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Abstract: The review is devoted to the physical, chemical and technological aspects of the breath-figures 
self-assembly process. Main stages of the process and the impact of the polymer architecture and physical 
parameters of the breath-figures self-assembly on the eventual pattern are covered. The review is focused 
on the hierarchy of spatial and temporal scales inherent for the breath-figures self-assembly. Multi-scale 
patterns arising from the process are addressed. The characteristic spatial lateral scales of patterns vary 
from nanometers to dozens of micrometers. The temporal scales of the process span from micro-seconds to 
seconds. The qualitative analysis performed in the paper demonstrates that the process is mainly governed 
by the interfacial phenomena, whereas the impact of inertia and gravity is negligible. Characterization and 
applications of polymer films manufactured with breath-figures self-assembly are discussed.  
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1. Introduction 
Well-defined micro- and nano-scaled porous polymeric architectures are in a great demand for use in 

advanced devices, including membranes [1-4], sensors [5–6], bio-engineering [7-8] and water-oil and size-
selective separation processes [9-13].  One of the most versatile, simple, single-stage and inexpensive 
methods, enabling manufacturing porous polymer films with finely controlled topography is the so-called 
“breath-figures self-assembly” [14-15].  Historically the breath figures method has been used since the 1850s 
by photographers as a simple and effective way to detect oil contamination on glass substrates [16].  The 
extended review of the numerous applications of the ordered, micro-porous films obtained with the breath-
figures self-assembly may be found in Ref. 16.   

The formation of water droplets on solid surfaces was first investigated by Aitken in 1893 [17] and 
later, in 1911, by Rayleigh [18-19].  The notion of “breath figures” refers to the set of fog droplets that forms 
when water vapor contacts a cold surface (solid or liquid). Breath figures are the phenomenon commonly 
observed in daily life. One example is the surface fog that appears on a window when we breathe on it [20]. 
Another example is the formation of dew [21].  Knobler and Beysens investigated the formation of breath 
figures under water droplets condensation [22-25] and found that they did not only form on solid surfaces 
but on liquids as well, specifically on paraffin oil [24]. Main features of the process breath figures self-
assembly have been revealed under detailed study of water condensation in Refs. 22-25, including the 
intriguing effect of non-coalescence of sessile droplets, to be discussed later. The interest to the breath-
figures self-assembly was revived, when Widawski,  Francois, Pitois et al. demonstrated in the series of the 
papers [26-30], that the breath-figures self-assembly allow formation of micro-porous reliefs with well-
controlled topography when polymer solutions are rapidly evaporated in a humid atmosphere. It should 
emphasized that in spite of the fact that the entire process looks simple, it involves almost all events 
inherent for interface science, namely: evaporation of a solvent, condensation of water droplets, instabilities 
developed in the evaporated polymer solution, delayed coalescence of closely packed droplets, and their 
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interaction [16]. Thus, the process of the breath-figures self-assembly may be understood only within a 
broad context of the surface science [31-34].    
2. Impact of the Polymer Aarchitecture and Physical Parameters of the Process on 
the Breath-Figures Self-Assembly.  

 
The details of the physical mechanism of the breath-figures self-assembly remains mysterious and no 

general mechanisms have adequately explained all experimental results [16]. It is agreed that rapid 
evaporation of the solvent cools the solution/humid air interface, subsequently resulting in intensive 
condensation of water droplets at the interface. The droplets then sink into the solution, eventually forming 
the honeycomb pattern, as depicted in Figure 1. 

Figure 1. Sequence of stages resulting in the breath-figures self-assembly. A-D formation of the 
first row of pores. E-C Formation of the second row of pores. 
However, the results from different researchers often seem to conflict with one other [16]. Consider 

first the impact of the polymer structure on the resulting patter.  Bolognesi et al. reported that polar groups 
of polymer play a fundamental role in the process [37]. These results were supported by findings reported 
in Ref. 38, where the authors reported that the hydrophilic end groups can dramatically improve the film-
forming property of polystyrene and that the regularity of the film is mainly influenced by the interaction 
of film-forming polymers with condensed water droplets. Amirkhani et al. reported that the end-functional 
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polymer produced a large area of regular spherical bubbles, whereas adding particles to the polymer 
solution leads to smaller arrays of the flattened bottom bubbles. The separation length between pores was 
larger for polymer/particle sample than that of the end-functional polymer films [39]. 

On contrary, linear polystyrene without any polar end group also led to ordered honeycomb 
structures when dissolved in toluene and CHCl3 solvents [40-41]. At first, it was suggested that star-like and 
hyperbranched polymers promote formation of well-ordered structures [26, 42], however, later it was 
demonstrated that linear polymers also give rise to the patterns, typical for the breath-figures self-assembly, 
such as depicted in Figure 2 [40-41]. It was suggested that coiled polymers (polystyrene) promote formation 
of breath-figures patterns [42]; on the other hand, rigid-rod conjugated polymers also gave rise to well-
ordered honeycomb reliefs [36]. The impact of the molecular weight of the polymer on the resulting pattern 
remains obscure, and the data reported by various groups are controversial [44-46]. The concentration of 
the solution definitely impacts the process of the self-assembly, however its impact remains unclear [47]. 
The patterns, typical for breath-figures self-assembly, were obtained with amorphous [46] and crystalline 
polymers [48]. The additional difficulty in the identification of the impact of the polymer architecture on the 
resulting pattern arises from the affinity of the processes of phase separation and breath figures self-
assembly giving rise to similar eventual honeycomb patterns [49].  

Figure 2. Typical honeycomb pattern arising from the breath-figures self-assembly. The pattern 
was obtained by dip-coating of the polyethylene substrate by the solution, containing 5wt.% of 
polycarbonate and the mixture of chlorinated solvents, namely: dichloromethane CH2Cl2 (90 
wt.%)/chloroform CHCl3 (5wt.%). The scale bar is 1 m.  
 
Breath-figures self-assembly has been carried out with thermoplastic [14, 15, 16, 41, 44-46] and cross-

linked polymers [50-52]. Several groups reported breath-figures patterns obtained with high performance, 
engineering polymers, such as polyimide [53], polyetherimide [54],  polysulfone [45, 55] and silicon-
containing graft copolymer poly(dimethylsiloxane)-graft-polyacrylates (PDMS-g-PAs) [56].  

The impact of the solvent also remains unclear. It is generally agreed that the rate of the solvent 
evaporation and the associated concentration and temperature dependent properties of a polymer solution 
define to a large extent the topography of the honeycomb pattern arising from the breath-figures process 
[57-58]. Ferrari et al. noted that the thermodynamic affinity between polymer and solvent is the key 
parameter for breath figures formation, along with other solvent characteristics such as water miscibility, 
boiling point and enthalpy [41]. The model predicting the evaporation profile of the casting solution in this 
process for low concentrations of polymer was proposed in Ref. 59. By adding a small amount of a surface 
active compound, it is possible to create ordered arrays also from other solvents and, thus, broaden the 
applicability of this patterning process markedly [60]. It was demonstrated recently experimentally that a 
broad diversity  of solvents, including including, acetone, dichloromethane, chloroform, carbon 
tetrachloride, tetrahydrofuran, toluene, xylenes, carbon disulfide and N-N dimethylformamide give to 
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porous patterns when dissolved  polystyrene and polycarbonate were evaporated in a humid atmosphere 
[61]. It was demonstrated that all solutions when sufficiently pre-cooled gave rise to typical “breath-figures” 
patterns [61]. Thus, the decisive factor affecting the formation of the breath-figures pattern turns out to be 
the temperature of the evaporated solution [16, 61].  

Thus, the impact of the substrate used for the breath-figures self-assembly may be decisive due to the 
fact that the substrate may serve as a thermal bath stabilizing the temperature of the evaporated polymer 
solution, and the slide thickness is shown to be a crucial parameter in this process [59, 61-63]. However, the 
experimental data related to the impact of the substrate on the breath-figures self-assembly remain scarce 
[42, 61-62, 64-65]. Valiayaveettil and co-workers used clean glass, epoxy, amine terminated and dendrimer 
functionalized glass as well as silicon wafers to cast a poly(p-phenylene) with pyridine chloroform solution 
[65]. In this work, honeycomb membranes were obtained with glass and silicon wafers. In contrast, ring 
patterning, low pore density or net-type structures were obtained from the epoxy-treated, amine 
terminated and dendrimer functionalized glasses, respectively [65]. 
3. Processes Used for Breath-Figures Self-Assembly 

Various experimental techniques were successfully applied for the breath figures self-assembly, 
including: drop-casting [66-71], spin-coating [72-78], the “doctor-blade” technique [79-80] and dip-coating 
[46, 54, 58, 81-83]. When breath-figures inspired patterns are formed under drop-casting a drop of polymer 
solution is deposited by the precise micro-syringe (or micro-injector) on the solid substrate and exposed to 
the air flow possessing controlled humidity [66-71]. The spin-coating process implies putting polymer 
solution on the center of the substrate, which is either spinning at low speed or not spinning at all. The 
substrate is then rotated at high speed in order to spread the evaporated polymer solution by centrifugal 
force. All the process is performed under controlled humidity [72-78]. In the doctor-blade technique an 
immobilized blade applies a unidirectional shear force to the polymer solution that passes through a small 
gap between the blade and the substrate [79-80, 84]. When honeycomb patterns are obtained with the dip-
coating the solid substrate is pulled with a constant speed from the evaporated polymer solutions [46, 54, 
58, 81-83]. In all aforementioned processes the impact of air humidity and the physico-chemical properties 
of a solid substrate may be decisive in the constituting the topography of the resulting honeycomb relief 
[14-16, 59, 64, 67].  
4. Main Stages of the Breath-Figures Self-Assembly. 

Main stages of breath-figures include: nucleation of water droplets, condensation on the polymer 
solution/vapor interface, interaction between droplets and final removal of water and its evaporation. 
Condensation is a process of the formation of a liquid phase from the gaseous (vapor) one, which starts 
from “nucleation”. Nucleation is the formation of an embryo or nucleus of a new phase in another phase 
[32, 85]. Homogeneous and heterogeneous nucleation scenarios should be distinguished. Heterogeneous 
nucleation takes place in the presence of foreign particles or surfaces, whereas the homogeneous nucleation 
occurs under forming and growing small clusters of molecules [86]. If it is thermodynamically favorable for 
these clusters to grow they become recognizable droplets of the liquid phase [32, 85-86].  It should be 
emphasized that the precise mechanism of nucleation under the breath-figures self-assembly remains 
unclear, due to the fact that nuclei of water droplets are formed in the presence of solvent vapor [87]. The 
processes of nucleation and condensation have a decisive influence on the formation of the eventual breath-
figures-inspired pattern [87], hence additional experimental and theoretical efforts are necessary for 
elucidating the kinetics of nucleation and condensation taking place under the conditions of the breath-
figures self-assembly. 

It is also possible that nucleation occurs at the polymer solution/vapor interface.  In this case the 
nucleation rate I (for its accurate definition, see Refs. 32, 88-91) is modified through the function depending 

strongly on the equilibrium (Young) contact angle Y , namely: 
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the value of the potential barrier to be surmounted for heterogeneous nucleation, T is the temperature and 
kB is the Boltzmann constant.  The value of hetGmax for a contact angle hysteresis free substrate is given by:   
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where cr is the size of the critical nucleus and γ is the surface tension [86, 88].  
Beysens et al. studied the formation of breath figures patterns formed on cold borosilicate substrates, 

either pristine or hydrophobized by the solution of octadecyltrichlorosilane [22]. The treatment by 
octadecyltrichlorosilane enabled to control of the apparent contact angle of the cooled solid substrate [22].  
The pattern for water on glass was studied by direct observation and light scattering as a function of the 
contact angle Y , the velocity of vapor volume transfer “flux”, denoted vol , degree of supersaturation T
and time t. It was established that when 00Y , a uniform water layer forms whose thickness grows as t at 

constant vol and . For 090Y , droplets are formed at constant vol and ; the radius of an 

isolated droplet grows as 23.0t , but as a result of coa1escences the average droplet radius grows as 75.0t [22]. 
The most important conclusion following from these considerations is well-expectable, namely the 
condensation “breath-figures” pattern depends on the apparent contact angle Y , as predicted by Eqs. 1-2. 
The growth process is accompanied with coalescence of droplets and it turned out to be self-similar; 
coalescences simply rescaled the distances and left the basic droplet pattern unaltered [22]. The details of 
the coalescence were addressed in Ref. 23; the authors shown that the number of coalescences undergone 
by a given droplet grows logarithmically with time; the total distance traveled by this droplet is 
proportional to its size [23]. The experiments, reported by Beysens et al., supported the important 
information about the kinetics of formation of the “breath-figures” patterns [22-23]. However, these 
experiments have been carried under model conditions in the absence of evaporated polymer solution, 
which complicates the physics of the process essentially; hence, novel experimental data shedding light on 
the kinetics of formation of breath-figures patterns occurring at the polymer solution/vapor interface are 
necessary.   
5. Multi-Scale Patterning Observed Under the “Breath-Figures Self-Assembly” 

Multi-scale, hierarchical patterning features the breath-figures self-assembly [14, 76-77, 93-94]. The 
characteristic spatial scales of patterns vary from nanometers to dozens of micrometers. Consider the large-
scale patterning observed in rapidly evaporated polymer solutions [94-99], depicted in Figure 3, observed 
under the dip-coating of substrates with rapidly evaporated polymer solutions (similar large-scale patterns 
were observed also under other experimental techniques [96-99]). In particular, it was demonstrated that 
the characteristic dimension of cells constituting the pattern grow with the concentration of the polymer 
solution [95].   

T T
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Figure 3. Large-scale pattern typical for the breath-figures self-assembly (Polystyrene (5wt.%) was 
dissolved in a mixture of dichloromethane CH2Cl2 (90 wt.%) and chloroform CHCl3 (5wt.%) and 
deposited by dip-coating on the polyethylene substrate). 

The physical mechanism of the patterning remains debatable. For film thickness less than about 100 
nm (thin layers) effective molecular interactions between the liquid layer surface and the substrate 
dominate all other forces (like thermo- or soluto-capillarity or gravity) and thus determine the film stability 
and patterning under dewetting [100–102].  

For evaporated films of a thickness above 100 nm thermo-capillarity forces become dominant, 
resulting in instability caused by the Marangoni convection, either thermo- or soluto-capillary [103-113]. It 
should be mentioned that the analysis of the thermo- and soluto-capillarity inspired patterning in 
essentially non-linear one and involves complicated mathematical models [103-108]. It was demonstrated 
experimentally that the patterns observed in the evaporated (cooled from above) layers are different from 
those, formed in the layer heated from below without evaporation [109]. Thus, the kinetics of evaporation, 
studied in Ref. 110, turns out to be crucial for constituting large-scale patterns. The apparatus, utilizing self-
organized liquid flow for the targeted modification of macromolecular systems in a solution was suggested 
in Ref. 112. Marangoni-flows-induced patterns, observed under spin-coating of evaporated polymer 
solutions were reported in Ref. 114. When the polymer solution is evaporated, the thermo- and soluto-
capillary flows occur and both of them may contribute to the eventual patterning, and it remains disputable 
to decide, what of Marangoni flows has a decisive impact on the patterning. The experimental data 
reported in Refs. 95, 115 convince, that this is the solutal Marangoni flow, which constitutes the pattern.  
Indeed, heating the substrate from below destroyed the patterning [115]. This contradicts the idea that self-
organization is due to the jump in surface tension caused by a temperature gradient (temperature-gradient-
driven Marangoni instability). 

However, when evaporation is present thermo- and soluto-capillarity represents only one of several 
destabilizing mechanisms: vapor recoil, differential evaporation (dependence of the evaporation rate on the 
thickness of the film) and, sometimes, all contribute to the development of interfacial instability and as a 
result exert an influence on the pattern’s makeup [116]. De Gennes proposed an alternative mechanism of 
patterning. He has shown that in an evaporating film, a “plume” of solvent-rich fluid induces a local 
depression in surface tension, and the surface forces tend to strengthen the plume. His calculations led to 
the conclusion that this kind of instability should dominate over the classic Bénard–Marangoni instabilities 
[117-118]. It should be emphasized that in all kinds of aforementioned instabilities (namely Marangoni and 
de Gennes ones) the tangential vector field of velocities drives the liquid. This makes possible the 
topologically-based approach to patterning as demonstrated in Ref. 119. The “hairy ball theorem” of 
algebraic topology states that any continuous tangent vector film on the surface topologically equivalent to 
a sphere must have at least one point where the vector is zero [120]. Remarkably, the “hairy ball theorem” 
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predicts the existence of at least one zero tangential velocity point at the surface of the evaporated polymer 
solution [119]. And, indeed, these zero velocity points were observed experimentally [119].  

What is the role of water droplets in the formation of large scale patterns, shown in Figure 3? It seems 
that water droplets work as “tracers” enabling visualization of the boundaries, separating the large scale 
cells, depicted in Figure 3. Pores, appearing after droplets evaporation are accumulated in zero-velocity 
points, arising from the “hairy ball theorem”, as discussed in Refs. 119-121. 

Now consider mesoscopic, micro-scaled patterning observed by various groups [14-16, 26-30, 35-36, 53, 
67-6]. These mesoscopic patterns are built from well-ordered micro-scaled or sub-micro-scaled pores, 
demonstrating long-range 2D and sometimes 3D ordering [35, 122-124]. The mechanism of this patterning 
was discussed in Refs 48 and 66. Govor et al. related the mesoscopic ordering to capillary interaction 
between droplets, discussed in much detail in Refs. 125-128. Kralchevsky et al. demonstrated that between 
two particles placed on the liquid/vapor interface acts the force (which may be either attractive or 
repulsive), similar to the Coulomb interaction between two endless wires, charged with the constant linear 
charge densities [125-128]. It is reasonable to suggest that this capillary interaction between droplets, 
condensed at the polymer solution/humid vapor interface is responsible for the long-range ordering 
inherent for the breath-figures self-assembly. It was already demonstrated by Bragg, Nye and Lomer in 
Refs. 129-130, that the capillary interaction of bubbles promotes assemblage of bubbles, representing the 
crystal structure of real metals.  

Capillary interaction is not the only kind of physical interactions acting between particles, placed at the 
liquid/vapor interface. It was demonstrated by Pieranski that electrostatic interactions between floating 
particles may be not less important than capillary ones [131]. The role of the Marangoni thermo-capillary 
convection in the formation of ordered honeycomb patterns was mentioned in Refs. 66, 132-133. The details 
of the physical mechanism giving rise to the long-range self-assembly of pores, inherent for the breath-
figures patterning remain unclear. It is noteworthy that the formation of ordered ensembles of droplets 
under drop casting method occurs in the vicinity of the triple (three-phase) line, as shown in Figure 4 [134]. 
Self-assembly of colloidal particles (not droplets!) taking place in the vicinity of the triple line was studied 
extensively in Refs. 135-136. However, the approach developed in Refs. 135-136 hardly could be extended 
to the explanation of the self-assembly of condensed water droplets, due to their coalescence to be 
discussed below.  
 

 

 

 

 

 

 

Figure 4. Breath figures self-assembly taking place under drop casting is depicted. The droplet of 
the polymer solution is evaporated in the humid atmosphere. Water droplets are condensed at the 
polymer solution/vapor interface. The capillary cluster built from water droplets is formed in the 
vicinity of the triple (three-phase line).  
It was also demonstrated that some additives such as PEG and dendrons promote ordering occurring 

under the breath-figures self-assembly [62, 137-138]. The well-ordered honeycomb patterns resulting from 
the breath-figures self-assembly evidences non-coalescence or delayed coalescence of sessile water droplets 
condensed on the polymer solution/vapor interface. This means that so-called “capillary cluster” built from 
micro-scaled water droplets exists on the polymer solution/vapor interface. The physical behavior of non-
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coalescence capillary clusters, in which capillary interactions prevail or play essential role draw an attention 
of investigators recently [139-141].  

When droplets of the same liquid touch one another one expects coalescence [23, 142-143].  The 
mechanism of the non-coalescence, observed in capillary clusters, remains disputable. Karpitschka et al. 
showed that sessile droplets from different but completely miscible liquids do not always coalesce 
instantaneously upon contact: the drop bodies remain separated in a temporary state of non-coalescence, 
connected through a thin liquid bridge [144-146]. Karpitschka et al. suggested that the delay originates from 
the Marangoni convection [144-146]. However, the details of the non-coalescence of droplets in capillary 
clusters remain unclear and call for further experimental and theoretical insights.  

Nanoparticles also prevent coalescence of droplets and enable the formation of the additional 
nanoscale in the hierarchical topographies obtained under the breath-figures self-assembly (see the 
extended review of the state of art use of nano-particles in the breath-figures self-assembly in ref. 16 and 
Refs. 147-150. Saunders et al. demonstrated that the super-lattice of mono-dispersed gold nanocrystals 
formed under the breath-figures process an ordered structure at the nanometer scale [150]. An interaction 
between the nano- and the micro-meter length scale self-organization processes, especially through the 
formation of water droplets/evaporating polymer solution interface and droplet collective motions was 
addressed in Ref. 151.  

Now consider the dimensionless numbers, describing the breath–figures self-assembly, namely the 
Bond (Bo), capillary (Ca) and Reynolds (Re) numbers: 

     


 2gLBo  , 

vCa  , 


vL

Re ,                                (3) 

where ρ is the density (the densities of water and polymer solutions are very close), η and γ are the 
viscosity and surface tension of the polymer solution respectively, v is the characteristic velocity of droplets 
and pores and L as the characteristic spatial scale.   

 Assuming for numerical values of physical parameters appearing in Eqs. 3: 
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3   (the viscosity of the solution 

is taken for the initial stage of the evaporation, the velocity equals to the maximal velocity of pores, 
established experimentally in Ref. 121); we conclude, that inequalities: 

                                                            1Bo , 1Ca , 1Re                                                 (4)  

take place for all lateral characteristic scale lengths, inherent for the breath-figures self-assembly, 
namely: mLm 59 1010   . This means that the effects due to gravity, inertia and viscosity are negligible, 
and the breath figures self-assembly is mainly driven by the interfacial phenomena (however, the viscosity, 
growing with the evaporation of  the polymer solution layer, helps to stabilize the eventual honeycomb 
pattern, as it will be shown below). Indeed, the breath figures patterns were observed on horizontal [14-16] 
and vertical [46, 95-97] substrates. It is seen from Eqations 4, that the breath-figures self-assembly is a 
“slow” process, in which effects due to inertia and viscosity are negligible.  

In order to clarify the precise meaning of the wording “slow process” it is instructive to elucidate the 
hierarchy of time scales, inherent for the process, namely: sol

therm and drop
therm which are the characteristic times 

necessary for attaining thermal equilibrium in the evaporated polymer solution and condensed water 
droplets respectively, viscerf /int , which is the characteristic time necessary for viscous stresses (developed in 

the evaporated polymer solution layer) for balancing interfacial ones (at the length scale of a single droplet 
R), and eventually the temporal scales ssol

ev 10 and sdrop
ev 1  which are the characteristic times of 

evaporation of the polymer solution and water droplets, correspondingly. The estimations for the time 
scales yield: 
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where sol and w are the thermal diffusivities of a polymer solution and water respectively, solL  
and R are the characteristic spatial scales of the evaporated layer of the polymer solution (in other 

words its typical thickness) and the condensed droplet (i.e. its radius), correspondingly; η and γ are the 
viscosity and the surface tension of the polymer solution at the initial stage of the evaporation, as noted 
above.  

Assuming: 
s
m

sol

2
8107.7  (as it is taken for the chloroform, as a typical solvent); 

s
m

w

2
71047.1  , mRmLsol

64 10,10   , yields following rough estimations:

sss viscerf
drop
therm

sol
therm )1010(5.0;107;13.0 65

/int
6    . 

 Finally, we estimate the hierarchy of time scales inherent for the breath-figures self-assembly: 

                                                   viscerf
drop
therm

sol
therm

drop
ev

sol
ev /int                                                    (6) 

 This hierarchy may be interpreted as follows: the condensed water droplet practically immediately 
comes to the thermal equilibrium, whereas the polymer solution layer, fixing the pattern, is far from the 
thermal equilibrium on the time scale of its evaporation. The Inequality (6) also implies that at the lateral 
scale of a single droplet interfacial stresses are immediately balanced by viscous ones, which are developed 
in the polymer solution layer. So, the behavior of a single droplet is quasi-static, and the formation of pores 
is stabilized by the viscosity of polymer layer, growing with the evaporation; whereas the, dynamics and 
thermodynamics of large (~ 10 m) cells, depicted in Figure 3, are essentially non-equilibrium.  
6. Characterization of Patterns, Obtained with the Breath-Figures Self-Assembly. 

6.1. Characterization of Ordering of Patterns. 
Ordered honeycomb structures arise from the breath-figures self-assembly. How the 2D ordering of 

patterns may be quantified? Two approaches to the quantifying of surface ordering have been reported; the 
first of which exploited the statistical properties of the auto-correlation functions [152], calculated over 
pixels of the SEM images taken for honeycomb patterns [62]. The correlational analysis of the SEM images 
indicated short-range and mesoscopic ordering of the honeycomb structures on the characteristic scale of 5 
m for the typical, weakly ordered patterns, represented in Figure 2. The second approach to the problem 
involved the use of the Voronoi diagrams (or the Voronoi tessellations) described in detail in Refs. 153-154. 
Perfect ordering of pores on the scale of 1-10 mm was registered [14-16]. The Voronoi tessellation and 
Voronoi entropy were successfully applied for the quantitative characterization of ordering of capillary 
clusters (see Ref. 141) and pores constituting honeycomb reliefs in Refs. 73, 155-156.  
6.2. Surface Characterization of Patterns, Obtained with the Breath-Figures Self-
Assembly. 

The simplest and extremely useful method of characterization of micro-rough surfaces is based on the 
measurement of the apparent contact angle [32-34, 157]. The detailed study of the apparent contact angles 
inherent for honeycomb, porous surfaces arising from the breath-figures self-assembly was reported in 
Refs. 158-160. It was demonstrated that honeycomb surfaces produced by the breath figures self-assembly 
demonstrate the pronounced heterogeneous (air trapping) Cassie-Baxter wetting regime [79, 161-163].  The 
interfaces characterized by the stable Cassie-Baxter wetting are featured by high apparent contact angles 
and low contact angle hysteresis [32-34, 161-163]. Thus, they are suitable for a broad range of applications, 
where self-cleaning properties of the interface are demanded [164-165]. Somewhat surprisingly, polymer 
surfaces manufactured with the breath-figures self-assembly shown the Cassie-like wetting, even when 
hydrophilized by metal coating [160]. The mechanism of stability of the Cassie wetting states observed on 
honeycomb polymer and metallized reliefs was addressed in Ref. 166. 

At the same time the mechanical properties of micro-porous films, obtained with the breath-figures 
self-assembly, remain obscure. The non-trivial mechanical properties of these films, possessing reduced size 
and dimensionality, are expected, as compared with those of their macroscopic counterparts [167].  
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7. Novel Applications of the Breath-Figures Self-Assembly. 
We already considered the numerous applications of interfacial honeycomb structures, arising from 

the breath-figures self-assembly in Section 1 (see also the comprehensive review presented in Ref. 16). A 
number of very recent applications of these structures are noteworthy.  Microporous functional polymer 
surfaces, arising from the breath-figures self-assembly have been proven to be selective surfaces toward 
eukaryotic cells while maintaining antifouling properties against bacteria [168]. The witty process of 
manufacturing of micro-spherical particles with the breath-figures process was reported in Ref. 169. Breath-
figures self-assembly was successfully involved in manufacturing solid-state supercapacitors [170].  It was 
shown, that honeycomb polymer films supported by steel meshes enable manufacturing electrically 
controlled membranes [171]. 

8 Conclusions 
Breath-figures self-assembly enables manufacturing micro- and sub-micro scaled porous reliefs 

demonstrating a potential for manufacturing membranes, functionalized templates, sensors, optical and 
bio-engineering devices and water-oil and size-selective separation processes [16]. Breath-figures inspired 
topographies may be obtained with thermoplastic [14, 15, 16, 37-38, 41, 44-46, 61-62] and thermosetting [50-
52] polymers. High-performance engineering polymers, such as polyimide [53], polyetherimide [54] and 
polysulfone [45,55] were successfully used for the breath-figures self-assembly.  2D and 3D hierarchical 
structures, possessing a range of scales from micro-meters to nano-meters were reported [14, 35, 150]. The 
nature of the large-scale (~ 10 m) patterning, attributed by different authors to various kinds of 
hydrodynamic instabilities remains disputable [95-98, 117-118].    

The breath figures self-assembly is a robust, single-stage process, however, it involves almost all events 
inherent for interface science, namely: evaporation of a solvent, condensation of water droplets, instabilities 
developed in the evaporated polymer solution, delayed coalescence of closely packed droplets, forming the 
capillary cluster and their interaction [16, 125-131]. Thus, the process of the breath-figures self-assembly 
may be understood only within a broad context of the surface science [31-34].    

A variety of basic questions related to the physical and chemical mechanisms of the breath-figures self-
assembly remains obscure; even the impact of the polymer architecture on the resulting pattern is unclear 
and calls for future investigations. In this situation the qualitative macroscopic approach to the analysis of 
the process becomes preferable. Such an analysis is proposed in the review. The estimation of 
dimensionless numbers, describing the breath–figures self-assembly, namely the Bond (Bo), capillary (Ca) 
and Reynolds (Re) numbers, convinces that the effects due to gravity, inertia and viscosity are negligible, at 
least at the first stage of evaporation of a polymer solution, and the process is mainly driven by the 
interfacial phenomena. The viscosity of a polymer layer contributes to the stabilization of the pores radii. 

The hierarchy of spatial and temporal scales inherent for the breath-figures self-assembly is elucidated. 
The characteristic spatial scales of patterns range from dozens of micrometers to nanometers. The temporal 
scales of the process vary from micro-seconds to seconds. The analysis of the hierarchy of temporal scales 
demonstrates that the condensed water droplet practically immediately comes to the thermal equilibrium, 
whereas the polymer solution layer is far from the thermal equilibrium. It is also-shown that the behavior of 
a single droplet is quasi-static; whereas the dynamics and thermodynamics of large-scale cells are 
essentially non-equilibrium. The topological aspect of the self-assembly is addressed [119]. 

The novel applications and trends of future investigations in the field of the breath-figures self-
assembly are envisaged. 
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