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Abstract: p-Hydroxyphenylpyruvate dioxygenase (HPPD) is not only the useful molecular target
in treating life-threatening tyrosinemia type I, but also an important target for chemical herbicides.
A combined in silico structure-based pharmacophore and molecular docking based virtual
screening were performed to identify novel potential HPPD inhibitors. The complex based
pharmacophore model (CBP) with 0.721 of ROC used for screening compound showed
remarkable ability to retrieve known active ligands from decoy molecule. The ChemDiv database
was screened using CBP-Hypo2 as a 3D query, and the best-fit hits subjected to molecular docking
with two methods of LibDock and CDOCKER in Accelrys Discovery Studio 2.5(DS 2.5) to discern
interactions with key residues at the active site of HPPD. 4 Compounds with top rank in HipHop
model and well-known binding model were finally chosen as identification of lead compounds
with potentially inhibitory effects on active site of target. The results provided powerful insight to
the development of novel HPPD inhibitors herbicides using computational techniques.

Keywords: HPPD inhibitors; pharmacophore model; molecule docking; HipHop model; virtual
screening; ChemDiv

1 Introduction

Weeds compete with crops for sunshine, water, nutrients, and space, which influence the
growth of crops and undermine both crop quality and yield. In agrochemical research, the discovery
of novel high-activity and low-toxicity herbicide lead compounds is still remained as a challenge.
4-Hydroxyphenylpyruvate dioxygenase belongs to the non-heme Fe(Il)-dependent dioxygenase
family [1,2]. As an important enzyme correlated to the pigment synthesis and tyrosine catabolism in
most organisms, HPPD is important in drug discovery in both agricultural and therapeutic areas
[3-5]. HPPD catalyzes the conversion of 4-hydroxyphenylpyruvate (HPPA) to homogentisate
(HGA), and this transformation involving decarboxylation, aromatic hydroxylation, and substituent
migration in a single catalytic cycle is unique in nature [6]. In plants, HGA can be further
transformed into tocopherol and plastoquinone, both of them are crucial for the normal growth of
plants [7]. Inhibition of HPPD will block photosynthesis, which leads to the deficiency in isoprenoid
redox cofactors such as plastoquinone and tocopherol, and finally causes growth inhibition,
necrosis and death of treated plants [8-11].

Herbicides, which inhibit HPPD, represent one of the newest classes of herbicides available for
use in crop production [12]. HPPD-inhibiting herbicides show many advantages, such as low
application rate, low toxicity, broad-spectrum weed control (including herbicide-resistant weed
biotypes), excellent crop selectivity and benign environmental effects [13,14]. Several of them are
currently used as selective broad leaf herbicides including triketones, pyrazoles, isoxazoles,
diketone nitriles and benzophenones over the last two decades. [15,16]. The triketone herbicides
have spurred a variety of commercialized HPPD inhibitors through chemical modification, such as
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sulcotrione, mesotrione and benzobicylon [17-19]. But the main problem associated with the use of
herbicides is the occurrence of herbicide resistant weeds. Therefore, it is necessary to develop
efficient herbicides with novel structures against HPPD.

The use of computational techniques in drug discovery and development has become the most
effective methods. Among them, virtual screening is a conventional method used in drug discovery,
which screen large collections of compounds to identify molecular structures that are most likely to
bind into a particular biological target [20]. It has been reported that molecular docking,
pharmacophore modeling, and structure-based virtual screening in drug discovery have been
successful applied. Structure-based virtual screening has emerged as an efficient strategy in
identifying potential a natural product-like STAT3 dimerization inhibitor from a database of natural
product and natural product-like compounds, and molecular docking analysis suggested that
compound 1 might putatively function as an inhibitor of STAT3 dimerization by binding to the SH2
domain [21]. The novel TLR1-TLR2 inhibitors were obtained through molecular docking from a
database of natural product and natural product-like compounds and the results of activity
experiments show that compound 1 was the most effective in inhibiting TNF-a and IL-6 secretion
induced by Pam3CSK4 in RAW 264.7 cells [22]. High-throughput, ligand-docking based virtual
screening methods were applied to identify small agents targeting menin-MLL binding from a
natural product/natural product-like chemical database. From the activity assay, compound 1 which
was tested in a bimolecular fluorescence complementation (BiFC) assay emerged as the top
candidate for inhibiting menin—-MLL interaction. Moreover, a high degree of shape complementarity
is observed between compound 1 and the binding pocket of menin, suggesting that this
protein-ligand interaction could also be stabilized by significant hydrophobic interactions [23].
Rutin, as a promising lead compound, would be further developed into an antidyslipidemic
molecule as a good alternative to statins using a docking-based strategy and MD stimulation [24].
Metadynamics-based protocol was developed to investigate the unbinding mechanism of an
inhibitor of the pharmacologically relevant target p38 MAP kinase. The result of calculations
showed that the salvation of the ligand and of the active site played crucial roles in the unbinding
process and demonstrating that metadynamics could be a powerful tool in designing new drugs
with engineered binding/unbinding kinetics [25].

The virtual filtered strategy graph is shown in Figure 1. The goal of this study is to identify the
novel and potential structure of HPPD inhibition through 3D pharmacophore models based on the
known crystal complex of HPPD (PDB ID: 1TFZ). CBP-Hypo2 with quality=0.721 (Fair) was selected
as the best hypothesis, which included one hydrogen bond donor (HBD), one ring aromatic (RA)
and two hydrophobic features (HY). Subsequently, the reliable pharmacophore hypotheses were
used in virtual screening ChemDiv databases to identify potential HPPD inhibitors. The virtual
screened hit compounds were then docked into active pocket of HPPD in DS2.5. Further, the
selected screened hits were performed binding energy calculation and precision docking. 9
Compounds were obtained with good affinity. The 9 hits obtained were matched to HipHop model.
Finally, 4 compounds displayed good match to ligand-based pharmacophore HipHop-hypo2.
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Figure 1. The workflow of virtual screening.

2 Results and discussion

2.1 Pharmacophore model generation and validation

CBP that was generated based on protein 1TFZ and inhibitor DSA869 was used as a virtual
screening model to discovery novel HPPD inhibitors. 22 active compounds and 38 inactive
compounds were used as testing set to validate the receptor-ligand pharmacophore automatically.
Six hypotheses were generated. As shown in Figure 2, CBP-Hypo2 desired Quality (0.712, Fair) was
selected as the best hypothesis. One hydrogen bond donor (HBD), one ring aromatic (RA) and two
hydrophobic features (HY) were regarded as the critical features of the model. During HipHop
pharmacophore generation, six highly active inhibitors were selected from the literature to serve as
training set (Table 1). 10 hypotheses were generated and ordered by ranking score. All 10 hypotheses
ranked scores ranging from 81.54 to 72.16 (Table 1). The rank values and feature pharmacophore of
HipHop-Hypol were same as HipHop-Hypo2.

ROC (Receiver Operating Characteristic) curve was used to evaluate the degree of false
positivity of the model screening compound. The curve was obtained by plotting false positive rate
for x-axis against true positive rate on y-axis in Figure 2. The accuracy of the test was shown by
measuring the area under the curve (AUC). The result of the model represented with excellent AUC
score of 0.721. For HipHop model, test composed of active compounds and inactive compounds was
used evaluate the selective model. HipHop-Hypo2 was considered as the best chemical hypothesis
due to the model better distinguishing active and inactive compounds. As can be seen from the
Figure 3, 12 active compounds Fit value was above 2.0, rather than the inactive molecules distributed
in blue area.
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Figure 2. Generation of CBP model for HPPD inhibitors (A) ROC curve of CBP-Hypo2. (B) Complex
based pharmacophore (CBP) model with co-crystallized ligand, magenta, orange and cyan

represents HBD, RA and HY respectively.
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Figure 3. Generation of HipHop pharmacophore. (A) The HipHop-Hypo2 chemical features. The
color of pharmacophore feature, namely, HBA, RA and HY were green, orange and cyan,
respectively. (B) The heat map of the ten hypotheses from test.

2.2 CBP Pharmacophore model-based virtual screening

Initially, the CBP model was used as a query to search the ChemDiv databases with 151047
compounds. Fit Value was a measure of the overlap between the features in the pharmacophore and
chemical features in the molecule, which assistsed in understanding the chemical meaning of the
pharmacophore hypothesis [26]. According to Fit Value greater than 2.5, 1196 hit compounds
mapping on to the pharmacophore model CBP-Hypo2 were retrieved, which included some
compounds structurally similar to that of the existing HPPD inhibitors and some novel scaffolds. As
shown in Figure 4, the obtained compounds were well matched to the CBP model and formed n—mt
interaction with the Phe360 and Phe403 residues. Simultaneously, residues Pro259 and Met314
generated hydrophobic interaction with aromatic ring or methyl.
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Figure 4. Mapping of each of the best hits to CBP-Hypo2. The color of pharmacophore feature,
namely, HBD, RA and HY were pink, orange and cyan, respectively. (A)compound L503-0533 (B)
compound G622-0791 (C) compound G883-0326 (D) compound G883-0470.

2.3 Molecular docking

In order to reduce the number of false positive screened virtual hits, docking analysis was
performed at the active site of AtHPPD using DS2.5. The ligand in the protein 1TFZ was extracted
and the hydrogen atom was added. The docking method was carried out applying two docking
methods which were LibDock and CDOCKER. Subsequently, binding poses of the docking
compound were compared with the ligand in the crystallographic complex and calculating the
RMSD values were 0.74 and 0.55, respectively. As can be seen from the Figure 5, the ligands docked
by two docking methods could be well aligned with the ligands in the crystallographic complex, so
the two methods demonstrated the accuracy and reliability of the docking. These virtual 1196
molecules retrieved after pharmacophore-based screenings were subjected to receptor-based virtual
screening by using LibDock methods. Docking experiments was applied to compare the binding
affinities of known inhibitors with that of the screened hits and to rank the screened hits on the basis
of interactions with amino acid residues of the active site. 287 Hit compounds were chosen that
showed LibDockScore values above 129. Further, the selected screened hits were subsequently
submitted for their binding energy value calculation and precision docking in the ‘Calculate Binding
Energies module’ and ‘CDOCKER module’” of DS2.5, respectively. Finally, according to binding
modes, binding affinity, 9 hits compounds with the highest docking score and lowest binding
energy were selected as the target hits. The different significant chemical interactions, viz., Pi-alkyl,
Pi-Pi, hydrogen bonds etc of the best hits have been presented in the following figures.
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Figure 5. aligning the docked ligands with the ligands in the crystallographic complex. (A)The
ligand by LibDock docking method (B) The ligand by CDOCKER docking method. docked ligands
were green, the ligand in the crystallographic complex was yellow.

As shown in Figure 6, for compound L503-0533 molecule, Phe360 generated m—t with benzene
ring and Arg269 interacted with fluorine via hydrogen bond. Compound G622-0791 was found to
fully embed into the active pocket in the Figure 7, and interact with amino acids GIn272, Phe398 and
Lys400 via H-bonds, meanwhile, the two benzene rings formed two pairs of sandwiches interacting
with Phe360 and Phe403 at the binding site. Compound G883-0470 formed m—mt stacking interaction
with Phe398, Phe403 and Phe406 and generated hydrogen bond interaction with His287 and Phe398
as depicted in Figure 8. Compound G883-0326 formed 7-7t stacking with benzyl ring of Phe398,
Phe403 and Phe360. His287 interacted with carbonyl via hydrogen bond was shown in Figure 9. The
compound G622-0791 was finally selected as the most potent HPPD inhibitor based on its least
binging energy (-167.41 kcal/mol), the -CDOCKER score of this compound was -39.18 with a Fit
Value (pharmacophore-based on CBP-Hypo2) of 2.97.
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Figure 6. The receptor-ligand interaction of screening compounds L503-0533 with HPPD active site.
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Figure 7. The receptor-ligand interaction of screening compounds G622-0791 with HPPD active site.
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Figure 8. The receptor-ligand interaction of screening compounds G883-0326 with HPPD active site.
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Figure 9. The receptor-ligand interaction of screening compounds G883-0470 with HPPD active site.

2.4 HipHop pharmacophore model-based virtual screening

9 Compounds obtained were matched to HipHop model in the figure 9, and the results were
found that 4 compounds were well matched to the ligand-based pharmacophore HipHop-Hypo2
and all the colors of other 5 compounds with low fit values in the heat map were light blue.
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Compound L503-0533 exhibited the highest matching value of 3.8. Finally, 4 new compounds with
diverse scaffolds were as possible candidates for the designing of potent HPPD inhibitors (Table 1).
The values of the four compounds were higher than those of the reference compound with Binging
Energy, LibDock ENERGY, -CDOCKER ENERGY, Fit Value. Further investigations on these 4
compounds about testing in vitro and in vivo against HPPD are currently underway in our

laboratories.

Name vs. Properties

e ienst ] EC IEIEIEIE
weerest () (R | TS
sae3-052 ]
=e-vcee [ I
sy (] | EC I
mmv=DDIIDIIDD

MName

G542-0629

GEE3-04T0

wec-uon I O I I ] R

Fog2-0372

trainingd_01
trainingd 02
training3_03
trainingd_0¢
training3d_05
trainingd 06
trainingd 07
trainingd 05
training3_09
trainingd_10

Froperties

Figure 9. Heat map of the ten hypotheses from docked compounds and ligand of HPPD.
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Table 1. The 2D structure of the obtained compound and the evaluation value

Binging LibDock -CDOCKER Fit
Name Structure
Energy Score ENERGY Value
\ P
tall hic °:s
crystallograp o N
=N -68.857 130.542 21.08 2.35
ligand d Q § N%
O oOH
0\\8,/0
1.503-0533 Qﬁ %ENWNU -130.39 151.48 31.75 2.75
(o)
N/ \
G622-0791 N -167.41 138.71 39.18 2.97
o
(o)
(o)
G883-0326 Q)L@ N)t@ -125.71 141.43 21.93 2.56
G883-0326 @*N N -133.97 138.34 22.73 3.02
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3. Materials and methods

3.1 Data collection and preparation

The X-ray crystal structure of complex HPPD with an inhibitor (PDB code: 1TFZ) was
downloaded from the RCSB Protein Data Bank (www.rcsb.org). The inhibitor was removed from the
complex as an active ligand in building the CBP models.

Virtual screening using the ChemDiv database was performed to identify novel potential HPPD
inhibitors. Based on the published literatures [27-29], 22 HPPD inhibitors with ICso less than 0.1nM
were collected as the active ligands of CBP for verifying the model. Meanwhile, to validate the
selectivity of the obtained pharmacophore models, 38 compounds randomly selected from the
HPPD-decoys set were chosen as the inactive ligands.

Based on the known HPPD inhibitor [29-31] six typical compounds (Table 2) with bioactivity
value ICso lower 0.1puM and molecular properties were identified as a training set to generate
common feature based pharmacophore models of these inhibitors. 27 Compounds were selected as a
test set, among, 12 compounds was HPPD inhibitors with .ligand file, 17 compounds randomly
obtained from ZINC database were used as inactive molecules with .zinc file. All the molecules were
prepared and optimized using SYBYL-X 2.0.

Table 2. Chemical structures and molecular properties of the training set compounds in HipHop
model and screening compounds

Structure AlogP Weight Num-H Num-H Num-H Molecular  ICsp

Acceptors Donors Rotatble Polar

Bonds SurfaceArea
vy
e W 3429 44454 7 2 6 104.32 ;
30
/ Q \ N—é
O oH
j 7 9 No 253 32923 5 0 4 97.03 0.28
o SO,CH,
@ o « 2216 372.82 6 0 5 102.95 0.01
Qv
o SO,CH;
o 9o ¢ o 2827  369.39 7 2 4 137.48 0.01
SQPRAY
o SO,CH;
(o] (o] Cl
00 1.883  328.77 5 1 3 93.72 0.01
OY\(
o SO,CH;
o o ¢ 2336 44291 7 1 7 115.35 0.01
o SO,CH,
0O O NO,

1.965 45891 8 1 6 124.57 0.04
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N /7\ 3371 417.43 4 1 6 71.53 -

o 4.659 384.47 2 1 4 49.41 -
A0

(o}
=N 3.629 391.85 3 1 4 62.3 -
H

"%" represented the ligand in the crystallographic complex, represented the compounds in the

HipHop model , represented the hit compounds by virtual screening.

3.2 Pharmacophore model generation

CBP model was developed within CBP module in Catalyst using known crystal complex of
HPPD (PDB ID: 1TFZ) and ligand (DSA869), and both were chosen as the receptor and ligand,
respectively. Validation option was turned into True. 22 Reported active HPPD inhibitors and 38
inactive compounds were used as the active ligands and inactive ligands, respectively. The rest
parameters were set to default values. Six hypotheses were generated, and CBP-Hypo2 with desired
Quality (0.721, Fair) was used to screening the library, subsequently.

HipHop pharmacophore models were generated from a set of known molecules with promising
activity towards HPPD. Based on the atom-types presented in the molecule, HipHop selected the
key common chemical features for creating 3D-pharmacophore models. The principal value 1 for all
the ligands and maximum-omit feature as 2. The common features pharmacophore generation
module “Feature Mapping” was used to identify the important chemical features of the training set
compounds before building HipHop pharmacophore model. Hydrogen bond acceptor (HBA),
hydrogen bond donor (HBD), hydrophobic features (HY) and ring aromatic (AR) were considered
for generation of the pharmacophore model. The diverse conformation option was applied and 250
conformations within 20 kcal mol"! cutoff were generated using the “BEST”. The final common
feature 3D-pharmacophore models were ranked based on pharmacophore fit value. The fit value of
the ten chemical hypothesis generated along with the key 3D-pharmacophoric chemical features are

presented in Table 3.

Table 3. Chemical feature compositions for the ten hypotheses generated from six known HPPD inhibitors.

Hypothesis Features Rank

HipHop-Hypol RHAAAA 81.854

HipHop-Hypo2 RHAAAA 81.854
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HipHop-Hypo3 RHAAAA 81.788
HipHop-Hypo4 RAAAA 72.750
HipHop-Hypo5 RAAAA 72.347
HipHop-Hypo6 RAAAA 72.293
HipHop-Hypo7 RAAAA 72.234
HipHop-Hypo8 RAAAA 72.188
HipHop-Hypo9 RAAAA 72.188
HipHop-Hypo10 RAAAA 72.167

R (ring aromatic), H (hydrophobic features), A (Acceptor)

Validating the hypothesis is one of the significant methods in pharmacophore generation. Test
set including active compounds and inactive compounds was prepared using the same protocol as
training set prepared and used to determine whether the hypothesis was able to discern active

compounds. Fit value was used as an important evaluation criterion [32].

3.3 Pharmacophore-based virtual screening

About 151047 small molecules were obtained from ChemDiv database (www.chemdiv.com)
and subjected to virtual screening. All the compounds which were optimized in DS2.5 were used as
virtual screening library. Subsequently, the fist screening of CBP-Hypo2 was used to retrieve the
database in ‘Search, Screen and Profile module’ of DS2.5. The number of conformations was set to
200, while the conformation method was set to BEST, which provided a complete and improved
coverage of the conformational space by performing a rigorous energy minimization and optimizing
the conformations in both torsional and Cartesian space by the poling algorithm [33]. Minimum
Interfeature Distance was set to 2. Limit Hits was set to First N, and Maximum Hits was set to 500.

The rest parameters were set to default values.

3.4 Molecular docking
The AtHPPD crystal structure (PDB ID: 1TFZ) with resolution of 1.8A was used for molecular

docking studies. The protein was prepared by removing the water and some other co-crystallized
small molecules, and potentials were assigned using CHARMm force field, the missing atoms /
residues were building using the ‘Build and Edit Protein’” module, and cleaning protein were
prepared in ‘Prepare Protein module’. The protein structure was energy minimized for 5000 steps
(with the heavy atoms constrained) using the conjugate gradient algorithm with the ‘Minimize and
Refine Protein” module in DS2.5. After the protein preparation, the binding site of the protein was

defined based on volume occupied by the known ligand pose already in an active site. The obtained
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receptor was used as the “Input Receptor Molecule” parameter. All hit compounds subjected to fist
filtering processes were saved as .sd file. The saved structures were chosen as “Input Ligand” and
docked into the active site of HPPD. Docking was performed to ensure the proper binding
orientation and placement of each ligand and to confirm the geometric fit of each ligand inside the
active site. During the docking process top 10 conformations were saved for each ligand based on
dock score value after the energy minimization using the smart minimize method through LibDock
and CDOCKER methods.

4. Conclusions

In this study, the strategy for the selection of new chemical compounds with HPPD inhibition
by virtual screening was performed. Virtual screening was divided into receptor based virtual
screening and ligand based virtual screening. Receptor based virtual was more effective in detecting
novel chemical scaffolds and more commonly used in academic labs.

The CBP model was generated based on receptor HPPD enzyme and active ligand that dig out
the essential structural features required for inhibition, which was helpful for screening of novel
molecules having inhibitory activity against HPPD based on receptor, CBP-Hypo2 was used to
screen the ChemDiv library to find potential HPPD inhibitors and Fit Value was believed to an
important criterion. The hydrophobic groups (benzene and methyl) of the four compounds obtained
from ChemDiv database formed hydrophobic interactions with Met314 and Pro205, and the
intermediate aromatic ring generated 7i-7 interaction with Phe403 and Phe360. Further, molecular
docking was performed to provide insights into molecular recognition via protein-ligand
interactions. The result was analyzed based on the docking score, binding modes, and molecular
interactions with active site residues. Subsequently, binding free energy of selected compounds
relevant to ligand and receptor was calculated, 9 hits of novel scaffolds with good docking score and
low binding energy were chosen. Screening compounds could be completely embedded into the
HPPD active pocket and interact with the active site of Phe360, Phe403, Arg269, Phe398 and Asn402
and so on. Finally, compounds obtained through docking were matched HipHop model, 4 hits with
high Fit value further optimization could be used as potential leads in designing new HPPD
inhibitors herbicides. This study provided a set of guidelines that will greatly help in designing the
novel and more potent HPPD inhibitors herbicides.
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