

1 Article

2 Multiple Attribute Decision Making (MADM) in 3 Proportional-Stop-Loss Reinsurance

4 Jiexuan Wang

5 National University of Singapore, Department of Industrial and Systems Engineering Management;

6

7 Correspondence: wang.jiexuan@u.nus.edu; Tel.: +65-8506-8476

8 **Abstract:** This article addresses reinsurance decision making process, which involves the insurance
9 company and the reinsurance company, and is negotiated through reinsurance intermediaries. The
10 article proposes a decision flow to model the reinsurance design and selection process. In contrast
11 to existing literature on pure proportional reinsurance or stop-loss reinsurance, this article focuses
12 on the combination into Proportional-Stop-loss reinsurance design which better addresses interest
13 of both parties. In terms of methodology, the significant contribution of the study is to incorporate
14 Multiple Attribute Decision Making (MADM) into modelling the reinsurance selection. The Multi-
15 Objective Decision Making (MODM) model is applied in designing reinsurance alternatives. Then
16 MADM is applied to aid insurance companies in choosing the most appropriate reinsurance
17 contract. To illustrate the feasibility of incorporating intelligent decision supporting system in
18 reinsurance market, the study includes a numerical case study using simulation software @Risk in
19 modeling insurance claims, and programming in MATLAB to realize MADM. Managerial
20 implications could be drawn from the case study results. More specifically, when choosing the most
21 appropriate reinsurance, insurance companies should base their decision on multiple
22 measurements instead of single-criteria decision making models for their decisions to be more
23 robust.

24 **Keywords:** multi-attribute decision making; reinsurance; proportional reinsurance; non-
25 proportional reinsurance; TOPSIS

26

27 1. Introduction

28 1.1 Background

29 Reinsurance is generally known as “the insurance for insurance”. Following similar concepts
30 and principles as insurance, it provides financial compensation to insurance companies for the risk
31 of large losses. The reinsured (or “insurance companies”) buys reinsurance from the reinsurer (or
32 “reinsurance companies”) in exchange for loss limitation, revenue protection and free up capital. In
33 recent years, reinsurance has grown in both market value and diversity due to global trends such as
34 the global climate change, increase in insurance mega losses, volatility in equity markets and
35 emerging risks such as terrorism. Regardless of the financial size, an insurance company rarely
36 retains all of their risk. Thus it is of interest to understand the decision making process of reinsurance
37 contract, which in reality is usually done with the negotiation intermediaries, i.e. the reinsurance
38 brokers. Typically, there are two categories of reinsurance decisions, both of which will be addressed
39 in this study:

40 • Optimal reinsurance form under given criteria;
41 • Given the reinsurance form of decision, decide on the reinsurance parameters. (e.g. optimal
42 retention portion for proportional reinsurance, optimal retention limit for stop-loss reinsurance,
43 etc.)

44 The common forms of reinsurance are shown in Figure A1 and their complete definitions are
45 included in Appendix A. This study focuses on treaty reinsurance which covers an entire portfolio
46 with multiple single risks. Both facultative and treaty reinsurance could be further broken down into
47 proportional reinsurance and non-proportional reinsurance (Carter 1979). Early research has shown
48 that under variance risk measurement with fixed premium, stop-loss contract is the optimal
49 reinsurance form for reinsurance buyers ((Borck 1960) and (Hürlimann 2011)), whereas that quota-
50 share best addresses the interest of the reinsurer (Vajda 1962). Clearly, there would be conflicts of
51 choice between two parties. Thus, this study addresses a combinational form of proportional and
52 stop-loss treaty reinsurance (See Section 2.2), following the definition by Samson and Thomas (1985).
53 Quota-share reinsurance and stop-loss reinsurance could be considered as special cases of
54 Proportional-Stop-Loss reinsurance. In deciding the optimal reinsurance parameters, this study
55 attempts to utilize Multiple Attribute Decision Making (MADM) which improves from previous
56 literatures on single criterion.

57 *1.2 Paper Development*

58 The paper is organized as follows. Section 2 recalls recent research that this study is built upon.
59 Section 3 develops the decision flow based on the form of Proportional-Stop-loss Reinsurance and
60 determines the optimal reinsurance parameters using Multi-Objective Decision Making (MODM).
61 Section 4 includes a numerical case study, which models claims using @Risk and implements MADM
62 for buyer's selection using MATLAB. Section 5 discusses the contributions, limitations, further
63 directions and concludes the study.

64 *1.3 Literature Review*

65 Decision analysis models on single criterion have been extensively discussed both for the reinsurer
66 (see Appendix B.1) in structuring reinsurance and for the reinsured (see Appendix B.2) for evaluating
67 and selecting the most appropriate reinsurance product (Samson and Thomas 1985). Only recently did
68 researchers begin to look into the cooperative behavior of both parties to reach a joint-party optimality
69 (see Appendix B.3). In addition, recent growth of promising decision analysis based on multiple criteria
70 has ignited sparks in the reinsurance field of study (See Appendix B.2.4). Complete review of existing
71 decision-making methodologies in reinsurance is included in this study in Appendix B. In particular,
72 this study is developed upon three recent researches ((Bazaz and Najafabadi 2015), (Bulut Karageyik
73 and Şahin 2017) and (Payandeh-Najafabadi and Panahi-Bazaz 2017)) which focus on Multi-Attribute
74 Decision Making (MADM) and Proportional-Stop-loss Reinsurance.

75 Basak and David (2015) first proposes to use MADM to the problem of selecting optimal
76 reinsurance level under competing criteria. In choosing the input alternatives, they use ruin probability
77 as a constraint, i.e. the insurance company should not have a probability of ruin greater than 1%. Loss
78 distribution was modeled as the translated gamma process and the reinsurance forms considered was
79 pure proportional and pure stop-loss reinsurance. The study also includes comparison with single
80 criterion decision making and concludes that MADM is extremely insightful for selecting optimal
81 reinsurance.

82 Later, Basak and Sule (2017) improves on the research to include Value-at-Risk (VaR)
83 measurement into consideration, specifically targeting at optimal retention level in excess-of-loss
84 reinsurance design. Key measurement criteria are expected profit, expected shortfall, finite time ruin
85 probability and variance of risk. By comparing and contrasting different MADM techniques, the
86 authors safely conclude that under the case of reinsurance where correlation between measurements
87 are low enough, different MADM techniques will generate similar optimal retention level.

88 However, both studies were focusing either pure proportional reinsurance or pure non-
89 proportional reinsurance, with neither considering the combination of both. The only comprehensive
90 discussion of proportional-stop-loss reinsurance up-to-date is conducted by Hürlimann (2017), which
91 took a viewpoint from both the insurer and the reinsurer. However, the limitation of this research is

92 that it has a narrow focus on only VaR measurement to arrive at a closed-form determination of optimal
93 reinsurance.

94 To the best of my knowledge, there is no previous research conducting analysis of proportional-
95 stop-loss reinsurance based on multiple measurement schemes and considering decisions from both
96 parties. Thus, this study serves the purpose of filling this gap. More specifically, Section 3 will
97 incorporate reinsurance into the trade procedure of deals done between two parties. Decision making
98 models with single measurement of variance of risk will be used in modeling reinsurer offerings and
99 MADM model will be used for best reinsurance selection by insurance company.

100 **2. Materials and Methods**

101 *2.1 Decision Flow*

102 As reinsurance decision making involves the seller party (the reinsurance company, or the
103 reinsurer) and the buyer party (the insurance company, or the reinsured), it could be safely viewed
104 as a two-sided trade process, which involves negotiation between the selling and buying party.
105 Furthermore, reinsurance deals could adapt to established two-sided trade matching models
106 P1(Figure 1) or P2 (Figure 2) with the existence of a broker (Liang 2014).

107

108

Figure 1. Trade procedure P1 (Liang, 2014)

109

110

Figure 2. Trade procedure P2 (Liang, 2014)

111 For the first trade procedure P1, both reinsurer and the reinsured exchange information through
112 the broker. Previous researches have suggested to model P1 using two-sided cooperative game with
113 incomplete information (See (Borch 1960) and (Wang 2003)), while little literature has discussed about
114 the reinsurance deals settled under procedure P2. Under P2, the seller (the reinsurer) will provide
115 several plans for the buyer to choose from. However, noticing the prevalence of procedure P2 in
116 reinsurance trading practice, this study attempts to model reinsurance scenario under P2 by using
117 MODM in providing reinsurance alternatives and by using MADM in selecting appropriate
118 reinsurance design for the reinsured. Thus, the research design develops as follows in Flowchart 3

119

120

Figure 3. Research development flowchart

121 *2.2 The Proportional-Stop-Loss Reinsurance Model*

122 The paper discusses Proportional-Stop-Loss reinsurance adopting definitions from (Samson and
 123 Thomas 1985), (Hürlimann 2011) and (Payandeh-Najafabadi and Panahi-Bazaz 2017). Under which,
 124 given a single loss of X and a reinsurance arrangement with parameters (a, M) the reinsurer is
 125 bonded to pay a claim amount of:

$$X_r = a(X - M)_+ \Leftrightarrow X_r = \begin{cases} 0 & \text{if } X \leq M \\ a(X - M) & \text{if } X > M \end{cases} \quad (1)$$

126 where a is the fraction ceded to the reinsurer and M is the retention limit. The reinsured will pay the
 127 rest of the claim $X_i = X - X_r$. When $M=0$, the Proportional-Stop-Loss model becomes the classical
 128 quota-share reinsurance model, and when $a=1$, it becomes the classical stop-loss reinsurance model.

129 *2.4 Variable Definition*

130 To ensure the consistency of notations in this paper, we define the key variables as Table 3.1.
 131 Almost all definitions follow previous literature, and necessary elaborations will be given in later
 132 sections.

133 Table 1. Key variable definitions

Variable	Variable Explanation
t	the time period of one contract, in our case study $t = 1$;
N	the number of claims incurred in period t (during one contract);
$W(t)$	the wealth holding by insurance company at time t ;
ζ	the loading factor of reinsurance premium paid reinsurer;
θ	the loading factor of the premium paid to the reinsured;
X	the claim amount of one single loss;
X_i	the claim amount payable by insurance company (reinsured);
X_r	the claim amount payable by reinsurance company (reinsurer);
$S(t)$	the aggregate loss of an insurance portfolio;
$S_i(t)$	the aggregate claim (loss) incurred to insurance company (reinsured);
$S_r(t)$	the aggregate claim (loss) incurred to reinsurance company (reinsurer);

$F_S(X)$	the cumulative distribution function of S ;
$\bar{F}_S = 1 - F_S(X)$	the survival distribution function of S ;
(a, M)	the Proportional-Stop-Loss reinsurance parameter, $X_r = a(X - M)_+$;
c	the total premium per unit time;
c_i	the premium gained by the insurance company;
c_r	the premium payable to the reinsurer;
ES_α	the expected shortfall with a confidence level of α ;
$PROFIT_i$	the expected profit gained by insurance company;
$\psi(i)$	the ruin probability of insurance company's wealth $U(t)$;
$U_i(t)$	the utility of insurance company at the end of period t ;

134 2.5 Providing Alternatives Using MODM

135 Considering the reinsurance practices and following previous research on joint-party
 136 reinsurance problem, this study attempts to model the reinsurer pricing objectives under Value-at-
 137 Risk (VaR) measurement. We attempt to formulate a model maximizing the reinsurer expected profit
 138 while minimizing the variance of profit. In deciding a reinsurance design, the reinsurer needs to
 139 specify the premium and the arrangement of reinsurance claim amount, in other words, the
 140 reinsurance premium loading factor ζ and the reinsurance design parameter (a, M) . Under the
 141 Expected Value Premium Principle, insurance premium must be at least greater than expected
 142 individual loss (Bulut Karageyik and Şahin 2017). Thus, the bi-objective model is formulated as:

$$\begin{aligned} & \max_{a \in [0,1], M \geq 0, \zeta \in [1,0]} c_r \cdot t - S_r \\ & \min_{a \in [0,1], M \geq 0, \zeta \in [1,0]} \text{Var}[c_r \cdot t - S_r] \\ & \text{subject to.} \quad M > \ln(\zeta/\theta) \\ & \quad \zeta \geq \theta \end{aligned} \quad (2)$$

143 where S_r is defined as the aggregated claim of loss (compounded from individual loss X_r), c_r is the
 144 premium paid to reinsurance company per unit time, defined according to expected value premium
 145 principle. (Formulas in Section 2.6.1).

146 Clearly, there is conflict between two objectives and there is no single design of (ζ, a, M) that
 147 could achieve all objectives. The closed-form optimality derivations (Hürlimann 2011) are omitted
 148 and the optimal solution would be an efficient frontier analyzed in closed form. The optimal pairs
 149 will satisfy:

$$\zeta = e^{M/\lambda} \cdot \theta \text{ subject to: } \zeta \geq \theta \quad (3)$$

150 Note that for an increasing ceding level a , the reinsurer risk and expected profit will both increase
 151 proportionally, thus the reinsurer preference will be ambiguous for different ceding portion a while
 152 fixing the pair of (ζ, M) . This is in line with (Payandeh-Najafabadi and Panahi-Bazaz 2017) which
 153 suggests that optimal design (a, M, ζ) depend on the loss distribution (in our case, λ) but not on the
 154 market premium (θ), and does not depend on the portion retained (a). Thus, it would be flexible for
 155 reinsurance company to select an appropriate ceding portion a given their risk appetite and their
 156 financial capability (which is often not necessarily known by the broker). In Section 4, we will briefly
 157 discuss the resulting effects of choosing different ceding portion a , based on numerical case study.

158 Thus, the alternatives provided by the reinsurance firm will be in the form of (a, M, ζ) . These
 159 are inputting alternatives we will use to apply MADM. For illustration, Figure 6 shows the optimal
 160 pairs of (ζ, M) given other parameters in the case study.

161 2.6 Calculating Decision Criteria

162 Now we need to define the selection criteria for reinsurance design. In this study, we are
 163 concerned with expected profit, expected shortfall, ruin probability and expected utility as selection
 164 criteria. All of them are calculated taking the viewpoints of reinsurance buyers (the reinsured).

165 2.6.1 Expected Profit of Insurance Company (the Reinsured) **PROFIT_i**

166 In general, the expected profit of the reinsured is calculated as the difference between the
 167 insurer's income and the claims paid to the policyholders. Net premium gained by the insurance
 168 company is calculated under the Expected Value Premium Principle, defined as:

$$c^* = \text{Total Premium Income} - \text{Reinsurance Premium} \\ = (1 + \theta)E[S] - (1 + \zeta)E[S_r] \quad (4)$$

169 The net insurance profit after considering the reinsurance arrangement is

$$Profit_i = c^* - E[S_i] \quad (5)$$

170 Our objective is to maximize the expected profit of the insurance company.

171 2.6.2 Expected Shortfall ES_α

172 Expected shortfall is calculated under Value at Risk (VaR) measurement. VaR given a confidence
 173 level of $\alpha \in (0,1)$ is defined as the smallest l such that the probability of loss $L < l^*$ is at least α
 174 (Bazaz and Najafabadi 2015), i.e.

$$VaR_\alpha(l^*) = \min(l^* \in \mathbb{R}: Pr(L \leq l^*) \geq \alpha) \quad (6)$$

175 Expected shortfall is the financial risk measurement to investigate market risk of the portfolio. It is
 176 calculated as the expected value of tail distribution of VaR_α as follows:

$$ES_\alpha(L) = \frac{1}{1 - \alpha} \int_{\alpha}^1 V aR_u(L) du \quad (7)$$

177 An increase in retention level M will cause the insurer's liability to insurance policyholders to
 178 increase, and thus ES will increase accordingly. In contrast, a larger ceding portion of a will release
 179 insurer from burden and thus will decrease the amount of liability held by the reinsured. Our
 180 objective is to find the optimal (α, M) pair that could minimize the expected shortfall of insurance
 181 company.

182 2.6.3 Ruin Probability

183 The ruin probability criterion is based on definitions of finite time ruin probability measurement.
 184 The insurer's asset is represented as $W(t)$ and is defined by:

$$W_i(t) = w_i(0) + c^* \cdot t - S_i(t) \quad (8)$$

185 In equation (8) c^* is the net premium income per unit time gained by the insurance company,
 186 and $S(t)$ is the aggregate claim amount up to time t , which is calculated by:

$$S_i(t) = \sum_{i=1}^{N(t)} X_i \quad (10)$$

187 The finite time ruin probability, $\psi(w_0, t)$, is given as:

$$\psi(w_0, t) = Pr(W(s) < 0) \text{ for some } s, 0 < s \leq t \quad (11)$$

188 In our study, the ruin probability is approximated through simulation study as the closed form
 189 ruin probability for compounding exponential loss distribution under Proportional-Stop-Loss

190 reinsurance design is hard to obtain. Our objective is to minimize the ruin probability of $\psi(w, t)$ such
191 that the insurance company would be less likely to bankrupt if there is a large loss incurred.

192 **2.6.4 Expected Utility**

193 To address the utility theory used in vast literature on reinsurance optimization (Samson and
194 Thomas 1983), the utility function of the reinsured is defined as exponential utility function, which
195 assumes constant absolute risk aversion:

$$U_i^t(W_i(t)) = -e^{-kW_i(t)} \quad (12)$$

196 In reality, utility function may have much more complexity and may be different for different
197 insurance companies. However, as long as the value of utility could be obtained in numeric value,
198 decision could be made through MADM. In deciding the optimal reinsurance alternative, one of our
199 objectives is to maximize the expected utility of the insurance company.

200 *2.7 Selecting the Best Alternative Using MADM*

201 In Section 2, we reviewed decision analysis techniques on reinsurance decisions under single
202 measurement. In order to model the decision of the reinsurance purchasing party (the insurance
203 company or the reinsured) under multiple measurement criteria, this study adopts Multi-Criteria
204 Decision Making techniques. In particular, the Technique for Order of Preference by Similarity to
205 Ideal Solution (TOPSIS), reviewed by previous research (Bazaz and Najafabadi 2015) as the most
206 popular MADM technique and most suitable for pure numerical criteria, is applied to the reinsurance
207 selection problem. Furthermore, suggested by (Bulut Karageyik and Şahin 2017), the correlation
208 between criteria in reinsurance problem is small enough to return similar results from different
209 TOPSIS methodologies, thus in this study we choose the classical TOPSIS method to support our
210 analysis.

211 Following similar definitions of TOPSIS in previous study (Bazaz and Najafabadi 2015), (Ameri
212 Sianaki 2015) and (Bulut Karageyik and Şahin 2017), we briefly describe the steps of applying the
213 method as follows. This study attempts to implement the TOPSIS decision supporting system by
214 storing reinsurance alternatives in Excel and processing the input matrices with MATLAB code. Part
215 of the MATLAB code was developed with reference to previous efforts by Amari (Ameri Sianaki
216 2015), and was revised accordingly to serve the needs of this study. Below is the complete procedure
217 of conducting TOPSIS.

- 218 1. Formulate decision matrix D with m alternatives A_1, A_2, \dots, A_m and n decision criteria
219 C_1, C_2, \dots, C_n . The attribute value of A_i on C_j for $i = 1, 2, \dots, m$ and $j = 1, 2, \dots, n$ is represented
220 as d_{ij}
- 221 2. Calculate weight of the criteria using entropy technique as follows:

$$q_{ig} = \frac{d_{ig}}{x_{1g} + x_{2g} + \dots + x_{mg}}; \forall g \in \{1, 2, \dots, c\}$$

$$\Delta_g = -k \sum q_{ig} \cdot \log_2(q_{ig}); \forall g \in \{1, 2, \dots, c\}$$

$$d_g = 1 - \Delta_g, w_g = \frac{d_g}{(d_1 + \dots + d_g)} \quad (13)$$

$$w_g' = \frac{\lambda_g \cdot w_g}{\lambda_1 \cdot w_1 + \lambda_2 \cdot w_2 + \dots + \lambda_c \cdot w_c}$$

222

223 3. Normalize the decision matrix using the following formula:

$$r_{ij} = \frac{d_{ij}}{\sqrt{\sum_{i=1}^m d_{ij}^2}} \quad (14)$$

224 One may notice that by scaling the criteria (multiplying a constant to d_{ij}), the decision would
 225 not change; However, it will not necessarily return same decision for different utility functions
 226 that generate same decision under expected utility measurement as adding a constant to d_{ij} in
 227 the r_{ij} formula will change the resulting r_{ij} .

228 4. Calculate the weighted normalized decision matrix by using normalized decision matrix
 229 parameter r_{ij} and weight vector $\omega = (\omega_1, \omega_2, \dots, \omega_n)$ to return the weighted normalized
 230 decision matrix parameter $V_{ij} = \omega_j \cdot r_{ij}$. If criteria are given same weight, $\omega_1 = \omega_2 = \dots = \omega_n =$
 231 $\frac{1}{n}$.

232 5. Compute the vectors of positive ideal solutions and the negative ideal solutions, denoted by

$$\begin{aligned} S^+ &= (S_1^+, S_2^+, S_3^+, \dots, S_n^+) \\ S^- &= (S_1^-, S_2^-, S_3^-, \dots, S_n^-) \end{aligned} \quad (15)$$

233 6. Calculate the distance between each alternative and the positive and negative ideal points. The
 234 distance between alternative A_i and the positive ideal points is

$$D_i^+ = \sqrt{\sum_{j=1}^n (V_{ij} - S_j^+)^2}, \text{ for } i = 1, 2, \dots, m; \quad (15)$$

235 The distance between alternative and the negative ideal solutions are:

$$D_i^- = \sqrt{\sum_{j=1}^n (V_{ij} - S_j^-)^2}, \text{ for } i = 1, 2, \dots, m; \quad (16)$$

236 7. Calculate the relative closeness coefficient of each alternative represented as:

$$C_i = \frac{D_i^-}{D_i^+ + D_i^-}, C_i \in [0, 1] \quad (17)$$

237 8. Rank the alternatives according to C_i . The alternative with higher C_i value is preferred over
 238 lower C_i alternatives.

239 A graphical representation of TOPSIS is shown in Figure 4. Each blue ball represents one
 240 available alternative. The red ball represents the negative ideal solution and the green ball represents
 241 the positive ideal solution. The blue ball that is relatively near to the green ball and away from the
 242 red ball would be the best alternative amongst all. Given at least 4 selecting criteria, it would be hard
 243 to visualize the alternatives in 3-dimensional space, thus the calculation of distance is coded using
 244 MATLAB.

245

246 Figure 4. Graphical representation of TOPSIS (Chauhan and Vaish 2013)

247 **3. Case study**

248 Following the decision flow in Section 2 this study models the reinsurance deal procedure as
 249 illustrated in Figure 5. We will choose a loss distribution model in Section 3.1, generate reinsurance
 250 offering alternatives in Section 3.2, tabulate decision matrix in Section 3.3 and finally apply MADM
 251 in selecting from alternatives in Section 3.4.

252

253 Figure 5. Case study flowchart in modeling real-world reinsurance deals

254 **3.1 Loss Distribution Modeling**

255 Under treaty reinsurance which covers the entire line of insurance business handled by the
 256 insurance company, the aggregated claim S is a compounding distribution of N single risks or
 257 claims incurred during time period t .

258 Following the majority of research study on modeling loss or claim, such as (Samson and
 259 Thomas 1985), (Bazaz and Najafabadi 2015), (Payandeh-Najafabadi and Panahi-Bazaz 2017) and
 260 (Bulut Karageyik and Şahin 2017), our case study chooses to model individual claim as exponential
 261 loss model with parameter $\mu = 100$, i.e.

$$Pr(X = x^*) = \mu e^{-\mu x^*} \quad (18)$$

262 The occurrence of claim follows Poisson distribution with mean $\lambda = 10$, i.e.

$$Pr(N(t) = n) = \frac{(\lambda^k)e^{-\lambda}}{k!} \quad (19)$$

263 Thus, S is the compounding distribution of $N(t)$ identical, independently distributed risk each
 264 with distribution X .

265 In this case study, we set $t = 1$, $u(0) = 1500$ and original insurance premium parameter $\theta =$
 266 0.1.

267 **3.2 Generating Alternatives from Viewpoints of Reinsurers**

268 Following Section 4.2, we define the case by setting the portion ceded as $a=0.6$, $a=0.75$, $a=0.9$ and
 269 $a=1$ respectively in assessing the differences in results when retention level is changed. The optimal
 270 pair (ζ, M) (Figure 6 with ζ on x-axis and M on y-axis) are sought by grid search as solving Formula
 271 3.2 in mathematics form may not be succinct.

Optimal (ζ, M) efficient frontier for the reinsurers

272

273

Figure 6. Optimal Pairs of reinsurance design given constant ceding portion a

274 When $\zeta < 0.1$, constraint $\zeta < \theta$ will be violated; all points to the right and below of the efficient
 275 frontier is deemed as inferior to the points on the efficient frontier. In managerial terms, the
 276 reinsurance designs with parameters to the southeast of the efficient frontier will cause the
 277 reinsurance company to likely generate less profit while suffering from a larger risk.

278 *3.3 Constructing decision matrix*

279 For the first trial, we fixed the ceding portion at $a=0.6$ and select 35 pairs of the optimal (ζ, M)
 280 as the reinsurance design parameters for TOPSIS alternatives. Profit for insurance company and
 281 expected utility after claims are calculated using theoretical mean of the random distributions.
 282 However, given the claim process as compounding exponential loss with Poisson occurrence, ruin
 283 probability and expected shortfall at 95% confidence level are hard to obtain in analytic terms. Thus,
 284 by using Monte Carlo Simulation with 100,000 iterations, loss and claim is modeled as exponential
 285 value with Poisson occurrence and $ES_{0.95}$ and ruin probability $\psi(a, M)$ are calculated in Excel as
 286 follows:

A	B	C	D	E	F	G	H	I	J	K
Theo U_i(t)	1538.37786	1538.97666	1540.0545	1541.43174	1542.92874	1545.26406	1548.4377	1551.4317	1554.06642	1558.43766
θ	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
ζ	0.1	0.11	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.19
u	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500
t	1	1	1	1	1	1	1	1	1	1
a	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
M	0	10	19	27	34	41	48	54	59	65
N	10	10	10	10	10	10	10	10	10	10
X	100	100	100	100	100	100	100	100	100	100
X_i	40	46	51.4	56.2	60.4	64.6	68.8	72.4	75.4	79
X_r	60	54	48.6	43.8	39.6	35.4	31.2	27.6	24.6	21
S	996.5980549	996.5980549	996.5980549	996.5980549	996.5980549	996.5980549	996.5980549	996.5980549	996.5980549	996.5980549
Si	399.2	459.08	512.972	560.876	602.792	644.708	686.624	722.552	752.492	788.42
Sr	598.8	538.92	485.028	437.124	395.208	353.292	311.376	275.448	245.508	209.58
$U(t)$	1538.37786	1538.97666	1540.0545	1541.43174	1542.92874	1545.26406	1548.4377	1551.4317	1554.06642	1558.43766
value-at-risk	75.18886993	98.1306547	99.16616383	99.48271089	75.21509366	74.64912875	74.45636394	74.40275484	54.06642042	58.43766042
ζ^*	437.5778604	498.0566604	553.0265004	602.3077404	645.7207404	689.9720604	735.0617004	773.9837004	806.5584204	846.8576604
Var(Si)	14719.36	19466.3536	24304.97522	29056.38462	33561.61274	38391.40274	43545.75462	48222.0953	52301.19794	57414.7036
PROFIT _r	59.88	59.2812	58.20336	56.82612	55.32912	52.9938	49.82016	46.82616	44.19144	39.8202
Var(S _r)	33118.5600	26826.0336	21729.0872	17648.8806	14426.4447	11528.5707	8955.2586	7007.8873	5567.2299	4057.0236
ES (0.95)	670.1016	705.6377	730.6881	763.1634	783.3937	812.4188	836.4823	855.6909	886.3125	893.6415
Psi (u.t)	0.087312252	0.086452339	0.086887538	0.089444258	0.089566722	0.089115785	0.089900436	0.090491325	0.092109158	0.091589813
PROFIT _i	38.37786042	38.97666042	40.05450042	41.43174042	42.92874042	45.26406042	48.43770042	51.43170042	54.06642042	58.43766042
Expected Utility	0.142588906	0.142640246	0.142732651	0.142850709	0.142979015	0.143179133	0.143451014	0.143707427	0.143933006	0.144307132

287

288

Figure 7. Screenshot of criteria calculation using Monte Carlo Simulation with @Risk

289 By retrieving criteria value and reformatting in the tabulated workbook for processing TOPSIS,
 290 the decision matrix is built as shown in Figure 8 and is ready for processing using MATLAB coded
 291 developed in Section 2.

	A	B	C	D	E	F	G	H	I
1	Alternatives					ES0.95	Ruin Probability	PROFITi	Expected Utility
2	Alternatives	a	M	zeta	Criteria	c1	c2	c3	c4
3	A1		0	0.1	0.6	670.1016436	0.087312252	38.37786042	0.142588906
4	A2		10	0.11		705.6377247	0.086452339	38.97666042	0.142640246
5	A3		19	0.12		730.688082	0.086887538	40.05450042	0.142732651
6	A4		27	0.13		763.1634052	0.089444258	41.43174042	0.142850709
7	A5		34	0.14		783.3936523	0.089566722	42.92874042	0.142979015
8	A6		41	0.15		812.4187793	0.089115785	45.26406042	0.143179133
9	A7		48	0.16		836.4822701	0.089900436	48.43770042	0.143451014
10	A8		54	0.17		855.6908783	0.090491325	51.43170042	0.143707427
11	A9		59	0.18		886.3125475	0.092109158	54.06642042	0.143933006
12	A10		65	0.19		893.6414999	0.091589813	58.43766042	0.144307132
13	A11		70	0.2		910.8349333	0.091607518	62.32986042	0.14464012
14	A12		75	0.21		935.2232616	0.092231426	66.82086042	0.145024176
15	A13		79	0.22		936.9221891	0.092097565	70.59330042	0.145346649
16	A14		84	0.23		957.8482411	0.092074192	76.22202042	0.145827574
17	A15		88	0.24		976.5046079	0.092530559	81.01242042	0.146236659
18	A16		92	0.25		992.2091456	0.09389913	86.28186042	0.146686426
19	A17		96	0.26		1007.423898	0.093290762	92.03034042	0.147176811
20	A18		100	0.27		1011.69034	0.09339054	98.25786042	0.147707743
21	A19		103	0.28		1043.980452	0.094080032	98.25786042	0.147707743
22	A20		107	0.29		1097.52394	0.095797522	98.25786042	0.147707743
23	A21		110	0.3		1123.563791	0.094323856	98.25786042	0.147707743
24	A22		114	0.31		1170.495524	0.093745244	98.25786042	0.147707743
25	A23		117	0.32		1205.441455	0.094158638	98.25786042	0.147707743
26	A24		120	0.33		1231.082995	0.094099739	98.25786042	0.147707743
27	A25		123	0.34		1255.11953	0.09403522	98.25786042	0.147707743
28	A26		126	0.35		1279.785066	0.093324499	98.25786042	0.147707743
29	A27		129	0.36		1299.283714	0.092930586	98.25786042	0.147707743
30	A28		131	0.37		1353.999274	0.094426982	98.25786042	0.147707743
31	A29		134	0.38		1372.454608	0.094210057	98.25786042	0.147707743
32	A30		137	0.39		1382.934637	0.094673436	98.25786042	0.147707743
33	A31		139	0.4		1422.224375	0.09415124	98.25786042	0.147707743
34	A32		142	0.41		1444.980799	0.092483131	98.25786042	0.147707743
35	A33		144	0.42		1477.163227	0.095391474	98.25786042	0.147707743
36	A34		146	0.43		1512.923601	0.094778562	98.25786042	0.147707743
37	A35		149	0.44		1531.323057	0.093241787	98.25786042	0.147707743
38	criteria Sign range	1				-1.00	-1	1	1
39	W(Lambda)					1.00	1	1	1

292

293

Figure 8. Build decision matrix for preparation of TOPSIS

294

3.4 Selecting alternative using TOPSIS

295 With above alternatives as inputting decision matrix, we could observe that if we only consider
 296 minimizing expected shortfall and ruin probability, the profit or expected utility will be exceptionally
 297 low. The color scale shows intuitively this conflict with red representing smallest value and green
 298 representing largest value. We define the weight vector of criteria as all equals (equal values in blue
 299 cells Range F39:I39). Calling the Matlab function built earlier in Section 2 by executing the following
 300 code:

topsis (decisionMakingMatrix,lambdaWeight,criteriaSign)

301
302
303

we could get normalized weight matrix, the identified ideal solutions and the distance between each alternative and the ideal optimality. All these results are stored in Excel sheet “TOPSIS OUTPUT Variables” with selection ranking results shown in Figure 9.

Alternative	Alt1	Alt2	Alt3	Alt4	Alt5	Alt6	Alt7	Alt8	Alt9	Alt10	Alt11	Alt12
D+	0.0569751	0.056478	0.0555945	0.0545868	0.05343051	0.0517104	0.0492624	0.0469969	0.0455135	0.0419515	0.0393043	0.0367563
D-	0.0693894	0.0665287	0.0645277	0.0619595	0.06041675	0.0582922	0.0567964	0.0558353	0.0540705	0.0548093	0.0549429	0.0551283
C	0.5491211	0.5408545	0.5371836	0.5316299	0.53068253	0.5299168	0.5355181	0.5429752	0.5429638	0.5664413	0.5829654	0.5999735
	18	22	23	25	26	27	24	19	20	15	13	11
Alternative	Alt13	Alt14	Alt15	Alt16	Alt17	Alt18	Alt19	Alt20	Alt21	Alt22	Alt23	Alt24
D+	0.0339859	0.0312588	0.0296431	0.0283441	0.0278169	0.0275222	0.0301239	0.034438	0.036536	0.0403173	0.0431329	0.0451989
D-	0.056861	0.0585793	0.0603648	0.0629628	0.0662408	0.0707038	0.069195	0.0668414	0.0657687	0.0639637	0.0627341	0.0618979
C	0.6258991	0.6520543	0.6706616	0.6895734	0.70425705	0.7198073	0.6966954	0.6599706	0.6428709	0.6133785	0.5925748	0.5779624
Rank	9	7	5	4	2	1	3	6	8	10	12	14
Alternative	Alt25	Alt26	Alt27	Alt28	Alt29	Alt30	Alt31	Alt32	Alt33	Alt34	Alt35	
D+	0.0471355	0.0491228	0.0506938	0.0551023	0.05658928	0.0574337	0.0605993	0.0624327	0.0650258	0.067907	0.0693894	
D-	0.061167	0.0604723	0.0599641	0.0587391	0.05839528	0.058216	0.0576492	0.0573983	0.057142	0.0569944	0.0569751	
C	0.5647793	0.5517793	0.541887	0.5159732	0.50785324	0.5033824	0.487526	0.4789934	0.4677338	0.4563152	0.450879	
Rank	16	17	21	28	29	30	31	32	33	34	35	

Figure 9. Ranking of the alternatives based on TOPSIS

304

305

From the TOPSIS output, we could identify that Alternative 18 (0.27,100) is the best choice followed closely by Alternative 17 (0.26,96). Alternative 19 (0.28,103) is not far away as the third best alternative identified. Alternative 35 (0.44, 149) is the furthest from ideal solutions. Multiple trials were tested fixing a at $a=0.75$ (Trial 2), $a=0.9$ (Trial 3) and $a=1$ (Trial 4). Trial 4 resembles pure Excess-of-loss Reinsurance to compare and contrast decision differences under different ceding portion in Proportional-Stop-loss Reinsurance design. Results of these trials are included in Appendix C. From the result, we could draw insightful managerial implications.

313 4. Managerial Implications

314

The result shows several interesting findings:

- 315 1. The best alternative suggested by TOPSIS not necessarily optimize any one single criterion, rather, it has an overall highest ranking due to its relative weighted closeness to all four criteria. In reality, if reinsurance is chosen merely according to expected profit, the insurance company may suffer from high probability of financial crisis. On the other hand, if the decision merely considers constraining higher shortfalls, insurance company may look bad on their profit and loss statement due to low profit earned.
321 By increasing the ceding amount from $a=0.6$ to $a=0.75, 0.9$ and 1 result from Trial 1,2,3,4 suggests
322 that the ranking of alternatives is different when parameters are changed. When ceding portion
323 are fixed at relatively lower level (such as $a=0.6$ to $a=0.75$) the best alternative to choose will have
324 the retention limit equaling to mean value of loss. Thus, if the given reinsurance parameters
325 (either a , θ or M) are altered, it is recommended for insurance company to evaluate again the
326 reinsurance plans instead of extrapolating conclusions from previous experiences.
- 327 2. In addition, Trial 4 with $a=1$ is modeling excess-of-loss reinsurance form where $X_r = \text{MAX}(0, X - M) = 1 * (0, X - M)_+$. Accordingly, result from Trial 4 are in correspondence with previous
328 knowledge on excess-of-loss reinsurance. Under excess-of-loss reinsurance, the best form is
329 given at $M = M_{\max}$, which is in correspondence with Section 2 in Payandeh-Najafabadi &
330 Panahi-Bazaz (Payandeh-Najafabadi and Panahi-Bazaz 2017).
331 3. In each trial, the Alternative 1 $M = 0$ simulates the scenario of pure proportional reinsurance.
332 Trial 5 attempts to model different retention level under proportional reinsurance ($M = X$) with
333 fixed reinsurance premium loading factor θ . The result shows that given same premium loading
334 factor, retention level of 0.6 would be most preferable.
335

1	A	B	C	D	E	F	G	H	I	J	K
2	Alternatives					ES0.95	Ruin Probability	PROFITi	Expected Utility	Rank	C
3	Alternatives	a	M	zeta	criteri	c1	c2	c3	c4		
36	A1	0.1	0	0.15		4046.645008	0.079521227	88.27786042	0.146856731	7	0.307501
37	A2	0.2	0	0.15		3537.668564	0.074630029	76.30186042	0.145834394	6	0.287943
38	A3	0.3	0	0.15		3093.458715	0.079440396	62.32986042	0.14464012	5	0.2594
39	A4	0.4	0	0.15		2747.712124	0.08434825	46.36186042	0.14327319	3	0.21561
40	A5	0.5	0	0.15		2206.42891	0.08018247	28.39786042	0.141732783	2	0.142364
41	A6	0.6	0	0.15		1767.175006	0.090638388	8.437860424	0.140017971	1	0.004457
42	A7	0.7	0	0.15		1306.695578	0.090656182	-13.51813958	0.13812772	4	0.219885
43	A8	0.8	0	0.15		877.5800343	0.093619193	-37.47013958	0.136060889	8	0.460288
44	A9	0.9	0	0.15		373.9148882	0.105017214	-63.41813958	0.133816229	9	0.721277
45	A10	1	0	0.19		91.36213958	0.108302642	-91.36213958	0.13139238	10	0.988854
46	criteria Sign range	1				-1.00	-1	1	1		
47	W(Lambda)					1.00	1	1	1		

337 Figure 10. Trial 5 Pure proportional reinsurance selection

338 4. By setting (a, M) to (0, 0), we could also model the scenario of no reinsurance. The results show
 339 that with no reinsurance, the expected shortfall of insurance company will be significantly
 340 higher than all other alternatives, and the ruin probability will be higher as well. This suggests
 341 that insurance company without reinsurance is more likely to bankrupt if large losses are
 342 incurred. As a compensation, the expected profit and utility will increase by a small amount for
 343 the insurance company due to high profit from insurance premium and low probability of large
 344 losses. However, note the high ruin probability which suggests a much higher risk of
 345 bankrupting, the insurance company will often seek for reinsurance to keep ruin probability
 346 low.

347 5. Furthermore, through the simulation process, the variance and profitability of the reinsurer are
 348 also being observed and calculated (as could be seen from Figure 10. The result was in
 349 correspondence with our previous argument that by scaling the ceding portion a to larger
 350 values, both the variance and the profitability of the reinsurer will increase, suggesting that there
 351 is a trade-off between high profit and high risk of large losses. Thus, this supports our previous
 352 assumption that the reinsurer is ambiguous towards design that only differs in parameter a.

353

5. Conclusions

354

5.1 Contributions

355 The research has the following contributions:

356 1. To the best of our knowledge, this is the first theoretical study using MADM to approach
 357 Proportional-Stop-loss reinsurance model, though there is small amount of recent studies using
 358 MADM in designing either pure proportional or pure stop-loss reinsurance contract;

359 2. It is one of the few studies taking a non-discriminatory position considering both the insurance
 360 and the reinsurance company in designing optimal reinsurance contract, and the study made
 361 significant contribution by incorporating existing MODM models and promising MADM model
 362 in one decision flow to arrive at robust decision for reinsurance design;

363 3. This study demonstrates the feasibility to incorporate intelligent decision supporting system in
 364 reinsurance deal-making. As observed by the author through industry experiences, @Risk has
 365 grown its popularity recently for actuarial study in modeling risk and claims. The prototype of
 366 TOPSIS implemented through Matlab suggests that a software of multi-criteria decision support
 367 would be promising.

368 4. As previous research suggested (Bazaz and Najafabadi 2015), MADM is not likely to address
 369 finding of optimal type of reinsurance. However, with the generic formulation of Proportional-
 370 Stop-loss Reinsurance, we would be able to model proportional reinsurance and stop-loss
 371 reinsurance as special cases of Proportional-stop-loss, thus the choice between proportional and

372 non-proportional reinsurance using MADM could be possible under this formulation of
 373 reinsurance.

374 *5.2 Limitations*

375 There are still some limitations for this research, specifically in the following aspects:

- 376 1. In terms of the scope of study, due to time and resource constraint, the study only considers
 377 proportional-stop-loss treaty reinsurance, while basing the decision process on ruin probability,
 378 CVaR and expected utility criteria. Other types of reinsurance and decision measurements have
 379 not been elaborated and tested upon.
- 380 2. In terms of methodology, this study attempts to utilize the simulation software @Risk to model
 381 the loss and claim distribution and to use numerical TOPSIS model in modeling decisions from
 382 the insurance company, without reaching to a close-form solution. Thus, the conclusions were
 383 drawn based on simulation result rather than robust theoretical derivation.
- 384 3. In terms of model implementation, due to resource constraint, this study only includes a
 385 numerical made-up case instead of existing cases to conduct archival research in addressing the
 386 decision process in the reinsurance purchase decisions.

387 *5.3 Future direction*

388 In reality, the trade contracts will usually go through lengthy negotiations with broking firms
 389 acting as intermediaries, thus, empirical study with cases from existing broking firms may be more
 390 realistic and practical in addressing the usefulness of this decision framework. In addition, behavioral
 391 study of both reinsurer and the reinsured would be of great importance to suggest whether they are
 392 rationale players in the reinsurance market.

393 Furthermore, it would be promising for mathematical and quantitative researchers to look into
 394 the closed-form optimization for Proportional-Stop-Loss under each single measurement. As pure
 395 proportional or stop-loss reinsurance could be regarded as special cases of Proportional-Stop-Loss
 396 Reinsurance could, this will reconcile existing mathematical models on either side and help in
 397 calculating the precise decision matrix for MADM analysis.

398 **Supplementary Materials:** The following are available online at www.mdpi.com/link, Figure S1: title, Table S1:
 399 title, Video S1: title.

400 **Acknowledgments:** The author is grateful to Associate Professor Poh Kim Leng for his suggestions and
 401 guidance throughout the research process.

402 **Conflicts of Interest:** The author declares no conflict of interest.

403 **Appendix A. Forms of reinsurance in the market**

404 Table A1. Common forms of reinsurance in the market

QS(Quota Share) Treaty	Under quota share treaty, a reinsurer is bound to share a fixed proportion of every risk accepted by the ceding company. Usually, 20-80 is set as according to the "Pareto Rule";
Surplus Treaty	Under surplus treaty, the reinsured could decide on which line or risk is to be cede to the treaty. It will also create a fixed proportion after ceding and is accounted quarterly.
Facultative/ Obligatory Treaty	This treaty reinsurance is a mixture between facultative and treaty reinsurance which is automatically arranged but provides the option to cede risk.

Excess of loss Treaty	The insurer assumes whole responsibility for any loss up to a predetermined level, and the reinsurer agrees to play 100% of the exceeding amount above the line. Usually a ceiling will also be set and insurer has to assume responsibility above the ceiling. An excess of loss treaty is often structured in layers. Each layer will attract reinsurers depending on their underwriting policy, which differs according to their respective risk and return.
Stop loss/Aggregate excess of loss	The stop loss/aggregate excess of loss works similar to excess of loss treaty, but the limits are expressed as percentages known as "loss ratios".
Reinstatement	The amount of cover provided by an excess of loss contract is not usually unlimited but restricted by reinstatement provisions. In the event of great loss and that the amount of cover is used up by the loss, a reinstatement could be purchased to increase more layers. This treaty reinsurance is a mixture between facultative and treaty reinsurance which is automatically arranged but provides the option to cede risk.

405
406

Figure A1. Classification of reinsurance forms

407 **Appendix B. Reviewed Methodologies**

408 *B.1 Decision making for underwriters*

409 Core pricing considerations include (WillisRe 2013): (1) market conditions and realities, (2)
410 return on capital, (3) commissions, (4) expenses, (5) level of certainty, (6) probability and severity of
411 loss. The commonly adopted methodologies to approximate prices are experience rating and
412 exposure rating.

413 B.1.1 Experience rating.

414 According to Clark (1996), experience rating pricing starts with compiling historical experience
415 on the reinsurance coverage. The pricing authorities then adjust subject premiums to future levels.
416 Historical losses are then adjusted to future levels and loss cost rate is calculated to take account of
417 expenses, commissions, return on capital and market conditions

418 B.1.2 Exposure rating.

419 Exposure rating, however, rely more on current exposure in predicting future losses. This
420 technique relates premium to likely losses. To achieve this, underwriter needs to set up risk profiles
421 of the portfolio in bands. A “first loss curve” (WillisRe 2013) could be used to estimate the split of
422 premium required between the deductible and cover of any insured or reinsured risk. The first loss
423 curves are tailored for each portfolio under examination and assumes a common form of Gamma,
424 Lognormal, etc.

425 B.1.3 Pareto model.

426 According to WillisRe (2013), Pareto model is the most widely used model in reinsurance and
427 could be used in conjunction with experience and exposure rating to estimate risk premiums for
428 excess of loss treaties with high deductibles, where loss experience is insufficient and could be
429 sometimes misleading. However, some criticize the classical Pareto model of its deficiency in
430 modelling loss frequency (Fackler n.d.). The classic Pareto model either fits the small-to-medium risk
431 or large risk well but not both at the same time. Fackler (Fackler n.d.) discusses the generalization
432 and extension of Pareto Model to improve its fitness of loss distribution.

433 B.1.4 Stochastic pricing

434 In traditional actuarial pricing models, models used to approximate expected losses from
435 specific occurrences are usually deterministic based on specific loss occurrences (WillisRe 2013).
436 Recent research has been approaching the model using stochastic (probabilistic) approach taking
437 account of the probability attached to various outcomes. Stochastic modeling is considered to sit in
438 between experience and exposure methods in that assumptions could depend on either loss history
439 or current exposure or a combination of both. Stochastic models generally provide a better
440 approximation than simple deterministic calculations.

441 *B.2 Decision making for ceding companies*

442 Insurance company usually choose to purchase appropriate reinsurance in the hope of
443 achieving: (1) Increased diversity and financial flexibility in balance sheet; (2) Increased sustainability
444 of operating performance, especially in accident years; and (3) Diversified business profile in
445 enterprise risk management. For an insurer to choose the most appropriate reinsurance design
446 regarding type (as in Appendix A) and parameters, quantitative theories have been developed and
447 applied to aid the decision making process.

448 B.2.1 Operations research.

449 Since the seminal work of Borch (1960) (Borck 1960), optimal insurance/reinsurance problems
450 have been studied extensively (Cheung et al. 2014). Recently, because of the promising risk measures
451 such as value at risk (VaR) and conditional value at risk (CVaR) in quantifying financial and
452 insurance risks, the study of risk measure based optimal reinsurance problems has attracted great
453 attention, such as (Cai et al. 2008). Not only stochastic models based on current situation was
454 discussed (Zeng and Luo 2013a), dynamic programming has also been utilized to model multi-period
455 optimization in reinsurance, such as (Chunxiang and Li 2015) and (Guan and Liang 2014).

456 B.2.2 Utility theory and decision modelling.

457 Friefelder, as cited in Samson and Thomas (1983), suggests that mean-variance approach which
458 most operations research models were based have obvious weakness and that utility theory is the
459 best method in determining property and liability insurance rates. Samson and Thomas (1983)
460 (Samson and Thomas 1983) first approaches the topic of decision making in reinsurance using utility
461 theory, formulation of which suggests that the choice of an appropriate utility function is important
462 to decision making process. They later on suggest using decision analysis tools such as decision tree

463 structure in modelling ceding company's buying quantity of excess-of-loss treaty reinsurance
 464 (Samson & Thomas, 1985). A rough reproduction of the simulation model using DPL software is
 465 shown in Figure B1. This model could be further improved using continuous distribution in
 466 modelling loss profile. This model illustrates the feasibility of using decision analysis in choosing
 467 whether to buy Excess-of-loss reinsurance and the quantity of reinstatement to buy.

468

469 Figure B1. Screenshot of excess of loss decision model using DPL

470 B.2.3 Options theory.

471 Smith and Nau (1995) discussed thoroughly how option pricing techniques could be used to
 472 simplify investment decision making when risk-hedging options are available. Given that
 473 reinsurance itself is a risky project, Brotman (1987) suggests that reinsurance treaty arrangement and
 474 futures market share similar characteristics and that hedging strategies using options to buy or sell
 475 reinsurance could meet special need of insurance companies.

476 B.2.4 Multi-attribute decision making.

477 All the reinsurance optimization models in previous sections mostly aid in decision making
 478 using single criteria. However, Basak and David (Bulut Karageyik and Dickson 2016) provides new
 479 insights to approach optimal retention level in proportional quota share reinsurance using multi
 480 attribute decision making (MADM). In their discussion, "released capital, expected profit and
 481 expected utility of resulting wealth" are the competing criteria of choice, and compare the results
 482 with that of single attribute decision making. Following this study, using MADM in determining
 483 optimal retention level for proportional reinsurance has been extensively evaluated by Basak and
 484 Sule (Bulut Karageyik and Şahin 2017). The authors use measures of Expected Shortfall, expected
 485 profit and ruin probability taking the perspective of reinsurance buyer, and they conclude that as
 486 relationship between criteria is too small, there is no significant difference in results using different
 487 MADM techniques such as between TOPSIS-Euclidean and TOPSIS-Mahalanobis.

488 B.3 Optimal reinsurance considering both parties

489 Recently, intriguing models started to address the promising and practical issue of reaching a
 490 "win-win" policy, such as (Hürlimann 2011) and (Bazaz and Najafabadi 2015) taking views from both
 491 cedent and reinsurer, and applying Conditional tail expectation (cVaR, CTE) in deciding optimal
 492 stop-loss limits that maximizes joint party profit while controlling joint party risks. Dimitrova &
 493 Kaishev (Dimitrova and Kaishev 2010) based their analysis on maximizing joint survival probability
 494 to get the efficient frontier reinsurance design. Other mathematical models such as game theory could
 495 also be applied to reinsurance negotiation as demonstrated by Zeng and Luo (2013) in seeking for a
 496 Pareto Optimal proportional reinsurance policy. A recent research (Payandeh-Najafabadi and
 497 Panahi-Bazaz 2017) looks into the joint party optimal reinsurance design with combination of
 498 proportional and stop-loss reinsurance contract. By using Bayesian estimator, the research seeks to
 499 achieve maximum ending wealth for both party. We could see that under this category, almost all
 500 existing studies are using at most two decision criteria.

501 Appendix C. TOPSIS Trials #2, #3 and #4

	A	B	C	D	E	F	G	H	I
1	Alternatives					ES0.95	Ruin Probability	PROFITi	Expected Utility
2	Alternatives	a	M	zeta	Criteria	c1	c2	c3	c4
3	A1	0.75	0	0.1		834.7716436	0.087312252	23.40786042	0.141304401
4	A2		10	0.11		855.1880247	0.086452339	24.15636042	0.141368672
5	A3		19	0.12		866.495922	0.086887538	25.50366042	0.141484347
6	A4		27	0.13		886.6509352	0.089444258	27.22521042	0.141632132
7	A5		34	0.14		896.0279323	0.089566722	29.09646042	0.141792739
8	A6		41	0.15		913.9902293	0.089115785	32.01561042	0.142043226
9	A7		48	0.16		926.7813101	0.089900436	35.98266042	0.142383515
10	A8		54	0.17		936.2594183	0.090491325	39.72516042	0.142704417
11	A9		59	0.18		958.7374075	0.092109158	43.01856042	0.142986713
12	A10		65	0.19		955.9915499	0.091589813	48.48261042	0.143454861
13	A11		70	0.2		964.7269333	0.091607518	53.34786042	0.14387149
14	A12		75	0.21		980.5075116	0.092231426	58.96161042	0.144351965
15	A13		79	0.22		975.2753291	0.092097565	63.67716042	0.144755355
16	A14		84	0.23		987.3092011	0.092074192	70.71306042	0.145356885
17	A15		88	0.24		998.7799679	0.092530559	76.70106042	0.145868492
18	A16		92	0.25		1007.179146	0.09389913	83.28786042	0.146430906
19	A17		96	0.26		1014.968778	0.093290762	90.47346042	0.147044026
20	A18		100	0.27		1011.69034	0.09339054	98.25786042	0.147707743
21	A19		103	0.28		1043.980452	0.094080032	98.25786042	0.147707743
22	A20		107	0.29		1097.52394	0.095797522	98.25786042	0.147707743
23	A21		110	0.3		1123.563791	0.094323856	98.25786042	0.147707743
24	A22		114	0.31		1170.495524	0.093745244	98.25786042	0.147707743
25	A23		117	0.32		1205.441455	0.094158638	98.25786042	0.147707743
26	A24		120	0.33		1231.082995	0.09409739	98.25786042	0.147707743
27	A25		123	0.34		1255.11953	0.09403522	98.25786042	0.147707743
28	A26		126	0.35		1279.785066	0.093324499	98.25786042	0.147707743
29	A27		129	0.36		1299.283714	0.092930586	98.25786042	0.147707743
30	A28		131	0.37		1353.999274	0.094426982	98.25786042	0.147707743
31	A29		134	0.38		1372.454608	0.094210057	98.25786042	0.147707743
32	A30		137	0.39		1382.934637	0.094673436	98.25786042	0.147707743
33	A31		139	0.4		1422.224375	0.09415124	98.25786042	0.147707743
34	A32		142	0.41		1444.980799	0.092483131	98.25786042	0.147707743
35	A33		144	0.42		1477.163227	0.095391474	98.25786042	0.147707743
36	A34		146	0.43		1512.923601	0.094778562	98.25786042	0.147707743
37	A35		149	0.44		1531.323057	0.093241787	98.25786042	0.147707743
38	criteria Sign range	1				-1.00	-1	1	1
39	W(Lambda)					1.00	1	0.5	0.5

502

503

Figure C1. Trial 2 Screen-shot of crucial TOPSIS output parameters

Alternative	Alt1	Alt2	Alt3	Alt4	Alt5	Alt6	Alt7	Alt8	Alt9	Alt10	Alt11	Alt12
D+	0.1320813	0.1307614	0.1283854	0.1253516	0.12205232	0.116908	0.1099147	0.1033174	0.0975231	0.0878841	0.0793125	0.0694342
D-	0.0170302	0.0165837	0.01667	0.0171408	0.01849387	0.0214132	0.0266617	0.0322606	0.0373297	0.0464293	0.0546185	0.0641677
C	0.1142111	0.1125501	0.1149215	0.120293	0.13158572	0.1548078	0.1952147	0.2379488	0.2768181	0.345679	0.4078107	0.4802904
	34	35	33	32	31	30	29	28	27	26	25	24
Alternative	Alt13	Alt14	Alt15	Alt16	Alt17	Alt18	Alt19	Alt20	Alt21	Alt22	Alt23	Alt24
D+	0.0611182	0.0487488	0.0382502	0.0267505	0.01442573	0.0043257	0.0051152	0.0064243	0.0070609	0.0082083	0.0090627	0.0096896
D-	0.0723485	0.0845284	0.094939	0.1064393	0.1190163	0.1326909	0.1326177	0.1325065	0.132457	0.1323756	0.1323214	0.1322851
C	0.5420717	0.63423	0.712813	0.7991551	0.89189515	0.9684294	0.9628616	0.953759	0.9493909	0.9416129	0.9359003	0.9317513
Rank	23	22	21	20	17	1	2	3	4	5	6	7
Alternative	Alt25	Alt26	Alt27	Alt28	Alt29	Alt30	Alt31	Alt32	Alt33	Alt34	Alt35	
D+	0.0102773	0.0108803	0.011357	0.0126948	0.01314599	0.0134022	0.0143628	0.0149192	0.015706	0.0165803	0.0170302	
D-	0.1322538	0.1322244	0.1322031	0.1321524	0.13213841	0.1321311	0.1321082	0.1320982	0.1320879	0.1320821	0.1320813	
C	0.9278946	0.9239697	0.9208903	0.9123575	0.9095155	0.9079096	0.901941	0.8985211	0.8937302	0.8884699	0.8857891	
Rank	8	9	10	11	12	13	14	15	16	18	19	

504

505

Figure C2. Trial 2 Screen-shot of crucial TOPSIS output parameters

	A	B	C	D	E	F	G	H	I	
1	Alternatives					ES0.95	Ruin Probability		PROFITi	Expected Utility
2	Alternatives	a	M	zeta	Criteria	c1	c2	c3	c4	
3	A1	0.9	0	0.1		988.2699744	0.085088195	8.437860424	0.140017971	
4	A2		10	0.11		999.1228241	0.088673751	9.336060424	0.140095211	
5	A3		19	0.12		1002.263826	0.088121149	10.95282042	0.140234225	
6	A4		27	0.13		992.671412	0.0883292	13.01868042	0.140411823	
7	A5		34	0.14		996.8261654	0.089295076	15.26418042	0.140604822	
8	A6		41	0.15		969.8431979	0.089787781	18.76716042	0.140905813	
9	A7		48	0.16		1018.170562	0.092399405	23.52762042	0.141314684	
10	A8		54	0.17		970.0579878	0.089894564	28.01862042	0.141700233	
11	A9		59	0.18		1003.176245	0.089720096	31.97070042	0.142039373	
12	A10		65	0.19		990.9022899	0.089280019	38.52756042	0.142601742	
13	A11		70	0.2		1042.748026	0.089877328	44.36586042	0.14310217	
14	A12		75	0.21		947.1232568	0.08922491	51.10236042	0.143679225	
15	A13		79	0.22		979.2784188	0.089342529	56.76102042	0.144163651	
16	A14		84	0.23		999.4414069	0.093276822	65.20410042	0.144885935	
17	A15		88	0.24		1001.186805	0.096410473	72.38970042	0.145500165	
18	A16		92	0.25		1006.397288	0.094699571	80.29386042	0.146175309	
19	A17		96	0.26		971.5311893	0.090507333	88.91658042	0.146911221	
20	A18		100	0.27		1036.796887	0.091251777	98.25786042	0.147707743	
21	A19		103	0.28		1025.100632	0.09641785	98.25786042	0.147707743	
22	A20		107	0.29		1092.039887	0.096444365	98.25786042	0.147707743	
23	A21		110	0.3		1095.142832	0.096424704	98.25786042	0.147707743	
24	A22		114	0.31		1173.781477	0.098787514	98.25786042	0.147707743	
25	A23		117	0.32		1214.496515	0.098542238	98.25786042	0.147707743	
26	A24		120	0.33		1208.626958	0.098701899	98.25786042	0.147707743	
27	A25		123	0.34		1215.531859	0.09889659	98.25786042	0.147707743	
28	A26		126	0.35		1273.365626	0.094173914	98.25786042	0.147707743	
29	A27		129	0.36		1281.506042	0.090339338	98.25786042	0.147707743	
30	A28		131	0.37		1327.804543	0.095786712	98.25786042	0.147707743	
31	A29		134	0.38		1383.018954	0.099597592	98.25786042	0.147707743	
32	A30		137	0.39		1394.675135	0.092995609	98.25786042	0.147707743	
33	A31		139	0.4		1362.567173	0.09055014	98.25786042	0.147707743	
34	A32		142	0.41		1452.76873	0.094773467	98.25786042	0.147707743	
35	A33		144	0.42		1421.889442	0.091291142	98.25786042	0.147707743	
36	A34		146	0.43		1431.78405	0.090361098	98.25786042	0.147707743	
37	A35		149	0.44		1543.429196	0.09393016	98.25786042	0.147707743	
38	criteria Sign range	1				-1.00	-1	1	1	
39	W(Lambda)					1.00	1	1	1	

506

Figure C3. Trial 3 Screen-shot of crucial TOPSIS output parameters

Alternative	Alt1	Alt2	Alt3	Alt4	Alt5	Alt6	Alt7	Alt8	Alt9	Alt10	Alt11	Alt12
D+	0.1811699	0.1793585	0.1760976	0.1719304	0.16740133	0.1603351	0.1507347	0.1416747	0.1337043	0.1204785	0.108706	0.095114
D-	0.0056236	0.0058032	0.0074685	0.0107931	0.01484024	0.0216293	0.0308979	0.0399196	0.0477808	0.0609492	0.072645	0.0862672
C	0.0301062	0.0313411	0.0406857	0.0590679	0.08143167	0.1188654	0.1701119	0.2198285	0.2632766	0.3359422	0.4005768	0.4756127
Rank	35	34	33	32	31	30	29	28	27	26	25	24
Alternative	Alt13	Alt14	Alt15	Alt16	Alt17	Alt18	Alt19	Alt20	Alt21	Alt22	Alt23	Alt24
D+	0.0837009	0.0666725	0.0521798	0.036239	0.0188433	0.0009097	0.0007959	0.0014709	0.0015023	0.0022985	0.0027103	0.002651
D-	0.0976365	0.1146316	0.1291095	0.1450376	0.16243114	0.1812421	0.1812455	0.1812271	0.1812263	0.1812081	0.1812001	0.1812012
C	0.5384244	0.6322614	0.712174	0.8000902	0.89605096	0.9950056	0.9956281	0.9919487	0.9917786	0.9874744	0.985263	0.985581
Rank	23	22	21	20	19	2	1	3	4	5	7	6
Alternative	Alt25	Alt26	Alt27	Alt28	Alt29	Alt30	Alt31	Alt32	Alt33	Alt34	Alt35	
D+	0.0027209	0.0033049	0.0033867	0.0038564	0.00441623	0.004533	0.0042076	0.0051215	0.0048084	0.0049085	0.0060394	
D-	0.1811999	0.1811901	0.1811889	0.1811826	0.18117673	0.1811757	0.1811787	0.1811718	0.1811736	0.181173	0.1811695	
C	0.9852061	0.9820869	0.9816515	0.9791591	0.97620477	0.9755909	0.9773038	0.9725085	0.9741461	0.9736219	0.9677397	
Rank	8	9	10	11	13	14	12	17	15	16	18	

508

Figure C4. Trial 3 Screen-shot of crucial TOPSIS output parameters

509

	A	B	C	D	E	F	G	H	I
1	Alternatives					ES0.95	Ruin Probability	PROFITi	Expected Utility
2	Alternatives	a	M	zeta	Criteria	c1	c2	c3	c4
3	A1	1	0	0.1		1098.049974	0.085088195	-1.542139576	0.13915928
4	A2		10	0.11		1098.823024	0.088673751	-0.544139576	0.139245188
5	A3		19	0.12		1092.802386	0.088121149	1.252260424	0.1393998
6	A4		27	0.13		1074.996432	0.0883292	3.547660424	0.139597319
7	A5		34	0.14		1071.915685	0.089295076	6.042660424	0.139811963
8	A6		41	0.15		1037.557498	0.089787781	9.934860424	0.1401467
9	A7		48	0.16		1078.369922	0.092399405	15.22426042	0.140601391
10	A8		54	0.17		1023.770348	0.089894564	20.21426042	0.141030124
11	A9		59	0.18		1051.459485	0.097200962	24.60546042	0.141407232
12	A10		65	0.19		1032.46899	0.085280019	31.89086042	0.142032523
13	A11		70	0.2		1078.676026	0.089877328	38.37786042	0.142588906
14	A12		75	0.21		977.3127568	0.08722491	45.86286042	0.143230438
15	A13		79	0.22		1004.847179	0.085934253	52.15026042	0.143768954
16	A14		84	0.23		1019.082047	0.093276822	61.53146042	0.144571825
17	A15		88	0.24		1016.037045	0.096410473	69.51546042	0.145254526
18	A16		92	0.25		1016.377288	0.094699571	78.29786042	0.146004869
19	A17		96	0.26		976.5611093	0.088507333	87.87866042	0.146822672
20	A18		100	0.27		1036.796887	0.091251777	98.25786042	0.147707743
21	A19		103	0.28		1025.100632	0.08641785	98.25786042	0.147707743
22	A20		107	0.29		1092.039887	0.096444365	98.25786042	0.147707743
23	A21		110	0.3		1095.142832	0.096424704	98.25786042	0.147707743
24	A22		114	0.31		1173.781477	0.098787514	98.25786042	0.147707743
25	A23		117	0.32		1214.496515	0.098542238	98.25786042	0.147707743
26	A24		120	0.33		1208.626958	0.088701899	98.25786042	0.147707743
27	A25		123	0.34		1215.531859	0.09889659	98.25786042	0.147707743
28	A26		126	0.35		1273.365626	0.094173914	98.25786042	0.147707743
29	A27		129	0.36		1281.506042	0.090339338	98.25786042	0.147707743
30	A28		131	0.37		1327.804543	0.095786712	98.25786042	0.147707743
31	A29		134	0.38		1383.018954	0.099597592	98.25786042	0.147707743
32	A30		137	0.39		1394.675135	0.092995609	98.25786042	0.147707743
33	A31		139	0.4		1362.567173	0.09055014	98.25786042	0.147707743
34	A32		142	0.41		1452.76873	0.094773467	98.25786042	0.147707743
35	A33		144	0.42		1421.889442	0.091291142	98.25786042	0.147707743
36	A34		146	0.43		1431.78405	0.090361098	98.25786042	0.147707743
37	A35		149	0.44		1543.429196	0.09393016	98.25786042	0.147707743
38	criteria Sign range	1				-1.00	-1	1	1
39	W(Lambda)					1.00	1	1	1
40									

510

Figure C5. Trial 4 Screen-shot of crucial TOPSIS output parameters

Alternative	Alt1	Alt2	Alt3	Alt4	Alt5	Alt6	Alt7	Alt8	Alt9	Alt10	Alt11	Alt12
D+	0.2122375	0.2101156	0.2062963	0.2014154	0.1961105	0.1878342	0.1765874	0.1659774	0.1566397	0.1411504	0.1273582	0.1114441
D-	0.0021764	0.0004588	0.0038411	0.0087105	0.01401154	0.0222867	0.0335335	0.0441442	0.0534823	0.0689743	0.0827689	0.0986859
C	0.0101505	0.0021788	0.0182791	0.0414537	0.06668285	0.106066	0.1595914	0.210089	0.2545299	0.3282541	0.3938992	0.4696421
	34	35	33	32	31	30	29	28	27	26	25	24
Alternative	Alt13	Alt14	Alt15	Alt16	Alt17	Alt18	Alt19	Alt20	Alt21	Alt22	Alt23	Alt24
D+	0.0980792	0.078138	0.0611706	0.0425172	0.02221186	0.0025705	0.0024108	0.0021459	0.0020171	0.0017849	0.0016121	0.0014852
D-	0.1120561	0.1320054	0.1489836	0.1676596	0.18803338	0.2101051	0.2101054	0.2101057	0.2101065	0.2101072	0.2101078	
C	0.5332568	0.6281682	0.7089253	0.7977074	0.89435261	0.9879134	0.988656	0.9898898	0.9904909	0.9915761	0.9923858	0.9929807
	23	22	21	20	19	18	17	16	15	14	13	12
Alternative	Alt25	Alt26	Alt27	Alt28	Alt29	Alt30	Alt31	Alt32	Alt33	Alt34	Alt35	
D+	0.0013663	0.0012443	0.0011479	0.0008772	0.0007859	0.0007341	0.0005397	0.0004272	0.0002679	9.105E-05	6.183E-06	
D-	0.2101085	0.2101092	0.2101098	0.2101118	0.21011258	0.210113	0.2101148	0.2101159	0.2101176	0.2101196	0.2101207	
C	0.9935391	0.9941126	0.9945665	0.9958425	0.99627358	0.9965186	0.997438	0.997971	0.9987265	0.9995669	0.9999706	
	11	10	9	8	7	6	5	4	3	2	1	

512

Figure C6. Trial 4 Screen-shot of crucial TOPSIS output parameters

514 References

1. Ameri Sianaki, Omid. 2015. "Intelligent Decision Support System for Energy Management in Demand Response Programs and Residential and Industrial Sectors of the Smart Grid." PhD thesis, Curtin University.
2. Bazaz, Ali Panahi, and Amir T Payandeh Najafabadi. 2015. "An Optimal Reinsurance Contract from Insurer's and Reinsurer's Viewpoints." *Applications & Applied Mathematics* 10 (2).

513

515

516

517

518

519

520 3. Borch, Karl. 1960. "Reciprocal Reinsurance Treaties Seen as a Two-Person Co-Operative Game." *Scandinavian Actuarial Journal* 1960 (1-2). Taylor & Francis: 29–58.

521 4. Borck, Karl. 1960. *An Attempt to Determine the Optimum Amount of Stop Loss Reinsurance*.

522 5. Bulut Karageyik, Başak, and David C.M. Dickson. 2016. "Optimal reinsurance under multiple attribute
523 decision making." *Annals of Actuarial Science* 10 (01): 65–86. doi:[10.1017/S1748499515000123](https://doi.org/10.1017/S1748499515000123).

524 6. Bulut Karageyik, Başak, and Şule Şahin. 2017. "Determination of the Optimal Retention Level Based on
525 Different Measures." *Journal of Risk and Financial Management* 10 (1). Multidisciplinary Digital Publishing
526 Institute: 4.

527 7. Cai, Jun, Ken Seng Tan, Chengguo Weng, and Yi Zhang. 2008. "Optimal Reinsurance Under Var and Cte
528 Risk Measures." *Insurance: Mathematics and Economics* 43 (1). Elsevier: 185–96.

529 8. Carter, R. L. 1979. *Reinsurance*. Brentford [Eng.]: Kluwer Pub. in association with the Mercantile; General
530 Reinsurance Co.

531 9. Chauhan, Aditya, and Rahul Vaish. 2013. "Fluid Selection of Organic Rankine Cycle Using Decision
532 Making Approach." *Journal of Computational Engineering* 2013. Hindawi Publishing Corporation.

533 10. Cheung, K. C., K. C. J. Sung, S. C. P. Yam, and S. P. Yung. 2014. "Optimal Reinsurance Under General Law-
534 Invariant Risk Measures." *Scandinavian Actuarial Journal* 2014 (1): 72–91.

535 11. Chunxiang, A., and Zhongfei Li. 2015. "Optimal Investment and Excess-of-Loss Reinsurance Problem with
536 Delay for an Insurer Under Heston's Sv Model." *Insurance, Mathematics & Economics* 61: 181.

537 12. Clark, D.R. 1996. "Basics of reinsurance pricing." *CAS Study Note*, 41–43.

538 13. Dimitrova, Dimitrina S., and Vladimir K. Kaishev. 2010. "Optimal joint survival reinsurance: An efficient
539 frontier approach." *Insurance: Mathematics and Economics* 47 (1): 27–35. doi:[10.1016/j.insmatheco.2010.03.006](https://doi.org/10.1016/j.insmatheco.2010.03.006).

540 14. Fackler, M. n.d. "Reinventing Pareto: Fits for both small and large losse." <http://www.actuaries.org/ASTIN/Colloquia/Hague/Papers/Fackler.pdf>.

541 15. Guan, Guohui, and Zongxia Liang. 2014. "Optimal Reinsurance and Investment Strategies for Insurer
542 Under Interest Rate and Inflation Risks." *Insurance, Mathematics & Economics* 55: 105–15.

543 16. Hürlimann, Werner. 2011. "Optimal Reinsurance Revisited—point of View of Cedent and Reinsurer." *Astin
544 Bulletin* 41 (02). Cambridge Univ Press: 547–74.

545 17. Liang, Haiming. 2014. "Research on Methods for Two-Sided Trade Matching Decision-Making Based on
546 the Broker." PhD thesis, Northeastern University.

547 18. Payandeh-Najafabadi, Amir T, and Ali Panahi-Bazaz. 2017. "An Optimal Combination of Proportional and
548 Stop-Loss Reinsurance Contracts from Insurer's and Reinsurer's Viewpoints." *arXiv Preprint
549 arXiv:1701.05450*.

550 19. Samson, Danny, and Howard Thomas. 1983. "Reinsurance Decision Making and Expected Utility." *The
551 Journal of Risk and Insurance* 50 (2): 249–64. <http://www.jstor.org/stable/252352>.

552 20. ——. 1985. "Decision analysis models in reinsurance." *European Journal of Operational Research* 19 (2): 201–
553 11. doi:[10.1016/0377-2217\(85\)90173-0](https://doi.org/10.1016/0377-2217(85)90173-0).

554 21. Smith, James E., and Robert F. Nau. 1995. "Valuing Risky Projects: Option Pricing Theory and Decision
555 Analysis." <http://pubsonline.informs.org/doi/abs/10.1287/mnsc.41.5.795>.

556 22. Vajda, Stefan. 1962. "Minimum Variance Reinsurance." *Astin Bulletin* 2 (02). Cambridge Univ Press: 257–
557 60.

558 23. Wang, Gang. 2003. "Reinsurance Optimization Models [d]." PhD thesis, Hunan University.

559 24. WillisRe. 2013. "APTP13 - Understanding Reinsurance."

560 25. Zeng, Xudong, and Shangzhen Luo. 2013a. "Stochastic Pareto-optimal reinsurance policies." *Insurance:
561 Mathematics and Economics* 53 (3): 671–77. doi:[10.1016/j.insmatheco.2013.09.006](https://doi.org/10.1016/j.insmatheco.2013.09.006).

562 26. ——. 2013b. "Stochastic Pareto-optimal reinsurance policies." *Insurance: Mathematics and Economics* 53 (3):
563 671–77. doi:[10.1016/j.insmatheco.2013.09.006](https://doi.org/10.1016/j.insmatheco.2013.09.006).

564 565