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Abstract: China is facing huge pressure on CO2 emissions reduction. The heavy industry accounts 
for over 60% of China’s total energy consumption, and thus lead to a large number of energy-related 
carbon emissions. This paper adopts the Log Mean Divisia Index (LMDI) method based on the 
extended Kaya identity to explore the influencing factors of CO2 emissions from China’s heavy 
industry; we calculate the trend of decoupling by presenting a theoretical framework for 
decoupling. The results show that labor productivity, energy intensity, and industry scale are the 
main factors affecting CO2 emissions in the heavy industry. The improvement of labor productivity 
is the main cause of the increase in CO2 emissions, while the decline in energy intensity leads to CO2 
emissions reduction, and the industry scale has different effects in different periods. Results from 
the decoupling analysis show that efforts made on carbon emission reduction, to a certain extent, 
achieved the desired outcome but still need to be strengthened. 
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1. Introduction 

The heavy industry mainly produces production and other materials, and also serves as the 
technical basis for the economy. According to the National Bureau of Statistics (NBS), the division as 
to a light or heavy industry standard is based on whether the industry produces production or 
consumption materials (Lin and Liu, 2016). There are also some research studies which classify the 
heavy and light industry by the amount of energy consumed (Chen, 2011). In this paper, we use the 
classification method of NBS to determine a heavy or light industry (see Appendix A). 

Heavy industry occupies an important place in China’s economy. From 1949 to the beginning of 
the reform and opening up, China adopted the strategy of “heavy industry priority development”; it 
took the heavy industry as the top priority in the development of national economy and therefore 
pursued its growth. In this context, the heavy industry became the fastest- growing and the leading 
industry in that period. Average annual growth rate reached 15.3% during the period1949-1981. The 
proportion of the heavy industry to the total industrial output also increased rapidly from 26.4% to 
48.6% during the same period (Lin et al., 2003). After the reform and opening up, the industry ushered 
in a new round of development. The proportion of heavy industry to total industry sector increased 
from 48.6% in 1981 to 75.5% in 2001, and then to 79.9% in 20161. The industry has indeed occupied an 
absolutely important position in China’s industrial structure. 

                                                             
1 The NBS has published the added value of each industrial sector in 1993-2007, and the growth rate in 
2008-2016. Then the proportion of heavy industry in the total industrial output can be calculated.  
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Most sub-sectors of the heavy industry are energy-intensive. With its rapid growth in China, 
energy consumption has also increased drastically; it accounts for over 65% of the total primary 
energy consumption (Lin and Li, 2014). China is in the period of industrialization and urbanization, 
and for that matter, the heavy industry will continue to develop in the future. As the primary energy 
consumption in China is dominated by fossil fuels, and that the burning of fossil fuels is the main 
source of carbon dioxide emissions, growth in carbon emission has experienced a sharp increase over 
the years (Figure 1). 

 

Source: BP Statistical Review of World Energy 2016. 

Figure 1. CO2 emissions in China, USA, and the world 

China overtook America as the world's largest emitter of carbon dioxide in 2006. As at 2015, total 
carbon emission was 9153.9 million tons, accounting for 27.3% of total emission in the world. It is 
worth noting that total carbon emission in China (in 2015 ) compared with 2014 dropped by 0.1%, 
due to a decline in the overall growth of the economy. As China’s industrialization and urbanization 
process continue, energy consumption and energy-related carbon emissions are likely to grow 
rapidly when the economy is better.  

In 2009, Chinese government proposed the emission reduction target, which seeks to ensure that 
CO2 emissions per unit of GDP in 2020 drops by 40%-45% compared with the 2005 level. In order to 
achieve the emission reduction target, one of the most important things is to determine the driving 
factors of carbon emission growth and reduction. As the heavy industry contains almost all the 
energy-intensive sectors and accounts for over 65% of China’s total energy consumption, energy 
conservation and emission reduction in the heavy industry is significant for the success of national 
energy conservation and emission reduction.  

Investigating the driving forces of energy consumption, pollutant or carbon emissions, and 
energy efficiency is an important issue in energy economic research. Base on methodology, research 
on driving forces can be divided into three categories: Econometric analysis, Computable General 
Equilibrium (CGE) analysis based on input-output (I-O), and Decomposition analysis. Compared 
with the econometric and CGE analyses, the decomposition analysis is relatively simple and clear 
and can be used to measure the effects of related factors based on the decomposition of identities, 
such as the Kaya identity. It also has a certain degree of flexibility for the definition of decomposition 
factors. In general, decomposition analysis can be divided into three different kinds: structural 
decomposition analysis (SDA), production-theory decomposition analysis (PDA), and index 
decomposition analysis (IDA). 

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

To
ta

lw
or

ld
M

t

M
t

Total World US China

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 June 2017                   doi:10.20944/preprints201706.0129.v1

Peer-reviewed version available at Sustainability 2017, 9, 1198; doi:10.3390/su9071198

http://dx.doi.org/10.20944/preprints201706.0129.v1
http://dx.doi.org/10.3390/su9071198


 

SDA, which is based on I-O analysis, can make full use of an I-O data. In the case of energy 
consumption and carbon dioxide emissions analysis for an industrial or economic sector, SDA can 
distinguish the direct and indirect effects on the change of the production or consumption of the 
sector, analyzing the effect of changes in the final demand of one sector on the change of energy 
consumption of other sectors (Alcántara and Padilla, 2009). Compared with other methods about 
decomposition, the analysis of SDA on driving forces is more comprehensive and thorough, but the 
requirement on data is higher than other methods. (Hoekstra and Van den Bergh, 2003; Rose and 
Casler, 1996; Su and Ang, 2012) have made a comprehensive review of the application of SDA.  

The SDA model based on I-O analysis is widely used in energy and environment analysis. 
According to the double-KLEM production function, Rose and Chen (1991) analyzed the main factors 
for the change in energy consumption in the United States. Their results show that economic growth 
and the substitution between energy and other factors are the main driving forces for the increase in 
energy consumption, and energy conservation, whiles technical change is the main reasons for the 
suppression of energy consumption. With the same method, Casler and Rose (1998) extended the 
research into carbon emission analysis. Lenzen (1998) adopted the SDA to describe the relationship 
between terminal energy consumption and carbon emission in Australia. Machado et al. (2001) and 
Butnar and Llop (2011) analyzed the effect of international trade, internal demand, external demand, 
and other factors on energy consumption and carbon emission in Brazil. This method is also widely 
used in the analysis of China’s industrial and regional energy consumption and carbon emissions 
(Xie, 2014; Zhang, 2009), as well as analysis at the urban level (Wang et al., 2013).  

In order to make an economic interpretation of the decomposition results, Wang (2007) proposed 
the method of PDA based on the data envelope analysis (DEA). Based on the output distance 
function, PDA can decompose the change in energy efficiency (the reciprocal of energy intensity) into 
technical efficiency changes, technological changes, and potential maximum energy efficiency 
change, where the potential maximum energy efficiency change includes the substitution between 
energy and capital, energy and labor, and structural changes in output. After this, PDA is widely 
used in the analysis of energy consumption and carbon emission (Fan et al., 2010; Lin and Du, 2014; 
Zhang and Da, 2015).  

Compared with SDA and PDA, the method of IDA has relatively lower requirements for data, 
especially the results of PDA on the structural effect of output and energy may be inconsistent with 
reality (Du and Lin, 2015). In this case, IDA is originally used in the study of industrial energy 
consumption, and gradually used in energy-environmental analysis. IDA has different forms, among 
which Laspeyres decomposition and Divisia decomposition are the commonly used ones. Ang et al. 
(1998) proposed the Log-Mean Divisia Index Decomposition Method (LMDI), which is also one of 
the most commonly used methods in IDA. Ang and Zhang (2000) have to make a review of IDA.  

(Xu et al., 2012) analyzed the driving forces of energy consumption and carbon emission in 
China’s cement industry, the results show that output growth is the most important factor driving 
energy consumption up, whiles structural shifts mainly drives energy consumption down. The 
results are similar in China’s transport sector (Wang et al., 2011; Zhang et al., 2011). (Zha and Ding, 
2014) compared the differences in driving forces of residential carbon emissions in urban and rural 
China, and the results showed population effect to be significantly different. There are also research 
studies that focused on influencing factors of energy intensity (Liu et al., 2007; Ma and Stern, 2008) 

After the decomposition analysis of driving factors for carbon emission, we also need to evaluate 
the effectiveness of carbon emission reduction policies, and decoupling analysis can be a good choice. 
Originally appearing in physics, decoupling refers to the process of eliminating the effect of mutual 
interference between signals. In 2000, it was used by the organization for economic cooperation and 
development (OECD) to investigate agricultural policies, and also assess environmental quality 
(OECD, 2001). Research on decoupling later expanded to the field of environment, stemming from 
the Driver-Pressure-State-Influence-Response (DPSIR) framework; it is mainly used to reflect the 
relationship between the driving force and the environmental pressure during the same period. 
Decoupling can simply and clearly explain the relationship between the resource environment and 
economic development, hence, it has been applied to study the relationship between economic 
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growth and factors like environmental pollution, energy consumption, increase in house prices, 
arable land occupation etc. (Ayres et al., 2003; Ma et al., 2013; Secretariat, 2002; Zhang and Zhang, 
2017). 

OECD countries have attached great importance to research on the “decoupling” and its 
application. The decoupling is divided into relative decoupling and absolute decoupling. Relative 
decoupling is said to occur when the growth rate of the energy variable is positive but less than that 
of economic output. Absolute decoupling, however, is said to occur when the growth rate of energy 
use is zero or negative and the growth rate of economic output is positive (Ren et al., 2014). The OECD 
report showed that from the perspective of policy research, the pressure index and the corresponding 
decoupling index are better than the state index because they have the advantage that they can be 
easily changed in a short term (OECD, 2005). When it comes to evaluating specific policies, they can 
be more effective. Therefore, decoupling is often used to establish environmental indicators, and 
evaluate the effect of policy implementation. 

To sum up, many studies have been conducted on decomposition and decoupling of different 
industries in different countries. However, as an industry with huge energy consumption and carbon 
emissions, China’s heavy industry does not get enough attention. Thus, we extend our research to 
the heavy industry by using LMDI. We also calculate the decoupling to study the effect of each factor. 
The coupling state between CO2 emissions and industry development will also be tested. The results 
of the study can help us understand the various influencing factors of carbon emissions in China's 
heavy industry. It can also help us measure the relationship between the industry development and 
carbon reduction.  

The remainder of this paper is organized as follows. Section 2 shows the methods used in this 
paper. Section 3 reports the data sources as well as the data processing. Section 4 concludes the 
estimation results and also depicts the main conclusion. Section 5 presents some corresponding policy 
implications based on the empirical results, and the last section shows the references used in this 
paper. 

2. Methodology 

2.1 Decomposition Analysis  

We use the Logarithmic Mean Divisia Index (LMDI) decomposition to analyze the influencing 
factors of carbon dioxide emissions of China’s heavy industry. 

Based on the Kaya identity, carbon emissions can be decomposed into several affecting variables 
(Kaya, 1990): ܥ = ஼ா × ாீ஽௉ × ீ஽௉௉ × ܲ        (1) 

Where ܥ denotes CO2 emissions, C ⁄ܧ  denotes the carbon intensity of energy; E ⁄ܲܦܩ  denotes 
energy efficiency; GDP ܲ⁄  denotes per capita income and ܲ denotes population. According to the 
Kaya identity, the energy related CO2 emissions are basically determined by carbon intensity, energy 
efficiency, per capita income, and the total population. 

Further, the kaya identity can be extended as: ܥ = ஼ா೑ × ா೑ா × ா௒ × ௒ௐ × ܹ        (2) 

In this paper, we focus on CO2 emissions from fossil energy consumption. (Ang and Lee, 1994) 
discussed several methodological and application issues related to the technique of the 
decomposition of industrial energy consumption. In Eq. (2), ܧ௙  denotes the fossil energy 
consumption and ܧ  is the total energy consumption of heavy industry, Y denotes the output of 
heavy industry, which is represented by the added value, and ܹ denotes the labor input.  

Table 1 shows the energy economic meaning of each factor in Eq. (2): 

Table 1. Definition of variables 
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Multiplier in Equation (2) Abbreviation Descriptionܥ ⁄௙ܧ  CI Carbon intensity: The amount of carbon 
by weight emitted per unit of energy 
consumed ܧ௙ ⁄ܧ  ES Energy structure: the proportion of 
fossil energy in total energy 
consumption ܧ ܻ⁄  EI Energy intensity: energy consumption 
per unit of GDP  ܻ ܹ⁄  LP Output per capita: industrial added 
value per capita 

W IS Industry scale: the number of 
employees in the heavy industry. 

For simplification, Eq. (2) can be expressed as: ܥ = ܫܥ × ܵܧ × ܫܧ × ܲܮ ×  (3)        ܵܫ
With LMDI, the cumulative change in CO2 emissions in year t can be represented in five parts: ∆ܥ = ௧ܥ − ଴ܥ = ஼ூܥ∆ + ாௌܥ∆ + ாூܥ∆ + ௅୔ܥ∆ +  ୗ   (4)୍ܥ∆
Each part of Equation (4) can be computed as follows: ∆ܥ஼ூ = ,଴ܥ)ܮ (௧ܥ × ln (ܫܥ௧ ⁄଴ܫܥ ஼ூܥ∆ (5)       ( = ,଴ܥ)ܮ (௧ܥ × ln (ES௧ ⁄଴ܵܧ ஼ூܥ∆ (6)       ( = ,଴ܥ)ܮ (௧ܥ × ln (ܫܧ௧ ⁄଴ܫܧ ஼ூܥ∆ (7)       ( = ,଴ܥ)ܮ (௧ܥ × ln (ܮ ௧ܲ ܮ ଴ܲ⁄ ஼ூܥ∆ (8)       ( = ,଴ܥ)ܮ (௧ܥ × ln (ܵܫ௧ ⁄଴ܵܫ )       (9) 
where ܥ)ܮ଴, (௧ܥ = ஼೟ି஼బ୪୬ (஼೟ ஼బ⁄ ), which is also called the logarithmic weight average. According to 

Equation (2)-(9), we can do the decomposition analysis of the CO2 emissions of heavy industry, and 
get the effect of each factor. 

2.2. The decomposition-based decoupling model 

The ideal state of low-carbon economy is to achieve a negative growth of greenhouse gas while 
the economy keeps growing, but this is just an ideal state. The transition towards a low-carbon 
economy is a process of decoupling between economic growth and greenhouse gas emissions. That 
is, the growth rate of carbon emissions is lower than that of economic growth. 

The Decoupling index (DI) is defined as: ܫܦ = 1 −  (10)      ݁ܿݎ݋݂݃݊݅ݒ݅ݎܦ/ݐ݊݁݉݊݋ݎ݅ݒ݊ܧ

Where DI is the decoupling index; Environment denotes the environment index, such as pollutant 
emissions and resource consumption; Drivingforce denotes factors like economic growth rate or 
industrial production growth rate. The decoupling indexes in different areas or different periods are 
compared to determine the stress intensity and change trend  

We choose the change of CO2 emissions (∆ܥ௧) to represent efforts in a certain sector to improve 
the environment in different periods; however, it doesn’t imply the real efforts they have made. 
Because ∆ܥ௧  contains not only the real efforts to reduce emissions like optimizing the energy 
structure and reducing the energy intensity, but also the increase of emissions driven by industrial 
expansion. Based on the decomposition above, the real efforts to reduce CO2 emissions ∆ܴܥ௧ can be 
decomposed into carbon intensity (CI), energy structure (ES), and energy intensity (EI). The impetus 
factors are labor productivity (LP) and industry scale (IS): 
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ܴܥ∆  = ܥ∆ − ∆Y = ஼ூܥ∆ + ாௌܥ∆ + ܻ∆ ாூ     (11)ܥ∆ = ௅௉ܥ∆ +  ூௌ        (12)ܥ∆
Thus, the decoupling index ܫܦ௧ is defined as: ܫܦ௧ = 1 − ⁄ ௧ ∆Y௧ܥ∆ = − ௧ܥ∆) − ∆ ௧ܻ) ∆ ௧ܻ⁄ = − ௧ܴܥ∆ ∆ ௧ܻ⁄   (13) 

When ௧ܫܦ  > 1 , it indicates strong decoupling. This means that emissions reduction after 
implementation of existing policies is greater than the emissions growth driven by industrial 
expansion. The bigger the ܫܦ௧, the more obvious the CO2 reduction effect, and the energy structure 
is more optimized. As energy intensity decreases, the environmental stress per unit of output is 
relieved. That is to say, the existing emission reduction efforts are proved to be effective. 

When 0 < ௧ܫܦ < 1 , it indicates weak decoupling, which means that the existing emission 
reduction policies play a certain role in CO2 reduction, and the growth rate slows down to a certain 
extent. But judging from the absolute amount, emissions reduction after the implementation of 
existing policies is greater than emissions growth driven by industrial expansion, implying that the 
total emissions are still increasing. The effectiveness and implementation efficiency of the emission 
reduction policies cannot be guaranteed. 

When ܫܦ௧ < 0, it indicates no decoupling. That is to say, the emission reduction policies are 
ineffective and inefficient, and that the emission reduction goal cannot be achieved. That means that 
the emission reduction policies cannot optimize the energy structure and reduce the energy intensity. 
The total emissions are increasing rapidly along with the industrial expansion. In this case, the 
environment pressures caused by economic growth will continue to increase. All the decoupling 
conditions is shown in Figure 2. 

 

 

 
 
 
 
 
 
 
 
 

 

 

 

Figure 2. Decoupling analysis in different situations 

 

 

3. Data  

In this paper, we employ China’s annual data over the period 1991-2015, since earlier terminal 
energy consumption by industrial sectors is unavailable. Output of the heavy industry is represented 
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by the added-value, and as already mentioned in the methodology, energy consumption and labor 
input are used in our analysis. All the data are obtained from China Statistical Yearbook, China Energy 
Statistical Yearbook, and China Industrial Economy Statistical Yearbook. If not specifically pointed out, all 
the data on prices in this paper are converted into constant prices in 1990 based on the GDP deflator. 
It is worth noting that the statistical criterion does not include heavy industry except the electricity 
consumption, so other data of heavy industry used in this paper is from the summary of the sub-
sectors included in the heavy industry. 

3.1 Energy consumption 

The heavy industry contains a large number of sub-sectors, some of which are sectors of energy 
production, conservation, and storage. In the case of double counting, we use the terminal energy 
consumption of each sub-sector to get the total energy input of the heavy industry.  

According to OECD/IEA, terminal energy consumption is the energy used by terminal energy 
equipment entrance. From the definition, terminal energy consumption is equal to primary energy 
consumption minus energy loss in energy processing, energy conversion, and energy storage, as well 
as the loss associated with energy production process in energy-related industries (Agency, 2005).  

It is worth noting that the NBS adjusted the terminal energy consumption by industrial sectors 
in 2000, however, data before 2000 remains unchanged. In order to keep the coherence of data before 
and after 2000, we rebuilt the terminal energy consumption of the heavy industry before 2000 
according to the original growth rate. Figure 3 shows the adjusted terminal energy consumption of 
China’s heavy industry from 1991 to 2015. For convenience, raw coal, clean coal, and coke are merged 
as coal; crude oil, gasoline, kerosene, diesel, fuel oil, and PLG are merged as oil. Electricity is 
converted to coal equivalent by the electro-thermal equivalent. It can be seen that energy 
consumption has increased rapidly, especially after 2002. From the perspective of energy structure, 
coal has the highest proportion, followed by electricity. It is also imperative to note that the 
proportion of electricity has increased at a faster rate in the recent years. The proportion of natural 
gas and heat are relatively low.  

 

Figure 3. The terminal energy consumption of China’s heavy industry  

  

0

200

400

600

800

1,000

1,200

1,400

1,600

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

M
tc

e

Coal Oil Electricity Heat Natural gas Others

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 June 2017                   doi:10.20944/preprints201706.0129.v1

Peer-reviewed version available at Sustainability 2017, 9, 1198; doi:10.3390/su9071198

http://dx.doi.org/10.20944/preprints201706.0129.v1
http://dx.doi.org/10.3390/su9071198


 

3.2 Carbon emission  

According to (IPCC, 2006), we can get energy-related carbon emissions by aggregating emissions 
from each type of energy consumption. China Energy Statistical Yearbook has published the physical 
quantity of terminal energy consumption by industrial sectors, and the carbon emissions coefficient 
of each type of energy is shown in Table 2: 

Table 2. The carbon emissions coefficient of each type of energy 

Energy type Raw coal Cleaned coal Other washed coal Coke 
Carbon emissions 

coefficient 1.980356 2.495249 1.107727 3.046316 

unit Mt/ Mt Mt/ Mt Mt/ Mt Mt/ Mt 
Energy type Coke oven gas Other goal gas Other coke products Crude oil 

Carbon emissions 
coefficient 

929.4696 776.149 3.135913 3.409916 

unit Mt/Mm3 Mt/Mm3 Mt/ Mt Mt/ Mt 
Energy type Gasoline kerosene Diesel oil Fuel oil 

Carbon emissions 
coefficient 3.044655 3.198454 3.174568 3.04218 

unit Mt/ Mt Mt/ Mt Mt/ Mt Mt/ Mt 
Energy type LPG Refinery dry gas Other petroleum products Natural gas 

Carbon emissions 
coefficient 3.022209 3.617395 3.35 2090.427 

unit Mt/ Mt Mt/ Mt Mt/ Mt Mt/Mm3 

4. Results and conclusion  

4.1 Decomposition of carbon emission  

We can get the terminal energy consumption of China’s heavy industry and the carbon emission 
coefficients of each type of energy. Moreover, we can get the total carbon emissions by aggregating 
emissions from each type of energy consumption. The estimated carbon emission of China’s heavy 
industry is shown in Figure 4: 
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Figure 4. Carbon emission of China’s heavy industry 

To analyze the periodic change of carbon dioxide emissions of the heavy industry, the sample 
interval is divided into five sub-intervals according to the “five-year plan” by the central government: 
1991-1995, 1996-2000, 2001-2005, 2006-2010, and 2011-2015. According to Eq. (3) - (9), the change of 
carbon emission in each interval is decomposed into five driving factors, namely CI, ES, EI, LP, and 
IS, which can reflect the effect of change in carbon intensity, energy structure, energy intensity, labor 
productivity, and industry scale on the change of carbon emission, respectively. The decomposition 
results are shown in Figure 5. 

 
Figure 5. Increment of carbon dioxide emissions in each sub-interval and decomposition of 
influencing factors 

During the period 1991-1995, among the increment of 472.94 Mt carbon dioxide emissions, 272.15 
Mt was caused by labor productivity; 138.84 Mt was due to energy intensity; 45.75 Mt resulted from 
growth of industry scale; 30.15Mt was driven by energy structure, while the change of carbon 
intensity contributed to the only carbon emission reduction, which was -13.94 Mt during the interval.  

According to the decomposition results above, the principal reason for the increase in CO2 
emission in China’s heavy industry is the improvement of labor productivity (LP). Since the end of 
the nineteenth century, the increase in fixed assets per capita has been the main reason for the 
improvement in labor productivity of industrial enterprises. This resulted in the replacement of 
manual labor with machinery and equipment, leading to an increase in energy consumption and 
carbon dioxide emissions in industrial sectors. This effect was particularly evident in the heavy 
industry. The increase in industry scale (IS) and the change in energy structure (ES) also contributed 
to CO2 emissions increase in the heavy industry during this period; however, the effects were 
relatively small. It is worth noting that the industry scale of China’s heavy industry did not expand 
significantly during this period; it only contributed 9.67% to the total carbon emission increases. The 
proportion of coal-dominated fossil energy in the energy structure of the heavy industry also 
increased, leading to an increase of total carbon emission by 30.15 Mt. Energy intensity was also a 

1991-1995 1996-2000 2001-2005 2006-2010 2011-2015
ΔC_CI -13.94 -24.21 39.74 13.26 -17.74
ΔC_ES 30.15 -89.11 34.34 -171.35 -340.16
ΔC_EI 138.84 -324.78 -613.95 -735.51 -931.53
ΔC_LP 272.15 899.78 1127.99 753.57 1191.36
ΔC_IS 45.75 -442.70 474.06 959.61 92.64
ΔC 472.94 18.98 1062.18 819.57 -5.43
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main driving force of the carbon emission increases in this period, indicating that the energy 
consumption per unit of output increased rapidly during this period, which may also be the reason 
for the replacement of labor with machinery. 

During the period 1996-2000, the increase in carbon emission was positive, however, the 
absolute value was small, which may be the reason for the decline in the industry scale during the 
Asian financial crisis. The decline in energy intensity also contributed to carbon emission reduction, 
and this might have been caused by an improvement in energy efficiency. The decomposition of 
carbon emission in the periods 2001-2005 and 2006-2010 are almost the same. The only difference is 
the effect of energy structure, which has a positive effect in the former period and negative in the 
latter. It indicates that the energy structure of China’s heavy industry is moving in the direction of 
low-carbon. During the period 2011-2015, the change of energy structure and the decline of energy 
intensity, together with a low growth rate of industry scale, led to the decline of carbon emission in 
China’s heavy industry, which is unprecedented in the past periods.  

Moreover, we find that the effects of the five factors in different periods have both similarities 
and differences. As for the labor productivity (LP), it had a positive effect on CO2 emissions in each 
period. Energy intensity (EI) had a significantly negative effect on carbon dioxide emissions since 
1996. The effect of industry scale (IS) is positive except for the period 1996-2000. The influence of 
energy structure (ES) is positive in the periods 1991-1995 and 2001-2005, but became negative since 
2006. The influences of carbon intensity (CI) are not so obvious that we can only undertake a 
qualitative analysis. 

In order to make a detailed analysis of the changes in CO2 emissions of China’s heavy industry 
and the effect of each factor, the annual increment of CO2 emissions and the impact of each factor are 
calculated. The results are shown in Figure 6: 

 
Figure 6.The accumulated change of carbon dioxide emissions and decomposition results of 
influencing factors  

Firstly, during the period 1991-2015, labor productivity had a positive effect on carbon emissions 
and the effect showed an increasing tendency except in some years. The positive correlation between 
Labor productivity and its effect on CO2 emissions showed that too much attention had been paid to 
equipment and machinery. The substitution of labor with machinery increased energy consumption 
and carbon emissions. Output of the heavy industry depends on labor and capital. Capital includes 
all non-labor inputs such as machinery. The improvement of labor productivity does not only rely on 
workers’ technical proficiency and technical progress but also relies on the replacement of labor by 
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machine. Different ways directly lead to different influences on CO2 emissions. If labor is replaced by 
a machine, the improvement of labor productivity will have a positive impact on energy 
consumption.  

Secondly, during the observed period, the influence of industry scale varied significantly. From 
1991 to 1995, the effect was positive but small. This contributed to an increment of 45.75 tons of carbon 
dioxide emissions. During the period 1996-2000, the influence of industry scale changed significantly. 
As can be seen from Figure 6, the contribution of the industry scale to carbon emissions begins to 
decline. The accumulated effect of industry scale became negative in 1998, and kept declining until 
2002; it became positive again in 2006. In 2014, the effect of industry scale decline again.  

In general, the change in the effect of industry scale is consistent with the development of China’s 
heavy industry. After the reform and opening up, with the rapid development of China’s economy, 
the heavy industry accounted for a rising proportion in economic structure, which brought about a 
series of problems such as economic imbalance and environmental pollution. The government started 
to adjust the economic structure and set the goal of "adjust industrial layout, optimize industrial 
structure" during the "Ninth Five-Year plan" period (1996-2000). Specifically, backward production 
capacity should be eliminated to reduce the proportion of heavy industry with high energy 
consumption and high pollution in the economic structure. This policy worked well. The growth rate 
of the heavy industry in 1996 started to slow down. Therefore, industry scale in this period had a 
negative effect on carbon dioxide emissions. The financial crisis in 1998 further strengthened the 
negative effect, and the proportion or number of heavy industries declined significantly during this 
period. After 2000, the heavy industry began to expand again until 2014, when China’s economy 
began to enter “new normal”. Therefore, it can be concluded that expansion of the heavy industry 
will cause a significant increase in carbon dioxide emissions.  

Thirdly, during the period 1991-2015, the coal-dominated energy structure of the heavy industry 
has fundamentally not changed. Energy structure was always negatively correlated with carbon 
emissions, and the negative effect was particularly obvious since 2010. In 2009, China made the 
promise of carbon emission reduction, and began to optimize the energy structure in the "Eleventh 
Five-Year plan". The results indicate that China’s energy structure has been gradually optimized. The 
optimization of energy structure played a positive role in reducing carbon emissions of the heavy 
industry. The government began to eliminate the backward production capacity in 1996.  This 
played a role in optimizing the energy structure in the heavy industry. China then began to face 
tremendous pressure from the resources constraint and also from the environment, which eventually 
contributed to the industrial structure adjustment.  

4.2 Decoupling analysis 

Based on the decomposition results and Eq. (13), we can derive the decoupling indexes of carbon 
dioxide emissions of China’s heavy industry for the period 1992 -2015. From the definition of 
decoupling index, when ܫܦ௧ > 1, it indicates strong decoupling, which means emissions reduction 
after implementation of existing policies is greater than the emissions growth driven by industrial 
expansion. When 0 < ௧ܫܦ < 1, it indicates weak decoupling, which means that the existing emission 
reduction policies play a certain role in CO2 reduction, and the growth rate slows down to a certain 
level. When ܫܦ௧ < 0, it indicates no decoupling. That is to say, the emission reduction policies are 
ineffective and inefficient, and that the emission reduction goal cannot be achieved. 

As can be seen from Table 3, the decoupling index (DI) are all smaller than 1 during the period 
1992-2015, indicating weak decoupling. Though the highest (DI 0.73) appears in 1992, the DI of other 
years during 1992-1999 are relatively small, especially the DI in 1995, 1996, and 1998, which are -0.49, 
-0.13 and -0.11, respectively. The indication is that the effects on carbon emission reduction are 
relatively poor in this period. While the decoupling effect has been increasing since 2005, suggesting 
that the efforts of carbon emission reduction have accomplished a certain effect (with the absolute 
value of DI still less than 1), the weak decoupling indicates that it still needs to be strengthened in the 
efforts of carbon emission.  
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Table 3. Change of CO2 emissions, driving force, reduction effect and decoupling index of China’s 
heavy industry in each year 

܀۱∆ ܇∆ ۱∆  DI ∆۱ ܇∆  DI ܀۱∆
1992 51.92 188.81 -136.89 0.73 2004 323.87 1998.89 -759.19 0.38 
1993 161.43 390.92 -177.57 0.45 2005 384.72 2510.61 -886.19 0.35 
1994 62.78 335.08 -58.96 0.18 2006 259.78 2984.30 -1100.10 0.37 
1995 196.82 317.90 155.05 -0.49 2007 315.24 3494.10 -1294.65 0.37 
1996 -42.96 379.21 50.78 -0.13 2008 126.05 3793.79 -1468.29 0.39 
1997 34.16 471.13 -6.99 0.01 2009 338.89 4229.36 -1564.97 0.37 
1998 47.56 460.82 50.88 -0.11 2010 39.39 4532.74 -1828.96 0.40 
1999 -70.09 583.59 -141.98 0.24 2011 282.43 5011.61 -2025.40 0.40 
2000 7.36 756.94 -307.97 0.41 2012 22.69 5214.92 -2206.01 0.42 
2001 113.28 892.05 -329.81 0.37 2013 128.41 5520.21 -2382.90 0.43 
2002 59.28 1078.33 -456.81 0.42 2014 22.09 5705.91 -2546.51 0.45 
2003 294.31 1501.47 -585.63 0.39 2015 -178.61 5668.47 -2687.68 0.47 

5. Conclusions and policy implications 

With the development of the economy, energy consumption and the CO2 emissions of China’s 
heavy industry are still rising. This paper, for the first time, applies the LMDI approach to decompose 
CO2 emissions and then analyze the decoupling effect of carbon emission reduction policies in 
China’s heavy industry. 

The empirical results show that energy efficiency and labor productivity are two key factors 
influencing the CO2 emissions. High energy efficiency is the principal contributor to low CO2 

emissions, while high labor productivity leads to high CO2 emissions. This is mainly due to the fact 
that improvement in labor productivity in China principally depends on the replacement of manual 
labor by machinery and equipment, which leads to more energy consumption and eventually more 
CO2 emissions. Industry scale is also an important cause of the carbon emissions. Expansion of 
industry scale leads to the increase of CO2 emissions, which was verified by the empirical results 
during the period 1991-2015. In addition, during the observed period in this paper, energy structure 
had negative effects on CO2 emissions, but the effects were relatively small. We also show that 
upgrading energy structure and improving energy efficiency will significantly reduce CO2 emissions. 
Overall, the upgrading of energy structure during 1991-2015 was effective, although the effect was 
not very obvious. 

The government and academia have focused on economic development constrained by the 
environment for a long time. With global warming becoming more serious, reduction of CO2 
emissions will be a constraint for economic growth. By analyzing CO2 emissions of the heavy industry 
and the decoupling, weak decoupling was found in most years except 1998, which indicated that the 
efforts to reduce CO2 emissions in the heavy industry achieved a certain but not significant effect. To 
reduce CO2 emissions while guaranteeing the development of the heavy industry, the following 
suggestions can be considered. 

Firstly, the development pattern of the heavy industry should be transformed, and the operation 
efficiency and management level of enterprises should be improved. Based on the above research 
results, the increase in labor productivity is the main cause of the growth in CO2 emissions. That is, 
the increase in labor productivity depends principally on the expansion of industry scale and the 
replacement of manual labor by machinery and equipment. In terms of sustainable development, the 
improvement of labor productivity should be achieved by upgrading industrial structure and also 
making improvements in the management level. In this way, the effect of labor productivity growth 
on CO2 emissions will change from positive to negative, reducing CO2 emissions while guaranteeing 
the development of the heavy industry. The positive effect of labor productivity on CO2 emissions 
diminished during 2006-2010, which was smaller than that of the two previous time periods. 
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Secondly, the energy market reform should be accelerated and energy prices should be raised. 
Price is the core element of the market; reasonable energy prices play an important role in energy 
efficiency improvement and the sustainable development of the heavy industry. It also plays an 
important role in the regulation of energy consumption in most industries, especially the heavy 
industry. At present, energy prices are still controlled by the government. The government has to 
keep energy prices low for the sake of economic development. Once energy prices are allowed to get 
out of control, the increase in cost resulting from a rise in energy prices will provide a powerful 
incentive for the heavy industry to improve energy efficiency and lower energy intensity. 

Last but not the least, the industrial structure should be optimized and upgraded. Carbon 
emission per unit of output of the heavy industry is much higher than that of the service and tertiary 
industry because heavy industry is particularly energy intensive.  Therefore, in order to guarantee 
economic growth under the restraint of carbon emissions reduction, it is necessary for China to 
accelerate the upgrading of industrial structure, vigorously develop hi-tech industries, and also 
transfer low-end industries to foreign countries. Furthermore, moving up the value chain is a 
prerequisite for boosting national competitiveness. 
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Appendix A： 

The classification standard of heavy and light industry 

No. 
SIC 

code 
Heavy industry No.

SIC 
code 

Light industry 

1 6 Mining and washing of coal 27 13 Agricultural food 
processing 

2 7 
Extraction of petroleum and 
natural gas 28 14 Manufacture of food  

3 8 Mining and processing of 
ferrous metal ores 

29 15 Manufacture of drink 

4 9 Mining and processing of 
non-ferrous metal ores 

30 16 Manufacture of tobacco 

5 10 
Mining and processing of 
nonmetal ores 31 17 Textile industry 

6 20 

Processing of timber, 
manufacture of wood, 
bamboo, rattan, palm and 
straw products 

32 18 Manufacture of textile 
and garment, shoes, hats 

7 25 
Processing of petroleum, 
coking, processing of nuclear 
fuel 

33 19 Manufacture of leather, 
fur, feather 

8 26 
Manufacture of raw chemical 
materials and chemical 
products 

34 21 Manufacture of furniture 

9 27 Manufacture of medicines 35 22 Paper and paper products 

10 29 Manufacture of rubber 36 23 Copy of printing and 
recording medium 
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11 30 Manufacture of plastics 37 24 
Manufacture of cultural 
and educational sporting 
goods 

12 31 
Manufacture of non-metallic 
mineral products 38 28 

Manufacture of chemical 
fiber 

13 32 
Smelting and pressing of 
ferrous metals 39 42 

Manufacture of arts and 
crafts, and other 

14 33 Smelting and pressing of non-
ferrous metals 

   

15 34 Manufacture of metal 
products    

16 35 
Manufacture of general 
purpose machinery    

17 36 Manufacture of special 
purpose machinery 

   

18 37 Manufacture of transport 
equipment 

   

19 39 
Manufacture of electrical 
machinery and equipment    

20 40 

Manufacture of 
communication equipment, 
computers and other 
electronic 
Equipment 

   

21 41 

Manufacture of measuring 
instruments and machinery 
for cultural activity 
and Office work 

   

22 44 Production and supply of 
electric power and heat power 

   

23 45 Production and supply of gas    

24 46 
Production and supply of 
water    

25 11 Mining of other ores    

26 43 Recycling and disposal of 
waste 
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