance premium loading factor ߞ  and the reinsurance design parameter (ܽ,ܯ) . Under the 140 
Expected Value Premium Principle, insurance premium must be at least greater than expected 141 
individual loss (Bulut Karageyik and Şahin 2017). Thus, the bi-objective model is formulated as: 142 ݉ܽݔ௔∈[଴,ଵ],ெஹ଴,఍∈[ଵ,଴] ܿ௥ ⋅ ݐ − ܵ௥݉݅݊௔∈[଴,ଵ],ெஹ଴,఍∈[ଵ,଴] ௥ܿ]ݎܸܽ ⋅ ݐ − ܵ௥]ݐ݆ܾܿ݁ݑݏ. .݋ݐ ܯ > ߞ(ߠ/ߞ)݈݊ ≥ ߠ  (2) 

where ܵ௥ is defined as the aggregated claim of loss (compounded from individual loss ܺ௥), ܿ௥ is the 143 
premium paid to reinsurance company per unit time, defined according to expected value premium 144 
principle. (Formulas in Section 2.6.1). 145 

Clearly, there is conflict between two objectives and there is no single design of (ߞ,  that 146 (ܯ,ܽ
could achieve all objectives. The closed-form optimality derivations (Hürlimann 2011) are omitted 147 
and the optimal solution would be an efficient frontier analyzed in closed form. The optimal pairs 148 
will satisfy: 149 ߞ = ݁ெ/ఒ ⋅ ߠ subject to: ߞ ≥  ߠ

 
(3) 

Note that for an increasing ceding level a, the reinsurer risk and expected profit will both increase 150 
proportionally, thus the reinsurer preference will be ambiguous for different ceding portion ܽ while 151 
fixing the pair of (ܯ,ߞ). This is in line with (Payandeh-Najafabadi and Panahi-Bazaz 2017) which 152 
suggests that optimal design (ܽ,ܯ,  but not on the 153 (ߣ ,in our case) depend on the loss distribution (ߞ
market premium (ߠ) , and does not depend on the portion retained (ܽ). Thus, it would be flexible for 154 
reinsurance company to select an appropriate ceding portion ܽ given their risk appetite and their 155 
financial capability (which is often not necessarily known by the broker). In Section 4, we will briefly 156 
discuss the resulting effects of choosing different ceding portion ܽ, based on numerical case study. 157 

Thus, the alternatives provided by the reinsurance firm will be in the form of (ܽ,ܯ,  These 158 .(ߞ
are inputing alternatives we will use to apply MADM. For illustration, Figure 6 shows the optimal 159 
pairs of (ܯ,ߞ) given other parameters in the case study. 160 

2.6 Calculating Decision Criteria 161 
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Now we need to define the selection criteria for reinsurance design. In this study, we are 162 
concerned with expected profit, expected shortfall, ruin probability and expected utility as selection 163 
criteria. All of them are calculated taking the viewpoints of reinsurance buyers (the reinsured). 164 

2.6.1 Expected Profit of Insurance Company (the Reinsured) 165 ࢏ࢀࡵࡲࡻࡾࡼ 

In general, the expected profit of the reinsured is calculated as the difference between the 166 
insurer’s income and the claims paid to the policyholders. Net premium gained by the insurance 167 
company is calculated under the Expected Value Premium Principle, defined as: 168 ܿ∗=Total Premium Income -Reinsurance Premium 

=(1 + [ܵ]ܧ(ߠ − (1 +  (4) [௥ܵ]ܧ(ߞ

The net insurance profit after considering the reinsurance arrangement is 169 ܲݐ݂݅݋ݎ௜ = ܿ∗ − ]ܧ ௜ܵ] (5) 

Our objective is to maximize the expected profit of the insurance company. 170 

2.6.2 Expected Shortfall ES஑ 171 

Expected shortfall is calculated under Value at Risk (VaR) measurement. VaR given a confidence 172 
level of (0,1)߳ߙ is defined as the smallest ݈ such that the probability of loss ܮ < ݈∗  is at least 173 ߙ 
(Bazaz and Najafabadi 2015), i.e. 174 ܸܴܽఈ(݈∗) = ݉݅݊(݈∗߳ℝ: ܮ)ݎܲ ≤ ݈∗) ≥  (6) (ߙ

Expected shortfall is the financial risk measurement to investigate market risk of the portfolio. It is 175 
calculated as the expected value of tail distribution of ܸܴܽఈ as follows: 176 ܵܧఈ(ܮ) = 11 − නߙ ܸଵఈ ܴܽ௨(ܮ)݀(7) ݑ 

An increase in retention level M will cause the insurer’s liability to insurance policyholders to 177 
increase, and thus ES will increase accordingly. In contrast, a larger ceding portion of a will release 178 
insurer from burden and thus will decrease the amount of liability held by the reinsured. Our 179 
objective is to find the optimal (a,M) pair that could minimize the expected shortfall of insurance 180 
company. 181 

2.6.3 Ruin Probability 182 

The ruin probability criterion is based on definitions of finite time ruin probability measurement. 183 
The insurer’s asset is represented as ܹ(ݐ) and is defined by: 184 

௜ܹ(ݐ) = ௜(0)ݓ + ܿ∗ ⋅ ݐ − ௜ܵ(ݐ) (8) 

In equation (8) ܿ∗ is the net premium income per unit time gained by the insurance company, 185 
and S(t) is the aggregate claim amount up to time t, which is calculated by: 186 

௜ܵ(ݐ) = ෍ ௜ܺே(௧)
௜ୀଵ  (10) 

The finite time ruin probability, ߰(ݓ଴, ,଴ݓ)߰ is given as: 187 ,(ݐ (ݐ = (ݏ)ܹ)ݎܲ < 0) for some s, 0 < ݏ ≤  (11) ݐ

In our study, the ruin probability is approximated through simulation study as the closed form 188 
ruin probability for compounding exponential loss distribution under Proportional-Stop-Loss 189 
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reinsurance design is hard to obtain. Our objective is to minimize the ruin probability of ߰(ݓ,  such 190 (ݐ
that the insurance company would be less likely to bankrupt if there is a large loss incurred. 191 

2.6.4 Expected Utility 192 

To address the utility theory used in vast literature on reinsurance optimization (Samson and 193 
Thomas 1983), the utility function of the reinsured is defined as exponential utility function, which 194 
assumes constant absolute risk aversion: 195 

௜ܷ௧( ௜ܹ(ݐ)) = −݁ି௞ௐ೔(௧) (12) 

In reality, utility function may have much more complexity and may be different for different 196 
insurance companies. However, as long as the value of utility could be obtained in numeric value, 197 
decision could be made through MADM. In deciding the optimal reinsurance alternative, one of our 198 
objectives is to maximize the expected utility of the insurance company. 199 

2.7 Selecting the Best Alternative Using MADM 200 

In Section 2, we reviewed decision analysis techniques on reinsurance decisions under single 201 
measurement. In order to model the decision of the reinsurance purchasing party (the insurance 202 
company or the reinsured) under multiple measurement criteria, this study adopts Multi-Criteria 203 
Decision Making techniques. In particular, the Technique for Order of Preference by Similarity to 204 
Ideal Solution (TOPSIS), reviewed by previous research (Bazaz and Najafabadi 2015) as the most 205 
popular MADM technique and most suitable for pure numerical criteria, is applied to the reinsurance 206 
selection problem. Furthermore, suggested by (Bulut Karageyik and Şahin 2017), the correlation 207 
between criteria in reinsurance problem is small enough to return similar results from different 208 
TOPSIS methodologies, thus in this study we choose the classical TOPSIS method to support our 209 
analysis. 210 

Following similar definitions of TOPSIS in previous study (Bazaz and Najafabadi 2015), (Ameri 211 
Sianaki 2015) and (Bulut Karageyik and Şahin 2017), we briefly describe the steps of applying the 212 
method as follows. This study attempts to implement the TOPSIS decision supporting system by 213 
storing reinsurance alternatives in Excel and processing the input matrices with MATLAB code. Part 214 
of the MATLAB code was developed with reference to previous efforts by Amari (Ameri Sianaki 215 
2015), and was revised accordingly to serve the needs of this study. Below is the complete procedure 216 
of conducting TOPSIS. 217 
1. Formulate decision matrix ܦ  with ݉ alternatives ܣଵ, ,ଶܣ . . . , ௠ܣ  and ݊  decision criteria 218 ܥଵ, ,ଶܥ . . . , ݅ ௝ forܥ ௜ onܣ ௡. The attribute value ofܥ = 1,2, . . . , ݉ and ݆ = 1,2, . . . , ݊ is represented 219 

as ݀௜௝ 220 
2. Calculate weight of the criteria using entropy technique as follows: 221 ݍ௜௚ = ݀௜௚ݔଵ௚ + .+ଶ௚ݔ . ௠௚ݔ ; ∀݃߳ሼ1,2, . . . , ܿሽ ߂௚ = ௜௚ݍ∑݇− ⋅ ;(௜௚ݍ)ଶ݃݋݈ ∀݃߳ሼ1,2, . . . , ܿሽ ݀௚ = 1 − ௚ݓ,௚߂ = ݀௚(݀ଵ+. . . +݀௚) ݓ௚′ = ௚ߣ ⋅ ଵߣ௚ݓ ⋅ ଵݓ + ଶߣ ⋅ .+ଶݓ . . ௖ߣ+ ⋅  ௖ݓ

(13) 

 222 
3. Normalize the decision matrix using the following formula: 223 ݎ௜௝ = ݀௜௝ට∑ ݀௜௝ଶ௠௜ୀଵ  (14) 
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One may notice that by scaling the criteria (multiplying a constant to ݀௜௝), the decision would 224 
not change; However, it will not necessarily return same decision for different utility functions 225 
that generate same decision under expected utility measurement as adding a constant to ݀௜௝ in 226 
the ݎ௜௝ formula will change the resulting ݎ௜௝. 227 

4. Calculate the weighted normalized decision matrix by using normalized decision matrix 228 
parameter ݎ௜௝  and weight vector ߱ = (߱ଵ, ߱ଶ, . . . , ߱௡ ) to return the weighted normalized 229 
decision matrix parameter ௜ܸ௝ = ௝߱ ⋅ ௜௝. If criteria are given same weight, ߱ଵݎ = ߱ଶ =. . . = ߱௡ =230 ଵ௡. 231 

5. Compute the vectors of positive ideal solutions and the negative ideal solutions, denoted by 232 ܵା = ( ଵܵା, ܵଶା, ܵଷା, . . . , ܵ௡ା)ܵି = ( ଵܵି , ܵଶି , ܵଷି , . . . , ܵ௡ି ) (15) 

6. Calculate the distance between each alternative and the positive and negative ideal points. The 233 
distance between alternative ܣ௜ and the positive ideal points is 234 

௜ାܦ = ඩ෍(௡
௝ୀଵ ௜ܸ௝ − ௝ܵା)ଶ, for	݅ = 1,2, . . . , ݉; (15) 

The distance between alternative and the negative ideal solutions are: 235 

௜ିܦ = ඩ෍(௡
௝ୀଵ ௜ܸ௝ − ௝ܵି )ଶ, for	݅ = 1,2, . . . , ݉; (16) 

7. Calculate the relative closeness coefficient of each alternative represented as: 236 

௜ܥ = ௜ାܦ௜ିܦ + ௜ିܦ , ௜ܥ ߳[0,1] (17) 

8. Rank the alternatives according to ܥ௜. The alternative with higher ܥ௜ value is preferred over 237 
lower ܥ௜ alternatives. 238 

A graphical representation of TOPSIS is shown in Figure 4. Each blue ball represents one 239 
available alternative. The red ball represents the negative ideal solution and the green ball represents 240 
the positive ideal solution. The blue ball that is relatively near to the green ball and away from the 241 
red ball would be the best alternative amongst all. Given at least 4 selecting criteria, it would be hard 242 
to visualize the alternatives in 3-dimensional space, thus the calculation of distance is coded using 243 
MATLAB. 244 

 245 

Figure 4. Graphical representation of TOPSIS (Chauhan and Vaish 2013) 246 
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3. Case study 247 

Following the decision flow in Section 2 this study models the reinsurance deal procedure as 248 
illustrated in Figure 5. We will choose a loss distribution model in Section 3.1, generate reinsurance 249 
offering alternatives in Section 3.2, tabulate decision matrix in Section 3.3 and finally apply MADM 250 
in selecting from alternatives in Section 3.4. 251 

 252 

Figure 5. Case study flowchart in modeling real-world reinsurance deals 253 

3.1 Loss Distribution Modeling 254 

Under treaty reinsurance which covers the entire line of insurance business handled by the 255 
insurance company, the aggregated claim ܵ  is a compounding distribution of ܰ  single risks or 256 
claims incurred during time period 257 .ݐ 

Following the majority of research study on modeling loss or claim, such as (Samson and 258 
Thomas 1985), (Bazaz and Najafabadi 2015), (Payandeh-Najafabadi and Panahi-Bazaz 2017) and 259 
(Bulut Karageyik and Şahin 2017), our case study chooses to model individual claim as exponential 260 
loss model with parameter ߤ = 100, i.e. 261 

ܺ)ݎܲ = ݔ ∗) =  ఓ௫∗ (18)ି݁ߤ

The occurrence of claim follows Poisson distribution with mean ߣ = 10, i.e. 262 

(ݐ)ܰ)ݎܲ = ݊) = !ఒ݇ି݁(௞ߣ)  (19) 

Thus, S is the compounding distribution of ܰ(ݐ) identical, independently distributed risk each 263 
with distribution X. 264 

In this case study, we set ݐ = (0)	ݑ ,1 = 1500 and original insurance premium parameter ߠ =265 0.1. 266 

3.2 Generating Alternatives from Viewpoints of Reinsurers 267 

Following Section 4.2, we define the case by setting the portion ceded as a=0.6, a=0.75, a=0.9 and 268 
a=1 respectively in assessing the differences in results when retention level is changed. The optimal 269 
pair (ܯ,ߞ) (Figure 6 with ߞ on x-axis and M on y-axis) are sought by grid search as solving Formula 270 
3.2 in mathematics form may not be succinct. 271 
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 272 

Figure 6. Optimal Pairs of reinsurance design given constant ceding portion ܽ 273 

When ߞ < 0.1, constraint ߞ <  will be violated; all points to the right and below of the efficient 274 ߠ
frontier is deemed as inferior to the points on the efficient frontier. In managerial terms, the 275 
reinsurance designs with parameters to the southeast of the efficient frontier will cause the 276 
reinsurance company to likely generate less profit while suffering from a larger risk. 277 

3.3 Constructing decision matrix 278 

For the first trial, we fixed the ceding portion at a=0.6 and select 35 pairs of the optimal (ܯ,ߞ) 279 
as the reinsurance design parameters for TOPSIS alternatives. Profit for insurance company and 280 
expected utility after claims are calculated using theoretical mean of the random distributions. 281 
However, given the claim process as compounding exponential loss with Poisson occurrence, ruin 282 
probability and expected shortfall at 95% confidence level are hard to obtain in analytic terms. Thus, 283 
by using Monte Carlo Simulation with 100,000 iterations, loss and claim is modeled as exponential 284 
value with Poisson occurrence and ܵܧ଴.ଽହ and ruin probability ߰(ܽ,ܯ) are calculated in Excel as 285 
follows: 286 

 287 
Figure 7. Screenshot of criteria calculation using Monte Carlo Simulation with @Risk 288 
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By retrieving criteria value and reformatting in the tabulated workbook for processing TOPSIS, 289 
the decision matrix is built as shown in Figure 8 and is ready for processing using MATLAB coded 290 
developed in Section 2. 291 

 292 
Figure 8.  Build decision matrix for preparation of TOPSIS 293 

3.4 Selecting alternative using TOPSIS 294 

With above alternatives as inputting decision matrix, we could observe that if we only consider 295 
minimizing expected shortfall and ruin probability, the profit or expected utility will be exceptionally 296 
low. The color scale shows intuitively this conflict with red representing smallest value and green 297 
representing largest value. We define the weight vector of criteria as all equals (equal values in blue 298 
cells Range F39:I39). Calling the Matlab function built earlier in Section 2 by executing the following 299 
code: 300 

topsis (decisionMakingMatrix,lambdaWeight,criteriaSign) 

we could get normalized weight matrix, the identified ideal solutions and the distance between each 301 
alternative and the ideal optimality. All these results are stored in Excel sheet “TOPSIS OUTPUT 302 
Variables” with selection ranking results shown in Figure 9. 303 
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 304 
Figure 9. Ranking of the alternatives based on TOPSIS 305 

From the TOPSIS output, we could identify that Alternative 18 (0.27,100) is the best choice 306 
followed closely by Alternative 17 (0.26,96). Alternative 19 (0.28,103) is not far away as the third best 307 
alternative identified. Alternative 35 (0.44, 149) is the furthest from ideal solutions. Multiple trials 308 
were tested fixing a at a=0.75 (Trial 2), a=0.9 (Trial 3) and a=1 (Trial 4). Trial 4 resembles pure Excess-309 
of-loss Reinsurance to compare and contrast decision differences under different ceding portion in 310 
Proportional-Stop-loss Reinsurance design. Results of these trials are included in Appendix C. From 311 
the result, we could draw insightful managerial implications. 312 

4. Managerial Implications 313 

The result shows several interesting findings: 314 

1. The best alternative suggested by TOPSIS not necessarily optimize any one single criterion, 315 
rather, it has an overall highest ranking due to its relative weighted closeness to all four criteria. 316 
In reality, if reinsurance is chosen merely according to expected profit, the insurance company 317 
may suffer from high probability of financial crisis. On the other hand, if the decision merely 318 
considers constraining higher shortfalls, insurance company may look bad on their profit and 319 
loss statement due to low profit earned. 320 
By increasing the ceding amount from a=0.6 to a=0.75,0.9 and 1 result from Trial 1,2,3,4 suggests 321 
that the ranking of alternatives is different when parameters are changed. When ceding portion 322 
are fixed at relatively lower level (such as a=0.6 to a=0.75) the best alternative to choose will have 323 
the retention limit equaling to mean value of loss. Thus, if the given reinsurance parameters 324 
(either ܽ, ߠ or ܯ) are altered, it is recommended for insurance company to evaluate again the 325 
reinsurance plans instead of extrapolating conclusions from previous experiences. 326 

2. In addition, Trial 4 with a=1 is modeling excess-of-loss reinsurance form where ܺ௥ = ,0)ܺܣܯ ܺ (ܯ 327− = 1 ∗ (0, ܺ − ା(ܯ . Accordingly, result from Trial 4 are in correspondence with previous 328 
knowledge on excess-of-loss reinsurance. Under excess-of-loss reinsurance, the best form is 329 
given at ܯ = ௠௔௫ܯ , which is in correspondence with Section 2 in Payandeh-Najafabadi & 330 
Panahi-Bazaz (Payandeh-Najafabadi and Panahi-Bazaz 2017). 331 

3. In each trial, the Alternative 1 M = 0 simulates the scenario of pure proportional reinsurance. 332 
Trial 5 attempts to model different retention level under proportional reinsurance (ܯ = ܺ) with 333 
fixed reinsurance premium loading factor ߠ. The result shows that given same premium loading 334 
factor, retention level of 0.6 would be most preferable. 335 
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 336 

Figure 10. Trial 5 Pure proportional reinsurance selection 337 

4. By setting (a, M) to (0, 0), we could also model the scenario of no reinsurance. The results show 338 
that with no reinsurance, the expected shortfall of insurance company will be significantly 339 
higher than all other alternatives, and the ruin probability will be higher as well. This suggests 340 
that insurance company without reinsurance is more likely to bankrupt if large losses are 341 
incurred. As a compensation, the expected profit and utility will increase by a small amount for 342 
the insurance company due to high profit from insurance premium and low probability of large 343 
losses. However, note the high ruin probability which suggests a much higher risk of 344 
bankrupting, the insurance company will often seek for reinsurance to keep ruin probability 345 
low. 346 

5. Furthermore, through the simulation process, the variance and profitability of the reinsurer are 347 
also being observed and calculated (as could be seen from Figure 10. The result was in 348 
correspondence with our previous argument that by scaling the ceding portion a to larger 349 
values, both the variance and the profitability of the reinsurer will increase, suggesting that there 350 
is a trade-off between high profit and high risk of large losses. Thus, this supports our previous 351 
assumption that the reinsurer is ambiguous towards design that only differs in parameter a. 352 

5. Conclusions 353 

5.1 Contributions 354 

The research has the following contributions: 355 

1. To the best of our knowledge, this is the first theoretical study using MADM to approach 356 
Proportional-Stop-loss reinsurance model, though there is small amount of recent studies using 357 
MADM in designing either pure proportional or pure stop-loss reinsurance contract; 358 

2. It is one of the few studies taking a non-discriminatory position considering both the insurance 359 
and the reinsurance company in designing optimal reinsurance contract, and the study made 360 
significant contribution by incorporating existing MODM models and promising MADM model 361 
in one decision flow to arrive at robust decision for reinsurance design; 362 

3. This study demonstrates the feasibility to incorporate intelligent decision supporting system in 363 
reinsurance deal-making. As observed by the author through industry experiences, @Risk has 364 
grown its popularity recently for actuarial study in modeling risk and claims. The prototype of 365 
TOPSIS implemented through Matlab suggests that a software of multi-criteria decision support 366 
would be promising. 367 

4. As previous research suggested (Bazaz and Najafabadi 2015), MADM is not likely to address 368 
finding of optimal type of reinsurance. However, with the generic formulation of Proportional-369 
Stop-loss Reinsurance, we would be able to model proportional reinsurance and stop-loss 370 
reinsurance as special cases of Proportional-stop-loss, thus the choice between proportional and 371 
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non-proportional reinsurance using MADM could be possible under this formulation of 372 
reinsurance. 373 

5.2 Limitations 374 

There are still some limitations for this research, specifically in the following aspects: 375 

1. In terms of the scope of study, due to time and resource constraint, the study only considers 376 
proportional-stop-loss treaty reinsurance, while basing the decision process on ruin probability, 377 
CVaR and expected utility criteria. Other types of reinsurance and decision measurements have 378 
not been elaborated and tested upon. 379 

2. In terms of methodology, this study attempts to utilize the simulation software @Risk to model 380 
the loss and claim distribution and to use numerical TOPSIS model in modeling decisions from 381 
the insurance company, without reaching to a close-form solution. Thus, the conclusions were 382 
drawn based on simulation result rather than robust theoretical derivation. 383 

3. In terms of model implementation, due to resource constraint, this study only includes a 384 
numerical made-up case instead of existing cases to conduct archival research in addressing the 385 
decision process in the reinsurance purchase decisions. 386 

5.3 Future direction 387 

In reality, the trade contracts will usually go through lengthy negotiations with broking firms 388 
acting as intermediaries, thus, empirical study with cases from existing broking firms may be more 389 
realistic and practical in addressing the usefulness of this decision framework. In addition, behavioral 390 
study of both reinsurer and the reinsured would be of great importance to suggest whether they are 391 
rationale players in the reinsurance market. 392 

Furthermore, it would be promising for mathematical and quantitative researchers to look into 393 
the closed-form optimization for Proportional-Stop-Loss under each single measurement. As pure 394 
proportional or stop-loss reinsurance could be regarded as special cases of Proportional-Stop-Loss 395 
Reinsurance could, this will reconcile existing mathematical models on either side and help in 396 
calculating the precise decision matrix for MADM analysis. 397 

Supplementary Materials: The following are available online at www.mdpi.com/link, Figure S1: title, Table S1: 398 
title, Video S1: title.  399 
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Appendix A.  Forms of reinsurance in the market 403 

Table A1. Common forms of reinsurance in the market 404 

QS(Quota Share) 
Treaty  

Under quota share treaty, a reinsurer is bound to share a fixed 
proportion of every risk accepted by the ceding company. Usually, 20-80 
is set as according to the “Pareto Rule”;  

Surplus Treaty  Under surplus treaty, the reinsured could decide on which line or risk 
is to be cede to the treaty. It will also create a fixed proportion after ceding 
and is accounted quarterly.  

Facultative/ 
Obligatory Treaty  

This treaty reinsurance is a mixture between facultative and treaty 
reinsurance which is automatically arranged but provides the option to 
cede risk.  
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Excess of loss Treaty 
 

The insurer assumes whole responsibility for any loss up to a 
predetermined level, and the reinsurer agrees to play 100% of the exceeding 
amount above the line. Usually a ceiling will also be set and insurer has to 
assume responsibility above the ceiling. An excess of loss treaty is often 
structured in layers. Each layer will attract reinsurers depending on their 
underwriting policy, which differs according to their respective risk and 
return.  

Stop loss/Aggregate 
excess of loss  

The stop loss/aggregate excess of loss works similar to excess of loss 
treaty, but the limits are expressed as percentages known as “loss ratios”. 

Reinstatement  
 

The amount of cover provided by an excess of loss contract is not 
usually unlimited but restricted by reinstatement provisions. In the event 
of great loss and that the amount of cover is used up by the loss, a 
reinstatement could be purchased to increase more layers This treaty 
reinsurance is a mixture between facultative and treaty reinsurance which 
is automatically arranged but provides the option to cede risk.  

405 
Figure A1. Classification of reinsurance forms 406 

Appendix B.  Reviewed Methodologies 407 

B.1 Decision making for underwriters 408 

Core pricing considerations include (WillisRe 2013): (1) market conditions and realities, (2) 409 
return on capital, (3) commissions, (4) expenses, (5) level of certainty, (6) probability and severity of 410 
loss. The commonly adopted methodologies to approximate prices are experience rating and 411 
exposure rating. 412 

B.1.1 Experience rating.  413 

According to Clark (1996), experience rating pricing starts with compiling historical experience 414 
on the reinsurance coverage. The pricing authorities then adjust subject premiums to future levels. 415 
Historical losses are then adjusted to future levels and loss cost rate is calculated to take account of 416 
expenses, commissions, return on capital and market conditions 417 
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B.1.2 Exposure rating.  418 

Exposure rating, however, rely more on current exposure in predicting future losses. This 419 
technique relates premium to likely losses. To achieve this, underwriter needs to set up risk profiles 420 
of the portfolio in bands. A “first loss curve” (WillisRe 2013) could be used to estimate the split of 421 
premium required between the deductible and cover of any insured or reinsured risk. The first loss 422 
curves are tailored for each portfolio under examination and assumes a common form of Gamma, 423 
Lognormal, etc. 424 

B.1.3 Pareto model.  425 

According to WillisRe (2013), Pareto model is the most widely used model in reinsurance and 426 
could be used in conjunction with experience and exposure rating to estimate risk premiums for 427 
excess of loss treaties with high deductibles, where loss experience is insufficient and could be 428 
sometimes misleading. However, some criticize the classical Pareto model of its deficiency in 429 
modelling loss frequency (Fackler n.d.). The classic Pareto model either fits the small-to-medium risk 430 
or large risk well but not both at the same time. Fackler (Fackler n.d.) discusses the generalization 431 
and extension of Pareto Model to improve its fitness of loss distribution. 432 

B.1.4 Stochastic pricing 433 

In traditional actuarial pricing models, models used to approximate expected losses from 434 
specific occurrences are usually deterministic based on specific loss occurrences (WillisRe 2013). 435 
Recent research has been approaching the model using stochastic (probabilistic) approach taking 436 
account of the probability attached to various outcomes. Stochastic modeling is considered to sit in-437 
between experience and exposure methods in that assumptions could depend on either loss history 438 
or current exposure or a combination of both. Stochastic models generally provide a better 439 
approximation than simple deterministic calculations. 440 

B.2 Decision making for ceding companies 441 

Insurance company usually choose to purchase appropriate reinsurance in the hope of 442 
achieving: (1) Increased diversity and financial flexibility in balance sheet; (2) Increased sustainability 443 
of operating performance, especially in accident years; and (3) Diversified business profile in 444 
enterprise risk management. For an insurer to choose the most appropriate reinsurance design 445 
regarding type (as in Appendix A) and parameters, quantitative theories have been developed and 446 
applied to aid the decision making process. 447 

B.2.1 Operations research.  448 

Since the seminal work of Borch (1960) (Borck 1960), optimal insurance/reinsurance problems 449 
have been studied extensively (Cheung et al. 2014). Recently, because of the promising risk measures 450 
such as value at risk (VaR) and conditional value at risk (CVaR) in quantifying financial and 451 
insurance risks, the study of risk measure based optimal reinsurance problems has attracted great 452 
attention, such as (Cai et al. 2008). Not only stochastic models based on current situation was 453 
discussed (Zeng and Luo 2013a), dynamic programming has also been utilized to model multi-period 454 
optimization in reinsurance, such as (Chunxiang and Li 2015) and (Guan and Liang 2014). 455 

B.2.2 Utility theory and decision modelling.  456 

Friefelder, as cited in Samson and Thomas (1983), suggests that mean-variance approach which 457 
most operations research models were based have obvious weakness and that utility theory is the 458 
best method in determining property and liability insurance rates. Samson and Thomas (1983) 459 
(Samson and Thomas 1983) first approaches the topic of decision making in reinsurance using utility 460 
theory, formulation of which suggests that the choice of an appropriate utility function is important 461 
to decision making process. They later on suggest using decision analysis tools such as decision tree 462 
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structure in modelling ceding company’s buying quantity of excess-of-loss treaty reinsurance 463 
(Samson & Thomas, 1985). A rough reproduction of the simulation model using DPL software is 464 
shown in Figure B1. This model could be further improved using continuous distribution in 465 
modelling loss profile. This model illustrates the feasibility of using decision analysis in choosing 466 
whether to buy Excess-of-loss reinsurance and the quantity of reinstatement to buy. 467 

 468 

Figure B1. Screenshot of excess of loss decision model using DPL 469 

B.2.3 Options theory.  470 

Smith and Nau (1995) discussed thoroughly how option pricing techniques could be used to 471 
simplify investment decision making when risk-hedging options are available. Given that 472 
reinsurance itself is a risky project, Brotman (1987) suggests that reinsurance treaty arrangement and 473 
futures market share similar characteristics and that hedging strategies using options to buy or sell 474 
reinsurance could meet special need of insurance companies. 475 

B.2.4 Multi-attribute decision making.  476 

All the reinsurance optimization models in previous sections mostly aid in decision making 477 
using single criteria. However, Basak and David (Bulut Karageyik and Dickson 2016) provides new 478 
insights to approach optimal retention level in proportional quota share reinsurance using multi 479 
attribute decision making (MADM). In their discussion, “released capital, expected profit and 480 
expected utility of resulting wealth” are the competing criteria of choice, and compare the results 481 
with that of single attribute decision making. Following this study, using MADM in determining 482 
optimal retention level for proportional reinsurance has been extensively evaluated by Basak and 483 
Sule (Bulut Karageyik and Şahin 2017). The authors use measures of Expected Shortfall, expected 484 
profit and ruin probability taking the perspective of reinsurance buyer, and they conclude that as 485 
relationship between criteria is too small, there is no significant difference in results using different 486 
MADM techniques such as between TOPSIS-Euclidean and TOPSIS-Mahalanobis. 487 

B.3 Optimal reinsurance considering both parties 488 

Recently, intriguing models started to address the promising and practical issue of reaching a 489 
“win-win” policy, such as (Hürlimann 2011) and (Bazaz and Najafabadi 2015) taking views from both 490 
cedent and reinsurer. and applying Conditional tail expectation (cVaR, CTE) in deciding optimal 491 
stop-loss limits that maximizes joint party profit while controlling joint party risks. Dimitrova & 492 
Kaishev (Dimitrova and Kaishev 2010) based their analysis on maximizing joint survival probability 493 
to get the efficient frontier reinsurance design. Other mathematical models such as game theory could 494 
also be applied to reinsurance negotiation as demonstrated by Zeng and Luo (2013) in seeking for a 495 
Pareto Optimal proportional reinsurance policy. A recent research (Payandeh-Najafabadi and 496 
Panahi-Bazaz 2017) looks into the joint party optimal reinsurance design with combination of 497 
proportional and stop-loss reinsurance contract. By using Bayesian estimator, the research seeks to 498 
achieve maximum ending wealth for both party. We could see that under this category, almost all 499 
existing studies are using at most two decision criteria. 500 
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Appendix C. TOPSIS Trials #2, #3 and#4  501 

 502 

Figure C1. Trial 2 Screen-shot of crucial TOPSIS output parameters 503 

 504 

Figure C2. Trial 2 Screen-shot of crucial TOPSIS output parameters 505 
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 506 

Figure C3. Trial 3 Screen-shot of crucial TOPSIS output parameters 507 

 508 
Figure C4. Trial 3 Screen-shot of crucial TOPSIS output parameters 509 
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 510 

Figure C5. Trial 4 Screen-shot of crucial TOPSIS output parameters 511 

 512 

Figure C6. Trial 4 Screen-shot of crucial TOPSIS output parameters 513 
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