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Abstract: p-Hydroxyphenylpyruvate dioxygenase (HPPD) is not only the useful molecular target 
in treating life-threatening tyrosinemia type I, but also an important target for chemical herbicides. 
A combined in silico structure-based pharmacophore and molecular docking based virtual 
screening were performed to identify novel potential HPPD inhibitors. The complex based 
pharmacophore model (CBP) with 0.721 of ROC used for screening compound showed 
remarkable ability to retrieve known active ligands from decoy molecule. The ChemDiv database 
was screened using CBP-Hypo2 as a 3D query, and the best-fit hits subjected to molecular docking 
with two methods of LibDock and CDOCKER in Accelrys Discovery Studio 2.5(DS 2.5) to discern 
interactions with key residues at the active site of HPPD. 4 Compounds with top rank in HipHop 
model and well-known binding model were finally chosen as identification of lead compounds 
with potentially inhibitory effects on active site of target. The results provided powerful insight to 
the development of novel HPPD inhibitors herbicides using computational techniques. 

Keywords: HPPD inhibitors; pharmacophore model; molecule docking; HipHop model; virtual 
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1 Introduction 

Weeds compete with crops for sunshine, water, nutrients, and space, which influence the 
growth of crops and undermine both crop quality and yield. In agrochemical research, the discovery 
of novel high-activity and low-toxicity herbicide lead compounds is still remained as a challenge. 
4-Hydroxyphenylpyruvate dioxygenase belongs to the non-heme Fe(II)-dependent dioxygenase 
family [1,2]. As an important enzyme correlated to the pigment synthesis and tyrosine catabolism in 
most organisms, HPPD is important in drug discovery in both agricultural and therapeutic areas 
[3-5]. HPPD catalyzes the conversion of 4-hydroxyphenylpyruvate (HPPA) to homogentisate 
(HGA), and this transformation involving decarboxylation, aromatic hydroxylation, and substituent 
migration in a single catalytic cycle is unique in nature [6]. In plants, HGA can be further 
transformed into tocopherol and plastoquinone, both of them are crucial for the normal growth of 
plants [7]. Inhibition of HPPD will block photosynthesis, which leads to the deficiency in isoprenoid 
redox cofactors such as plastoquinone and tocopherol, and finally causes growth inhibition, 
necrosis and death of treated plants [8-11]. 

Herbicides, which inhibit HPPD, represent one of the newest classes of herbicides available for 
use in crop production [12]. HPPD-inhibiting herbicides show many advantages, such as low 
application rate, low toxicity, broad-spectrum weed control (including herbicide-resistant weed 
biotypes), excellent crop selectivity and benign environmental effects [13,14]. Several of them are 
currently used as selective broad leaf herbicides including triketones, pyrazoles, isoxazoles, 
diketone nitriles and benzophenones over the last two decades. [15,16]. The triketone herbicides 
have spurred a variety of commercialized HPPD inhibitors through chemical modification, such as 
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sulcotrione, mesotrione and benzobicylon [17-19]. But the main problem associated with the use of 
herbicides is the occurrence of herbicide resistant weeds. Therefore, it is necessary to develop 
efficient herbicides with novel structures against HPPD. 

The use of computational techniques in drug discovery and development has become the most 
effective methods. Among them, virtual screening is a conventional method used in drug discovery, 
which screen large collections of compounds to identify molecular structures that are most likely to 
bind into a particular biological target [20]. It has been reported that molecular docking, 
pharmacophore modeling, and structure-based virtual screening in drug discovery have been 
successful applied. Structure-based virtual screening has emerged as an efficient strategy in 
identifying potential a natural product-like STAT3 dimerization inhibitor from a database of natural 
product and natural product-like compounds, and molecular docking analysis suggested that 
compound 1 might putatively function as an inhibitor of STAT3 dimerization by binding to the SH2 
domain [21]. The novel TLR1–TLR2 inhibitors were obtained through molecular docking from a 
database of natural product and natural product-like compounds and the results of activity 
experiments show that compound 1 was the most effective in inhibiting TNF-a and IL-6 secretion 
induced by Pam3CSK4 in RAW 264.7 cells [22]. High-throughput, ligand-docking based virtual 
screening methods were applied to identify small agents targeting menin–MLL binding from a 
natural product/natural product-like chemical database. From the activity assay, compound 1 which 
was tested in a bimolecular fluorescence complementation (BiFC) assay emerged as the top 
candidate for inhibiting menin–MLL interaction. Moreover, a high degree of shape complementarity 
is observed between compound 1 and the binding pocket of menin, suggesting that this 
protein–ligand interaction could also be stabilized by significant hydrophobic interactions [23]. 
Rutin, as a promising lead compound, would be further developed into an antidyslipidemic 
molecule as a good alternative to statins using a docking-based strategy and MD stimulation [24]. 
Metadynamics-based protocol was developed to investigate the unbinding mechanism of an 
inhibitor of the pharmacologically relevant target p38 MAP kinase. The result of calculations 
showed that the salvation of the ligand and of the active site played crucial roles in the unbinding 
process and demonstrating that metadynamics could be a powerful tool in designing new drugs 
with engineered binding/unbinding kinetics [25]. 

The virtual filtered strategy graph is shown in Figure 1. The goal of this study is to identify the 
novel and potential structure of HPPD inhibition through 3D pharmacophore models based on the 
known crystal complex of HPPD (PDB ID: 1TFZ). CBP-Hypo2 with quality=0.721 (Fair) was selected 
as the best hypothesis, which included one hydrogen bond donor (HBD), one ring aromatic (RA) 
and two hydrophobic features (HY). Subsequently, the reliable pharmacophore hypotheses were 
used in virtual screening ChemDiv databases to identify potential HPPD inhibitors. The virtual 
screened hit compounds were then docked into active pocket of HPPD in DS2.5. Further, the 
selected screened hits were performed binding energy calculation and precision docking. 9 
Compounds were obtained with good affinity. The 9 hits obtained were matched to HipHop model. 
Finally, 4 compounds displayed good match to ligand-based pharmacophore HipHop-hypo2. 
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Figure 1. The workflow of virtual screening. 

2 Results and discussion 

2.1 Pharmacophore model generation and validation 

CBP that was generated based on protein 1TFZ and inhibitor DSA869 was used as a virtual 
screening model to discovery novel HPPD inhibitors. 22 active compounds and 38 inactive 
compounds were used as testing set to validate the receptor-ligand pharmacophore automatically. 
Six hypotheses were generated. As shown in Figure 2, CBP-Hypo2 desired Quality (0.712, Fair) was 
selected as the best hypothesis. One hydrogen bond donor (HBD), one ring aromatic (RA) and two 
hydrophobic features (HY) were regarded as the critical features of the model. During HipHop 
pharmacophore generation, six highly active inhibitors were selected from the literature to serve as 
training set (Table 1). 10 hypotheses were generated and ordered by ranking score. All 10 hypotheses 
ranked scores ranging from 81.54 to 72.16 (Table 1). The rank values and feature pharmacophore of 
HipHop-Hypo1 were same as HipHop-Hypo2.  

ROC (Receiver Operating Characteristic) curve was used to evaluate the degree of false 
positivity of the model screening compound. The curve was obtained by plotting false positive rate 
for x-axis against true positive rate on y-axis in Figure 2. The accuracy of the test was shown by 
measuring the area under the curve (AUC). The result of the model represented with excellent AUC 
score of 0.721. For HipHop model, test composed of active compounds and inactive compounds was 
used evaluate the selective model. HipHop-Hypo2 was considered as the best chemical hypothesis 
due to the model better distinguishing active and inactive compounds. As can be seen from the 
Figure 3, 12 active compounds Fit value was above 2.0, rather than the inactive molecules distributed 
in blue area.  
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Figure 2. Generation of CBP model for HPPD inhibitors (A) ROC curve of CBP-Hypo2. (B) Complex 
based pharmacophore (CBP) model with co-crystallized ligand, magenta, orange and cyan 
represents HBD, RA and HY respectively. 

 

Figure 3. Generation of HipHop pharmacophore. (A) The HipHop-Hypo2 chemical features. The 
color of pharmacophore feature, namely, HBA, RA and HY were green, orange and cyan, 
respectively. (B) The heat map of the ten hypotheses from test.  

2.2 CBP Pharmacophore model-based virtual screening 

Initially, the CBP model was used as a query to search the ChemDiv databases with 151047 
compounds. Fit Value was a measure of the overlap between the features in the pharmacophore and 
chemical features in the molecule, which assistsed in understanding the chemical meaning of the 
pharmacophore hypothesis [26]. According to Fit Value greater than 2.5, 1196 hit compounds 
mapping on to the pharmacophore model CBP-Hypo2 were retrieved, which included some 
compounds structurally similar to that of the existing HPPD inhibitors and some novel scaffolds. As 
shown in Figure 4, the obtained compounds were well matched to the CBP model and formed π–π 
interaction with the Phe360 and Phe403 residues. Simultaneously, residues Pro259 and Met314 
generated hydrophobic interaction with aromatic ring or methyl. 
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Figure 4. Mapping of each of the best hits to CBP-Hypo2. The color of pharmacophore feature, 
namely, HBD, RA and HY were pink, orange and cyan, respectively. (A)compound L503-0533 (B) 
compound G622-0791 (C) compound G883-0326 (D) compound G883-0470.  

2.3 Molecular docking 

In order to reduce the number of false positive screened virtual hits, docking analysis was 
performed at the active site of AtHPPD using DS2.5. The ligand in the protein 1TFZ was extracted 
and the hydrogen atom was added. The docking method was carried out applying two docking 
methods which were LibDock and CDOCKER. Subsequently, binding poses of the docking 
compound were compared with the ligand in the crystallographic complex and calculating the 
RMSD values were 0.74 and 0.55, respectively. As can be seen from the Figure 5, the ligands docked 
by two docking methods could be well aligned with the ligands in the crystallographic complex, so 
the two methods demonstrated the accuracy and reliability of the docking. These virtual 1196 
molecules retrieved after pharmacophore-based screenings were subjected to receptor-based virtual 
screening by using LibDock methods. Docking experiments was applied to compare the binding 
affinities of known inhibitors with that of the screened hits and to rank the screened hits on the basis 
of interactions with amino acid residues of the active site. 287 Hit compounds were chosen that 
showed LibDockScore values above 129. Further, the selected screened hits were subsequently 
submitted for their binding energy value calculation and precision docking in the ‘Calculate Binding 
Energies module’ and ‘CDOCKER module’ of DS2.5, respectively. Finally, according to binding 
modes, binding affinity, 9 hits compounds with the highest docking score and lowest binding 
energy were selected as the target hits. The different significant chemical interactions, viz., Pi-alkyl, 
Pi-Pi, hydrogen bonds etc of the best hits have been presented in the following figures.  
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Figure 5. aligning the docked ligands with the ligands in the crystallographic complex. (A)The 
ligand by LibDock docking method (B) The ligand by CDOCKER docking method. docked ligands 
were green, the ligand in the crystallographic complex was yellow.  

As shown in Figure 6, for compound L503-0533 molecule, Phe360 generated π–π with benzene 
ring and Arg269 interacted with fluorine via hydrogen bond. Compound G622-0791 was found to 
fully embed into the active pocket in the Figure 7, and interact with amino acids Gln272, Phe398 and 
Lys400 via H-bonds, meanwhile, the two benzene rings formed two pairs of sandwiches interacting 
with Phe360 and Phe403 at the binding site. Compound G883-0470 formed π–π stacking interaction 
with Phe398, Phe403 and Phe406 and generated hydrogen bond interaction with His287 and Phe398 
as depicted in Figure 8. Compound G883-0326 formed π-π stacking with benzyl ring of Phe398, 
Phe403 and Phe360. His287 interacted with carbonyl via hydrogen bond was shown in Figure 9. The 
compound G622-0791 was finally selected as the most potent HPPD inhibitor based on its least 
binging energy (-167.41 kcal/mol), the –CDOCKER score of this compound was -39.18 with a Fit 
Value (pharmacophore-based on CBP-Hypo2) of 2.97. 

 

 
Figure 6. The receptor-ligand interaction of screening compounds L503-0533 with HPPD active site. 
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Figure 7. The receptor-ligand interaction of screening compounds G622-0791 with HPPD active site. 

 

 

Figure 8. The receptor-ligand interaction of screening compounds G883-0326 with HPPD active site. 

 

 
Figure 9. The receptor-ligand interaction of screening compounds G883-0470 with HPPD active site. 

2.4 HipHop pharmacophore model-based virtual screening 

9 Compounds obtained were matched to HipHop model in the figure 9, and the results were 
found that 4 compounds were well matched to the ligand-based pharmacophore HipHop-Hypo2 
and all the colors of other 5 compounds with low fit values in the heat map were light blue. 
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Compound L503-0533 exhibited the highest matching value of 3.8. Finally, 4 new compounds with 
diverse scaffolds were as possible candidates for the designing of potent HPPD inhibitors (Table 1). 
The values of the four compounds were higher than those of the reference compound with Binging 
Energy, LibDock ENERGY, -CDOCKER ENERGY, Fit Value. Further investigations on these 4 
compounds about testing in vitro and in vivo against HPPD are currently underway in our 
laboratories. 
 

Figure 9. Heat map of the ten hypotheses from docked compounds and ligand of HPPD. 

Table 1. The 2D structure of the obtained compound and the evaluation value 

Name Structure 
Binging  

Energy 

LibDock 

Score 
-CDOCKER 

ENERGY 

Fit 

Value 

crystallographic 
ligand 

 

-68.857 130.542 21.08 2.35 

L503-0533 
 

-130.39 151.48 31.75 2.75 

G622-0791 
F

N

N

O
OH

N

O

-167.41 138.71 39.18 2.97 

G883-0326 N
N
H

O
O

 
-125.71 141.43 21.93 2.56 

G883-0326 -133.97 138.34 22.73 3.02 
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3. Materials and methods 

3.1 Data collection and preparation 

The X-ray crystal structure of complex HPPD with an inhibitor (PDB code: 1TFZ) was 
downloaded from the RCSB Protein Data Bank (www.rcsb.org). The inhibitor was removed from the 
complex as an active ligand in building the CBP models. 

Virtual screening using the ChemDiv database was performed to identify novel potential HPPD 
inhibitors. Based on the published literatures [27-29], 22 HPPD inhibitors with IC50 less than 0.1nM 
were collected as the active ligands of CBP for verifying the model. Meanwhile, to validate the 
selectivity of the obtained pharmacophore models, 38 compounds randomly selected from the 
HPPD-decoys set were chosen as the inactive ligands.  

Based on the known HPPD inhibitor [29-31] six typical compounds (Table 2) with bioactivity 
value IC50 lower 0.1µM and molecular properties were identified as a training set to generate 
common feature based pharmacophore models of these inhibitors. 27 Compounds were selected as a 
test set, among, 12 compounds was HPPD inhibitors with .ligand file, 17 compounds randomly 
obtained from ZINC database were used as inactive molecules with .zinc file. All the molecules were 
prepared and optimized using SYBYL-X 2.0. 

Table 2. Chemical structures and molecular properties of the training set compounds in HipHop 
model and screening compounds 

Structure AlogP Weight Num-H 

Acceptors 

Num-H 

Donors 

Num-H 

Rotatble 

Bonds 

Molecular 

Polar 

SurfaceArea 

IC50 

 

3.429 444.54 7 2 6 104.32 - 

2.53 329.23 5 0 4 97.03 0.28 

O ClO

O SO2CH3

O CF3

 

2.216 372.82 6 0 5 102.95 0.01 

 

2.827 369.39 7 2 4 137.48 0.01 

 

1.883 328.77 5 1 3 93.72 0.01 

2.336 442.91 7 1 7 115.35 0.01 

 

1.965 458.91 8 1 6 124.57 0.04 
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3.086 445.55 4 1 6 78.09 - 

 

3.371 417.43 4 1 6 71.53 - 

 

4.659 384.47 2 1 4 49.41 - 

 

3.629 391.85 3 1 4 62.3 - 

 

 represented the ligand in the crystallographic complex,    represented the compounds in the 

HipHop model ,    represented the hit compounds by virtual screening.  
 

3.2 Pharmacophore model generation 

CBP model was developed within CBP module in Catalyst using known crystal complex of 
HPPD (PDB ID: 1TFZ) and ligand (DSA869), and both were chosen as the receptor and ligand, 
respectively. Validation option was turned into True. 22 Reported active HPPD inhibitors and 38 
inactive compounds were used as the active ligands and inactive ligands, respectively. The rest 
parameters were set to default values. Six hypotheses were generated, and CBP-Hypo2 with desired 
Quality (0.721, Fair) was used to screening the library, subsequently. 

HipHop pharmacophore models were generated from a set of known molecules with promising 
activity towards HPPD. Based on the atom-types presented in the molecule, HipHop selected the 
key common chemical features for creating 3D-pharmacophore models. The principal value 1 for all 
the ligands and maximum-omit feature as 2. The common features pharmacophore generation 
module “Feature Mapping” was used to identify the important chemical features of the training set 
compounds before building HipHop pharmacophore model. Hydrogen bond acceptor (HBA), 
hydrogen bond donor (HBD), hydrophobic features (HY) and ring aromatic (AR) were considered 
for generation of the pharmacophore model. The diverse conformation option was applied and 250 
conformations within 20 kcal mol-1 cutoff were generated using the “BEST”. The final common 
feature 3D-pharmacophore models were ranked based on pharmacophore fit value. The fit value of 
the ten chemical hypothesis generated along with the key 3D-pharmacophoric chemical features are 
presented in Table 3. 

Table 3. Chemical feature compositions for the ten hypotheses generated from six known HPPD inhibitors. 

Hypothesis Features Rank 

HipHop-Hypo1 RHAAAA 81.854 

HipHop-Hypo2 RHAAAA 81.854 
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HipHop-Hypo3 RHAAAA 81.788 

HipHop-Hypo4 RAAAA 72.750 

HipHop-Hypo5 RAAAA 72.347 

HipHop-Hypo6 RAAAA 72.293 

HipHop-Hypo7 RAAAA 72.234 

HipHop-Hypo8 RAAAA 72.188 

HipHop-Hypo9 RAAAA 72.188 

HipHop-Hypo10 RAAAA 72.167 

R (ring aromatic), H (hydrophobic features), A (Acceptor) 

 
Validating the hypothesis is one of the significant methods in pharmacophore generation. Test 

set including active compounds and inactive compounds was prepared using the same protocol as 
training set prepared and used to determine whether the hypothesis was able to discern active 
compounds. Fit value was used as an important evaluation criterion [32]. 

3.3 Pharmacophore-based virtual screening 

About 151047 small molecules were obtained from ChemDiv database (www.chemdiv.com) 
and subjected to virtual screening. All the compounds which were optimized in DS2.5 were used as 
virtual screening library. Subsequently, the fist screening of CBP-Hypo2 was used to retrieve the 
database in ‘Search, Screen and Profile module’ of DS2.5. The number of conformations was set to 
200, while the conformation method was set to BEST, which provided a complete and improved 
coverage of the conformational space by performing a rigorous energy minimization and optimizing 
the conformations in both torsional and Cartesian space by the poling algorithm [33]. Minimum 
Interfeature Distance was set to 2. Limit Hits was set to First N, and Maximum Hits was set to 500. 
The rest parameters were set to default values. 

3.4 Molecular docking  

The AtHPPD crystal structure (PDB ID: 1TFZ) with resolution of 1.8Å was used for molecular 
docking studies. The protein was prepared by removing the water and some other co-crystallized 
small molecules, and potentials were assigned using CHARMm force field, the missing atoms / 
residues were building using the ‘Build and Edit Protein’ module, and cleaning protein were 
prepared in ‘Prepare Protein module’. The protein structure was energy minimized for 5000 steps 
(with the heavy atoms constrained) using the conjugate gradient algorithm with the ‘Minimize and 
Refine Protein’ module in DS2.5. After the protein preparation, the binding site of the protein was 
defined based on volume occupied by the known ligand pose already in an active site. The obtained 
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receptor was used as the “Input Receptor Molecule” parameter. All hit compounds subjected to fist 
filtering processes were saved as .sd file. The saved structures were chosen as “Input Ligand” and 
docked into the active site of HPPD. Docking was performed to ensure the proper binding 
orientation and placement of each ligand and to confirm the geometric fit of each ligand inside the 
active site. During the docking process top 10 conformations were saved for each ligand based on 
dock score value after the energy minimization using the smart minimize method through LibDock 
and CDOCKER methods. 

4. Conclusions 

In this study, the strategy for the selection of new chemical compounds with HPPD inhibition 
by virtual screening was performed. Virtual screening was divided into receptor based virtual 
screening and ligand based virtual screening. Receptor based virtual was more effective in detecting 
novel chemical scaffolds and more commonly used in academic labs. 

The CBP model was generated based on receptor HPPD enzyme and active ligand that dig out 
the essential structural features required for inhibition, which was helpful for screening of novel 
molecules having inhibitory activity against HPPD based on receptor, CBP-Hypo2 was used to 
screen the ChemDiv library to find potential HPPD inhibitors and Fit Value was believed to an 
important criterion. The hydrophobic groups (benzene and methyl) of the four compounds obtained 
from ChemDiv database formed hydrophobic interactions with Met314 and Pro205, and the 
intermediate aromatic ring generated π-π interaction with Phe403 and Phe360. Further, molecular 
docking was performed to provide insights into molecular recognition via protein–ligand 
interactions. The result was analyzed based on the docking score, binding modes, and molecular 
interactions with active site residues. Subsequently, binding free energy of selected compounds 
relevant to ligand and receptor was calculated, 9 hits of novel scaffolds with good docking score and 
low binding energy were chosen. Screening compounds could be completely embedded into the 
HPPD active pocket and interact with the active site of Phe360, Phe403, Arg269, Phe398 and Asn402 
and so on. Finally, compounds obtained through docking were matched HipHop model, 4 hits with 
high Fit value further optimization could be used as potential leads in designing new HPPD 
inhibitors herbicides. This study provided a set of guidelines that will greatly help in designing the 
novel and more potent HPPD inhibitors herbicides. 
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