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Abstract: Smartphones, smartwatches, fitness trackers, and ad-hoc wearable devices are being
increasingly used to monitor human activities. Data acquired by the hosted sensors are usually
processed by machine-learning-based algorithms to classify human activities. The success of
those algorithms mostly depends on the availability of training (labeled) data that, if made
publicly available, would allow researchers to make objective comparisons between techniques.
Nowadays, publicly available data sets are few, often contain samples from subjects with too similar
characteristics, and very often lack of specific information so that is not possible to select subsets of
samples according to specific criteria. In this article, we present a new dataset of acceleration samples
acquired with an Android smartphone designed for human activity recognition and fall detection.
The dataset includes 11,771 samples of both human activities and falls performed by 30 subjects of
ages ranging from 18 to 60 years. Samples are divided in 17 fine grained classes grouped in two
coarse grained classes: one containing samples of 9 types of activities of daily living (ADL) and the
other containing samples of 8 types of falls. The dataset has been stored to include all the information
useful to select samples according to different criteria, such as the type of ADL performed, the age,
the gender, and so on. Finally, the dataset has been benchmarked with four different classifiers and
with two different feature vectors. We evaluated four different classification tasks: fall vs no fall, 9
activities, 8 falls, 17 activities and falls. For each classification task we performed a subject-dependent
(5-fold cross validation) and a subject-independent (leave-subject-out) evaluation. The major findings
of the evaluation are the following: i) it is more difficult to distinguish between types of falls than
types of activities; ii) subject-dependent evaluation outperforms the subject-independent one. The
database will allow researchers to work to more robust features and classification schemes that permit
to deal with different types of falls and with effect of data personalization.

Keywords: Smartphone accelerometers, Dataset, Activity of Daily Living recognition, Human
Activity recognition, Fall detection

1. Introduction

Nowadays, many people lead a sedentary life due to the facilities that the increasingly pervasive
technologies offer. Unfortunately, it is recognized that insufficient physical activity is one of the 10
leading risk factors for global mortality: people with poor physical activity is subjected to a risk of
all-cause mortality that is 20% to 30% higher then people performing at least 150 minutes of moderate
intensity physical activity per week [1]. Another important global phenomenon actually affecting our
society is population aging: the decline or even decrease of the natural population growth rates due to a
rise in life expectancy [2] and to a long-term downtrend in fertility (expecially in Europe [3]). Falls are
a major health risk that impacts the quality of life of elderly people. Indeed, among elderly people,
accidental falls occur frequently: the 30% of the over 65 population falls at least once per year; the
proportion increases rapidly with age [4]. Moreover, fallers who are not able to get up more likely
require hospitalization or, even worse, die [5].
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Thus, research on techniques able to recognize activities of daily living (ADLs), also known as
human activities (HA), and to detect falls is very active in recent years: the recognition of ADLs may
allow to infer the amount of physical activity that a subject perform daily, while a prompt detection of
falls may help in reducing the consequence (even fatal) that a fall may cause mostly in elderly people.

ADLs recognition and fall detection techniques usually accomplish their task by analizing samples
from sensors, which can be physically deployed in the ambient (ambient sensors, e.g., cameras,
vibration sensors, and microphones) or worn by people (wearable sensors, e.g., accelerometers,
gyroscopes, and barometers) [6]. To train and evaluate their techniques, researchers usually build
their own dataset of samples and rarely make it publicly available [7–9]. This practice makes difficult
to compare in an objective way the several newly proposed techniques and implementations due
to a lack of a common source of data [9–11]. Only very recently, Janidarmian et al. combined 14
publicly available datasets focusing on acceleration patterns in order to conduct an analysis on feature
representations and classification techniques for human activity recognition [12]. Unfortunately, they
do not make the resulting dataset available for downloading.

The few publicly available datasets can been primary divided into three main sets: acquired
by ambient sensors, acquired by wearable devices, and a combination of the two. Recently, a lot
of attention has been paid to wearable sensors because they are less intrusive, work outdoors, and
often cheaper than the ambient ones. This is confirmed by the increasing number of techniques that
are based on wearable sensors (see for example the survey by Luque et al. related to fall detection
techniques relying on data from smartphones [13]).

Wearable sensors are divided in two main groups: ad-hoc wearable devices (e.g., SHIMMER
sensor nodes), and smartphones (e.g., Android). For what concerns fall detection, several studies
concluded that, in order to be used, fall detection devices must not stigmatize people nor disturb their
daily life [14–16]. Unfortunately, devices such as ad-hoc wearable devices and ambient sensors are not
well accepted by elderly people because mostly of their intrusiveness. On the contrary, smartphones
are good candidate devices for hosting fall detection systems: they are are widespread and daily used
by a very large number of person, included elderly people. This, on the one hand, reduces costs, and
on the other, eliminates the problem of having to learn how to use a new device. Moreover, studies
demonstrated that samples from smartphones sensors (e.g., accelerometer and gyroscope) are accurate
enough to be used in clinical domain, such as ADLs recognition [17]. This is also confirmed by the
amount of publications that rely on the use of smartphone as acquisition devices for fall detection
systems [13,18] and ADLs recognition.

For these reasons we concentrate our attention to smartphones as acquisition devices both for
ADL recognition and fall detection. Thus, we searched the publicly available datasets acquired
with smartphones in order to identify their strengths and weaknesses so as to outline an effective
method for carrying out a new acquisition campaign. We searched the most common repository (IEEE,
ACM, Google, and Google Scholar) by using in our query the terms ADL dataset and Fall dataset in
combination with the following words smartphone, acceleration, accelerometer, inertial, IMU, sensor, and
wearable. We selected the first 100 results for each query. Removing duplicate entries, we obtained less
then 200 different references. Then we manually examined the title, the abstract, and the introduction
to eliminate references unrelated to ADL recognition and fall detection, and references that were
based on ambient sensors such as camera, microphones, or RFID tags. We then read carefully the
remaining references and discarded those that do not make publicly available the dataset used in the
experimentation. Finally, we added the relevant references that we missed with our searches but were
cited in the papers we selected. At the end of the process, we individuated 13 datasets with data from
smartphones and 19 with data from wearable ad-hoc sensors. We then included only those datasets
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that have been recorded starting from 20121 mostly because the oldest dataset including samples from
smartphones is dated 2012. This choice makes the datasets homogeneous with respect to the sensors
technologies related to acquisition sensors which rapidly evolves year by year.

At the end of the process, we individuated 13 datasets with data from smartphones and 13 with
data from wearable ad-hoc sensors. In the following, we will detail some relevant characteristics of the
13 datasets from smartphones since our aim was to build a new dataset containing acceleration patters
from smartphone able to complement the existing ones. As it will presented in Section 2, the datasets
from ad-hoc wearable devices have be examined with the aim of identifying the most common ADLs
and falls.

Table 1 shows the publicly available datasets recorded by means of smartphones and their
characteristics. Table 1 also includes the dataset we realized in the last row, in order to ease the
comparison.

Table 1. The publicly available datasets containing samples from smartphones sensors

Dataset Year ADLs Falls Nr. of subjects
Gender Age Height Weight

Female Male (years) (cm) (Kg)

DMPSBFD [19] 2015 yes yes 5 - - - - -

Gravity [18] 2016 yes yes 2 - - 26 - 32 170 - 185 63 - 80
29 ± 4.2 178 ± 10.6 71.5 ± 12

MobiFall [11] 2014 yes yes 24 7 17 22 - 47 160 - 189 50 - 103
27 ± 5 175 ± 7 76.4 ± 14.5

MobiAct [20] 2016 yes yes 57 15 42 20 - 47 160 - 193 50 - 120
25 ± 4 175 ± 4 76.6 ± 14.4

RealWorld (HAR) [21] 2016 yes no 16 7 8 16 - 62 163 - 183 48 - 95
32 ± 12 173 ± 7 74.1 ± 13.3

Shoaib PA [22] 2013 yes no 4 0 4 25 - 30 - -
-

Shoaib SA [23] 2014 yes no 10 0 10 25 - 30 - -
-

tFall [24] 2013 yes yes 10 7 3 20 - 42 161 - 184 54 - 98
31 ± 9 173 ± 1 69.2 ± 13.1

UCI HAR [25] 2012 yes no 30 - - 19 - 48 - -
-

UCI HAPT [26] 2015 yes no 30 - - 19 - 48 - -
-

UCI UIWADS [27] 2013 yes no 22 - - - - -
-

UMA Fall [28] 2016 yes yes 17 6 11 14 - 55 155 - 195 50 - 93
27 ± 10 172 ± 9 69.9 ± 12.3

WISDM [29] 2012 yes no 29 - - - - -

UniMiB SHAR 2016 yes yes 30 24 6 18 - 60 160 - 190 50 - 82
27 ± 11 169 ± 7 64.4 ± 9.7

The total number of datasets decreases to 11 because MobiAct and UCI HAPT are updated
versions of MobiFall and UCI HAR respectively. Thus, in the following we will refer to 11 datasets
overall, discarding MobiFall and UCI HAR.

1 We considered the year in which the dataset has been made available. This year do not necessarily coincide with the year in
which the related article has been published.
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The 11 datasets have been recorded in the period 2012 to 2016 (column Year). Only 5 datasets out
of 11 contain both falls (column Falls) and ADLs (column ADLs).

The average number of subjects for dataset is 18 (column Nr. of subjects). The datasets that
specify the gender of the subjects (which are MobiAct, RealWorld (HAR), Shoaib PA, Shoaib SA, tFall,
and UMA Fall) contain in mean 6 women and 13 men (columns Gender - Female and Gender - Male
respectively).

DMPSBFD, UCI UIWADS, and WISDM do not specify the age of the subjects (column Age). In the
remaining 8 datasets, subjects are aged between 21 and 43 on average with a standard deviation of 4
and11respectively.

Finally, only Gravity, MobiAct, RealWorld (HAR), tFall, and UMA Fall datasets provide detailed
information about the height and the weight of the subjects (columns Height and Weight respectively).

The detailed information reported in Table 1 have been collected from the web site hosting the
dataset, the readme files of each dataset, and the related papers. It is remarkable to notice that in many
cases such information get lost in the downloaded dataset. Grey cells in Table 1 indicate that samples
are stored so that they can be filtered according to the information contained in the cell. For instance,
in all the datasets, with the exception of tFall, it is possible to select subsets of samples according to
the specific ADL (column ADLs). For example, it is possible to select all the samples that have been
labeled walking. tFall is an exception because the samples are simply labeled as generic ADL, thus not
specifying which specific kind of ADL are.

For what concerns falls (column Falls), all the datasets have organized samples maintaining the
information related to the specific type of fall they are related to (e.g., forward).

As specified in column Nr. of subjects, the samples are linked to the subjects that performed the
related activities and, where provided, falls. This means that in all the datasets (with the exception of
Shoaib PA) it is possible to select samples related to a specific subject. However, this information is
unhelpful if there is no information on the physical characteristics of the subject. Looking at the double
column Gender, only MobiAct, RealWorld (HAR), Shoaib PA, Shoaib SA, and UMA Fall maintain
information related to the gender of the subject. Finally, it is surprising that only Gravity, MobiAct,
RealWorld (HAR), and UMA Fall allow to select samples according to age, height, and/or weight of
the subjects (columns Age, Height, and Weight).

In view of this analysis, only MobiAct, RealWorld (HAR), and UMA Fall allow to select samples
according to several dimensions, such as the age, the sex, the weight of the subjects, or the type of
ADL. MobiAct and UMA Fall allow to select samples also according to the type of fall. Unfortunately,
the other datasets are not suitable in some experimental evaluations. For example, the evaluation
of the effects of personalization in classification techniques [30] taking into account the physical
characteristics of the subjects, that is, operating leave-one-subject-out cross-validation [31].

To further contribute to the worldwide collection of accelerometer patterns, in this paper we
present a new dataset of smartphone accelerometer samples, named UniMiB SHAR (University of
Milano Bicocca Smartphone-based Human Activity Recognition). The dataset was created with the
aim of providing the scientific community with a new dataset of acceleration patterns captured by
smartphones to be used as a common benchmark for the objective evaluation of both ADLs recognition
and fall detection techniques.

The dataset has been designed keeping in mind on one side the limitations of the actual publicly
available datasets, and on the other the characteristics of MobiAct, RealWorld (HAR), and UMA Fall,
so to create a new dataset that juxtaposes and complements MobiAct, RealWorld (HAR), and UMA
Fall with respect to the data that is missing. Thus, such a dataset would have to contain a large number
of subjects (more than the 18 in average), with a large number of women (to compensate MobiAct,
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RealWorld (HAR), and UMA Fall), with subjects over the age of 55 (to extend the range of UMA Fall2),
with different physical characteristics (to maintain heterogeneity), performing a wide number of both
ADLs and falls (to be suitable in several contexts). Moreover, the dataset would have to contain all the
information required to select subjects or ADLs and falls according to different criteria, such as for
example, all the female whose height is in the range 160-168 cm, all the men whose weight is in the
range 80-110 Kg, all the walking activities of the subjects whose age is in the range 45-60 years.

To fulfil those requirements, we built a dataset including 9 different types of ADLs and 8 different
types of falls. The dataset contains a total of 11,771 samples describing both activities of daily living
(7,579) and falls (4,192) performed by 30 subjects, mostly females (24), of ages ranging from 18 to 60
years.. Each sample is a vector of 151 accelerometer values for each axis. Each accelerometer entry in
the dataset maintains the information about the subject that generated it. Moreover, each accelerometer
entry has been labeled by specifying the type of ADL (e.g., walking, sitting, or standing) or the type of
fall (e.g., forward, syncope, or backward).

We benchmarked the dataset by performing several experiments. We evaluated four classifiers:
k-Nearest Neighbour (k-NN), Support Vector Machines (SVM), Artificial Neural Networks (ANN), and
Random Forest (RF). Raw data and magnitudo have been considered as feature vectors. Finally, for each
classification we performed a subject-dependent (5-fold cross validation) and a subject-independent
(leave-subject-out) evaluation. Results show how much the proposed dataset is challenging with
respect to a set of classification tasks.

The article is organized as follows. Section 2 describes the method used to build the datasets.
Section 3 presents the dataset evaluation and Section 4 discusses the results of the evaluation. Finally,
Section 5 provides final remarks.

2. Dataset Description

This section describes the method used to acquire and pre-process samples in order to produce
the UniMiB SHAR dataset.

2.1. Data acquisition

The smartphone used in the experiments was a Samsung Galaxy Nexus I9250 with the Android
OS version 5.1.1 and equipped with a Bosh BMA220 acceleration sensor. This sensor is a triaxial
low-g acceleration sensor. It allows measurements of acceleration in three perpendicular axes, and
allows acceleration ranges from ±2g to ±16g and sampling rates from 1KHz to 32Hz. The Android
OS both limits to ±2g with a resolution of 0.004g the acceleration range, and takes samples at a
maximum frequency of 50Hz. However, the Android OS does not guarantee any consistency between
the requested and the effective sampling rate. Indeed, the acquisition rate usually fluctuates during
the acquisition. For the experiments presented in this paper, we resampled the signal in order to have
a constant sampling rate of 50 Hz, which is commonly used in literature for activity recognition from
data acquired through smartphones [23–25]. The accelerometer signal is for each time instant made of
a triplet of numbers (x, y, z) that represents the accelerations along each of the 3 Cartesian axes.

We used also the smartphone built-in microphone to record audio signals with a sample frequency
of 8,000 Hz, which are used during the data annotation process.

The subjects were asked to place the smartphone in their front trouser pockets: half of the time in
the left one and the remaining time in the right one.

Acceleration triples and corresponding audio signals have been recorded using a mobile
application specially designed and implemented by the authors, which stores data into two separated
files inside the memory of the smartphone.

2 We do not consider RealWorld (HAR) since it contains ADLs only. Indeed, it is most difficult to recruit elderly subjects
performing falls.
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2.2. ADLs and Falls

In order to select both the ADLs and the falls, we analyzed the datasets in Table 1 and the
most recent publicly available datasets recorded with wearable ad-hoc devices. As discussed in
Section 1, we considered the datasets acquired from 2012 to be compliant with the year of the older
smartphone-based dataset. This set includes, sorted by year of creation from the oldest the most
recent, the following datasets: DLR v2 [32], Ugulino [33], USC HAD [34], DaLiAc [10], EvAAL [35],
MHEALTH [36], UCI ARSA [27], BaSA [37], UR Fall Detection [38], MMsys [9], SisFall [39], UMA
Fall3 [18], and REALDISP [40].

For what concerns ADLs, Figure 1 shows the most common ones in the overall 24 datasets we
analyzed (11 with samples from smartphones and sketched in Table 1 and 13 with samples from
wearable ad-hoc devices listed above). The y axis represents the number of datasets that include
the specified ADL. ADLs are grouped by category. The following categories have been identified by
analizyng the datasets: Context-related, which includes activities that someway deal with the context
(e.g., Stepping in a car), Motion-related, which includes activities that imply some kind of physical
movement (e.g., Walking), Posture-related, which includes activities in which the person maintains the
position for a certain amount of time (e.g., Standing), Sport-related, which includes any kind of activity
that requires a physical effort (e.g., Jumping), and Others, which includes activities that are presented in
one dataset only (e.g., Vacuuming in category Housekeeping-related). The Jogging and Running activities
deserve a clarification. In all the datasets we analyzed, they are mutually exclusive, that is, datasets
that contain Running, do not contain Jogging and vice versa. The datasets REALDISP and MHEALT
are an exception because they include both the activities. These datasets, besides being realized by
the same institution, are primarily oriented towards the recognition of physical activities (warm up,
cool down and fitness exercises). Moreover, none of the datasets analyzed exactly specify what the
Jogging and Running activities are related to. Thus, even though they may be considered very similar
activities, we have decided to keep them separated in oder to do not loose their specificity. We classify
Jogging as a sport-related activity (in the sense, for instance, of jogging in the park), and Running as a
motion-related activity (in the sense, for instance, of running for the bus). For each category, the x axis
shows all the ADLs we found and that are present in at least 2 datasets. Under the label Others fall all
the ADLs for the corresponding category that have been included in one dataset only (e.g., Walking
left-circle in category Motion-related).

Tables 2 shows the 9 ADLs we have selected among the most popular included in the analyzed
publicly available datasets. UniMiB SHAR includes the top 5 most popular Motion-related activities
(i.e., Walking, Going upstairs, Going downstairs, Sitting down, and Running). Moreover, we detailed the
generic Standing up, by including the Standing up from sitting and Standing up from laying activities.
Finally, we included also the Lying down from standing.

In the Sport-related category, we did not included Jogging even if it is the most popular activity in
its category because we included the Running activity in the Motion-related category. In Sport-related
category, we chose the Jumping activity being the second most popular one.

Our dataset does not include Postural-related activities. Indeed, we were interested in acquiring
acceleration data from activities related to movements both because from them it is possible to estimate
the overall physical activity performed by a person, and because people are more likely to fall during
movements [41].

We do not include ADLs belonging to categories such as Housekeeping-, Cooking-, or Personal
care-related (those fall in the Others category in Table 1, because we are interested in low order activities
of daily living, which include simple activities such as, Standing, Sitting down, Walking, rather than
high order activities of daily living, which include complex activities such as, Washing dishes, Combing
hair, Preparing a sandwich. The same holds for contex-realted activities that are intended as high order

3 UMA Fall contains samples from both smartphones and ad-hoc wearable devices.
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Figure 1. ADLs and theirs occurrence in the publicly available datasets analysed grouped by category

activities. This choice was also motivated by the fact that these activities are scarcely present in the
analyzed datasets (in particular, each activity belonging in the above mentioned categories is present
in only one of the 24 analyzed datasets).

Finally, among the ADLs related to movements, we selected the ADLs most used in literature as
demonstrated by the analysis we performed, which is also confirmed by Pannurat et al. in [42].

Table 2. ADLs performed by the subjects In the UniMiB SHAR dataset

Category Name Description Label

Motion-related Standing up from laying From laying on the bed to standing StandingUpFL
Lying down from standing From standing to lying on a bed LyingDownFS
Standing up from sitting From standing to sitting on a chair StandingUpFS
Running Moderate running Running
Sitting down From standing to sitting on a chair SittingDown
Going downstairs Climb the stairs moderately GoingDownS
Going upstairs Down the stairs moderately GoingUpS
Walking Normal walking Walking

Sport-related Jumping Continuos jumping Jumping

For what concerns falls, we analized DMPSBFD, Gravity, MobiAct, tFall, and UMAFall datasets
from smartphones (see Table 1), and DLR v2, EvAAL, MMsys, SISFall, UMA Fall, and UR Fall Detection
datasets from wearable ad-hoc devices, since they are the only datasets that contain falls. From this set,
we excluded DLR v2, EvAAL because they do not specify the type of fall.

Figure 2 shows the most common falls in the resulting 9 datasets we analyzed. The y axis
represents the number of datasets that include the specified fall. Likewise ADLs, falls are grouped by
category. Falling backward, Falling forward, and Falling sideward include back-, front-, and side-ward falls
respectively. Sliding category can be further specialized so that to include Sliding from a chair, Sliding
form a bed, and Generic sliding that not specifies details about the type of sliding. Finally, the category
Specific fall includes different type of falls that have not been further specialized.
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For each category, the x axis shows all the types of falls we found. Under the label Others fall all
the falls for the corresponding category that have been included in one dataset only. The Specific fall
category is an exception since it includes falls types not particularly present in the analyzed datasets.
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Figure 2. Falls and theirs occurrence in the publicly available datasets analysed grouped by category

Table 3. Falls performed by the subjects in teh UniMiB SHAR dataset

Category Name Description Label

Falling backward Falling backward-sitting-chair Fall backward while trying to sit on a chair FallingBackSC
Generic falling backward Generic fall backward from standing FallingBack

Falling forward Falling with protection strategies Falls using compensation strategies to prevent the impact FallingWithPS
Generic falling forward Fall forward from standing, use of hands to dampen fall FallingForw

Falling sideward Falling rightward Fall right from standing FallingLeft
Falling leftward Fall right from standing FallingRight

Specific fall Hitting an obstacle in the fall Falls with contact to an obstacle before hitting the ground HittingObstacle
Syncope Getting unconscious Syncope

Choosing which falls to include in the dataset was driven by the following considerations: the
number of falls should have been comparable to that of the other datasets, and the dataset should have
included a set of representative types of falls. Thus, having four categories (not considering Sliding,
which includes only one type of fall that has been considered by two datasets only), we selected two
falls from each of them. In each category, we selected the first two most popular falls. The category
Falling sideward is an exception since we preferred to choose the two most specific falls instead of
including the too generic Generic falling sideward. Table 3 shows the 8 falls that we selected according
the adopted criterion.

Finally, studies on this topic confirm the falls we selected are common in real-life [24,43–45].

2.3. Subjects

30 healthy subjects have been involved in the experiments: 24 were women and 6 men. The
subjects, whose data are shown in Table 4, are aged between 18 and 60 years (27 ±12 years), have a
body mass between 50 and 82 kg (64.4 ± 9.7 kg), and a height between 160 and 190 cm (169 ± 7 cm).
Note that we included more women and older ages to compensate for the lacks of MobiAct.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 July 2017                   doi:10.20944/preprints201706.0033.v2

http://dx.doi.org/10.20944/preprints201706.0033.v2


9 of 18

Table 4. The characteristics of the subjects

Total Female Male

subjects 30 24 6

age
18 - 60 18 - 55 20 - 60 min - max

27 ± 11 24 ± 9 36 ± 15 mean ± std

height
160 -190 160 - 172 170 - 190 min - max

169 ± 7 166 ± 4 179 ± 6 mean ± std

weight
50 - 82 50 - 78 55 - 82 min - max

64.4 ± 9.7 61.9 ± 7.8 74.7 ± 9.7 mean ± std

All the subjects performed both ADLs and Falls. The subjects gave written informed consent and
the study was conducted in accordance with the WMA Declaration of Helsinki [46].

2.4. Protocols

To simplify the data annotation process, we asked each subject to clap her hands early before and
after she performed the activity/fall to be recorded. Moreover, to reduce background noise, we asked
each subject to wear gym trousers with front pockets.

Concerning ADLs, in order to avoid mistakes by the subjects due to too long sequences of
activities, registrations have been subdivided in the three protocols showed in Table 5. Each protocol
has been performed by each subject twice, the first one with the smartphone in the right pocket and
the second in the left. Those smartphone positions were chosen because both they are the most natural
ones and they are exactly the positions used in the analyzed references dealing with smartphones.

Protocol 1 includes Walking and Running activities. We opted for moderate walking and running so
as to include even older people. Protocol 2 includes activities related to both climbing and descending
stairs, and jumps. In our registration, we selected straight stairs ramps, and asked each volunteer to
perform jumps with a moderate elevation, with little effort, and spaced each other about 2 seconds.
Protocol 3 includes ascending and descending activities. The Sitting down and Standing up from sitting
activities have been performed with a chair without armrests; the Lying down from standing and Standing
up from laying have been performed on a sofa. The duration of the actives are in average with those
reported in [47] that reviews a set of public datasets for wearable fall detection systems.

Falls have been recorded individually, always following the pattern of making a start and end
clap (see Table 6). In cases where the volunteer ended in a prone position, the clap has been performed
by an external subject to avoid as far as possible any movements that might lead to recording events
outside the study. To carry out the simulation safely, a mattress of about 15 centimeters in height was
used. Each fall was repeated six times, the first three with the smartphone in the right pocket, the
others in the left. Finally, falls have been simulated, started from a standing straight up position, and
self-started.

2.5. Segmentation and preprocessing

The audio files helped in the identification of the start and stop time instants for each recorded
activity. From the labelled recorded accelerometer data, we extracted a signal window of 3 sec each
time a peak was found, that is, when the following conditions were verified:

1. the magnitude of the signal mt at time t was higher than 1.5g, with g being the gravitational
acceleration;

2. the magnitude mt−1 at the previous time instant t− 1 was lower than 0.

Each signal window of 3 sec was centered around each peak and it is likely that several overlap
between subsequent windows may happen. We adopted this segmentation technique instead of
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Table 5. The protocols for ADLs aquisition

Protocol Action Iteration

Protocol 1

Start the registration

1 time

Put the smartphone in the pocket
clap
Walking for 30 seconds
clap
Running for 30 seconds
clap
Pull the smartphone from the pocket
Stop the registration

Protocol 2

Start the registration

1 time

Put the smartphone in the pocket
clap
Climb 15 steps
clap
Go down 15 steps
clap
Wait 2 seconds
clap
Jump 5 times
clap
Pull the smartphone from the pocket
Stop the registration

Protocol 3

Start the registration
1 timePut the smartphone in the pocket

clap

5 times

Sitting down
clap
Standing up from sitting
clap
Wait 2 seconds

clap

5 times

Lying down from standing
clap
Standing up from laying
clap
Wait 2 seconds

Pull the smartphone from the pocket
1 timeStop the registration

Table 6. Protocol for each fall

Action Iteration

Start the registration

6 times

Put the smartphone in the pocket
clap
fall
clap
Pull the smartphone from the pocket
Stop the registration
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Figure 3. Samples of acceleration shapes

selecting overlapped sliding windows because our dataset is mostly focused on motion-related
recognition of ADLs and falls. The choice of taking 3 sec window has been motivated by: i) the
cadence of an average person walking is within [90, 130] steps/min [48,49]; ii) at least a full walking
cycle (two steps) is preferred on each window sample.

Figure 3 shows samples of acceleration shapes. For each activity, we displayed the average
magnitude shape obtained by averaging all the subjects’ shapes.

Since the device used for data acquisition records accelerometer data with a sample frequency
of 50 Hz, for each activity, the accelerometer data vector is made of 3 vectors of 151 values (a vector
of size 1x453), one for each acceleration direction. The dataset is thus composed of 11,771 samples
describing both ADLs (7,759) and falls (4,192) not equally distributed across activity types. This is
because the activity of running and walking were performed by subjects for a time longer than the
time spent for other activities. Originally, 6,000 time windows of the running activity were found. In
order to make the final dataset as much as balanced, we have deleted about 4,000 samples related to
running activities. The resulting samples distribution is plotted in Figure 4, where the samples related
to running activities are about 2,000. On our web site we release both datasets, the one balanced and
the original one.

We preprocessed the acceleration signal s(t) in order to remove the gravitational component
g(t). Since the gravitational force is assumed to have only low frequency components, we applied a
Butterworth (BW) low-pass filter with a cut off frequency of 0.3 Hz [48]: g(t) = BW(s(t), 0.3). The
accelerometer data without gravitational component is then obtained as: ˜s(t) = s(t)− g(t).

3. Dataset Evaluation

We organized the accelerometer samples in order to evaluate four classification tasks:

1. AF-17 contains 17 classes obtained by grouping all the 9 classes of ADLs and 8 classes of FALLs.
This subset permits to evaluate the capability of the classifier to distinguish among different
types of ADLs and FALLs;
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Figure 4. Activity samples distribution

2. AF-2 contains 2 classes obtained by considering all the ADLs as one class and all the FALLs as
one class. This subset permits to evaluate, whatever is the type of ADL or FALL, the classifier
robustness in distinguishing between ADLs and FALLs;

3. A-9 contains 9 classes obtained by considering all the 9 classes of ADLs. This subset permits to
evaluate how much the classifier is capable to distinguish among different types of ADLs;

4. F-8 contains 8 classes obtained by considering all the 8 classes of FALLs. This subset permits to
evaluate how much the classifier is capable to distinguish among different types of FALLs.

We initially evaluated the classifiers by performing a traditional 5-fold cross-validation. It means
that all the data have been randomly split in 5 folds. Each fold has been considered as test data and the
remaining ones as training data. Results are computed by averaging the result obtained on each test
fold. The folds have been obtained by applying the stratified random sampling that ensures samples
of the same subject in both the test and the training folds.

To make the dataset evaluation independent from the effect of personalization, we conducted
another evaluation by performing a leave-subject-out cross-validation. Each test fold is made of
accelerometer samples of one user only, namely the test user, while the training folds contain
accelerometer samples of all the other users except the samples of the test user.

Previous studies demonstrated that classifiers trained on raw data perform better with respect to
classifiers trained on other types of feature vector representations, such as magnitude of the signal,
frequency, or energy [43,50]. However, in order to make the experiments comparable with others
experiments presented in the state of the art, we considered two feature vectors:

1. raw data: the 453-dimensional patterns obtained by concatenating the 151 acceleration values
recorded along each Cartesian direction;

2. magnitude of the accelerometer signal, that is a feature vector of 151 values.

We experimented four different classifiers:

1. k-Nearest Neighbour (k-NN) with k = 1;
2. Support Vector Machines (SVM) with a radial basis kernel;
3. Artificial Neural Networks (ANN). We set up a three-layers feed forward network with back

propagation. The network architecture includes an input layer, a layer of hidden neurons and an
output layer that includes a softmax function for class prediction. The number of hidden neurons
n has been set in way that n =

√
m× k, where m is the number of neurons in the input layer and

k is the number of neurons in the output layer, namely the number of classes [51].
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4. Random Forest (RF): bootstrap-aggregated decision trees with 300 bagged classification trees.

All the classifiers have been implemented exploiting the MATLAB Statistics and Machine Learning
Toolbox and the Neural Network Toolbox.

3.1. Evaluation metrics

As shown in Figure 4, each of the 17 sets containing samples related to a specific activity is
different in size. To cope with the class imbalance problem of the dataset we used as metric the macro
average accuracy [52].

Given E the set of all the activities types, a ∈ E, NPa the number of times a occurs in the dataset,
and TPa the number of times the activity a is recognized, MAA (Macro Average Accuracy) is defined by
Equation 1.

MAA =
1
|E|

|E|

∑
a=1

Acca =
1
|E|

|E|

∑
a=1

TPa

NPa
. (1)

MAA is the arithmetic average of the accuracy Acca of each activity. It allows each partial accuracy
to contribute equally to the evaluation.

4. Results and Discussion

In the following, we discuss separately the results achieved with the traditional 5-fold
cross-validation and the leave-subject-out cross-validation.

4.1. Subject-dependent evaluation (5-fold evaluation)

The k-fold evaluation is the most employed evaluation scheme in literature [53]. This evaluation
considers a training set and a test set made of activity samples performed by all the human subjects.
The resulting classifier is subject-dependent and usually exhibits a very high performance. Results of
the k-fold evaluation (here we used k=5) scheme are showed in Table 7 for raw data and magnitude.
Overall, the performances achieved using raw data are better than the ones obtained using magnitude
as feature vector. This confirm a result already achieved in previous works [43,50].

The AF-17 recognition task is quite challenging with a MAA of about 83% in the case of raw
data with KNN, and a MAA of about 66% in the case of magnitude with RF. This means that is quite
difficult to distinguish among types of activities especially in the case when magnitude is adopted as
feature vector. Figure 5 shows the confusion matrix of the k-NN experiment in the case of raw data.

The A-9 classification task is quite easy, the MAA obtained by raw data with RF is about 88% while
the MAA obtained by magnitude with SVM is about 79%. This means that is quite easy to distinguish
between types of activities. Looking at the confusion matrix in Figure 5, the most misclassified pairs of
activities are Standing up from laying and Standing up from sitting, Lying down from standing and Sitting
down, Going upstairs and Walking, Going downstairs and Walking, Jumping and Going downstairs.

The F-8 recognition task is quite challenging: the MAA is about 78% and 57% in the case of raw
data with KNN and magnitude with RF respectively. This result suggests that distinguish among falls
is very complicated The most misclassified pairs of falls are Falling with protection strategies and Generic
falling forward, Syncope and Falling leftward, Generic falling backward and Falling backward-sitting-chair,
Falling rightward and Falling with protection strategies, Falling rightward and Syncope.

In contrast, the AF-2 recognition task is very easy for all the classifiers and for both raw data
and magnitude with a MAA of about 99% achieved with raw data and SVM. These results are similar
to those obtained by previous researchers on a similar classification task performed on different
datasets [24,50]. This means that it is very easy to distinguish between falls and no falls.

To summarize, the F-8 and AF-17 are quite challenging classification tasks. The use of this dataset
for those tasks will permit researchers:
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Table 7. 5-fold evaluation. Mean Average Accuracy for each classification task using raw data and
magnitude as feature vectors. In bold the best results for each classification task and feature vector
employed.

5-fold
raw data magnitude

data KNN SVM ANN RF KNN SVM ANN RF
AF-17 82.86 78.75 56.06 81.48 65.30 65.71 41.95 65.96
AF-2 97.78 98.71 98.57 98.09 95.56 97.42 96.71 95.74
A-9 87.77 81.62 72.13 88.41 77.37 78.94 62.81 75.14
F-8 78.55 75.63 55.07 78.27 53.31 56.34 37.66 57.26

Table 8. Leave-subject-out. Mean Average Accuracy for each classification task using raw data and
magnitude of the signal as feature vectors. In bold the best results for each classification task and
feature vector employed.

leave-subject-out
raw data magnitude

data KNN SVM ANN RF KNN SVM ANN RF
AF-17 52.14 55.15 48.00 56.53 52.14 55.09 48.00 56.58
AF-2 92.90 97.57 95.41 97.02 92.90 97.57 96.07 97.05
A-9 63.79 63.32 63.63 73.17 63.79 63.36 63.63 72.67
F-8 43.66 48.84 38.50 45.88 43.66 49.35 38.50 45.26

• to design and evaluate more robust feature representations as well as more robust classification
schemes for human activity recognition.

• to study more robust features to deal with accelerometer samples of different types of falls.

4.2. Subject-independent evaluation (leave-subject-out evaluation)

Table 8 shows the results obtained by performing the leave-subject-out evaluation. In this case the
training set is made of activity samples of subjects not included in the test set. This evaluation is also
known as subject independent evaluation and shows the feasibility of a real smartphone application
for human activity recognition [54–56] where data of a given subject are usually not included in the
training set of the classifier.

From the results it is almost evident the drop of performances with respect to the case of 5-fold
evaluation. Human subject performs activities in a different way and this influences the recognition
accuracy especially when it is necessary to distinguish between fine grained types of activities, that is
in the case of AF-17, A-9 and F8 recognition tasks. In particular, in the case of AF-17 the best MAA is
56.58% using RF and magnitude. In the case of A-9 the best MAA is 73.17% using RF and raw data.
In the case of F-8 the best MAA is 49.35% using SVM and magnitude. In contrast, distinguishing
between coarse grained activities, such as falls vs no falls, is quite easy with a MAA of 97.57% with
SVM for both raw data and magnitude. Overall the magnitude feature vector performs slightly better
than the case of raw data. This suggests that using the magnitude as feature vector in the case of
subject-independent evaluations could be more reliable than raw data.

The low performance achieved in the case of subject-independent evaluation permits researcher
to investigate the following issues:

• the study of a more robust feature vector that is able to reduce as much as possible the
performance gap between the subject-dependent and subject-independent evaluation;
• the study of on-line learning classification schemes that permit, with the use of a few

subject-dependent data, to improve as much as possible the performance.
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Figure 5. Confusion matrix of the AF-17 classification achieved with k-NN

5. Conclusion

Almost all publicly available datasets from smartphones do not allow the selection of samples
based on specific criteria related to the physical characteristics of subjects and the activities (and/or
falls) they performed. Of the 11 datasets containing smartphone measurements, only MobiAct,
RealWorld (HAR), and UMA Fall are the exception. These three datasets include more men than
women. Considering only datasets that include falls (MobiAct and UMA Fall), the maximum age of
the subjects is 47 years. Our goal was therefore to create a new dastaset that would be complementary
to the more complete ones and that also include falls. The result is UniMiB SHAR dataset that includes
9 ADLs and 8 falls performed by 30 humans, mostly female, with a huge range of ages, from 18 to 60
years.

The classification results obtained on the proposed dataset showed that the raw data performs
quite better than magnitude as feature vector in the case of subject-dependent evaluation, and, on
the opposite, the magnitude performs quite better than raw data in the case of subject-independent
evaluation. The classification of different types of activities is simpler than the classification of different
types of falls. It is very easy to distinguish between falls and no falls for both raw data and magnitude.
The subject-independent evaluation showed that recognition performance strongly depends on the
subject data.

UniMiB SHAR dataset will permit researchers to study several issues, such as: i) robust features
to deal with falls; ii) robust features and classification schemes to deal with personalization issues.

We are planning to carry out an evaluation of the state-of-the-art techniques for ADLs recognition
on both UniMiB SHAR and all the publicly available datasets of accelerometer data from smartphone
to have and objective comparison. Moreover, we have planned to make experimentation on
personalization by using those datasets that include information about the characteristics of the
subjects. We want to investigate whether the training set containing samples acquired by subjects
with similar characteristics to the testing subject may result in a more effective classifier. Finally, we
are planning to check if and how data from smartwatches and smartphones can jointly improve the
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performances of the classifiers. To this end, we are improving the data acquisition application used for
UniMiB SHAR.

Supplementary Materials: The dataset, the Matlab scripts to repeat the experiments, the app used to acquire
samples, and additional materials (e.g., images with samples of acceleration shapes) are available at the following
address: http://www.sal.disco.unimib.it/technologies/unimib-shar/.
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