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8 Abstract: This article addresses reinsurance decision making process, which involves the insurance

9 company and the reinsurance company, and is negotiated through reinsurance intermediaries. The
10 article proposes a decision flow to model the reinsurance design and selection process. In contrast
11 to existing literature on pure proportional reinsurance or stop-loss reinsurance, this article focuses
12 on the combination into Proportional-Stop-loss reinsurance design which better addresses interest
13 of both parties. In terms of methodology, the significant contribution of the study is to incorporate

14 Multiple Attribute Decision Making (MADM) into modelling the reinsurance selection. The Multi-
15 Objective Decision Making (MODM) model is applied in designing reinsurance alternatives. Then

16 MADM is applied to aid insurance companies in choosing the most appropriate reinsurance
17 contract. To illustrate the feasibility of incorporating intelligent decision supporting system in
18 reinsurance market, the study includes a numerical case study using simulation software @Risk in
19 modeling insurance claims, and programming in MATLAB to realize MADM. Managerial
20 implications could be drawn from the case study results. More specifically, when choosing the most
21 appropriate reinsurance, insurance companies should base their decision on multiple
22 measurements instead of single-criteria decision making models for their decisions to be more
23 robust.

24 Keywords: multi-attribute decision making; reinsurance; proportional reinsurance; non-
25 proportional reinsurance; TOPSIS

26

27 1. Introduction

28 1.1 Background

29 Reinsurance is generally known as “the insurance for insurance”. Following similar concepts
30  and principles as insurance, it provides financial compensation to insurance companies for the risk
31 of large losses. The reinsured (or “insurance companies”) buys reinsurance from the reinsurer (or
32 “reinsurance companies”) in exchange for loss limitation, revenue protection and free up capital. In
33  recent years, reinsurance has grown in both market value and diversity due to global trends such as
34  the global climate change, increase in insurance mega losses, volatility in equity markets and
35  emerging risks such as terrorism. Regardless of the financial size, an insurance company rarely
36  retains all of their risk. Thus it is of interest to understand the decision making process of reinsurance
37  contract, which in reality is usually done with the negotiation intermediaries, i.e. the reinsurance
38  brokers. Typically, there are two categories of reinsurance decisions, both of which will be addressed
39  in this study:

40 o  Optimal reinsurance form under given criteria;
41 e  Given the reinsurance form of decision, decide on the reinsurance parameters. (e.g. optimal
42 retention portion for proportional reinsurance, optimal retention limit for stop-loss reinsurance,

43 etc.)
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44 The common forms of reinsurance are shown in Figure Al and their complete definitions are
45  included in Appendix A. This study focuses on treaty reinsurance which covers an entire portfolio
46  with multiple single risks. Both facultative and treaty reinsurance could be further broken down into
47  proportional reinsurance and non-proportional reinsurance (Carter 1979). Early research has shown
48  that under variance risk measurement with fixed premium, stop-loss contract is the optimal
49  reinsurance form for reinsurance buyers ((Borck 1960) and (Hiirlimann 2011)), whereas that quota-
50  share best addresses the interest of the reinsurer (Vajda 1962). Clearly, there would be conflicts of
51  choice between two parties. Thus, this study addresses a combinational form of proportional and
52 stop-loss treaty reinsurance (See Section 2.2), following the definition by Samson and Thomas (1985).
53  Quota-share reinsurance and stop-loss reinsurance could be considered as special cases of
54  Proportional-Stop-Loss reinsurance. In deciding the optimal reinsurance parameters, this study
55  attempts to utilize Multiple Attribute Decision Making (MADM) which improves from previous
56 literatures on single criterion.

57 1.2 Papaer Development

58 The paper is organized as follows. Section 2 recalls recent research that this study is built upon.
59  Section 3 develops the decision flow based on the form of Proportional-Stop-loss Reinsurance and
60  determines the optimal reinsurance parameters using Multi-Objective Decision Making (MODM).
61  Section 4 includes a numerical case study, which models claims using @Risk and implements MADM
62  for buyer’s selection using MATLAB. Section 5 discusses the contributions, limitations, further
63  directions and concludes the study.

64 1.3 Literature Review

65 Decision analysis models on single criterion have been extensively discussed both for the reinsurer
66  (see Appendix B.1) in structuring reinsurance and for the reinsured (see Appendix B.2) for evaluating
67  and selecting the most appropriate reinsurance product (Samson and Thomas 1985). Only recently did
68  researchers begin to look into the cooperative behavior of both parties to reach a joint-party optimality
69  (see Appendix B.3). In addition, recent growth of promising decision analysis based on multiple criteria
70 has ignited sparks in the reinsurance field of study (See Appendix B.2.4). Complete review of existing
71  decision-making methodologies in reinsurance is included in this study in Appendix B. In particular,
72 this study is developed upon three recent researches ((Bazaz and Najafabadi 2015), (Bulut Karageyik
73 and Sahin 2017) and (Payandeh-Najafabadi and Panahi-Bazaz 2017)) which focus on Multi-Attribute
74 Decision Making (MADM) and Proportional-Stop-loss Reinsurance.

75 Basak and David (2015) first proposes to use MADM to the problem of selecting optimal
76 reinsurance level under competing criteria. In choosing the input alternatives, they use ruin probability
77  asa constraint, i.e. the insurance company should not have a probability of ruin greater than 1%. Loss
78  distribution was modeled as the translated gamma process and the reinsurance forms considered was
79  pure proportional and pure stop-loss reinsurance. The study also includes comparison with single
80  criterion decision making and concludes that MADM is extremely insightful for selecting optimal
81  reinsurance.

82 Later, Basak and Sule (2017) improves on the research to include Value-at-Risk (VaR)
83  measurement into consideration, specifically targeting at optimal retention level in excess-of-loss
84  reinsurance design. Key measurement criteria are expected profit, expected shortfall, finite time ruin
85  probability and variance of risk. By comparing and contrasting different MADM techniques, the
86  authors safely conclude that under the case of reinsurance where correlation between measurements
87  arelow enough, different MADM techniques will generate similar optimal retention level.

88 However, both studies were focusing either pure proportional reinsurance or pure non-
89  proportional reinsurance, with neither considering the combination of both. The only comprehensive
90  discussion of proportional-stop-loss reinsurance up-to-date is conducted by Hiirlimann (2017), which
91  took a viewpoint from both the insurer and the reinsurer. However, the limitation of this research is
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92  thatithasanarrow focus on only VaR measurement to arrive at a closed-form determination of optimal
93  reinsurance.

94 To the best of my knowledge, there is no previous research conducting analysis of proportional-
95  stop-loss reinsurance based on multiple measurement schemes and considering decisions from both
96  parties. Thus, this study serves the purpose of filling this gap. More specifically, Section 3 will
97  incorporate reinsurance into the trade procedure of deals done between two parties. Decision making
98  models with single measurement of variance of risk will be used in modeling reinsurer offerings and
99  MADM model will be used for best reinsurance selection by insurance company.

100 2. Materials and Methods

101 2.1 Decision Flow

102 As reinsurance decision making involves the seller party (the reinsurance company, or the
103  reinsurer) and the buyer party (the insurance company, or the reinsured), it could be safely viewed
104  as a two-sided trade process, which involves negotiation between the selling and buying party.
105  Furthermore, reinsurance deals could adapt to established two-sided trade matching models
106  P1(Figure 1) or P2 (Figure 2) with the existence of a broker (Liang 2014).

Reinsurance
Company

Provide Reinsurance
Alternatives

Insurance Provide Reinsurance

Company Alternatives
107
108 Figure 1. Trade procedure P1 (Liang, 2014)
Provide Alternatives
for Insurance L Insurance
Companies to Company
choose from
.
Select
Reinsurance Provitie Rein:suran ce appropriate
Company Alternatives alternative
109
110 Figure 2. Trade procedure P2 (Liang, 2014)
111 For the first trade procedure P1, both reinsurer and the reinsured exchange information through

112 the broker. Previous researches have suggested to model P1 using two-sided cooperative game with
113 incomplete information (See (Borch 1960) and (Wang 2003)), while little literature has discussed about
114 the reinsurance deals settled under procedure P2. Under P2, the seller (the reinsurer) will provide
115  several plans for the buyer to choose from. However, noticing the prevalence of procedure P2 in
116  reinsurance trading practice, this study attempts to model reinsurance scenario under P2 by using
117 MODM in providing reinsurance alternatives and by using MADM in selecting appropriate
118  reinsurance design for the reinsured. Thus, the research design develops as follows in Flowchart 3
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Step 1 (Section 3.2)

¢ Define the Proportional-Stop-loss Reinsurance form

Step 2 (Section 3.4)

* Decide on efficient frontier (optimal reinsurance alternatives) using MODM,
taking the viewpoint of the reinsurance company

Step 3 (Section 3.5)

¢ Define criteria for the reinsured in choosing among reinsurance alternatives

Step 4 (Section 3.6)

¢ Ranking alternatives according to the defined criteria

119

120 Figure 3. Research development flowchart

121 2.2 The Proportional-Stop-Loss Reinsurance Model

122 The paper discusses Proportional-Stop-Loss reinsurance adopting definitions from (Samson and
123 Thomas 1985), (Hiirlimann 2011) and (Payandeh-Najafabadi and Panahi-Bazaz 2017). Under which,
124  given a single loss of X and a reinsurance arrangement with parameters (a, M) the reinsurer is
125  bonded to pay a claim amount of:

0 ifX<M

Xr=aX-M), X, = {a(X -M) ifX>M @

126  where a is the fraction ceded to the reinsurer and M is the retention limit. The reinsured will pay the
127  rest of the claim X; = X — X,. When M=0, the Proportional-Stop-Loss model becomes the classical
128 quota-share reinsurance model, and when a=1, it becomes the classical stop-loss reinsurance model.

129 2.4 Variable Definition

130 To ensure the consistency of notations in this paper, we define the key variables as Table 3.1.
131  Almost all definitions follow previous literature, and necessary elaborations will be given in later
132 sections.

133 Table 1. Key variable definitions
Variable Variable Explanation
t the time period of one contract, in our case study t = 1;
N the number of claims incurred in period t (during one contract);
w(t) the wealth holding by insurance company at time t;
4 the loading factor of reinsurance premium paid reinsurer;
0 the loading factor of the premium paid to the reinsured;
X the claim amount of one single loss;
X; the claim amount payable by insurance company (reinsured);
X, the claim amount payable by reinsurance company (reinsurer);
S the aggregate loss of an insurance portfolio;
Si(t) the aggregate claim (loss) incurred to insurance company (reinsured);

S-(t) the aggregate claim (loss) incurred to reinsurance company (reinsurer);



http://dx.doi.org/10.20944/preprints201707.0015.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 July 2017 d0i:10.20944/preprints201707.0015.v1

5o0f21
Fs(X) the cumulative distribution function of S;
Fs =1—F(X) the survival distribution function of S;
(a,M) the Proportional-Stop-Loss reinsurance parameter, X, = a(X — M);
c the total premium per unit time;
ol the premium gained by the insurance company;
cr the premium payable to the reinsurer;
ES, the expected shortfall with a confidence level of «a;
PROFIT; the expected profit gained by insurance company;
P(@) the ruin probability of insurance company’s wealth U(t);
U;(t) the utility of insurance company at the end of period t;
134 2.5 Providing Alternatives Using MODM
135 Considering the reinsurance practices and following previous research on joint-party

136  reinsurance problem, this study attempts to model the reinsurer pricing objectives under Value-at-
137  Risk (VaR) measurement. We attempt to formulate a model maximizing the reinsurer expected profit
138  while minimizing the variance of profit. In deciding a reinsurance design, the reinsurer needs to
139  specify the premium and the arrangement of reinsurance claim amount, in other words, the
140  reinsurance premium loading factor { and the reinsurance design parameter (a,M). Under the
141  Expected Value Premium Principle, insurance premium must be at least greater than expected
142  individual loss (Bulut Karageyik and Sahin 2017). Thus, the bi-objective model is formulated as:

max -t =S,
a€[0,1],M=20,¢€[1,0]
min Var[c, - t — S;]
a€[0,1],M20,{€[1,0] (2)
subject. to. M > 1In((/6)
(=0

143 where S, is defined as the aggregated claim of loss (compounded from individual loss X,), ¢, is the
144  premium paid to reinsurance company per unit time, defined according to expected value premium
145  principle. (Formulas in Section 2.6.1).
146 Clearly, there is conflict between two objectives and there is no single design of ({,a, M) that
147  could achieve all objectives. The closed-form optimality derivations (Hiirlimann 2011) are omitted
148  and the optimal solution would be an efficient frontier analyzed in closed form. The optimal pairs
149  will satisfy:

{ = eM/*. g subjectto: { > 6

)

150  Note that for an increasing ceding level a, the reinsurer risk and expected profit will both increase
151  proportionally, thus the reinsurer preference will be ambiguous for different ceding portion a while
152  fixing the pair of (¢, M). This is in line with (Payandeh-Najafabadi and Panahi-Bazaz 2017) which
153  suggests that optimal design (a, M,{) depend on the loss distribution (in our case, 1) but not on the
154  market premium (0), and does not depend on the portion retained (a). Thus, it would be flexible for
155  reinsurance company to select an appropriate ceding portion a given their risk appetite and their
156  financial capability (which is often not necessarily known by the broker). In Section 4, we will briefly
157  discuss the resulting effects of choosing different ceding portion a, based on numerical case study.
158 Thus, the alternatives provided by the reinsurance firm will be in the form of (a, M, {). These
159  are inputing alternatives we will use to apply MADM. For illustration, Figure 6 shows the optimal
160  pairsof ({,M) given other parameters in the case study.

161 2.6 Calculating Decision Criteria
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162 Now we need to define the selection criteria for reinsurance design. In this study, we are
163  concerned with expected profit, expected shortfall, ruin probability and expected utility as selection
164  criteria. All of them are calculated taking the viewpoints of reinsurance buyers (the reinsured).

165  2.6.1 Expected Profit of Insurance Company (the Reinsured) PROFIT;

166 In general, the expected profit of the reinsured is calculated as the difference between the
167  insurer’s income and the claims paid to the policyholders. Net premium gained by the insurance
168  company is calculated under the Expected Value Premium Principle, defined as:

c*=Total Premium Income -Reinsurance Premium

~(1+ O)E[S] - (1 + DELS,] W
169  The net insurance profit after considering the reinsurance arrangement is
Profit; = c* — E[S;] )
170  Our objective is to maximize the expected profit of the insurance company.
171  2.6.2 Expected Shortfall ES,
172 Expected shortfall is calculated under Value at Risk (VaR) measurement. VaR given a confidence

173  level of ae(0,1) is defined as the smallest [ such that the probability of loss L < l* is at least a
174  (Bazaz and Najafabadi 2015), i.e.

VaR,(I*) = min(l*eR: Pr(L < I*) = a) (6)

175  Expected shortfall is the financial risk measurement to investigate market risk of the portfolio. It is
176  calculated as the expected value of tail distribution of VaR, as follows:

1 1
ESe(l) =7— f V aR,(L)du 7)

177 An increase in retention level M will cause the insurer’s liability to insurance policyholders to
178  increase, and thus ES will increase accordingly. In contrast, a larger ceding portion of a will release
179  insurer from burden and thus will decrease the amount of liability held by the reinsured. Our
180  objective is to find the optimal (a,M) pair that could minimize the expected shortfall of insurance
181  company.

182  2.6.3 Ruin Probability

183 The ruin probability criterion is based on definitions of finite time ruin probability measurement.
184  The insurer’s asset is represented as W (t) and is defined by:

Wi () = w;(0) + ¢ - t = S;(¢) (8)
185 In equation (8) c* is the net premium income per unit time gained by the insurance company,
186  and S(t) is the aggregate claim amount up to time t, which is calculated by:
N(t)
S0 =) X, (10)
i=1
187 The finite time ruin probability, 1 (wy, t), is given as:
PY(wy, t) = Pr(W(s) < 0) forsomes, 0 <s <t (11)
188 In our study, the ruin probability is approximated through simulation study as the closed form

189  ruin probability for compounding exponential loss distribution under Proportional-Stop-Loss
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190  reinsurance design is hard to obtain. Our objective is to minimize the ruin probability of ¥ (w,t) such
191  that the insurance company would be less likely to bankrupt if there is a large loss incurred.

192 2.6.4 Expected Utility

193 To address the utility theory used in vast literature on reinsurance optimization (Samson and
194  Thomas 1983), the utility function of the reinsured is defined as exponential utility function, which
195  assumes constant absolute risk aversion:

Uf(Wi() = —eWi® (12)

196 In reality, utility function may have much more complexity and may be different for different
197  insurance companies. However, as long as the value of utility could be obtained in numeric value,
198  decision could be made through MADM. In deciding the optimal reinsurance alternative, one of our
199  objectives is to maximize the expected utility of the insurance company.

200 2.7 Selecting the Best Alternative Using MADM

201 In Section 2, we reviewed decision analysis techniques on reinsurance decisions under single
202  measurement. In order to model the decision of the reinsurance purchasing party (the insurance
203  company or the reinsured) under multiple measurement criteria, this study adopts Multi-Criteria
204  Decision Making techniques. In particular, the Technique for Order of Preference by Similarity to
205  Ideal Solution (TOPSIS), reviewed by previous research (Bazaz and Najafabadi 2015) as the most
206  popular MADM technique and most suitable for pure numerical criteria, is applied to the reinsurance
207  selection problem. Furthermore, suggested by (Bulut Karageyik and Sahin 2017), the correlation
208  between criteria in reinsurance problem is small enough to return similar results from different
209  TOPSIS methodologies, thus in this study we choose the classical TOPSIS method to support our
210  analysis.

211 Following similar definitions of TOPSIS in previous study (Bazaz and Najafabadi 2015), (Ameri
212 Sianaki 2015) and (Bulut Karageyik and Sahin 2017), we briefly describe the steps of applying the
213 method as follows. This study attempts to implement the TOPSIS decision supporting system by
214 storing reinsurance alternatives in Excel and processing the input matrices with MATLAB code. Part
215  of the MATLAB code was developed with reference to previous efforts by Amari (Ameri Sianaki
216 2015), and was revised accordingly to serve the needs of this study. Below is the complete procedure
217  of conducting TOPSIS.

218 1. Formulate decision matrix D with m alternatives A,,4,,...,4,, and n decision criteria

219 C1,C, ..., Cy. The attribute value of 4; on C; for i =1,2,...,m and j = 1,2,...,n is represented
220 as dU
221 2. Calculate weight of the criteria using entropy technique as follows:
dig
Qig ;Vge{1,2,...,c}

X1g + Xpgt. . Xmg

Ay = —k¥qig - log2(qig); Vge{l,2, ..., c}

d (13)
=1-4 -9
dg o %o = (d+... +dy)
' Ag Wy
w. =
g /‘{1'W1+A2'W2+...+AC'WC
222
223 3. Normalize the decision matrix using the following formula:

_ 4

A —— (14)
[Ty dj
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One may notice that by scaling the criteria (multiplying a constant to d;;), the decision would
not change; However, it will not necessarily return same decision for different utility functions
that generate same decision under expected utility measurement as adding a constant to d;; in
the 7;; formula will change the resulting 7;;.

4. Calculate the weighted normalized decision matrix by using normalized decision matrix
parameter 7;; and weight vector w = (wy, wy,...,w,) to return the weighted normalized
decision matrix parameter V;; = w; - 1y;. If criteria are given same weight, w; = w, =...= w, =
1

n
5. Compute the vectors of positive ideal solutions and the negative ideal solutions, denoted by

S* = (S+,S5,55,...,8D)

- = om om _ 15
S =(51,Sz,53,...,Sn) ( )

6. Calculate the distance between each alternative and the positive and negative ideal points. The
distance between alternative A; and the positive ideal points is

n
Z(‘/}j]’_%+)2,f0ri = 112;---;m; (15)
Jj=1

The distance between alternative and the negative ideal solutions are:

n
Dy = Z(Vu — ST fori=12,...,m; (16)
=1

7. Calculate the relative closeness coefficient of each alternative represented as:

Dy
C;=———,C €[0,1
(= DFyD; i €[0,1] (17)

8. Rank the alternatives according to C;. The alternative with higher C; value is preferred over
lower C; alternatives.

A graphical representation of TOPSIS is shown in Figure 4. Each blue ball represents one
available alternative. The red ball represents the negative ideal solution and the green ball represents
the positive ideal solution. The blue ball that is relatively near to the green ball and away from the
red ball would be the best alternative amongst all. Given at least 4 selecting criteria, it would be hard
to visualize the alternatives in 3-dimensional space, thus the calculation of distance is coded using
MATLAB.

TOPSIS

Positive ideal solution
Maxima of C;

Maxima of C,

Alternatives

Increasing desirability (C;) ———>
. Minimaof C,

Negative ideal solution

Increasing desirability (C,)

Figure 4. Graphical representation of TOPSIS (Chauhan and Vaish 2013)
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247 3. Case study

248 Following the decision flow in Section 2 this study models the reinsurance deal procedure as
249 illustrated in Figure 5. We will choose a loss distribution model in Section 3.1, generate reinsurance
250  offering alternatives in Section 3.2, tabulate decision matrix in Section 3.3 and finally apply MADM
251  in selecting from alternatives in Section 3.4.

Broker and
Insurer

Broker and Broker and

: - Insurer decision
Reinsurer Reinsurer

Collectinformation Modelling Computing the Apply TOPSIS
on loss Reinsurer's criteria attributes and select the
distribution. Offerings (Finding for each of the alternative closest
premium, etc. Optimal Designs) alternatives to optimality
252
253 Figure 5. Case study flowchart in modeling real-world reinsurance deals

254 3.1 Loss Distribution Modeling

255 Under treaty reinsurance which covers the entire line of insurance business handled by the
256  insurance company, the aggregated claim S is a compounding distribution of N single risks or
257  claims incurred during time period t.

258 Following the majority of research study on modeling loss or claim, such as (Samson and
259  Thomas 1985), (Bazaz and Najafabadi 2015), (Payandeh-Najafabadi and Panahi-Bazaz 2017) and
260  (Bulut Karageyik and Sahin 2017), our case study chooses to model individual claim as exponential
261  loss model with parameter u = 100, i.e.

Pr(X = x %) = pe (18)
262 The occurrence of claim follows Poisson distribution with mean A = 10, i.e.
y)e—4

PrN(E) = n) = & ]z'e (19)
263 Thus, S is the compounding distribution of N(t) identical, independently distributed risk each
264  with distribution X.
265 In this case study, we set t =1, u (0) = 1500 and original insurance premium parameter § =
266 0.1

267 3.2 Generating Alternatives from Viewpoints of Reinsurers

268 Following Section 4.2, we define the case by setting the portion ceded as a=0.6, a=0.75, a=0.9 and
269  a=1 respectively in assessing the differences in results when retention level is changed. The optimal
270  pair ({,M) (Figure 6 with { on x-axis and M on y-axis) are sought by grid search as solving Formula
271 3.2 in mathematics form may not be succinct.
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Optimal ({,M) efficient frontier for the reinsurers
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Figure 6. Optimal Pairs of reinsurance design given constant ceding portion a

When ¢ < 0.1, constraint { < 8 will be violated; all points to the right and below of the efficient
frontier is deemed as inferior to the points on the efficient frontier. In managerial terms, the
reinsurance designs with parameters to the southeast of the efficient frontier will cause the
reinsurance company to likely generate less profit while suffering from a larger risk.

3.3 Constructing decision matrix

For the first trial, we fixed the ceding portion at a=0.6 and select 35 pairs of the optimal ({, M)
as the reinsurance design parameters for TOPSIS alternatives. Profit for insurance company and
expected utility after claims are calculated using theoretical mean of the random distributions.
However, given the claim process as compounding exponential loss with Poisson occurrence, ruin
probability and expected shortfall at 95% confidence level are hard to obtain in analytic terms. Thus,
by using Monte Carlo Simulation with 100,000 iterations, loss and claim is modeled as exponential
value with Poisson occurrence and ES; 45 and ruin probability (a, M) are calculated in Excel as

reprints201707.0015.v1

follows:

A | B @ D E F G H I J K
Theo U_i(t) ‘ 153837786 1538.97666 1540.0545 154143174 1542.92874  1545.26406 1548.4377 15514317 155406642 1558.43766
theta 0.4] 0.1] 0.1] 0.4] 0.1] 0.1] 0.4] 0.1] 0.1] 0.4]
_ 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19
1500 1500 1500 1500 1500 1500 1500 1500 1500 1500
i 1 1 1 1 1 1 1 1 1
0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
0 10 19 27 34 a4 48 54 59 65
10 10 10 10 10 10 10 10 10 10
! 100 100) 100 100 100) 100 100 100) 100 100
Xi 40 46 514 56.2) 60.4] 64.6) 68.8 72.4) 75.4) 79
Xr 60 54 43.6 438 39.6 354 31.2) 27.6) 24.6] 21
s 996.5980549|  996.5980549]  996.5980549|  996.5980549|  996.5980549]  996.5980549|  996.5980549|  996.5980549]  996.5980549|  996.5980549
(si) 399.2 459.08 512.972] 560.876 602.792 644.708 686.624 722.552 752.492 788.42|
sr 598.8 538.92 485.028| 437.124] 395.208] 353.202 311.376 275.448 245.508 209.58]
u(t) 1538.37786|  1538.97666 1540.0545]  154143174|  1542.92874]  1545.26406 1548.4377 15514317]  1554.06642]  1558.43766
75.1 98.1306547|  99.16616383  99.48271089]  75.21509366|  74.64912875| 74, 74.40275484]  54.06642042]  58.43766042
437.5778604]  498.0566604]  553.0265004|  602.3077404|  645.7207404]  689.9720604|  735.0617004|  773.9837004]  806.5584204]  846.8576604
14719.36]  19466.3536]  24304.97522|  29056.38462  33561.61274]  38391.40274] 4354575462  48222.0953| 52301.19794]  57414.7036
59.88 59.2812 58.20336 56.82612 5532912 52.9938| 49.82016 46.82616| 4419144 39.8202
33118.5600]  26826.0336]  21729.0872]  17648.8806]  14426.4447| 115285707, 8955.2586 7007.8873 5567.2299) 4057.0236
670.1016| 705.6377 730.6881 763.1634] 783.3937 812.4188 836.4823 855.6909 886.3125 893.6415
0.087312252|  0.086452339]  0.086887538|  0.089444258|  0.089566722|  0.089115785]  0.089900436|  0.090491325|  0.092109158|  0.091589813
3837786042  38.97666042]  40.05450042| 4143174042  42.92874042]  45.26406042]  48.43770042| 51.43170042]  54.06642042]  58.43766042
0.14 0.142640246]  0.142732651]  0.142850709]  0.142979015]  0.143179133]  0.143451014]  0.143707427|  0.143933006]  0.144307132

Figure 7. Screenshot of criteria calculation using Monte Carlo Simulation with @Risk
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By retrieving criteria value and reformatting in the tabulated workbook for processing TOPSIS,
the decision matrix is built as shown in Figure 8 and is ready for processing using MATLAB coded
developed in Section 2.

A B C D E F G H I
1 Alternatives ES0.95 Ruin Probability PROFITi Expected Utility
2 Alternatives a M zeta
3 Al 0 0.1
4 A2 10 0.11
5 A3 19 0.12
6 A4 27 0.13| | 763.1634052 0.089444258
7 A5 34 0.14| | 783.3936523 0.089566722
8 A6 41 015 | 812.4187793 0.089115785
9 A7 48 016 | 836.4822701 0.089900436
10 A8 54 017 | 855.6908783 0.090491325
11 A9 59 0.18| | 886.3125475 0.092109158 54.06642042  0.143933006
12 A10 65 019 | 893.6414999 0.091589813 58.43766042 0.144307132
13 A1l 70 02| | 910.8349333 0.091607518 62.32986042 0.14464012
14 A12 75 021 | 935.2232616 0.092231426 66.82086042 0.145024176
15 A13 79 022 | 936.9221891 0.092097565 70.59330042 0.145346649
16 Al4 84 023 | 957.8482411 0.092074192 76.22202042 0.145827574
17 A15 88 0.24| | 976.5046079 0.092530559 81.01242042 0.146236659
18 Al6 92 0.25| | 992.2091456 0.09389913 86.28186042 0.146686426
19 A17 96 0.26] | 1007.423898 0.093290762 92.03034042 0.147176811
20 A18 0.6 100 027 | 1011.69034 0.09339054
21 A19 103 028 | 1043.980452 0.094080032
22 A20 107 029 | 1097.52394
23 A21 110 03] | 1123.563791 0.094323856
24 A22 114 031 | 1170.495524 0.093745244
25 A23 117 032 | 1205.441455 0.094158638
26 A24 120 033 | 1231.082995 0.094099739
27 A25 123 034 | 1255.11953 0.09403522
28 A26 126 035 | 1279.785066 0.093324499
29 A27 129 036 | 1299.283714 0.092930586
30 A28 131 0.37 1353.999274 0.094426982
31 A29 134 0.38 5 0.094210057
32 A30 137 0.39 0.094673436
33 A31 139 0.4 0.09415124
34 A32 142 0.41 0.092483131
35 A33 144 0.42
36 A34 146 0.43 0.094778562
37 A35 149 0.44 0.093241787
38 criteria Sign range 1 -1.00 -1 1 1
39 W(lambda) | 1.00 | 1 | 1 1

Figure 8. Build decision matrix for preparation of TOPSIS

3.4 Selecting alternative using TOPSIS

With above alternatives as inputting decision matrix, we could observe that if we only consider
minimizing expected shortfall and ruin probability, the profit or expected utility will be exceptionally
low. The color scale shows intuitively this conflict with red representing smallest value and green
representing largest value. We define the weight vector of criteria as all equals (equal values in blue
cells Range F39:139). Calling the Matlab function built earlier in Section 2 by executing the following
code:

topsis (decisionMakingMatrix,lambdaWeight,criteriaSign)

we could get normalized weight matrix, the identified ideal solutions and the distance between each
alternative and the ideal optimality. All these results are stored in Excel sheet “TOPSIS OUTPUT
Variables” with selection ranking results shown in Figure 9.
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Alternative  Altl Alt2 Alt3 Alta Alt5 Alte Alt7 Alt8 Alt9 Alt10 Alt11 Alt12
D+ 00569751 0056478 0.0555945 00545868 0.05343051 00517104 00492624 0.0469969 00455135 0.0419515 00393043 0.0367563
D- 0.0693894 0.0665287 0.0645277 00619595 0.06041675 00582922 00567964 0.0558353 00540705 0.0548093 0.0549429 0.0551283
C 0.5491211 0.5408545 0.5371836 0.5316299 0.53068253 0.5299168 0.5355181 0.5429752 0.5429638 0.5664413 0.5829654 0.5999735
18 22 2 2 2 27 2 19 20 15 13 1
Altenative Alt13  Altl4  A1S A6 Al17 Al18  ARIS A0 AL A2 A3 A4
D+ 00339859 00312588 0.0296431 00283441 0.0278169 00275222 00301239 0.034438 0036536 0.0403173 00431329 0.0451989
D- 0.056861 00585793 0.0603648 00629628 0.0662408 00707038 0069195 0.0668414 00657687 0.0639637 00627341 0.0618979
C 0.6258991 0.6520543 0.6706616 0.6895734 0.70425705 0.7198073 0.6966954 0.6599706 0.6428709 0.6133785 0.5925748 0.5779624
Rank 9 7 5 4 2 1 3 6 8 10 12
Altenative Alt25  Al26 A7 A28 Al29 Al30  ARSL  AI32  AK33 AIB4  ARSS
D+ 00471355 00491228 0.0506938 00551023 0.05658928 00574337 00605993 0.0624327 0.0650258 0.067907 0.0693894
D- 0.061167 00604723 0.0599641 00587391 0.05839528 0058216 0.0576492 00573983 0057142 0.0569944 0.0569751
C 0.5647793 0.5517793  0.541887 0.5159732 0.50785324 0.5033824  0.487526 0.4789934 0.4677338 0.4563152  0.450879
304 Rank 16 17 21 28 29 30 31 ) 33 34
305 Figure 9. Ranking of the alternatives based on TOPSIS
306 From the TOPSIS output, we could identify that Alternative 18 (0.27,100) is the best choice

307  followed closely by Alternative 17 (0.26,96). Alternative 19 (0.28,103) is not far away as the third best
308 alternative identified. Alternative 35 (0.44, 149) is the furthest from ideal solutions. Multiple trials
309  were tested fixing a at a=0.75 (Trial 2), a=0.9 (Trial 3) and a=1 (Trial 4). Trial 4 resembles pure Excess-
310  of-loss Reinsurance to compare and contrast decision differences under different ceding portion in
311  Proportional-Stop-loss Reinsurance design. Results of these trials are included in Appendix C. From
312  the result, we could draw insightful managerial implications.

313 4. Managerial Implications

314 The result shows several interesting findings:

315 1. The best alternative suggested by TOPSIS not necessarily optimize any one single criterion,
316 rather, it has an overall highest ranking due to its relative weighted closeness to all four criteria.
317 In reality, if reinsurance is chosen merely according to expected profit, the insurance company
318 may suffer from high probability of financial crisis. On the other hand, if the decision merely
319 considers constraining higher shortfalls, insurance company may look bad on their profit and
320 loss statement due to low profit earned.

321 By increasing the ceding amount from a=0.6 to a=0.75,0.9 and 1 result from Trial 1,2,3,4 suggests
322 that the ranking of alternatives is different when parameters are changed. When ceding portion
323 are fixed at relatively lower level (such as a=0.6 to a=0.75) the best alternative to choose will have
324 the retention limit equaling to mean value of loss. Thus, if the given reinsurance parameters
325 (either a, 8 or M) are altered, it is recommended for insurance company to evaluate again the
326 reinsurance plans instead of extrapolating conclusions from previous experiences.

327 2. Inaddition, Trial 4 with a=1 is modeling excess-of-loss reinsurance form where X, = MAX(0,X —
328 M) =1+ (0,X—M),. Accordingly, result from Trial 4 are in correspondence with previous
329 knowledge on excess-of-loss reinsurance. Under excess-of-loss reinsurance, the best form is
330 given at M = M,,,,, which is in correspondence with Section 2 in Payandeh-Najafabadi &
331 Panahi-Bazaz (Payandeh-Najafabadi and Panahi-Bazaz 2017).

332 3. Ineach trial, the Alternative 1 M = 0 simulates the scenario of pure proportional reinsurance.
333 Trial 5 attempts to model different retention level under proportional reinsurance (M = X) with
334 fixed reinsurance premium loading factor 6. The result shows that given same premium loading

335 factor, retention level of 0.6 would be most preferable.
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A B € D E F G H I J K
1 Alternatives ES0.95 Ruin Probability PROFITi Expected Utility [ Rank c
2 Alternatives a M zeta
3 AL 0.1 o 015 0.079521227 7 0.307501
4 A2 0.2 of o1s 3537.668564  0.074630029 6 0.287943
5 A3 03 o o015 3093.458715 0.079440396  62.32986042 0.14464012 5 0259
6 A4 0.4 o 015 2747.712124 0.08434825  46.36186042 0.14327319 3 0.21561
7 A5 0.5 o o015 2206.42891 008018247  28.39786042  0.141732783 2 0.142364
8 A6 0.6 o 015 1767.175006 0000638388 8437860424  0.140017971| 1| 0.004457
9 A7 0.7 o o015 1306.695578 0.090656182  -13.51813958 0.13812772 4 0.219885
10 A8 0.8 o 015 877.5800343 0.093619193  -37.47013958  0.136060889 8 0.460288
1" A9 0.9 o 015 373.9148882 -63.41813958  0.133816229 9 0.721277
12 A10 1 o 019 10 0.988854
1 1
38 | criteria Sign range il -1.00 -1
336 39 | W(Lambda) [ 1.00 | 1 1 | 1
337 Figure 10. Trial 5 Pure proportional reinsurance selection

338 4. By setting (a, M) to (0, 0), we could also model the scenario of no reinsurance. The results show

339 that with no reinsurance, the expected shortfall of insurance company will be significantly
340 higher than all other alternatives, and the ruin probability will be higher as well. This suggests
341 that insurance company without reinsurance is more likely to bankrupt if large losses are
342 incurred. As a compensation, the expected profit and utility will increase by a small amount for
343 the insurance company due to high profit from insurance premium and low probability of large
344 losses. However, note the high ruin probability which suggests a much higher risk of
345 bankrupting, the insurance company will often seek for reinsurance to keep ruin probability
346 low.

347 5. Furthermore, through the simulation process, the variance and profitability of the reinsurer are
348 also being observed and calculated (as could be seen from Figure 10. The result was in
349 correspondence with our previous argument that by scaling the ceding portion a to larger
350 values, both the variance and the profitability of the reinsurer will increase, suggesting that there
351 is a trade-off between high profit and high risk of large losses. Thus, this supports our previous
352 assumption that the reinsurer is ambiguous towards design that only differs in parameter a.

353 5. Conclusions

354 5.1 Contributions
355 The research has the following contributions:

356 1. To the best of our knowledge, this is the first theoretical study using MADM to approach

357 Proportional-Stop-loss reinsurance model, though there is small amount of recent studies using
358 MADM in designing either pure proportional or pure stop-loss reinsurance contract;

359 2. Itis one of the few studies taking a non-discriminatory position considering both the insurance
360 and the reinsurance company in designing optimal reinsurance contract, and the study made
361 significant contribution by incorporating existing MODM models and promising MADM model
362 in one decision flow to arrive at robust decision for reinsurance design;

363 3. This study demonstrates the feasibility to incorporate intelligent decision supporting system in
364 reinsurance deal-making. As observed by the author through industry experiences, @Risk has
365 grown its popularity recently for actuarial study in modeling risk and claims. The prototype of
366 TOPSIS implemented through Matlab suggests that a software of multi-criteria decision support
367 would be promising.

368 4. As previous research suggested (Bazaz and Najafabadi 2015), MADM is not likely to address
369 finding of optimal type of reinsurance. However, with the generic formulation of Proportional-
370 Stop-loss Reinsurance, we would be able to model proportional reinsurance and stop-loss

371 reinsurance as special cases of Proportional-stop-loss, thus the choice between proportional and
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372 non-proportional reinsurance using MADM could be possible under this formulation of
373 reinsurance.

374 5.2 Limitations
375 There are still some limitations for this research, specifically in the following aspects:

376 1. In terms of the scope of study, due to time and resource constraint, the study only considers

377 proportional-stop-loss treaty reinsurance, while basing the decision process on ruin probability,
378 CVaR and expected utility criteria. Other types of reinsurance and decision measurements have
379 not been elaborated and tested upon.

380 2. Interms of methodology, this study attempts to utilize the simulation software @Risk to model
381 the loss and claim distribution and to use numerical TOPSIS model in modeling decisions from
382 the insurance company, without reaching to a close-form solution. Thus, the conclusions were
383 drawn based on simulation result rather than robust theoretical derivation.

384 3. In terms of model implementation, due to resource constraint, this study only includes a
385 numerical made-up case instead of existing cases to conduct archival research in addressing the
386 decision process in the reinsurance purchase decisions.

387 5.3 Future direction

388 In reality, the trade contracts will usually go through lengthy negotiations with broking firms
389  acting as intermediaries, thus, empirical study with cases from existing broking firms may be more
390 realistic and practical in addressing the usefulness of this decision framework. In addition, behavioral
391  study of both reinsurer and the reinsured would be of great importance to suggest whether they are
392  rationale players in the reinsurance market.

393 Furthermore, it would be promising for mathematical and quantitative researchers to look into
394  the closed-form optimization for Proportional-Stop-Loss under each single measurement. As pure
395  proportional or stop-loss reinsurance could be regarded as special cases of Proportional-Stop-Loss
396  Reinsurance could, this will reconcile existing mathematical models on either side and help in
397  calculating the precise decision matrix for MADM analysis.

398 Supplementary Materials: The following are available online at www.mdpi.com/link, Figure S1: title, Table S1:
399 title, Video S1: title.

400 Acknowledgments: The author is grateful to Associate Professor Poh Kim Leng for his suggestions and
401  guidance throughout the research process.
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403  Appendix A. Forms of reinsurance in the market

404 Table A1l. Common forms of reinsurance in the market
QS(Quota  Share) Under quota share treaty, a reinsurer is bound to share a fixed
Treaty proportion of every risk accepted by the ceding company. Usually, 20-80

is set as according to the “Pareto Rule”;

Surplus Treaty Under surplus treaty, the reinsured could decide on which line or risk
is to be cede to the treaty. It will also create a fixed proportion after ceding
and is accounted quarterly.

Facultative/ This treaty reinsurance is a mixture between facultative and treaty
Obligatory Treaty reinsurance which is automatically arranged but provides the option to
cede risk.
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Excess of loss Treaty The insurer assumes whole responsibility for any loss up to a
predetermined level, and the reinsurer agrees to play 100% of the exceeding
amount above the line. Usually a ceiling will also be set and insurer has to
assume responsibility above the ceiling. An excess of loss treaty is often
structured in layers. Each layer will attract reinsurers depending on their
underwriting policy, which differs according to their respective risk and

return.
Stop loss/Aggregate The stop loss/aggregate excess of loss works similar to excess of loss
excess of loss treaty, but the limits are expressed as percentages known as “loss ratios”.
Reinstatement The amount of cover provided by an excess of loss contract is not

usually unlimited but restricted by reinstatement provisions. In the event
of great loss and that the amount of cover is used up by the loss, a
reinstatement could be purchased to increase more layers This treaty
reinsurance is a mixture between facultative and treaty reinsurance which
is automatically arranged but provides the option to cede risk.

| |
Proportional Non-proportional Proportional Non-proportional
|
|

IR Stop Loss/Aggregate

excess of loss
Stop Loss/Aggregate _ Per Rnsllf Excess of

0ss
excess of loss
Facultative/Oingato Catastrophe Excess
ry of Loss

Facultative .
= Treaty Reinsurance
Reinsurance
|

405

406 Figure Al. Classification of reinsurance forms
407  Appendix B. Reviewed Methodologies

408  B.1 Decision making for underwriters

409 Core pricing considerations include (WillisRe 2013): (1) market conditions and realities, (2)
410  return on capital, (3) commissions, (4) expenses, (5) level of certainty, (6) probability and severity of
411  loss. The commonly adopted methodologies to approximate prices are experience rating and
412  exposure rating.

413  B.1.1 Experience rating.

414 According to Clark (1996), experience rating pricing starts with compiling historical experience
415  on the reinsurance coverage. The pricing authorities then adjust subject premiums to future levels.
416  Historical losses are then adjusted to future levels and loss cost rate is calculated to take account of
417  expenses, commissions, return on capital and market conditions
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418  B.1.2 Exposure rating.

419 Exposure rating, however, rely more on current exposure in predicting future losses. This
420  technique relates premium to likely losses. To achieve this, underwriter needs to set up risk profiles
421  of the portfolio in bands. A “first loss curve” (WillisRe 2013) could be used to estimate the split of
422  premium required between the deductible and cover of any insured or reinsured risk. The first loss
423  curves are tailored for each portfolio under examination and assumes a common form of Gamma,
424  Lognormal, etc.

425 B.1.3 Pareto model.

426 According to WillisRe (2013), Pareto model is the most widely used model in reinsurance and
427  could be used in conjunction with experience and exposure rating to estimate risk premiums for
428  excess of loss treaties with high deductibles, where loss experience is insufficient and could be
429  sometimes misleading. However, some criticize the classical Pareto model of its deficiency in
430  modelling loss frequency (Fackler n.d.). The classic Pareto model either fits the small-to-medium risk
431  or large risk well but not both at the same time. Fackler (Fackler n.d.) discusses the generalization
432  and extension of Pareto Model to improve its fitness of loss distribution.

433  B.1.4 Stochastic pricing

434 In traditional actuarial pricing models, models used to approximate expected losses from
435  specific occurrences are usually deterministic based on specific loss occurrences (WillisRe 2013).
436  Recent research has been approaching the model using stochastic (probabilistic) approach taking
437  account of the probability attached to various outcomes. Stochastic modeling is considered to sit in-
438  between experience and exposure methods in that assumptions could depend on either loss history
439  or current exposure or a combination of both. Stochastic models generally provide a better
440  approximation than simple deterministic calculations.

441  B.2 Decision making for ceding companies

442 Insurance company usually choose to purchase appropriate reinsurance in the hope of
443  achieving: (1) Increased diversity and financial flexibility in balance sheet; (2) Increased sustainability
444  of operating performance, especially in accident years; and (3) Diversified business profile in
445  enterprise risk management. For an insurer to choose the most appropriate reinsurance design
446  regarding type (as in Appendix A) and parameters, quantitative theories have been developed and
447  applied to aid the decision making process.

448  B.2.1 Operations research.

449 Since the seminal work of Borch (1960) (Borck 1960), optimal insurance/reinsurance problems
450  have been studied extensively (Cheung et al. 2014). Recently, because of the promising risk measures
451  such as value at risk (VaR) and conditional value at risk (CVaR) in quantifying financial and
452  insurance risks, the study of risk measure based optimal reinsurance problems has attracted great
453 attention, such as (Cai et al. 2008). Not only stochastic models based on current situation was
454  discussed (Zeng and Luo 2013a), dynamic programming has also been utilized to model multi-period
455  optimization in reinsurance, such as (Chunxiang and Li 2015) and (Guan and Liang 2014).

456  B.2.2 Utility theory and decision modelling.

457 Friefelder, as cited in Samson and Thomas (1983), suggests that mean-variance approach which
458  most operations research models were based have obvious weakness and that utility theory is the
459  best method in determining property and liability insurance rates. Samson and Thomas (1983)
460  (Samson and Thomas 1983) first approaches the topic of decision making in reinsurance using utility
461  theory, formulation of which suggests that the choice of an appropriate utility function is important
462  to decision making process. They later on suggest using decision analysis tools such as decision tree
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463  structure in modelling ceding company’s buying quantity of excess-of-loss treaty reinsurance
464  (Samson & Thomas, 1985). A rough reproduction of the simulation model using DPL software is
465  shown in Figure Bl. This model could be further improved using continuous distribution in
466  modelling loss profile. This model illustrates the feasibility of using decision analysis in choosing
467  whether to buy Excess-of-loss reinsurance and the quantity of reinstatement to buy.

Low [-25.0)
Loss 30% -25.0 <
a Purchase No Rei (-50.0) Nominal 150.0) g
U 40% -50.0
” High [-75.0)
£ =P
Low (45.0) g
° Purchase Decision Loss 30% -45.0

) | [-50.0) Purchase Surplu 1525 g zlg;‘inat ['?455_(:)] <
Purchase i =
N B B8 e 72
& Loss / 30% Feoo
Purchase Surplu -60.0) @ :l:ﬂ/rr:mal [.i%% <
L 50
468 Licensed by Syncopation Software for cducational and non-commercial rescarch purposes only.
469 Figure B1. Screenshot of excess of loss decision model using DPL
470  B.2.3 Options theory.
471 Smith and Nau (1995) discussed thoroughly how option pricing techniques could be used to

472  simplify investment decision making when risk-hedging options are available. Given that
473  reinsurance itself is a risky project, Brotman (1987) suggests that reinsurance treaty arrangement and
474  futures market share similar characteristics and that hedging strategies using options to buy or sell
475  reinsurance could meet special need of insurance companies.

476  B.2.4 Multi-attribute decision making.

477 All the reinsurance optimization models in previous sections mostly aid in decision making
478  using single criteria. However, Basak and David (Bulut Karageyik and Dickson 2016) provides new
479  insights to approach optimal retention level in proportional quota share reinsurance using multi
480  attribute decision making (MADM). In their discussion, “released capital, expected profit and
481  expected utility of resulting wealth” are the competing criteria of choice, and compare the results
482  with that of single attribute decision making. Following this study, using MADM in determining
483  optimal retention level for proportional reinsurance has been extensively evaluated by Basak and
484  Sule (Bulut Karageyik and $ahin 2017). The authors use measures of Expected Shortfall, expected
485  profit and ruin probability taking the perspective of reinsurance buyer, and they conclude that as
486  relationship between criteria is too small, there is no significant difference in results using different
487  MADM techniques such as between TOPSIS-Euclidean and TOPSIS-Mahalanobis.

488  B.3 Optimal reinsurance considering both parties

489 Recently, intriguing models started to address the promising and practical issue of reaching a
490  “win-win” policy, such as (Hiirlimann 2011) and (Bazaz and Najafabadi 2015) taking views from both
491  cedent and reinsurer. and applying Conditional tail expectation (cVaR, CTE) in deciding optimal
492  stop-loss limits that maximizes joint party profit while controlling joint party risks. Dimitrova &
493  Kaishev (Dimitrova and Kaishev 2010) based their analysis on maximizing joint survival probability
494  to get the efficient frontier reinsurance design. Other mathematical models such as game theory could
495  also be applied to reinsurance negotiation as demonstrated by Zeng and Luo (2013) in seeking for a
496  Pareto Optimal proportional reinsurance policy. A recent research (Payandeh-Najafabadi and
497  Panahi-Bazaz 2017) looks into the joint party optimal reinsurance design with combination of
498  proportional and stop-loss reinsurance contract. By using Bayesian estimator, the research seeks to
499  achieve maximum ending wealth for both party. We could see that under this category, almost all
500 existing studies are using at most two decision criteria.
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501  Appendix C. TOPSIS Trials #2, #3 and#4
A B € D | E F G | H [
1 Alternatives ES0.95 Ruin Probability PROFITi Expected Utility
2 Alternatives a M zeta
B Al 0 0.1
4 A2 10 0.11
5 A3 19 0.12
6 A4 27 0.13] | 86.6 2 0.089444258
i A5 34 0.14) | 896.0279323 0.089566722
8 A6 41 0.15| | 913.9902293 0.089115785
9 A7 48 0.16| | 926.7813101 0.089900436
10 A8 54 0.17) | 936.2594183 0.090491325
il A9 59 0.18| | 958.7374075 0.092109158
12 A10 65 0.19] | 955.9915499 0.091589813 48.48261042 0.143454861
is All 70 02 | 964.7269333 0.091607518 53.34786042 0.14387149
14 Al12 75 0.21] | 980.5075116 0.092231426 58.96161042 0.144351965
5 Al13 79 0.22] | 975.2753291 0.092097565 63.67716042 0.144755355
16 Al4 84 0.23] | 987.3092011 0.092074192 70.71306042 0.145356885
17 A15 88 024 | 998.7799679 0.092530559 76.70106042 0.145868492
18 Al6 92 0.25| | 1007.179146 0.09389913 83.28786042 0.146430906
19 Al7 96 0.26] | 1014.968778 0.093290762 90.47346042 0.147044026
20 Al18 0.75 100 0.27| | 1011.69034 0.09339054
21 A19 103 0.28| | 1043.980452 0.094080032
22 A20 107 0.29] | 1097.52394
23 A21 110 03] | 1123.563791
24 A22 114 031 | 1170.495524
25 A23 1517, 0.32| | 1205.441455
26 A24 120 0.33] | 1231.082995 0.094099739
27 A25 123 0.34] | 1255.11953 0.09403522
28 A26 126 0.35 1279.785066 0.093324499
29 A27 129 0.36 1299.283714
30 A28 131 0.37
31 A29 134 0.38
32 A30 137 0.39
33 A31 139 0.4
34 A32 142 0.41
35 A33 144 0.42
36 A34 146 0.43
37 A35 149 0.44
38 criteria Sign range 1
39 W(Lambda 1.00 1 0.5 0.5
502 emed | | |
503 Figure C1. Trial 2 Screen-shot of crucial TOPSIS output parameters
Alternative  Alt1 Alt2 Alt3 Alta Alts Alt6 Alt7 Altg Alt9 Alt10 Alt11 Alt12
D+ 0.1320813 0.1307614 0.1283854 0.1253516 0.12205232 0.116908 0.1099147 0.1033174 0.0975231 0.0878841 0.0793125 0.0694342
D- 0.0170302 0.0165837 0.01667 0.0171408 0.01849387 0.0214132 0.0266617 0.0322606 0.0373297 0.0464293 0.0546185 0.0641677
c 01142111 01125501 0.1149215 0.120293 0.13158572 0.1548078 0.1952147 02379488 0.2768181 0.345679 0.4078107 0.4802904
‘ 28 27 26 25 24
Alternative Alt13 Alt14 Alt15 Alt16 Alt17 Alt18 Alt19 Alt20 Alt21 Alt22 Alt23 Alt24
D+ 0.0611182 0.0487488 0.0382502 0.0267505 0.01442573 0.0043257 0.0051152 0.0064243 0.0070609 0.0082083 0.0090627 0.0096896
D- 0.0723485 0.0845284 0.094939 0.1064393 0.1190163 0.1326909 0.1326177 0.1325065 0.132457 0.1323756 0.1323214 0.1322851
c 05420717  0.63423  0.712813 0.7991551 0.89189515 0.9684294 0.9628616 0.953759 0.9493909 0.9416129 0.9359003 0.9317513
Rank 3 4 5 6 7
Alternative Alt25 Alt26 Alt27 Alt28 Alt29 Alt30 Alt31 Alt32 Alt33 Alt34 Alt35
D+ 00102773 0.0108803 0.011357 0.0126948 0.01314599 0.0134022 0.0143628 0.0149192 0.015706 0.0165803 0.0170302
D- 01322538 0.1322244 0.1322031 0.1321524 0.13213841 0.1321311 0.1321082 0.1320982 0.1320879 0.1320821 0.1320813
¢ 0.9278946 0.9239697 0.9208903 0.9123575 0.9095155 0.9079096 0.901941 0.8985211 0.8937302 0.8884699 0.8857891
504 Rank T ) 10 ilil 12 13 14 15 16

505 Figure C2. Trial 2 Screen-shot of crucial TOPSIS output parameters
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A B € D | F G H |

1 Alternatives ES0.95 Ruin Probability PROFITi Expected Utility
2 Alternatives a M zeta
3 Al 0 01 | 988.2699744
4 A2 10 011 | 999.1228241 0.088673751
5 A3 19 0.12| | 1002.263826 0.088121149
6 A4 27 0.13] | 992.671412 0.0883292
i A5 34 0.14 996.8261654 0.089295076
8 A6 41 0.15 ) 0.089787781
9 A7 48 0.16 1018.170562 0.092399405
10 A8 54 0.17 0.089894564
11 A9 59 0.18| | 1003.176245 0.089720096
12 A10 65 019 | 990.9022899 0.089280019 38.52756042  0.142601742
13 A1l 70 0.2 1042.748026 0.089877328 44.36586042 0.14310217
14 A12 75 0.21 0.08922491 51.10236042  0.143679225
15 Al13 79 0.22) | 979.2784188 0.089342529 56.76102042 0.144163651
16 Al4 84 0.23] | 999.4414069 0.093276822 65.20410042 0.144885935
17 A15 88| 024 | 1001.186805 0.096410473  72.38970042  0.145500165
18 Al6 22 0.25 1006.397288 0.094699571 80.29386042  0.146175309
19 A17 9 0.26 0.090507333 88.91658042  0.146911221
20 A18 0.9 100 027 | 1036.796887 0.091251777
21 Al19 103 0.28| | 1025.100632
22 A20 107 029 | 1092.039887‘
23 A21 110 03 | 1095.142832
24 A22 114 031 | 1173.781477
25 A23 akilz/ 0.32| | 1214.496515
26 A24 120 0.33] | 1208.626958
21/ A25 123 0.34) | 1215.531859
28 A26 126 035 | 1273.365626 0.094173914
29 A27 129 0.36 1281.506042 0.090339338
30 A28 alghl 0.37 1327.804543 0.095786712
31 A29 134 0.38
32 A30 137 0.39 0.092995609
33 A31 139 0.4 0.09055014
34 A32 142 0.41 0.094773467
35 A33 144 0.42 0.091291142
36 A34 146 0.43 0.090361098
37 A35 149 0.44 0.09393016
38 | criteria Sign range 1

506 39 W(Lambda) | 1.00 | 1 | 1 1

507 Figure C3. Trial 3 Screen-shot of crucial TOPSIS output parameters
Alternative Altl Alt2 Alt3 Alt4 Alt5 Alt6 Alt7 Alt8 Alt9 Alt10 Alt11 Alt12
D+ 0.1811699 0.1793585 0.1760976 0.1719304 0.16740133 0.1603351 0.1507347 0.1416747 0.1337043 0.1204785 0.108706 0.095114
D- 0.0056236 0.0058032 0.0074685 0.0107931 0.01484024 0.0216293 0.0308979 0.0399196 0.0477808 0.0609492 0.072645 0.0862672
C 0.0301062 0.0313411 0.0406857 0.0590679 0.08143167 0.1188654 0.1701119 0.2198285 0.2632766 0.3359422 0.4005768 0.4756127
Rank 30 28 27 26 25 24
Alternative Alt13 Alt14 Alt15 Alt16 Alt17 Alt18 Alt19 Alt20 Alt21 Alt22 Alt23 Alt24
D+ 0.0837009 0.0666725 0.0521798 0.036239 0.0188433 0.0009097 0.0007959 0.0014709 0.0015023 0.0022985 0.0027103 0.002651
D- 0.0976365 0.1146316 0.1291095 0.1450376 0.16243114 0.1812421 0.1812455 0.1812271 0.1812263 0.1812081 0.1812001 0.1812012
C 0.5384244 0.6322614 0.712174 0.8000902 0.89605096 0.9950056 0.9956281 0.9919487 0.9917786 0.9874744 0.985263 0.985581
Rk @@ a0 200 19 21 3 4 5 7 6
Alternative Alt25 Alt26 Alt27 Alt28 Alt29 Alt30 Alt31 Alt32 Alt33 Alt34 Alt35
D+ 0.0027209 0.0033049 0.0033867 0.0038564 0.00441623 0.004533 0.0042076 0.0051215 0.0048084 0.0049085 0.0060394
D- 0.1811999 0.1811901 0.1811889 0.1811826 0.18117673 0.1811757 0.1811787 0.1811718 0.1811736 0.181173 0.1811695
& 0.9852061 0.9820869 0.9816515 0.9791591 0.97620477 0.9755909 0.9773038 0.9725085 0.9741461 0.9736219 0.9677397

508 Rank [ ] 10 1 13 14 v 5 16!

509 Figure C4. Trial 3 Screen-shot of crucial TOPSIS output parameters


http://dx.doi.org/10.20944/preprints201707.0015.v1

Preprints (www.preprints.

g) | NOT PEER-REVIEWED | Posted: 10 July 2017

20 of 21

A B ¢ D E F G H [ |
1 Alternatives ES0.95 Ruin Probability PROFITi Expected Utility
2 Alternatives a M zeta
3 Al 0 01 | 1098.049974
4 A2 100 o011 | 1098.823024 0.088673751
5 A3 19|  012] | 1092.802386 0.088121149
6 A4 271 0a13] | 1074.996432 0.0883292
7 A5 34| 014] | 1071.915685 0.089295076
8 A6 41  o0a1s| | 1037.557498 0.089787781
9 A7 48| 016 | 1078.369922 0.092399405
10 A8 54/ 017 | 1023.770348 0.089894564
11 A9 59| 0.8 | 1051.459485
12 A10 65 0.9 | 1032.46899 31.89086042  0.142032523
13 A1l 70 0.2 1078.676026 0.089877328 3837786042  0.142588906
14 A12 75| 021 0.08722491  45.86286042  0.143230438
15 A13 79) 022 52.15026042  0.143768954
16 A14 84| 023 | 1019.082047 0.093276822  61.53146042  0.144571825
17 A15 88| 024 | 1016.037045 0.096410473  69.51546042  0.145254526
18 A16 92| 025 1016.377288 0.094699571  78.29786042  0.146004869
19 A17 9%| 026 0.088507333  87.87866042  0.146822672
20 A18 1 100, 027 | 1036.796887 0.091251777
21 A19 103 028 | 1025.100632
22 A20 07| 029 | 1092.039887 0.096444365
23 A21 110 03 | 1095.142832 0.096424704
24 A22 114 031 | 1173.781477
25 A23 117)  032] | 1214.496515
26 A24 120f 033] | 1208.626958 0.088701899
27 A25 123| 034 | 1215.531859
28 A26 126 035 | 1273.365626 0.094173914
29 A27 129| 036 | 1281.506042 0.090339338
30 A28 131 037 1327.804543 0.095786712
31 A29 134 0.38 1383.018954
32 A30 137 039 : 0.092995609
33 A31 139 04 1362.567173 0.09055014
34 A32 142| 041 0.094773467
35 A33 144| 042 0.091291142
36 A34 146| 043 0.090361098
37 A35 149| 044 0.09393016
38 | criteria Sign range 1 -1.00 -1 1 1
510 32 W(Lambda) | 1.00 | 1 | il 1
511 Figure C5. Trial 4 Screen-shot of crucial TOPSIS output parameters
Alternative Alt1 Alt2 Alt3 Alta Alt5 Alte Alt7 Alt8 Alto Alt10 Alt11 Alt12
D+ 0.2122375 0.2101156 0.2062963 0.2014154 0.1961105 0.1878342 0.1765874 0.1659774 0.1566397 0.1411504 0.1273582 0.1114441
D- 0.0021764 0.0004588 0.0038411 0.0087105 0.01401154 0.0222867 0.0335335 0.0441442 0.0534823 0.0689743 0.0827689 0.0986859
C 0.0101505 0.0021788 0.0182791 0.0414537 0.06668285  0.106066 0.1595914  0.210089 0.2545299 0.3282541 0.3938992 0.4696421
28 27 26 25 2
Alternative Alt13 Alt14 Alt15 Alt16 Alt17 Alt18 Alt19 Alt20 Alt21 Alt22 Alt23 Alt24
D+ 0.0980792  0.078138 0.0611706 0.0425172 0.02221186 0.0025705 0.0024108 0.0021459 0.0020171 0.0017849 0.0016121 0.0014852
D- 0.1120561 0.1320054 0.1489836 0.1676596 0.18803338 0.210105 0.2101051 0.2101054 0.2101057 0.2101065 0.2101072 0.2101078
C 0.5332568 0.6281682 0.7089253 0.7977074 0.89435261 0.9879134 0.988656 0.9898898 0.9904909 0.9915761 0.9923858 0.9929807
| 20 19 18 iy 16 ils 14
Alternative Alt25 Alt26 Alt27 Alt28 Alt29 Alt30 Alt31 Alt32 Alt33 Alt34 Alt35
D+ 0.0013663 0.0012443 0.0011479 0.0008772 0.0007859 0.0007341 0.0005397 0.0004272 0.0002679 9.105E-05 6.183E-06
D- 0.2101085 0.2101092 0.2101098 0.2101118 0.21011258 0.210113 0.2101148 0.2101159 0.2101176 0.2101196 0.2101207
C 0.9935391 0.9941126 0.9945665 0.9958425 0.99627358 0.9965186 0.997438  0.997971 0.9987265 0.9995669 0.9999706
512 8 7 6 5 4 2
513 Figure C6. Trial 4 Screen-shot of crucial TOPSIS output parameters
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