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Abstract: Arylamine N-acetyltransferases (NATs) are cytosolic enzymes, highly polymorphic, 
present in both eukaryotes and prokaryotes. These enzymes play an important role in the 
detoxification and activation of xenobiotics as well as in the synthesis of endogenous compounds. 
Specific NATs have been pointed out in the literature as possible therapeutic targets. In particular, 
the human NAT1, for the treatment of certain cancers, and the NAT from M. tuberculosis (TBNAT), 
for the treatment of tuberculosis. This paper describes an in silico approach to prospect and select 
potentially inhibitors of NAT1 and TBNAT from the Traditional Chinese Medicine (TCM) using 
free available tools. A library with ligands from TCM was previously screened in order to select 
only compounds with optimal pharmacological properties. The affinity of the selected ligands with 
respect to NAT enzymes was then evaluated by virtual screening (VS). Subsequently, the 
complexes with the best ligands were submitted to molecular dynamics (MD) simulations aiming 
to obtain better quality information on affinity and selectivity. The results for one specific ligand, 
ZINC14690579, indicated its potential for affinity and selectivity. ZINC14690579 structure may 
represent the discovery of a new scaffold for future development of NAT inhibitors. 
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1. Introduction 

Arylamine N-acetyltransferases (NATs) are cytosolic enzymes that catalyze the transfer of the 
acetyl group from acetyl coenzyme A (AcCoA) to the free amino group of arylamines and 
hydrazines[1–4]. NATs are highly polymorphic and present in both eukaryotes and 
prokaryotes[5,6]. These enzymes play an important role in the detoxification and metabolic 
activation of xenobiotics[4,7,8] as well as in the synthesis of endogenous compounds[9,10]. 

NATs are found in the human proteome in two forms, NAT1 and NAT2[4,11]. Several studies 

have revealed an association between NAT1 activity and the risk of developing certain types of 

cancer (for review see [12]). Consequently, human NAT1-specific inhibitors has been suggested as 
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potential biomarkers as well as potential drugs for cancer treatment [12–15]. In another therapeutic 

perspective, studies showed that NAT gene of Mycobacterium tuberculosis (M. tuberculosis) is part of a 

cluster essential for the survival of the mycobacteria in the environment inside macrophage 

[10,16,17]. This points to NAT from M. tuberculosis (TBNAT) as a potential drug target for 

antimycobacterial therapy[18,19].  

The challenge for the design of selective inhibitors for eukaryotic and prokaryotic NATs begins 

with the structural similarity shared by these enzymes. In fact, the fold of human NAT1 and NAT2 

closely resembles the overall structure of TBNAT[11,20,21]. NATs overall fold is composed of three 

independent domains of approximately the same length. The first two domains, an α-helical bundle 

and a β-barrel are joined by a linker helix to the third domain, an α/β lid. For native enzymes, the 

residues of the catalytic triad (Cys-His-Asp) can be easily superimposed. The modular structure of 

NATs makes these enzymes highly flexible, adding another challenge for the in silico discovery of 

inhibitors. For instance, previous studies have suggested that there may be multiple conformational 

states in the region that defines the active site of NAT enzymes[22], which in itself determines that 

the interpretation of data obtained from computational techniques necessarily take into account the 

conformational dynamics in the ligand-receptor interaction. 

There is currently a wide range of free resources[23–28] and free software packages[29–35] 

dedicated to drug discovery and design. The availability of free resources and tools allows scientists 

from all over the world, independent of the financial support, to plan and test hypotheses through in 

silico experiments. This paper describes an in silico approach to prospect and select potentially 

selective inhibitors of NAT1 and TBNAT from the Traditional Chinese Medicine (TCM) using free 

available tools and resources. A library with 36,043 ligands from TCM was previously screened in 

order to select only compounds with optimal ADMET (absorption, distribution, metabolism and 

excretion and toxicological properties) pharmacological properties. The affinity of the 1,902 selected 

ligands with respect to NAT1, NAT2 and TBNAT enzymes was then evaluated by virtual screening 

(VS). Subsequently, the complexes with the best ligands were submitted to molecular dynamics 

(MD) simulations aiming to obtain better quality information on the affinity of the ligands. In 

particular, the MM-PBSA method combined with MD simulations was used to incorporate 

conformational fluctuations and entropic contributions to the affinity estimation [36–38]. One 

potential selective inhibitor for NAT1 and TBNAT was chosen as a promising compound for future 

development. 

2. Results and Discussion 

2.1. Virtual screening and docking results 

Figure 1 shows the 2D chemical structures of the ten compounds selected from the virtual 

screening. Since of none of the ten best ligands found for NAT1 presented better binding score when 

compared to NAT2 (Table S1 in Supplementary Materials), the selection criterion was based on the 

best binding score with TBNAT and worse binding score with NAT2. Thus, only the ten best 

compounds for TBNAT were locally re-evaluated for the purpose of verifying the results generated 

by the virtual screening with AutoDock Vina[33] (Vina) software implemented in the 

MTiOpenScreen[28] web server (Table 1). Table 1 also shows the binding score values for the same 
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ligands with the AutoDock[32] software. Autodock uses a completely different methodological 

approach for score function calculation in comparison to AutoDock Vina. This allows, taking into 

account the standard error of each program, a preliminary covalidation of the VS. From VS and 

docking data it is possible to observe that both AutoDock Vina and AutoDock 4.2 tended to have 

worse binding energy scores for NAT1 when compared to NAT2 and TBNAT. So far we do not have 

an explanation for this since the binding residues in the homology model of human NAT1 are 

spatially conserved in relation to the two crystallographic structures available up to the time of the 

conclusion of this study. Specifically, are deposited in the Protein Data Bank (PDB)[39,40] structures 

with ID codes 2IJA[41], which refers to the structure of the mutant NAT1 F125S, and 2PQT, which 

refers to a structure with the cysteine residue at position 68 substituted by a non-standard 

S-(2-anilino-2-oxoethyl)-l-cysteine (Tyx68) residue. After superimposition it is possible to see that 

the only conformational exception are the residues His107 and Phe125 in the crystallographic 

structure 2PQT, which are influenced by the Tyx68 side-chain (Figure S1 in Supplementary 

Materials). As consequence, in the 2PQT structure the side-chain of His107 shows a torsion about 25° 

in chi2 angle and a displacement of 1.9 Å of Phe125 side-chain. Even though these differences may 

not have substantial influence in the docking results since there is no way to anticipate with which 

residues a non-substrate inhibitor will bind at the enzyme recognition site. Furthermore, as shown in 

section 2.2., it was possible to observe a spatial repositioning of the ligands during molecular 

dynamics simulations due to rearrangements in segments of the main chain around the NAT1 

recognition site. 
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Figure 1. 2D chemical structures of the selected compounds from virtual screening with AutoDock 
Vina[33] implemented in the MTiOpenSreen[28] web server. Each compound is identified according 
to the registration number in the ZINC15[27] database. 

In Table 1 are highlighted in bold the compounds that presented better binding energy for TBNAT than for 

NAT2 in both Vina and AutoDock: ZINC14496160, ZINC14715626, ZINC14690579, ZINC53007738 and 

ZINC13480341. The complexes with these compounds were then selected for analysis by molecular 

dynamics simulation. 
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Table 1. Comparison between the results of virtual screening with AudoDock Vina and the docking 
with AutoDock 4.2. The energies are in kcal/mol. 

 
Ligand 

Target enzyme, docking software and binding score energies 
NAT1 NAT2 TBNAT 

Vina AutoDock Vina AutoDock Vina AutoDock 
ZINC14496160 -2.6 -2.6 -7.4 -8.3 -8.6 -9.3 
ZINC14715626 5.8 3.7 -7.3 -7.5 -8.9 -8.1 
ZINC1663392 -6.0 -3.6 -8.7 -7.3 -8.1 -9.4 

ZINC14690579 -3.1 -1.5 -3.5 9.1 -9.0 -7.5 
ZINC13378576 -2.4 -0.6 -9.2 -7.9 -8.5 -7.5 
ZINC53007738 8.9 8.3 -6.0 -6.9 -8.3 -7.6 
ZINC85569505 -5.1 -6.4 -9.3 -8.3 -8.7 -8.1 
ZINC14726747 0.7 1.3 -7.6 -7.8 -6.6 -7.3 
ZINC13480341 5.8 -3.6 -7.3 -6.5 -8.9 -7.3 
ZINC06520505 -2.2 6.3 -8.6 -7.1 -8.5 -7.1 

 

2.2. Molecular dynamics simulations results 

Aiming to increase the sampling all MD simulations were performed in triplicate. The stability 

of each replicate was evaluated from atom-positional root mean-square deviation (RMSD) analysis 

(Figure S1 in Supplementary Materials). The last 10 ns of each replicate were extracted and 

subsequently concatenated forming a single trajectory of 30 ns for further analysis. The 

conformational stability of the concatenated trajectories for each complex was estimated from the 

analysis of the mean value and standard deviation of the RMSD (Table S2 in Supplementary 

Materials). Except for TBNAT complexes, protein RMSD average values for concatenated trajectories 

were found between 0.17 to 0.20 nm with a maximum fluctuation of ± 0.02 nm, suggesting stability 

within the ensemble of conformations considered. Similarly, the RMSD average values for the 

ligands were found between 0.03 to 0.12 nm with a maximum fluctuation of ± 0.03 nm. Protein 

TBNAT-complexes presented greater variations of RMSD but with stabilization around 0.3 nm in the 

last 10 ns of the MD simulations (Figure S2 in Supplementary Materials). Ligand RMSDs for the 

TBNAT complexes ranged from 0.03 to 0.10 nm with a maximum fluctuation of ± 0.01 nm, except for 

TBNAT-ZINC14496160 which showed a RMSD of 0.78 ± 0.03 nm. The higher mean value of RMSD 

and the greater amplitude of the conformational fluctuations observed for the TBNAT complexes 

can be attributed to a greater flexibility and to more significant conformational changes in the 

enzyme during the simulations. In fact, it is possible that the greater flexibility observed for the MD 

simulations of TBNAT-ZINC14690579 compared to those observed for NAT1 and NAT2 (Figure S2 

and Table S2 in Supplementary Materials) are related to the existence of an additional seventeen 

amino acid insertion spanning residues 167–183 in human NATs[21]. This region, absent in 

prokaryotic NATs, is reported to increase NAT protein stability[42]. 
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The average number of hydrogen bonds (Table S2 in Supplementary Materials) ranged from a 

minimal of 0.44 (for NAT1-ZINC14715626) to a maximum of 2.09 (for NAT2-ZINC14496160), 

indicating that the affinity of the ligands occurred mainly through hydrophobic contacts. 

Binding score energies of NAT1 and TBNAT inhibitor complexes were analyzed from the 

concatenated production phase of MD simulations by MM-PBSA method . Table 2 shows MM-PBSA 

binding score energies for the five compounds select from VS and docking. It is possible to observe 

that the compound with the greatest binding score difference between TBNAT and NAT2 was 

ZINC14690579 (ΔΔGbind = -12.7 kcal/mol). This data is in agreement to Table 1, where only 

ZINC14690579 presented difference in binding score (ΔΔGbind(Vina) = -5.5 kcal/mol; ΔΔGbind(AutoDock) = 

-16.6 kcal/mol) greater than the standard error of each docking program (which is of about 2–3 

kcal/mol in prediction of binding free energy in cross-validation studies)[32,33].  

In an unexpected manner, the difference in binding score for compound ZINC14690579 (ΔΔGbind 

= -15.7 kcal/mol) also demonstrating a potential selectivity factor between NAT1 and NAT2. Thus, 

the interaction of the respective ligand with TBNAT and NAT1 was subjected to a more detailed 

analysis. 
 

Table 2. Binding score energies for the five compounds with more selective-inhibitory potential from 
VS revaluated using MM-PBSA method. The energies are in kcal/mol. 

Ligand Target enzyme and binding score energies  
NAT1 NAT2 TBNAT 

ZINC14715626 -20.4 -24.4 -19.5 

ZINC14496160 -19.3 -19.6 -22.1 

ZINC14690579 -20.5 -4.8 -17.5 

ZINC53007738 -15.0 -13.5 -1.8 

ZINC13480341 -18.6 -12.9 -18.7 

 

From Table 3 it is possible to observe that the component that most contributes to the 

interaction of ZINC14690579 with TBNAT and NAT1 is related to the non-polar/hydrophobic 

contributions (ΔEvdw). In this sense, the sum of the energetic terms allows to conclude that the 

estimated selectivity profile (predicted in function of ΔΔGbinding) for NAT1/NAT2 and TBNAT/NAT2 

is mainly related to the smaller contribution of the non-polar/hydrophobic interactions of NAT2 

with ZINC14690579. Specifically for NAT1, a greater contribution of the electrostatic contributions 

(ΔEelec) is observed when compared to NAT2 and TBNAT. As will be seen below, this must be related 

to the contribution of basic residues around the NAT1 binding site. 
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Table 3. MM-PBSA calculation for NAT-ZINC14690579 complexes. The energies are in kcal/mol. 

     NAT 
Energy componentsa 

ΔGbinding ΔΔGbindingb 

ΔEelec ΔEvdw ΔEpolar-solv ΔEnon-polar  

NAT1 -15.2 -38.1 37.0 -4.2 -20.5 -15.7 

NAT2 -6.0 -13.5 16.1 -1.4 -4.8 0.0 

TBNAT -5.7 -29.1 20.6 -3.1 -17.5 -12.7 

aΔEelec = electrostatic component; ΔEvdw = noncovalent van der Waals component;  

ΔEpolar-solv = polar salvation component; ΔEnon-polar = non-polar salvation component   
bΔΔGbinding = ΔGNAT - ΔGNAT2  

 

2.2.1. Molecular dynamics simulation of NAT1-ZINC14690579 complex  

 
In order to determine the contribution of NAT1 residues involved in the interaction with the 

ligand, free energy decomposition was performed. The number of hydrophobic contacts and 

hydrogen bonds between NAT1 and ZINC14690579 was also calculated (Table 4). All analysis and 

calculations were realized considering the 30 ns concatenated trajectory. From Table 4 it is possible 

to observe that the residues that contributed the most to the interaction are non-polar (Val93, Ile106, 

Phe125, Leu209, Val216 and Phe217), which is in agreement with the value of ΔEvdw (-38.1 kcal/mol) 

in Table 3. These residues account for 54.95% of the total hydrophobic contacts with the ligand 

(Table 4). From Table 3 it can be observed that the value of the term relative to the electrostatic 

interactions (ΔEelec) between NAT1 and ZINC14690579 (-15.2 kcal/mol) is more than double 

compared to NAT2 (-6.0 kcal/mol) and TBNAT (-5.7 kcal/mol). From free energy decomposition data 

in Table 4 it is possible to suggest that the magnitude of the electrostatic contribution between 

protein and ligand in the NAT1-ZINC14690579 complex derives from the contribution of a group of 

basic residues (Lys99, Lys100, Arg165, Arg167, Lys188, Lys220 and Arg286). It is interesting to note 

that five of these residues (Lys99, Lys100, Arg165, Arg167 and Lys188) are distant from the ligand 

(Figure 2, Panels (a) and (b)), but together they form a basic cluster that contributes significantly to 

the interaction. Considered together, the fact that the main contributions to the ligand-receptor 

interaction in the NAT1-ZINC14690579 complex occur through non-polar contacts and 

long-distance electrostatic interactions suggests that the driving force that maintains the ligand in 

the active site is mainly the result of a sum of non-directional interactions. In fact, the number of 

ligand-receptor hydrogen bonds calculated for the NAT1-ZINC14690579 concatenated trajectory 

was found small, 1.74 ± 0.83 (Table S2 in Supplementary Materials). From Table 4 it can be seen that 

the most important hydrogen bond interaction was with the backbone of Phe217 (42.2% of the total 

hydrogen bonds). The other three amino acids with which hydrogen bonds were detected (Phe125, 

Ser215, Val216) accounted for 34% of the total of these interactions. 

Redocking of ZINC14690579 in a structure of NAT1-ZINC14690579 complex collected at 20 ns 

from MD simulation resulted in a binding energy score of -8.1 kcal/mol. Compared with the value 

obtained for the docking of ZINC14690579 on the NAT1 homology modeling on Table 1 (-3.1 
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kcal/mol) this results in a difference of 5 kcal/mol, which is greater than the AutoDock Vina standard 

error. This finding may indicate that the crystallographic structures of NAT1 may not be the most 

suitable for docking studies with homology models built from these.  

Comparison of the homology modeling structure of NAT1 and a 20ns structure from MD 

simulation shows important conformational differences in the region of NAT1 binding site (Figure 2, 

Panel(c)). In particular, the main chain of the segment formed by the residues Ser95 to Lys99 moves 

3.45 Å towards the ligand. Following this movement, the backbone and side chain of Val93, the 

residue that most contributes individually to the protein-ligand interaction, moves around 1.50 

closer to the ZINC14690579. In the same sense, a shift of about 1.7 Å in the backbone of the α-helical 

interdomain (helices α8-α10) allows the side chains of Leu209, Ser215, Val216 and Phe217 to 

maximize the interaction with the ligand. 

 

Table 4. Relative contribution of residues to binding between NAT1 and ZINC14690579 

Residue 

Complex NAT1-ZINC14690579 
Contribution 

Energy 
(kJ/mol)1 

Hydrophobic 
contacts2 

(%) 

Hydrogen bonding 
(%)2,3 

Cys68 -2.02 8.53 n.d. 
Val93 -6.65 9.73 n.d. 
Pro97 -1.97 2.70 n.d. 
Lys99 -1.51 n.d. n.d. 
Lys100 -2.30 0.52 n.d. 
Ser102 -1.73 2.30 n.d. 
Ile106 -4.22 7.08 n.d. 

Phe125 -4.70 8.37 16.7 
Arg165 -1.24 n.d. n.d. 
Arg187 -2.13 n.d. n.d. 
Lys188 -1.30 n.d. n.d. 
Leu209 -4.63 6.07 n.d. 
Ser215 -1.33 1.62 12.8 
Val216 -5.95 10.5 4.51 
Phe217 -5.52 13.2 42.2 
Lys220 -1.66 0.52 n.d. 
Phe222 - 1.15 1.12 n.d. 
Arg286 -2.66 3.00 n.d. 
Phe288 -2.70 4.73 n.d. 

1 Energy contribution estimated by the MM-PBSA method[38].                                            
2 Percentage of hydrophobic contacts and hydrogen bonds calculated with the LIGPLOT[43] program.           

3Hydrogen bonds considered only for residues that had more than 2% of the total interactions. 
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Figure 2. Schematic representation of the interaction of NAT1 with ZINC14690579. (a) 
Representation of main interacting residues of NAT1 with ZINC14690579. NAT1 is represented as 
transparent ribbon and sticks with shades of red. The ligand is represented as green sticks. The 
contribution of each residue to the interaction with the ligand is proportional to the increase in red 
tonality (see Table 4). (b) Representation of NAT1- ZINC14690579 in silico complex. NAT1 is 
represented as gray ribbon and sticks with shades of red. The color bar indicates the relative 
interaction energy of each residue with the ligand. (c). Structural changes induced by ligand binding 
at the recognition site of NAT1 depicted by the superimposition of the crystallographic structure of 
NAT1 (represented gray ribbon) and the 20ns structure from the MD simulation (represented as blue 
light ribbon). Ligand structure is represented as gray sticks (from docking) and green stick (from DM 
simulation). Structure of ZINC14690579 on top of panel (c). 
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2.2.2. Molecular dynamics simulations of TBNAT-ZINC14690579 complex 
 

Decomposition of free energy and the counting of hydrophobic contacts and hydrogen bonds 

were performed in the same way as for the NAT1-ZINC14690579 complex. From Table 5 it is possible 

to observe that all the ten residues that contributed to the interaction are non-polar. This is in agreement with the 

value of ΔEvdw (-29.1 kcal/mol) in Table 3. Already, the lack of polar residues and hydrogen bonds involved in 

the interaction with the ligand is in agreement with the low contribution of the electrostatic interactions (ΔEelec = 

-5.7 kcal/mol). These observations suggest that the protein-ligand interactions in the TBNAT-ZINC14690579 

complex are mainly non-directional. For instance, one of the main elements involved in the interaction between 

TBNAT and ZINC14690579 derives from a cluster of non-polar residues located between Leu99-Ala100 and 

Ala103-Pro107 (Table 5; Figure 3, Panels (a) and (b)). It is interesting to note that the interaction with this 

cluster of non-polar residues is a result of a backbone shift of the Leu99-Pro107 segment of approximately 6.2 

Å toward the ligand (Figure 3, Panel (c)). Other conformational changes that contribute to maximize the 

interaction with the ligand involve displacement of the side chains of Phe130, Ala201 and Phe204 in 2.47, 8.31 

and 2.97 Å respectively. In particular, changes in the position of residues Ala201 and Phe204 is accompanied by 

a movement of the backbone of the third domain of approximately 7.5 Å compared to the crystallographic 

structure of the TBNAT. The obtained results point to a series of concerted rearrangements that result in the 

maximization of protein-ligand interactions. These observations can be interpreted in the way that the 

conformational adaptability of the NATs allows these enzymes to perform various functions[21,22]. 

 

Table 5. Relative contribution of residues to binding between TBNAT and ZINC14690579 

Residue Complex TBNAT-ZINC14690579 
 Contribution 

Energy 
(kJ/mol)1 

Hydrophobic 
contacts2 

(%) 

Hydrogen bonding2,3 

(%) 

Leu99 -3.16 13.45  n.d. 
Ala100 -1.52 6.51 n.d. 
Ala103 -1.95 3.98 n.d. 
Pro104 -1.56 0.17 n.d. 
Leu105 -1.93 0.34 n.d. 
Pro106 -3.53 9.16 n.d. 
Pro107 -1.78 9.59 n.d. 
Phe130 -1.75 8.78 n.d. 
Ala201 -2.04 1.76 n.d. 
Phe204 -1.93 6.85 n.d. 

1 Energy contribution estimated by the MM-PBSA method[38].                                            
2 Percentage of hydrophobic contacts and hydrogen bonds calculated with the LIGPLOT[43] program. 

3Hydrogen bonds considered only for residues that had more than 2% of the total interactions. 
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Figure 3. Schematic representation of the interaction of TBNAT with ZINC14690579. (a) 
Representation of main interacting residues of TBNAT with ZINC14690579. TBNAT is represented 
as transparent ribbon and sticks with shades of red. The ligand is represented as green sticks. The 
contribution of each residue to the interaction with the ligand is proportional to the increase in red 
tonality (see Table 5). (b) Representation of TBNAT-ZINC14690579 in silico complex. TBNAT is 
represented as gray ribbon and sticks with shades of red. The color bar indicates the relative 
interaction energy of each residue with the ligand. (c). Structural changes induced by ligand binding 
at the recognition site of TBNAT depicted by the superposition of the crystallographic structure of 
TBNAT (represented gray ribbon) and the 20ns structure from the MD simulation (represented as 
blue light ribbon). Ligand structure is represented as gray sticks (from docking) and green stick 
(from DM simulation). Red arrows point to the main conformational changes in the recognition site. 
Structure of the ligand on top of panel (c). 

A potential anti-tuberculosis activity of ZINC14690579 can be extrapolated from evidence of 

inhibitory activity of the extract from Premna odorata Blanco (Lamiaceae), a medicinal plant 

traditionally used in Albay Province, in south-eastern Luzon, Philippines, against M. tuberculosis[44]. 

It was observed that the most active fraction of the extract of Premna odorata Blanco has a 

ZINC1469057 analog, the diosmetin (Figure 4). Although not conclusive, this data combined with the 
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in silico observations in this work may indicate that ZINC14690579 scaffold may be potentially 

effective for inhibition of TBNAT and, consequently, treatment of tuberculosis. 

 

Figure 4. Comparison between 2D structures of Diosmetin and ZINC14690579. 

 

3. Materials and Methods  

3.1. Library preparation 

The library containing 36,043 compounds from the Traditional Chinese Medicine (TCM) was 
downloaded in the SDF (Structures Data File) format from the ZINC database[27], catalog TCM 
Database@Taiwan[45]. Before the use, the TCM library was previously formatted and cleaned (to 
remove inorganics, large compounds, mixtures, empty structures, salts and duplicates) with Bank 
Formatter and Bank Cleaner tools, respectively, both implemented in the Mobyle[46] portal. This 
procedure was followed by the addition of hydrogens and attribution of the 3D structure for each 
compound with the Standardizer[47] software. Geometries of the ligands were then optimized with 
the AMMOS[48] software implemented in the Mobyle portal. Afterwards, the library was submitted 
to the FAF-Drugs3[5,6] server. Filtering rules were chosen in order to detect and to remove 
potentially non-bioavailable compounds, substructures with potential toxic groups, aggregators and 
Pan-Assay interference compounds[26]. At the end of this stage, 1,902 compounds were left in the 
library. 

3.2. Target preparation 

NAT2 and TBNAT structural models were obtained from crystallographic structures deposited 
in the Protein Data Bank[39,40] (PDB) (www.rcsb.org): NAT2, accession code 2PFR (resolution 1.9 
Å)[50] and TBNAT, accession code 4BGF (resolution 2.1 Å)[51]. Since the two human NAT1 
structures deposited in PDB have missing atoms and modified amino acid residues, the structural 
model of NAT1 was obtained by homology modelling. The 3D coordinates of wide-type NAT1 
(amino-acid sequence access code P18440-1 of UniProtKB[52] database) was generated using the 
SWISS-MODEL Workspace[53]. As template, the crystallographic structure of mutant (F125S) NAT1 
(PDB accession code 2IJA, resolution 1.7 Å)[41] was used. Solvent, ions and ligands were removed 
from the target structures for the subsequent steps. 

3.3. Virtual screening 

Virtual screening with the filtered library was performed with the AudoDock Vina[33], version 
1.1.2, software implemented in the MTiOpenScreen[28] web server. All screenings were performed 
using NAT1, NAT2 and TBNAT as targets. Each enzyme was treated as rigid and each ligand in the 
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library was treated as flexible. Gasteiger[54] partial charges were calculated after addition of all 
hydrogens. Nonpolar hydrogens of enzyme and ligand were subsequently merged. A box of 
approximately 14×14×14 Å was generated for the each target. The grid boxes were centralized on the 
peptidic O of Ile106 (for NAT1), peptidic O of Val106 (for NAT2) and peptidic O of Thr109 (for 
TBNAT). 

MTiOpenScreen returns only the 1000 best ligands for each target. As for NAT1 no compound 
had more favorable binding score than for NAT2, the ten best compounds were selected considering 
only TBNAT, i.e., the ten ligands with most favourable binding score for TBNAT and the worst 
binding score for NAT2. In order to confirm the results of the virtual screening, a second round of 
docking simulations were locally performed with the ten best compounds selected from 
MTiOpenScreen. In this round the dockings were performed with AutoDock Vina[33] implemented 
in the PyRx[35] graphic interface. Except where otherwise indicated, the standard parameters for the 
programs were used. 

3.4. Docking with AutoDock 4.2 

Autodock[32], version 4.2, a docking program that uses a different approach to the scoring 
function in comparison to AutoDock Vina, was used to compare the results obtained from the 
virtual screening. The docking protocol was the same as described for AutoDock Vina, except for the 
dimensions of the grid box and the use of the Lamarckian Genetic Algorithm. Targets and ligands 
were prepared for docking simulations with the AutoDockTools (ADT)[55] interface, version 1.5.6. 
A cubic box of 40 × 40 × 40 points with a spacing of 0.35 Å between the grid points was generated for 
each protein target. The grid boxes were centered as for virtual screening protocol. Global search 
Lamarckian genetic algorithm (LGA)[56] and local search (LS) pseudo-Solis and Wets[57] methods 
were applied in the docking search. Each single docking simulation consisted of 10 independent 
runs. The initial population was 150, the maximum number of generations was 27,000 and the 
maximum number of energy evaluations was 2.5 × 106. Default values were selected for other 
parameters. 

3.5. Molecular dynamics simulations 

3.5.1. Ligand setup 

The topology for each ligand was generated from the Automated Topology Builder 
(ATB)[58][59] web server. The conformation with better energy score from the docking simulation 
with Autodock Vina was taken as input structure. Missing hydrogens were added and the ligand 
structure was uploaded to the ATB server preserving the original geometry. 

3.5.2. Molecular dynamics protocol 

Molecular dynamics simulations were carried out using GROMOS96 53a6[60] force field 
implemented in GROMACS package[34], version 4.5.6. The protonation states of histidines were 
determined from H++[61] web server. All systems were simulated in NPT ensemble and periodic 
boundary conditions. The dimensions of the central box were chosen so that the minimum distance 
between of any protein atom to the closest box wall was 12 Å. The simulations were carried out 
using explicit solvent water molecules described by the simple point charge (SPC)[62] model. 
Initially, the protein structure in each system was submitted to a maximum of 500 steps of steepest 
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descent energy minimization. To relax strong solvent-solvent and solvent-protein non-bonded 
interactions, 100 ps of MD simulation was performed restraining the protein structure. Initial 
velocities were assigned according to Maxwell distribution. Counter-ions were added to neutralize 
each system. Table 1 summarizes the characteristics of each NAT simulated. 

Table 6. Characteristics of each NAT simulated. 

NAT enzyme Organism Number of 
residues 

Number of atoms Liquid charge 

NAT1 Homo sapiens 289 3098 -3 
NAT2 Homo sapiens 290 3044 -5 

TBNAT M. tuberculosis 270 2684 -6 

 
All simulations were performed in triplicate, using different initial random velocity 

distributions, for 20 ns with an integration time step of 2 fs. Each system was heated with gradual 
increments in the following temperatures: 150 K (100 ps), 200 K (100 ps), and 250 K (100 ps). After, 
the temperature of each system was adjusted to 309.15 K. The first 10 ns of MD simulations was 
considered as part of the heating (0.30 ns) and the equilibration (9.70 ns) steps and had not been used 
in the data analysis. The temperature of each group (protein, ligand, solvent and ions) was 
independently coupled to a thermal bath with a relaxation time of 0.1 ps using the v-rescale 
thermostat[63]. The pressure in each system was weakly coupled to a pressure bath of 1 atm 
applying an isotropic scaling and 0.5 ps of relaxation time using the Parrinello-Rahman 
barostat[64,65]. Bond lengths were constrained using the LINCS algorithm[66] with 4th order 
expansion. Electrostatic interactions among non-ligand atoms were evaluated by the smooth particle 
mesh Ewald (SPME)[67] method with a charge grid spacing of approximately 1.0 Å. The charge grid 
was interpolated on a cubic grid with the direct sum tolerance set. Lennard-Jones interactions were 
evaluated using a 14 Å atom-based cutoff. The pair list was updated every 10 steps. 

3.6.3. Analysis of the MD trajectories 

The last 10ns of each triplicate was concatenated in a 30 ns trajectory for further analysis. As 
default, the trjconv module of GROMACS was used to restore, if necessary, protein and ligand 
inside the simulation box, as well as to make the fit of the conformations of each trajectory on the 
respective reference crystallographic structure. g_rms and g_hbond modules of GROMACS were 
used, respectively, to calculate the root-mean-square deviation (RMSD) of protein and ligand and 
the number of hydrogen bonds between protein and ligand. Biding score energies were estimated 
using the Molecular Mechanics – Poisson Boltzmann Surface Area (MM-PBSA) method, 
implemented through the module g_mmpbsa in GROMACS by Kumari and co-workers[38]. 
MM-PBSA based interaction energies were computed on snapshots collected every 2 ps from the 
DM trajectories. All calculations with g_mmpbsa were performed using default values. 
Protein-ligand hydrophobic contacts and hydrogen bonds were computed on snapshots collected 
every 100 ps from the DM trajectory using the LIGPLOT[43] program. 

Visual inspection of the systems was performed using the Visual Molecular Dynamics 
(VMD)[68] and Chimera[69] software. 
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4. Conclusions 

The use of free tools and resources allowed us to conclude the objectives of this study with a 

potential inhibitor identified. ZINC14690579 showed agreement in all methodologies used, 

indicating a potential for affinity and selectivity for NAT1 and TBNAT in relation to NAT2. This 

selectivity is mainly related to the smaller contribution of the non-polar/hydrophobic interactions of 

ZINC14690579 with NAT2 . The results indicate that the binding of ZINC14690579 to both NAT1 

and TBNAT involves a set of concerted conformational changes resulting in accommodation of the 

ligand at the binding site. These initial observations on the conformational behaviour of NATs are in 

accordance with the theory that the conformational adaptability of these enzymes allows them to 

perform various functions, and should be taken into account in the in silico study of new inhibitors.  

In this sense, ZINC14690579 may represent the discovery of a new scaffold for future development 

of NAT inhibitors. 

Supplementary Materials: The following are available online: Figure S1: Comparison between the results for 
the ten best ligands of NAT1 from virtual screening with MTiOpenScreen  and the docking with AutoDock 4.2, 
Figure S2: Time-dependence of atom-positional root mean-square deviation (RMSD) of Cα atoms for 
NAT-ZINC14690579 complexes, Table S1: Superposition of NAT1 crystallography and molecular modelling 
structures, Table S2: Average value of structural parameters of concatenated MD trajectories. 

Acknowledgments:  A special acknowledgement to the Supercomputing Center of the Federal University of 
Rio Grande do Sul (CESUP-UFRGS) where most of the computational work was carried out. 

Author Contributions: F.A., R.O., L.B and H.A. conceived and designed the experiments; F.A., J.A., M.O and 
I.A. performed the experiments; F.A. and H.A. analyzed the data; F.A. and H.A wrote the paper. 

Conflicts of Interest “The authors declare no conflict of interest."  

References 

1.  Weber, W. W.; Cohen, S. N. N-acetylation of drugs: isolation and properties of an N-acetyltransferase 

from rabbit liver. Mol. Pharmacol. 1967, 3, 266–73. 

2.  Riddle, B.; Jencks, W. P. Acetyl-coenzyme A: arylamine N-acetyltransferase. Role of the acetyl-enzyme 

intermediate and the effects of substituents on the rate. J. Biol. Chem. 1971, 246, 3250–8. 

3.  Drummond, G. S.; Kelker, H. C.; Weber, W. W. N-acetylation of drugs. Observations on the properties 

of partially purified N-acetyltransferase from peripheral blood of rabbit. Biochem. J. 1980, 187, 157–62. 

4.  Weber, W. W.; Hein, D. W. N-acetylation pharmacogenetics. Pharmacol. Rev. 1985, 37, 25–79. 

5.  Upton, A.; Johnson, N.; Sandy, J.; Sim, E. Arylamine N-acetyltransferases - of mice, men and 

microorganisms. Trends Pharmacol. Sci. 2001, 22, 140–6. 

6.  Boukouvala, S.; Fakis, G. Arylamine N -Acetyltransferases: What We Learn from Genes and Genomes. 

Drug Metab. Rev. 2005, 37, 511–564, doi:10.1080/03602530500251204. 

7.  Hein, D. W.; Doll, M. A.; Rustan, T. D.; Gray, K.; Feng, Y.; Ferguson, R. J.; Grant, D. M. Metabolic 

activation and deactivation of arylamine carcinogens by recombinant human NAT1 and polymorphic 

NAT2 acetyltransferases. Carcinogenesis 1993, 14, 1633–8. 

8.  Hein, D. W. Molecular genetics and function of NAT1 and NAT2: role in aromatic amine metabolism 

and carcinogenesis. Mutat. Res. 2002, 506–507, 65–77. 

9.  Sim, E.; Pinter, K.; Mushtaq, A.; Upton, A.; Sandy, J.; Bhakta, S.; Noble, M. Arylamine 

N-acetyltransferases: a pharmacogenomic approach to drug metabolism and endogenous function. 

Biochem. Soc. Trans. 2003, 31, 615–619, doi:10.1042/bst0310615. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 June 2017                   doi:10.20944/preprints201706.0132.v1

http://dx.doi.org/10.20944/preprints201706.0132.v1


 16 of 19 

 

10.  Bhakta, S.; Besra, G. S.; Upton, A. M.; Parish, T.; Sholto-Douglas-Vernon, C.; Gibson, K. J. C.; Knutton, 

S.; Gordon, S.; daSilva, R. P.; Anderton, M. C.; Sim, E. Arylamine N -Acetyltransferase Is Required for 

Synthesis of Mycolic Acids and Complex Lipids in Mycobacterium bovis BCG and Represents a Novel 

Drug Target. J. Exp. Med. 2004, 199, 1191–1199, doi:10.1084/jem.20031956. 

11.  Wu, H.; Dombrovsky, L.; Tempel, W.; Martin, F.; Loppnau, P.; Goodfellow, G. H.; Grant, D. M.; 

Plotnikov, A. N. Structural Basis of Substrate-binding Specificity of Human Arylamine 

N-Acetyltransferases. J. Biol. Chem. 2007, 282, 30189–30197, doi:10.1074/jbc.M704138200. 

12.  Butcher, N. J.; Minchin, R. F. Arylamine N-Acetyltransferase 1: A Novel Drug Target in Cancer 

Development. Pharmacol. Rev. 2012, 64, 147–165, doi:10.1124/pr.110.004275. 

13.  Sim, E.; Abuhammad, A.; Ryan, A. Arylamine N-acetyltransferases: from drug metabolism and 

pharmacogenetics to drug discovery. Br. J. Pharmacol. 2014, 171, 2705–2725, doi:10.1111/bph.12598. 

14.  Duval, R.; Xu, X.; Bui, L.-C.; Mathieu, C.; Petit, E.; Cariou, K.; Dodd, R. H.; Dupret, J.-M.; Fernando, R.-L. 

Identification of cancer chemopreventive isothiocyanates as direct inhibitors of the arylamine 

N-acetyltransferase-dependent acetylation and bioactivation of aromatic amine carcinogens. Oncotarget 

2016, doi:10.18632/oncotarget.7086. 

15.  Francis, S.; Laurieri, N.; Nwokocha, C.; Delgoda, R. Treatment of Rats with Apocynin Has Considerable 

Inhibitory Effects on Arylamine N-Acetyltransferase Activity in the Liver. Sci. Rep. 2016, 6, 26906, 

doi:10.1038/srep26906. 

16.  Anderton, M. C.; Bhakta, S.; Besra, G. S.; Jeavons, P.; Eltis, L. D.; Sim, E. Characterization of the putative 

operon containing arylamine N-acetyltransferase (nat) in Mycobacterium bovis BCG. Mol. Microbiol. 

2006, 59, 181–192, doi:10.1111/j.1365-2958.2005.04945.x. 

17.  Yam, K. C.; D’Angelo, I.; Kalscheuer, R.; Zhu, H.; Wang, J.-X.; Snieckus, V.; Ly, L. H.; Converse, P. J.; 

Jacobs, W. R.; Strynadka, N.; Eltis, L. D. Studies of a Ring-Cleaving Dioxygenase Illuminate the Role of 

Cholesterol Metabolism in the Pathogenesis of Mycobacterium tuberculosis. PLoS Pathog. 2009, 5, 

e1000344, doi:10.1371/journal.ppat.1000344. 

18.  Abuhammad, A.; Fullam, E.; Lowe, E. D.; Staunton, D.; Kawamura, A.; Westwood, I. M.; Bhakta, S.; 

Garner, A. C.; Wilson, D. L.; Seden, P. T.; Davies, S. G.; Russell, A. J.; Garman, E. F.; Sim, E. Piperidinols 

That Show Anti-Tubercular Activity as Inhibitors of Arylamine N-Acetyltransferase: An Essential 

Enzyme for Mycobacterial Survival Inside Macrophages. PLoS One 2012, 7, e52790, 

doi:10.1371/journal.pone.0052790. 

19.  Abuhammad, A.; Fullam, E.; Bhakta, S.; Russell, A.; Morris, G.; Finn, P.; Sim, E. Exploration of 

Piperidinols as Potential Antitubercular Agents. Molecules 2014, 19, 16274–16290, 

doi:10.3390/molecules191016274. 

20.  Sandy, J.; Mushtaq, A.; Holton, S. J.; Schartau, P.; Noble, M. E. M.; Sim, E. Investigation of the catalytic 

triad of arylamine N-acetyltransferases: essential residues required for acetyl transfer to arylamines. 

Biochem. J. 2005, 390, 115–123, doi:10.1042/BJ20050277. 

21.  Sim, E.; Walters, K.; Boukouvala, S. Arylamine N-acetyltransferases: From Structure to Function. Drug 

Metab. Rev. 2008, 40, 479–510, doi:10.1080/03602530802186603. 

22.  Zhang, N.; Walters, K. J. Insights into how protein dynamics affects arylamine N-acetyltransferase 

catalysis. Biochem. Biophys. Res. Commun. 2009, 385, 395–401, doi:10.1016/j.bbrc.2009.05.065. 

23.  Frey, J. G.; Bird, C. L. Web-based services for drug design and discovery. Expert Opin. Drug Discov. 2011, 

6, 885–895, doi:10.1517/17460441.2011.598924. 

24.  Artimo, P.; Jonnalagedda, M.; Arnold, K.; Baratin, D.; Csardi, G.; de Castro, E.; Duvaud, S.; Flegel, V.; 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 June 2017                   doi:10.20944/preprints201706.0132.v1

http://dx.doi.org/10.20944/preprints201706.0132.v1


 17 of 19 

 

Fortier, A.; Gasteiger, E.; Grosdidier, A.; Hernandez, C.; Ioannidis, V.; Kuznetsov, D.; Liechti, R.; 

Moretti, S.; Mostaguir, K.; Redaschi, N.; Rossier, G.; Xenarios, I.; Stockinger, H. ExPASy: SIB 

bioinformatics resource portal. Nucleic Acids Res. 2012, 40, W597–W603, doi:10.1093/nar/gks400. 

25.  Law, V.; Knox, C.; Djoumbou, Y.; Jewison, T.; Guo, A. C.; Liu, Y.; Maciejewski, A.; Arndt, D.; Wilson, 

M.; Neveu, V.; Tang, A.; Gabriel, G.; Ly, C.; Adamjee, S.; Dame, Z. T.; Han, B.; Zhou, Y.; Wishart, D. S. 

DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res. 2014, 42, D1091–D1097, 

doi:10.1093/nar/gkt1068. 

26.  Lagorce, D.; Sperandio, O.; Baell, J. B.; Miteva, M. A.; Villoutreix, B. O. FAF-Drugs3: a web server for 

compound property calculation and chemical library design. Nucleic Acids Res. 2015, 43, W200–W207, 

doi:10.1093/nar/gkv353. 

27.  Sterling, T.; Irwin, J. J. ZINC 15: Ligand Discovery for Everyone. J. Chem. Inf. Model. 2015, 55, 2324–2337, 

doi:10.1021/acs.jcim.5b00559. 

28.  Labbé, C. M.; Rey, J.; Lagorce, D.; Vavruša, M.; Becot, J.; Sperandio, O.; Villoutreix, B. O.; Tufféry, P.; 

Miteva, M. A. MTiOpenScreen: A web server for structure-based virtual screening. Nucleic Acids Res. 

2015, 43, W448–W454, doi:10.1093/nar/gkv306. 

29.  DeLano, W. L. The case for open-source software in drug discovery. Drug Discov. Today 2005, 10, 

213–217, doi:10.1016/S1359-6446(04)03363-X. 

30.  Geldenhuys, W. J.; Gaasch, K. E.; Watson, M.; Allen, D. D.; Van der Schyf, C. J. Optimizing the use of 

open-source software applications in drug discovery. Drug Discov. Today 2006, 11, 127–132, 

doi:10.1016/S1359-6446(05)03692-5. 

31.  Villoutreix, B. O.; Renault, N.; Lagorce, D.; Sperandio, O.; Montes, M.; Miteva, M. A. Free resources to 

assist structure-based virtual ligand screening experiments. Curr. Protein Pept. Sci. 2007, 8, 381–411. 

32.  Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J. 

AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. 

Chem. 2009, 30, 2785–2791, doi:10.1002/jcc.21256. 

33.  Trott, O.; Olson, A. J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring 

function, efficient optimization, and multithreading. J. Comput. Chem. 2009, 31, 455–461, 

doi:10.1002/jcc.21334. 

34.  Pronk, S.; Páll, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M. R.; Smith, J. C.; Kasson, 

P. M.; Van Der Spoel, D.; Hess, B.; Lindahl, E. GROMACS 4.5: A high-throughput and highly parallel 

open source molecular simulation toolkit. Bioinformatics 2013, 29, 845–854, 

doi:10.1093/bioinformatics/btt055. 

35.  Dallakyan, S.; Olson, A. J. Small-Molecule Library Screening by Docking with PyRx. In; 2015; pp. 

243–250. 

36.  Jayashree, S.; Thomas, C.; Piotr, C.; Peter, K.; Case, D. Continuum Solvent Studies of the Stability of 

DNA, RNA, and Phosphoramidate−DNA Helices. J. Am. Chem. Soc. 1998, 120, 9401–9409, 

doi:10.1021/ja981844+. 

37.  Homeyer, N.; Gohlke, H. Free energy calculations by the Molecular Mechanics Poisson-Boltzmann 

Surface Area method. Mol. Inform. 2012, 31, 114–122, doi:10.1002/minf.201100135. 

38.  Kumari, R.; Kumar, R.; Lynn, A. G-mmpbsa -A GROMACS tool for high-throughput MM-PBSA 

calculations. J. Chem. Inf. Model. 2014, 54, 1951–1962, doi:10.1021/ci500020m. 

39.  Berman, H. M. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242, doi:10.1093/nar/28.1.235. 

40.  Rose, P. W.; Prli´c, A.; Altunkaya, A.; Bi, C.; Bradley, A. R.; Christie, C. H.; Di Costanzo, L.; Duarte, J. M.; 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 June 2017                   doi:10.20944/preprints201706.0132.v1

http://dx.doi.org/10.20944/preprints201706.0132.v1


 18 of 19 

 

Dutta, S.; Feng, Z.; Green, R. K.; Goodsell, D. S.; Hudson, B.; Kalro, T.; Lowe, R.; Peisach, E.; Randle, C.; 

Rose, A. S.; Shao, C.; Tao, Y. P.; Valasatava, Y.; Voigt, M.; Westbrook, J. D.; Woo, J.; Yang, H.; Young, J. 

Y.; Zardecki, C.; Berman, H. M.; Burley, S. K. The RCSB protein data bank: Integrative view of protein, 

gene and 3D structural information. Nucleic Acids Res. 2017, 45, D271–D281, doi:10.1093/nar/gkw1000. 

41.  Tempel, W., Wu, H., Dombrovski, L., Loppnau, P., Weigelt, J., Sundstrom, M., Arrowsmith, C.H., 

Edwards, A.M., Grant, D.M., Bochkarev, A., Plotnikov, A. N. The Crystal Structure of Human 

N-acetyltransferase 1 mutant, F125S Available online: http://dx.doi.org/10.2210/pdb2ija/pdb. 

42.  Walraven, J. M.; Trent, J. O.; Hein, D. W. Computational and Experimental Analyses of Mammalian 

Arylamine N-Acetyltransferase Structure and Function. Drug Metab. Dispos. 2007, 35, 1001–1007, 

doi:10.1124/dmd.107.015040. 

43.  Wallace, A. C.; Laskowski, R. A.; Thornton, J. M. LIGPLOT: a program to generate schematic diagrams 

of protein-ligand interactions. Protein Eng. 1995, 8, 127–34, doi:10.1093/nar/25.24.4940. 

44.  Lirio, S. B.; Macabeo, A. P. G.; Paragas, E. M.; Knorn, M.; Kohls, P.; Franzblau, S. G.; Wang, Y.; 

Aguinaldo, M. A. M. Antitubercular constituents from Premna odorata Blanco. J. Ethnopharmacol. 2014, 

154, 471–474, doi:10.1016/j.jep.2014.04.015. 

45.  Chen, C. Y.-C. TCM Database@Taiwan: The World’s Largest Traditional Chinese Medicine Database for 

Drug Screening In Silico. PLoS One 2011, 6, e15939, doi:10.1371/journal.pone.0015939. 

46.  Neron, B.; Menager, H.; Maufrais, C.; Joly, N.; Maupetit, J.; Letort, S.; Carrere, S.; Tuffery, P.; Letondal, 

C. Mobyle: a new full web bioinformatics framework. Bioinformatics 2009, 25, 3005–3011, 

doi:10.1093/bioinformatics/btp493. 

47.  Standardizer 2016. 

48.  Pencheva, T.; Lagorce, D.; Pajeva, I.; Villoutreix, B. O.; Miteva, M. A. AMMOS software: Method and 

application. In Methods in Molecular Biology; 2012; Vol. 819, pp. 127–141 ISBN 9781617794643. 

49.  Miteva, M. A.; Violas, S.; Montes, M.; Gomez, D.; Tuffery, P.; Villoutreix, B. O. FAF-Drugs: free 

ADME/tox filtering of compound collections. Nucleic Acids Res. 2006, 34, W738–W744, 

doi:10.1093/nar/gkl065. 

50.  Tempel, W., Wu, H., Dombrovski, L., Loppnau, P., Weigelt, J., Sundstrom, M., Arrowsmith, C.H., 

Edwards, A.M., Grant, D.M., Bochkarev, A., Plotnikov, A. N. The Crystal Structure of Human 

N-acetyltransferase 2 in complex with CoA Available online: http://dx.doi.org/10.2210/pdb2pfr/pdb. 

51.  Abuhammad, A.; Lowe, E. D.; Mcdonough, M. A.; Shaw Stewart, P. D.; Kolek, S. A.; Sim, E.; Garman, E. 

F. Structure of arylamine N-acetyltransferase from Mycobacterium tuberculosis determined by 

cross-seeding with the homologous protein from M. marinum: Triumph over adversity. Acta 

Crystallogr. Sect. D Biol. Crystallogr. 2013, 69, 1433–1446, doi:10.1107/S0907444913015126. 

52.  Uniprot UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017, 45, D158–D169, 

doi:10.1093/nar/gkw1099. 

53.  Biasini, M.; Bienert, S.; Waterhouse, A.; Arnold, K.; Studer, G.; Schmidt, T.; Kiefer, F.; Cassarino, T. G.; 

Bertoni, M.; Bordoli, L.; Schwede, T. SWISS-MODEL: modelling protein tertiary and quaternary 

structure using evolutionary information. Nucleic Acids Res. 2014, 42, W252–W258, 

doi:10.1093/nar/gku340. 

54.  Gasteiger, J.; Marsili, M. Iterative partial equalization of orbital electronegativity?a rapid access to 

atomic charges. Tetrahedron 1980, 36, 3219–3228, doi:10.1016/0040-4020(80)80168-2. 

55.  Sanner, M. F. Python: a programming language for software integration and development. J. Mol. 

Graph. Model. 1999, 17, 57–61. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 June 2017                   doi:10.20944/preprints201706.0132.v1

http://dx.doi.org/10.20944/preprints201706.0132.v1


 19 of 19 

 

56.  Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. 

Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy 

function. J. Comput. Chem. 1998, 19, 1639–1662, 

doi:10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B. 

57.  Solis, F. J.; Wets, R. J.-B. Minimization by Random Search Techniques. Math. Oper. Res. 1981, 6, 19–30, 

doi:10.1287/moor.6.1.19. 

58.  Malde, A. K.; Zuo, L.; Breeze, M.; Stroet, M.; Poger, D.; Nair, P. C.; Oostenbrink, C.; Mark, A. E. An 

Automated Force Field Topology Builder (ATB) and Repository: Version 1.0. J. Chem. Theory Comput. 

2011, 7, 4026–4037, doi:10.1021/ct200196m. 

59.  Koziara, K. B.; Stroet, M.; Malde, A. K.; Mark, A. E. Testing and validation of the Automated Topology 

Builder (ATB) version 2.0: prediction of hydration free enthalpies. J. Comput. Aided. Mol. Des. 2014, 28, 

221–233, doi:10.1007/s10822-014-9713-7. 

60.  Oostenbrink, C.; Villa, A.; Mark, A. E.; Van Gunsteren, W. F. A biomolecular force field based on the 

free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. J. 

Comput. Chem. 2004, 25, 1656–1676, doi:10.1002/jcc.20090. 

61.  Anandakrishnan, R.; Aguilar, B.; Onufriev, A. V. H++ 3.0: Automating pK prediction and the 

preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids 

Res. 2012, 40, W537–W541, doi:10.1093/nar/gks375. 

62.  Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. The missing term in effective pair potentials. J. Phys. 

Chem. 1987, 91, 6269–6271, doi:10.1021/j100308a038. 

63.  Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 

2007, 126, 14101, doi:10.1063/1.2408420. 

64.  Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics 

method. J. Appl. Phys. 1981, 52, 7182–7190, doi:10.1063/1.328693. 

65.  Nosé, S.; Klein, M. L. Constant pressure molecular dynamics for molecular systems. Mol. Phys. 1983, 50, 

1055–1076, doi:10.1080/00268978300102851. 

66.  Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. LINCS: A linear constraint solver for 

molecular simulations. J. Comput. Chem. 1997, 18, 1463–1472, 

doi:10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. 

67.  Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. A smooth particle mesh 

Ewald method. J. Chem. Phys. 1995, 103, 8577–8593, doi:10.1063/1.470117. 

68.  Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38, 

doi:10.1016/0263-7855(96)00018-5. 

69.  Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. 

UCSF Chimera - A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 

1605–1612, doi:10.1002/jcc.20084. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 June 2017                   doi:10.20944/preprints201706.0132.v1

http://dx.doi.org/10.20944/preprints201706.0132.v1

