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Abstract: Arylamine N-acetyltransferases (NATs) are cytosolic enzymes, highly polymorphic,
present in both eukaryotes and prokaryotes. These enzymes play an important role in the
detoxification and activation of xenobiotics as well as in the synthesis of endogenous compounds.
Specific NATs have been pointed out in the literature as possible therapeutic targets. In particular,
the human NATTI, for the treatment of certain cancers, and the NAT from M. tuberculosis (TBNAT),
for the treatment of tuberculosis. This paper describes an in silico approach to prospect and select
potentially inhibitors of NAT1 and TBNAT from the Traditional Chinese Medicine (TCM) using
free available tools. A library with ligands from TCM was previously screened in order to select
only compounds with optimal pharmacological properties. The affinity of the selected ligands with
respect to NAT enzymes was then evaluated by virtual screening (VS). Subsequently, the
complexes with the best ligands were submitted to molecular dynamics (MD) simulations aiming
to obtain better quality information on affinity and selectivity. The results for one specific ligand,
ZINC14690579, indicated its potential for affinity and selectivity. ZINC14690579 structure may
represent the discovery of a new scaffold for future development of NAT inhibitors.

Keywords: Arylamine N-acetyltransferases; cancer; tuberculosis; drug discovery; Traditional
Chinese Medicine; virtual screening; molecular dynamics simulation; MM-PBSA.

1. Introduction

Arylamine N-acetyltransferases (NATs) are cytosolic enzymes that catalyze the transfer of the
acetyl group from acetyl coenzyme A (AcCoA) to the free amino group of arylamines and
hydrazines[1-4]. NATs are highly polymorphic and present in both eukaryotes and
prokaryotes[5,6]. These enzymes play an important role in the detoxification and metabolic
activation of xenobiotics[4,7,8] as well as in the synthesis of endogenous compounds[9,10].

NATs are found in the human proteome in two forms, NAT1 and NAT2[4,11]. Several studies
have revealed an association between NAT1 activity and the risk of developing certain types of

cancer (for review see [12]). Consequently, human NAT1-specific inhibitors has been suggested as
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potential biomarkers as well as potential drugs for cancer treatment [12-15]. In another therapeutic
perspective, studies showed that NAT gene of Mycobacterium tuberculosis (M. tuberculosis) is part of a
cluster essential for the survival of the mycobacteria in the environment inside macrophage
[10,16,17]. This points to NAT from M. tuberculosis (IBNAT) as a potential drug target for
antimycobacterial therapy[18,19].

The challenge for the design of selective inhibitors for eukaryotic and prokaryotic NATs begins
with the structural similarity shared by these enzymes. In fact, the fold of human NAT1 and NAT2
closely resembles the overall structure of TBNAT[11,20,21]. NATs overall fold is composed of three
independent domains of approximately the same length. The first two domains, an a-helical bundle
and a p-barrel are joined by a linker helix to the third domain, an a/p lid. For native enzymes, the
residues of the catalytic triad (Cys-His-Asp) can be easily superimposed. The modular structure of
NATSs makes these enzymes highly flexible, adding another challenge for the in silico discovery of
inhibitors. For instance, previous studies have suggested that there may be multiple conformational
states in the region that defines the active site of NAT enzymes[22], which in itself determines that
the interpretation of data obtained from computational techniques necessarily take into account the
conformational dynamics in the ligand-receptor interaction.

There is currently a wide range of free resources[23-28] and free software packages[29-35]
dedicated to drug discovery and design. The availability of free resources and tools allows scientists
from all over the world, independent of the financial support, to plan and test hypotheses through in
silico experiments. This paper describes an in silico approach to prospect and select potentially
selective inhibitors of NAT1 and TBNAT from the Traditional Chinese Medicine (TCM) using free
available tools and resources. A library with 36,043 ligands from TCM was previously screened in
order to select only compounds with optimal ADMET (absorption, distribution, metabolism and
excretion and toxicological properties) pharmacological properties. The affinity of the 1,902 selected
ligands with respect to NAT1, NAT2 and TBNAT enzymes was then evaluated by virtual screening
(VS). Subsequently, the complexes with the best ligands were submitted to molecular dynamics
(MD) simulations aiming to obtain better quality information on the affinity of the ligands. In
particular, the MM-PBSA method combined with MD simulations was used to incorporate
conformational fluctuations and entropic contributions to the affinity estimation [36-38]. One
potential selective inhibitor for NAT1 and TBNAT was chosen as a promising compound for future

development.
2. Results and Discussion

2.1. Virtual screening and docking results

Figure 1 shows the 2D chemical structures of the ten compounds selected from the virtual
screening. Since of none of the ten best ligands found for NAT1 presented better binding score when
compared to NAT2 (Table S1 in Supplementary Materials), the selection criterion was based on the
best binding score with TBNAT and worse binding score with NAT2. Thus, only the ten best
compounds for TBNAT were locally re-evaluated for the purpose of verifying the results generated
by the virtual screening with AutoDock Vina[33] (Vina) software implemented in the

MTiOpenScreen|[28] web server (Table 1). Table 1 also shows the binding score values for the same
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ligands with the AutoDock[32] software. Autodock uses a completely different methodological
approach for score function calculation in comparison to AutoDock Vina. This allows, taking into
account the standard error of each program, a preliminary covalidation of the VS. From VS and
docking data it is possible to observe that both AutoDock Vina and AutoDock 4.2 tended to have
worse binding energy scores for NAT1 when compared to NAT2 and TBNAT. So far we do not have
an explanation for this since the binding residues in the homology model of human NAT1 are
spatially conserved in relation to the two crystallographic structures available up to the time of the
conclusion of this study. Specifically, are deposited in the Protein Data Bank (PDB)[39,40] structures
with ID codes 2IJA[41], which refers to the structure of the mutant NAT1 F125S, and 2PQT, which
refers to a structure with the cysteine residue at position 68 substituted by a non-standard
S-(2-anilino-2-oxoethyl)-1-cysteine (Tyx68) residue. After superimposition it is possible to see that
the only conformational exception are the residues His107 and Phel25 in the crystallographic
structure 2PQT, which are influenced by the Tyx68 side-chain (Figure S1 in Supplementary
Materials). As consequence, in the 2PQT structure the side-chain of His107 shows a torsion about 25°
in chi2 angle and a displacement of 1.9 A of Phe125 side-chain. Even though these differences may
not have substantial influence in the docking results since there is no way to anticipate with which
residues a non-substrate inhibitor will bind at the enzyme recognition site. Furthermore, as shown in
section 2.2., it was possible to observe a spatial repositioning of the ligands during molecular
dynamics simulations due to rearrangements in segments of the main chain around the NAT1

recognition site.
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Figure 1. 2D chemical structures of the selected compounds from virtual screening with AutoDock
Vina[33] implemented in the MTiOpenSreen[28] web server. Each compound is identified according
to the registration number in the ZINC15[27] database.

In Table 1 are highlighted in bold the compounds that presented better binding energy for TBNAT than for
NAT?2 in both Vina and AutoDock: ZINC14496160, ZINC14715626, ZINC14690579, ZINC53007738 and
ZINC13480341. The complexes with these compounds were then selected for analysis by molecular

dynamics simulation.
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Table 1. Comparison between the results of virtual screening with AudoDock Vina and the docking
with AutoDock 4.2. The energies are in kcal/mol.

Target enzyme, docking software and binding score energies

Ligand NAT1 NAT2 TBNAT
Vina  AutoDock Vina  AutoDock Vina AutoDock
ZINC14496160 -2.6 -2.6 -74 -8.3 -8.6 -9.3
ZINC14715626 5.8 3.7 -7.3 -7.5 -8.9 -8.1
ZINC1663392 -6.0 -3.6 -8.7 -7.3 -8.1 -94
ZINC14690579 -3.1 -15 -3.5 9.1 -9.0 -7.5
ZINC13378576 24 -0.6 -9.2 -7.9 -8.5 -7.5
ZINC53007738 8.9 8.3 -6.0 -6.9 -8.3 -7.6
ZINC85569505 -5.1 -6.4 -9.3 -8.3 -8.7 -8.1
ZINC14726747 0.7 1.3 -7.6 -7.8 -6.6 -7.3
ZINC13480341 5.8 -3.6 -7.3 -6.5 -8.9 -7.3
ZINC06520505 2.2 6.3 -8.6 -7.1 -8.5 -7.1

2.2. Molecular dynamics simulations results

Aiming to increase the sampling all MD simulations were performed in triplicate. The stability
of each replicate was evaluated from atom-positional root mean-square deviation (RMSD) analysis
(Figure S1 in Supplementary Materials). The last 10 ns of each replicate were extracted and
subsequently concatenated forming a single trajectory of 30 ns for further analysis. The
conformational stability of the concatenated trajectories for each complex was estimated from the
analysis of the mean value and standard deviation of the RMSD (Table S2 in Supplementary
Materials). Except for TBNAT complexes, protein RMSD average values for concatenated trajectories
were found between 0.17 to 0.20 nm with a maximum fluctuation of + 0.02 nm, suggesting stability
within the ensemble of conformations considered. Similarly, the RMSD average values for the
ligands were found between 0.03 to 0.12 nm with a maximum fluctuation of + 0.03 nm. Protein
TBNAT-complexes presented greater variations of RMSD but with stabilization around 0.3 nm in the
last 10 ns of the MD simulations (Figure S2 in Supplementary Materials). Ligand RMSDs for the
TBNAT complexes ranged from 0.03 to 0.10 nm with a maximum fluctuation of + 0.01 nm, except for
TBNAT-ZINC14496160 which showed a RMSD of 0.78 + 0.03 nm. The higher mean value of RMSD
and the greater amplitude of the conformational fluctuations observed for the TBNAT complexes
can be attributed to a greater flexibility and to more significant conformational changes in the
enzyme during the simulations. In fact, it is possible that the greater flexibility observed for the MD
simulations of TBNAT-ZINC14690579 compared to those observed for NAT1 and NAT2 (Figure 52
and Table S2 in Supplementary Materials) are related to the existence of an additional seventeen
amino acid insertion spanning residues 167-183 in human NATSs[21]. This region, absent in

prokaryotic NATs, is reported to increase NAT protein stability[42].
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The average number of hydrogen bonds (Table 52 in Supplementary Materials) ranged from a
minimal of 0.44 (for NAT1-ZINC14715626) to a maximum of 2.09 (for NAT2-ZINC14496160),
indicating that the affinity of the ligands occurred mainly through hydrophobic contacts.

Binding score energies of NAT1 and TBNAT inhibitor complexes were analyzed from the
concatenated production phase of MD simulations by MM-PBSA method . Table 2 shows MM-PBSA
binding score energies for the five compounds select from VS and docking. It is possible to observe
that the compound with the greatest binding score difference between TBNAT and NAT2 was
ZINC14690579 (AAGpbina = -12.7 kcal/mol). This data is in agreement to Table 1, where only
ZINC14690579 presented difference in binding score (AAGvindvina) = -5.5 kcal/mol; AAGbind(autoDock) =
-16.6 kcal/mol) greater than the standard error of each docking program (which is of about 2-3
kcal/mol in prediction of binding free energy in cross-validation studies)[32,33].

In an unexpected manner, the difference in binding score for compound ZINC14690579 (AAGvind
= -15.7 kcal/mol) also demonstrating a potential selectivity factor between NAT1 and NAT2. Thus,
the interaction of the respective ligand with TBNAT and NAT1 was subjected to a more detailed

analysis.

Table 2. Binding score energies for the five compounds with more selective-inhibitory potential from
VS revaluated using MM-PBSA method. The energies are in kcal/mol.

Ligand Target enzyme and binding score energies
NAT1 NAT2 TBNAT
ZINC14715626 -20.4 -24.4 -19.5
ZINC14496160 -19.3 -19.6 -22.1
ZINC14690579 -20.5 -4.8 -17.5
ZINC53007738 -15.0 -13.5 -1.8
ZINC13480341 -18.6 -129 -18.7

From Table 3 it is possible to observe that the component that most contributes to the
interaction of ZINC14690579 with TBNAT and NATI is related to the non-polar/hydrophobic
contributions (AEww). In this sense, the sum of the energetic terms allows to conclude that the
estimated selectivity profile (predicted in function of AAGuinding) for NAT1/NAT2 and TBNAT/NAT2
is mainly related to the smaller contribution of the non-polar/hydrophobic interactions of NAT2
with ZINC14690579. Specifically for NATI, a greater contribution of the electrostatic contributions
(AEekc) is observed when compared to NAT2 and TBNAT. As will be seen below, this must be related

to the contribution of basic residues around the NAT1 binding site.
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Table 3. MM-PBSA calculation for NAT-ZINC14690579 complexes. The energies are in kcal/mol.
Energy components?
NAT AGbinding AAGbindingb
AEeiec AEoviw AEpuIar—solv AEnmlfpolur
NAT1 -15.2 -38.1 37.0 -4.2 -20.5 -15.7
NAT2 -6.0 -13.5 16.1 -1.4 -4.8 0.0
TBNAT -5.7 -29.1 20.6 -3.1 -17.5 -12.7

aAEeec= electrostatic component; AEuww = noncovalent van der Waals component;
AEpolarsolo = polar salvation component; AEnon-polar= non-polar salvation component

PAAGpinding= AGNAT - AGNAT2

2.2.1. Molecular dynamics simulation of NAT1-ZINC14690579 complex

In order to determine the contribution of NAT1 residues involved in the interaction with the
ligand, free energy decomposition was performed. The number of hydrophobic contacts and
hydrogen bonds between NAT1 and ZINC14690579 was also calculated (Table 4). All analysis and
calculations were realized considering the 30 ns concatenated trajectory. From Table 4 it is possible
to observe that the residues that contributed the most to the interaction are non-polar (Val93, Ile106,
Phel25, Leu209, Val216 and Phe217), which is in agreement with the value of AEuw (-38.1 kcal/mol)
in Table 3. These residues account for 54.95% of the total hydrophobic contacts with the ligand
(Table 4). From Table 3 it can be observed that the value of the term relative to the electrostatic
interactions (AEcc) between NAT1 and ZINC14690579 (-15.2 kcal/mol) is more than double
compared to NAT2 (-6.0 kcal/mol) and TBNAT (-5.7 kcal/mol). From free energy decomposition data
in Table 4 it is possible to suggest that the magnitude of the electrostatic contribution between
protein and ligand in the NAT1-ZINC14690579 complex derives from the contribution of a group of
basic residues (Lys99, Lys100, Argl65, Argl67, Lys188, Lys220 and Arg286). It is interesting to note
that five of these residues (Lys99, Lys100, Argl65, Argl67 and Lys188) are distant from the ligand
(Figure 2, Panels (a) and (b)), but together they form a basic cluster that contributes significantly to
the interaction. Considered together, the fact that the main contributions to the ligand-receptor
interaction in the NATI-ZINC14690579 complex occur through non-polar contacts and
long-distance electrostatic interactions suggests that the driving force that maintains the ligand in
the active site is mainly the result of a sum of non-directional interactions. In fact, the number of
ligand-receptor hydrogen bonds calculated for the NAT1-ZINC14690579 concatenated trajectory
was found small, 1.74 + 0.83 (Table S2 in Supplementary Materials). From Table 4 it can be seen that
the most important hydrogen bond interaction was with the backbone of Phe217 (42.2% of the total
hydrogen bonds). The other three amino acids with which hydrogen bonds were detected (Phe125,
Ser215, Val216) accounted for 34% of the total of these interactions.

Redocking of ZINC14690579 in a structure of NAT1-ZINC14690579 complex collected at 20 ns
from MD simulation resulted in a binding energy score of -8.1 kcal/mol. Compared with the value
obtained for the docking of ZINC14690579 on the NAT1 homology modeling on Table 1 (-3.1
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kcal/mol) this results in a difference of 5 kcal/mol, which is greater than the AutoDock Vina standard
error. This finding may indicate that the crystallographic structures of NAT1 may not be the most
suitable for docking studies with homology models built from these.

Comparison of the homology modeling structure of NAT1 and a 20ns structure from MD
simulation shows important conformational differences in the region of NAT1 binding site (Figure 2,
Panel(c)). In particular, the main chain of the segment formed by the residues Ser95 to Lys99 moves
3.45 A towards the ligand. Following this movement, the backbone and side chain of Val93, the
residue that most contributes individually to the protein-ligand interaction, moves around 1.50
closer to the ZINC14690579. In the same sense, a shift of about 1.7 A in the backbone of the a-helical
interdomain (helices 08-010) allows the side chains of Leu209, Ser215, Val216 and Phe217 to

maximize the interaction with the ligand.

Table 4. Relative contribution of residues to binding between NAT1 and ZINC14690579

Complex NAT1-ZINC14690579

Residue Contribution Hydrophobic Hydrogen bonding
Energy contacts? (%)
(kJ/mol)! (%)

Cys68 -2.02 8.53 n.d.
Val93 -6.65 9.73 n.d.
Pro97 -1.97 2.70 n.d.
Lys99 -1.51 n.d. n.d.
Lys100 -2.30 0.52 n.d.
Ser102 -1.73 2.30 n.d.
Ile106 -4.22 7.08 n.d.
Phel25 -4.70 8.37 16.7
Argl65 -1.24 n.d. n.d.
Argl87 -2.13 n.d. n.d.
Lys188 -1.30 n.d. n.d.
Leu209 -4.63 6.07 n.d.
Ser215 -1.33 1.62 12.8
Val216 -5.95 10.5 451
Phe217 -5.52 13.2 422
Lys220 -1.66 0.52 n.d.
Phe222 -1.15 1.12 n.d.
Arg286 -2.66 3.00 n.d.
Phe288 -2.70 4.73 n.d.

1 Energy contribution estimated by the MM-PBSA method[38].
2 Percentage of hydrophobic contacts and hydrogen bonds calculated with the LIGPLOT[43] program.
*Hydrogen bonds considered only for residues that had more than 2% of the total interactions.
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Figure 2. Schematic representation of the interaction of NATI1 with ZINC14690579. (a)
Representation of main interacting residues of NAT1 with ZINC14690579. NAT1 is represented as
transparent ribbon and sticks with shades of red. The ligand is represented as green sticks. The
contribution of each residue to the interaction with the ligand is proportional to the increase in red
tonality (see Table 4). (b) Representation of NATI1- ZINC14690579 in silico complex. NAT1 is
represented as gray ribbon and sticks with shades of red. The color bar indicates the relative
interaction energy of each residue with the ligand. (c). Structural changes induced by ligand binding
at the recognition site of NAT1 depicted by the superimposition of the crystallographic structure of
NATI (represented gray ribbon) and the 20ns structure from the MD simulation (represented as blue
light ribbon). Ligand structure is represented as gray sticks (from docking) and green stick (from DM
simulation). Structure of ZINC14690579 on top of panel (c).
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2.2.2. Molecular dynamics simulations of TBNAT-ZINC14690579 complex

Decomposition of free energy and the counting of hydrophobic contacts and hydrogen bonds
were performed in the same way as for the NAT1-ZINC14690579 complex. From Table 5 it is possible
to observe that all the ten residues that contributed to the interaction are non-polar. This is in agreement with the
value of AEy4, (-29.1 kcal/mol) in Table 3. Already, the lack of polar residues and hydrogen bonds involved in
the interaction with the ligand is in agreement with the low contribution of the electrostatic interactions (AEetec -
-5.7 kcal/mol). These observations suggest that the protein-ligand interactions in the TBNAT-ZINC14690579
complex are mainly non-directional. For instance, one of the main elements involved in the interaction between
TBNAT and ZINC14690579 derives from a cluster of non-polar residues located between Leu99-Alal00 and
Alal03-Pro107 (Table 5; Figure 3, Panels (a) and (b)). It is interesting to note that the interaction with this
cluster of non-polar residues is a result of a backbone shift of the Leu99-Pro107 segment of approximately 6.2
A toward the ligand (Figure 3, Panel (c)). Other conformational changes that contribute to maximize the
interaction with the ligand involve displacement of the side chains of Phe130, Ala201 and Phe204 in 2.47, 8.31
and 2.97 A respectively. In particular, changes in the position of residues Ala201 and Phe204 is accompanied by
a movement of the backbone of the third domain of approximately 7.5 A compared to the crystallographic
structure of the TBNAT. The obtained results point to a series of concerted rearrangements that result in the
maximization of protein-ligand interactions. These observations can be interpreted in the way that the

conformational adaptability of the NATSs allows these enzymes to perform various functions[21,22].

Table 5. Relative contribution of residues to binding between TBNAT and ZINC14690579

Residue Complex TBNAT-ZINC14690579
Contribution Hydrophobic Hydrogen bonding??
Energy contacts? (%)
(K/mol)! (%)

Leu99 -3.16 13.45 n.d.
Alal100 -1.52 6.51 n.d.
Alal03 -1.95 3.98 n.d.
Pro104 -1.56 0.17 n.d.
Leul05 -1.93 0.34 n.d.
Pro106 -3.53 9.16 n.d.
Pro107 -1.78 9.59 n.d.
Phe130 -1.75 8.78 n.d.
Ala201 -2.04 1.76 n.d.
Phe204 -1.93 6.85 n.d.

1 Energy contribution estimated by the MM-PBSA method[38].
2 Percentage of hydrophobic contacts and hydrogen bonds calculated with the LIGPLOT[43] program.
SHydrogen bonds considered only for residues that had more than 2% of the total interactions.
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Figure 3. Schematic representation of the interaction of TBNAT with ZINC14690579. (a)
Representation of main interacting residues of TBNAT with ZINC14690579. TBNAT is represented
as transparent ribbon and sticks with shades of red. The ligand is represented as green sticks. The
contribution of each residue to the interaction with the ligand is proportional to the increase in red
tonality (see Table 5). (b) Representation of TBNAT-ZINC14690579 in silico complex. TBNAT is
represented as gray ribbon and sticks with shades of red. The color bar indicates the relative
interaction energy of each residue with the ligand. (c). Structural changes induced by ligand binding
at the recognition site of TBNAT depicted by the superposition of the crystallographic structure of
TBNAT (represented gray ribbon) and the 20ns structure from the MD simulation (represented as
blue light ribbon). Ligand structure is represented as gray sticks (from docking) and green stick
(from DM simulation). Red arrows point to the main conformational changes in the recognition site.
Structure of the ligand on top of panel (c).

A potential anti-tuberculosis activity of ZINC14690579 can be extrapolated from evidence of
inhibitory activity of the extract from Premmna odorata Blanco (Lamiaceae), a medicinal plant
traditionally used in Albay Province, in south-eastern Luzon, Philippines, against M. tuberculosis[44].
It was observed that the most active fraction of the extract of Premna odorata Blanco has a

ZINC1469057 analog, the diosmetin (Figure 4). Although not conclusive, this data combined with the
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in silico observations in this work may indicate that ZINC14690579 scaffold may be potentially

effective for inhibition of TBNAT and, consequently, treatment of tuberculosis.

OH O OH O

Diosmetin ZINC14690579

Figure 4. Comparison between 2D structures of Diosmetin and ZINC14690579.

3. Materials and Methods

3.1. Library preparation

The library containing 36,043 compounds from the Traditional Chinese Medicine (TCM) was
downloaded in the SDF (Structures Data File) format from the ZINC database[27], catalog TCM
Database@Taiwan[45]. Before the use, the TCM library was previously formatted and cleaned (to
remove inorganics, large compounds, mixtures, empty structures, salts and duplicates) with Bank
Formatter and Bank Cleaner tools, respectively, both implemented in the Mobyle[46] portal. This
procedure was followed by the addition of hydrogens and attribution of the 3D structure for each
compound with the Standardizer[47] software. Geometries of the ligands were then optimized with
the AMMOS[48] software implemented in the Mobyle portal. Afterwards, the library was submitted
to the FAF-Drugs3[5,6] server. Filtering rules were chosen in order to detect and to remove
potentially non-bioavailable compounds, substructures with potential toxic groups, aggregators and
Pan-Assay interference compounds[26]. At the end of this stage, 1,902 compounds were left in the

library.

3.2. Target preparation

NAT2 and TBNAT structural models were obtained from crystallographic structures deposited
in the Protein Data Bank[39,40] (PDB) (www.rcsb.org): NAT2, accession code 2PFR (resolution 1.9
A)[50] and TBNAT, accession code 4BGF (resolution 2.1 A)[51]. Since the two human NAT1
structures deposited in PDB have missing atoms and modified amino acid residues, the structural
model of NAT1 was obtained by homology modelling. The 3D coordinates of wide-type NAT1
(amino-acid sequence access code P18440-1 of UniProtKB[52] database) was generated using the
SWISS-MODEL Workspace[53]. As template, the crystallographic structure of mutant (F1255) NAT1
(PDB accession code 2IJA, resolution 1.7 A)[41] was used. Solvent, ions and ligands were removed

from the target structures for the subsequent steps.

3.3. Virtual screening

Virtual screening with the filtered library was performed with the AudoDock Vina[33], version
1.1.2, software implemented in the MTiOpenScreen[28] web server. All screenings were performed

using NAT1, NAT2 and TBNAT as targets. Each enzyme was treated as rigid and each ligand in the
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library was treated as flexible. Gasteiger[54] partial charges were calculated after addition of all
hydrogens. Nonpolar hydrogens of enzyme and ligand were subsequently merged. A box of
approximately 14x14x14 A was generated for the each target. The grid boxes were centralized on the
peptidic O of 11e106 (for NAT1), peptidic O of Val1l06 (for NAT2) and peptidic O of Thr109 (for
TBNAT).

MTiOpenScreen returns only the 1000 best ligands for each target. As for NAT1 no compound
had more favorable binding score than for NAT2, the ten best compounds were selected considering
only TBNAT, i.e., the ten ligands with most favourable binding score for TBNAT and the worst
binding score for NAT2. In order to confirm the results of the virtual screening, a second round of
docking simulations were locally performed with the ten best compounds selected from
MTiOpenScreen. In this round the dockings were performed with AutoDock Vina[33] implemented
in the PyRx[35] graphic interface. Except where otherwise indicated, the standard parameters for the

programs were used.

3.4. Docking with AutoDock 4.2

Autodock[32], version 4.2, a docking program that uses a different approach to the scoring
function in comparison to AutoDock Vina, was used to compare the results obtained from the
virtual screening. The docking protocol was the same as described for AutoDock Vina, except for the
dimensions of the grid box and the use of the Lamarckian Genetic Algorithm. Targets and ligands
were prepared for docking simulations with the AutoDockTools (ADT)[55] interface, version 1.5.6.
A cubic box of 40 x 40 x 40 points with a spacing of 0.35 A between the grid points was generated for
each protein target. The grid boxes were centered as for virtual screening protocol. Global search
Lamarckian genetic algorithm (LGA)[56] and local search (LS) pseudo-Solis and Wets[57] methods
were applied in the docking search. Each single docking simulation consisted of 10 independent
runs. The initial population was 150, the maximum number of generations was 27,000 and the
maximum number of energy evaluations was 2.5 x 10¢. Default values were selected for other

parameters.

3.5. Molecular dynamics simulations

3.5.1. Ligand setup

The topology for each ligand was generated from the Automated Topology Builder
(ATB)[58][59] web server. The conformation with better energy score from the docking simulation
with Autodock Vina was taken as input structure. Missing hydrogens were added and the ligand

structure was uploaded to the ATB server preserving the original geometry.

3.5.2. Molecular dynamics protocol

Molecular dynamics simulations were carried out using GROMOS96 53a6[60] force field
implemented in GROMACS package[34], version 4.5.6. The protonation states of histidines were
determined from H++[61] web server. All systems were simulated in NPT ensemble and periodic
boundary conditions. The dimensions of the central box were chosen so that the minimum distance
between of any protein atom to the closest box wall was 12 A. The simulations were carried out
using explicit solvent water molecules described by the simple point charge (SPC)[62] model.

Initially, the protein structure in each system was submitted to a maximum of 500 steps of steepest
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descent energy minimization. To relax strong solvent-solvent and solvent-protein non-bonded
interactions, 100 ps of MD simulation was performed restraining the protein structure. Initial
velocities were assigned according to Maxwell distribution. Counter-ions were added to neutralize

each system. Table 1 summarizes the characteristics of each NAT simulated.

Table 6. Characteristics of each NAT simulated.

NAT enzyme Organism Number of Number of atoms  Liquid charge
residues
NAT1 Homo sapiens 289 3098 -3
NAT2 Homo sapiens 290 3044 -5
TBNAT M. tuberculosis 270 2684 -6

All simulations were performed in triplicate, using different initial random velocity
distributions, for 20 ns with an integration time step of 2 fs. Each system was heated with gradual
increments in the following temperatures: 150 K (100 ps), 200 K (100 ps), and 250 K (100 ps). After,
the temperature of each system was adjusted to 309.15 K. The first 10 ns of MD simulations was
considered as part of the heating (0.30 ns) and the equilibration (9.70 ns) steps and had not been used
in the data analysis. The temperature of each group (protein, ligand, solvent and ions) was
independently coupled to a thermal bath with a relaxation time of 0.1 ps using the v-rescale
thermostat[63]. The pressure in each system was weakly coupled to a pressure bath of 1 atm
applying an isotropic scaling and 0.5 ps of relaxation time using the Parrinello-Rahman
barostat[64,65]. Bond lengths were constrained using the LINCS algorithm[66] with 4th order
expansion. Electrostatic interactions among non-ligand atoms were evaluated by the smooth particle
mesh Ewald (SPME)[67] method with a charge grid spacing of approximately 1.0 A. The charge grid
was interpolated on a cubic grid with the direct sum tolerance set. Lennard-Jones interactions were

evaluated using a 14 A atom-based cutoff. The pair list was updated every 10 steps.

3.6.3. Analysis of the MD trajectories

The last 10ns of each triplicate was concatenated in a 30 ns trajectory for further analysis. As
default, the trjconv module of GROMACS was used to restore, if necessary, protein and ligand
inside the simulation box, as well as to make the fit of the conformations of each trajectory on the
respective reference crystallographic structure. g_rms and g_hbond modules of GROMACS were
used, respectively, to calculate the root-mean-square deviation (RMSD) of protein and ligand and
the number of hydrogen bonds between protein and ligand. Biding score energies were estimated
using the Molecular Mechanics - Poisson Boltzmann Surface Area (MM-PBSA) method,
implemented through the module g mmpbsa in GROMACS by Kumari and co-workers[38].
MM-PBSA based interaction energies were computed on snapshots collected every 2 ps from the
DM trajectories. All calculations with g mmpbsa were performed using default values.
Protein-ligand hydrophobic contacts and hydrogen bonds were computed on snapshots collected
every 100 ps from the DM trajectory using the LIGPLOT[43] program.

Visual inspection of the systems was performed using the Visual Molecular Dynamics
(VMD)[68] and Chimera[69] software.
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4. Conclusions

The use of free tools and resources allowed us to conclude the objectives of this study with a
potential inhibitor identified. ZINC14690579 showed agreement in all methodologies used,
indicating a potential for affinity and selectivity for NAT1 and TBNAT in relation to NAT2. This
selectivity is mainly related to the smaller contribution of the non-polar/hydrophobic interactions of
ZINC14690579 with NAT2 . The results indicate that the binding of ZINC14690579 to both NAT1
and TBNAT involves a set of concerted conformational changes resulting in accommodation of the
ligand at the binding site. These initial observations on the conformational behaviour of NATSs are in
accordance with the theory that the conformational adaptability of these enzymes allows them to
perform various functions, and should be taken into account in the in silico study of new inhibitors.
In this sense, ZINC14690579 may represent the discovery of a new scaffold for future development
of NAT inhibitors.

Supplementary Materials: The following are available online: Figure S1: Comparison between the results for
the ten best ligands of NAT1 from virtual screening with MTiOpenScreen and the docking with AutoDock 4.2,
Figure S2: Time-dependence of atom-positional root mean-square deviation (RMSD) of Co atoms for
NAT-ZINC14690579 complexes, Table S1: Superposition of NAT1 crystallography and molecular modelling
structures, Table S2: Average value of structural parameters of concatenated MD trajectories.
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