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Abstract

A probabilistic description is essential for understanding the dynamics of stochastic systems

far from equilibrium, given uncertainty inherent in the systems. To compare different Probability

Density Functions (PDFs), it is extremely useful to quantify the difference among different PDFs by

assigning an appropriate metric to probability such that the distance increases with the difference

between the two PDFs. This metric structure then provides a key link between stochastic systems

and information geometry. For a non-equilibrium process, we define an infinitesimal distance at

any time by comparing two PDFs at times infinitesimally apart and sum these distances in time.

The total distance along the trajectory of the system quantifies the total number of different

states that the system undergoes in time, and is called the information length. By using this

concept, we investigate the information geometry of non-equilibrium processes involved in disorder-

order transitions between the critical and subcritical states in a bistable system. Specifically, we

compute time-dependent PDFs, information length, the rate of change in information length,

entropy change and Fisher information in disorder-to-order and order-to-disorder transitions, and

discuss similarities and disparities between the two transitions. In particular, we show that the

total information length in order-to-disorder transition is much larger than that in disorder-to-

order transition, and elucidate the link to the drastically different evolution of entropy in both

transitions. We also provide the comparison of the results with those in the case of the transition

between the subcritical and supercritical states and discuss implications for fitness.
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I. INTRODUCTION

The spontaneous emergence of order out of disorder is one of the most fascinating

phenomena in nature and laboratory experiments, attracting ever-increasing interest.

Important examples include phase transition/critical phenomena in cosmology, elementary

particle theory, condensed matter, chemistry, biology, and social-economic movement

[1–5]. Order is usually quantified by a non-zero value of a macroscopic observable (global

mode). While triggered by an external parameter (such as temperature) or spontaneously,

a macroscopic observable often does not simply evolve passively, but undergoes an indis-

pensable interaction with fluctuations (microscopic variables). The self-regulation between

macroscopic and microscopic variables leads to a dynamical equilibrium (self-organisation),

which involves fluctuations as an essential part [6]. There has been accumulating evidence

for relevance and important role of self-organisation in different systems such as shear flows

or vortices in fluids or plasmas, pattern formation in chemical oscillators, homeostasis in

biosystems and even traffic flows [4, 7–16]. In particular, self-organised shear (zonal) flows

are now believed to play a crucial role in stabilising laboratory plasmas, beneficial for

extracting fusion energy [7]. Due to large fluctuations involved in order-disorder transi-

tion or self-organising systems, it is essential to use statistical tools to describe these systems.

The aim of this paper is to understand order-disorder transition from the perspective of

information change associated with transition and uncover a geometrical structure in a statis-

tical space, which can be utilised to understand ever-increasing experimental/observational

data. To this end, we investigate a bistable stochastic system which is often invoked as a

canonical model of self-regulating systems e.g. in electric circuits [17], in various cellular

processes such as cycles, differentiation and apoptosis, regulation of heart, brain, etc. [18–

23]. In this model, we calculate time-dependent Probability Density Function (PDF) and

the total number of statistically different states that the system undergoes in time. The

latter is defined by the dimensionless information length [24–28]:

L(t) =

∫ t

0

dt1
τ(t1)

=

∫ t

0

dt1

√∫
dx

1

p(x, t1)

[
∂p(x, t1)

∂t1

]2

, (1)

where p(x, t) is a time dependent PDF for a stochastic variable x. In Eq. (1), τ(t) is the
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time-varying ‘time-unit’:

E(t) ≡ 1

[τ(t)]2
=

∫
dx

1

p(x, t)

[
∂p(x, t)

∂t

]2

. (2)

τ(t) in Eq. (2) has dimensions of time, and quantifies the correlation time over which

the (dimensionless) information changes, thereby serving as the time unit for information

change. Note that in equilibrium where ∂p
∂t

= 0, τ → ∞. Measuring the total elapsed time

in units of τ between time t = 0 and t gives the information length in Eq. (1). The latter

thus establishes a distance between the initial and final PDFs in the statistical space.

We note that our information length is based on Fisher information (c.f. [29]) and is a

generalisation of statistical distance mainly used in equilibrium or near-equilibrium systems

[30–39] to non-equilibrium systems [24–28]. In particular, the linear geometry of a linear

Ornstein-Uhlenbeck (O-U) process was captured by the linear relation L∞ ∝ x0, while the

power-law geometry of a nonlinear (cubic) stochastic process was revealed by power-law

scalings L∞ ∝ xn0 (n ∼ 1.5 − 1.9) [28]. Furthermore, interesting geodesic solutions were

found [27] by time-periodic modulation of the model parameters in an O-U process which

by itself does not support a geodesic solution without the modulation of parameters. As a

geodesic is a unique path along which a system undergoes the minimum number of changes

in the statistical states given the initial and final conditions, it is beneficial to a system

where the change is costly. It is thus important to elucidate the key characteristics of a

stochastic system that permits or facilitates the existence of a geodesic in general (without

the modulation of model parameters). Finally, we emphasise that Eq. (1) can be applied to

any data; [25] constructed time-dependent PDFs from MIDI files of musics and elucidated

the information change in music by L and τ .

In this paper, in order to gain a key insight, we focus on a zero-dimensional (0D) model

which has one control parameter and propose an on-quenching experiment by a sudden

change of a control parameter from the critical to subcritical and from the subcritical to

critical values to trigger disorder-to-order and order-to-disorder transitions, respectively.

A pair of disorder-to-order and order-to-disorder transitions with suitable choice of initial

conditions then provides a simple model in which a continuous switch between ordered

and disordered states can be studied in great detail. Each pair of disorder-to-order and
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order-to-disorder transitions models a burst (e.g. a burst in the gene expression consisting

of a pair of induction and repression). Since an initial condition represents the ‘resting’ state

of a stochastic system in between the two bursts, it is important to understand the effect of

different initial conditions on information change. In particular, we aim to elucidate what

might be an optimal initial ‘resting’ state that minimizes the information change, sustaining

a robust geodesic solution. To this end, we provide detailed comparison of on-quenching

processes in this paper with off-quenching processes, where the control parameter changes

between subcritical and supercritical, reported in [41]. While some aspects are similar

between the two processes, there are also important differences that will be presented and

discussed here. The remainder of this paper is organized as follows. Section II presents our

model, and Section III provides details on the time evolution of PDFs. We discuss informa-

tion length in Section IV and differential entropy and Fisher information in Section V. We

conclude in Section VI. Appendices contain the derivation of equations used in the main text.

II. MODELS

We consider the following 0D Ginzburg-Landau model [40] for a stochastic variable x:

dx

dt
= F (x) + ξ = −λx− µx3 + ξ. (3)

Here, F (x) = −λx − µx3 is a deterministic force; ξ is a white noise with the following

statistical property:

〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′), (4)

where D is the strength of the forcing and the angular brackets denote the average over

ξ. In our study, λ is a control parameter. In the numerical computations we will fix the

value of µ (= 1) with no loss of generality, while keeping track of µ in analytical calculations

for clarity. λ represents the deviation from the critical value (e.g. λ ∝ T − Tc for the

temperature T where Tc is the critical temperature). That is, our system is subcritical for

λ < 0, supercritical for λ > 0, and critical at λ = 0. Eq. (3) is the extension of our recent

work [28, 42] to a cyclic transition. The Fokker-Planck equation [43, 44] corresponding to

Eqs. (3)-(4) is as follows:

∂

∂t
p(x, t) =

∂

∂x

[
−F (x) +D

∂

∂x

]
p(x, t). (5)
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In this paper, we consider the transition between the critical state and subcritical state

by changing λ between 0 and −γ (γ > 0). Here, we note that we are using γ > 0 to

explicitly represent a positive growth rate in the subcritical state λ < 0. To this end, we

induce the phase transition from the initial state λ = 0 by a sudden change in λ. This

mimics the “on-quenching” experiment where the quenching occurs at the critical state;

disorder-to-order transition (order-to-disorder transition) represents the transition from the

critical to subcritical (the subcritical to critical) states. This thus contrasts to the case of

the transition from the supercritical to subcritical state studied in [41] where the quenching

occurs off the critical state.

Specifically, our model is described as follows:

• Forward Process (FP): λ = −γ < 0: at t = 0, a unimodal PDF with a peak at x = 0,

which evolves into a bimodal PDF with peaks at x = ±
√
γ/µ 6= 0 as t→∞;

• Backward Process (BP): λ = 0: at t = 0, a bimodal PDF with peaks at x = ±
√
γ/µ 6=

0, which evolves into a unimodal PDF with a peak at x = 0 as t→∞.

FP and BP have the following stationary distributions pF (x) and pB(x), respectively:

pF (x) ∝ e−
µ
4D

(x2− γ
µ

)2 , (6)

pB(x) ∝ e−
µ
4D
x4 . (7)

That is, FP has a stationary bimodal distribution peaked at x = ±
√

γ
µ
, which can be

approximated as a double Gaussian for small D as follows:

pF (x) ∼
√
βF

2
√
π

[
e−βF (x+

√
γ
µ)

2

+ e−βF (x−
√

γ
µ)

2
]
, (8)

where βF = γ
D

. Eq. (8) represents the sum of the two Gaussians (double Gaussian) with

the peak at ±
√

γ
µ

and variance σF = 〈x2〉 − 〈x〉2 = D
2γ

= 1
2βF

. In comparison, BP has a

unimodal quartic exponential PDF centered around x = 0 in equilibrium. To model a cyclic

transition between ordered and disordered states, we use pB(x) as an initial distribution for

FP and pF (x) for BP, respectively. Consequently, the initial PDFs in both FP and BP are

strongly out of equilibrium. We investigate time-dependent PDFs and information length

during this transient relaxation. In particular, we are interested in how L depends on the

deviation from the critical value (γ) and the strength of the stochastic noise (D). Table 1
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summarizes the value of λ in Eq. (3) and initial conditions for FP and BP, together with

the variance σ = 〈x2〉 − 〈x〉2 of the initial and final PDFs, where the angular brackets

denote the average over the stochastic noise ξ. We note that for small D, the equilibrium

variance for FP, D/2γ, is much smaller than that for BP, 2
√
D/µΓ

(
3
4

)
/Γ
(

1
4

)
.

Case λ p(x, 0) p(x, t→∞) σ0 σF

FP −γ pB(x) pF (x) 2
√
D/µΓ

(
3
4

)
/Γ
(

1
4

)
D/2γ

BP 0 pF (x) pB(x) D/2γ 2
√
D/µΓ

(
3
4

)
/Γ
(

1
4

)
TABLE I: Summary of FP, BP: FP and BP have equilibrium PDFs (in the limit of

t→∞), pF and pB, respectively. FP and BP start with the initial PDFs, p(x, 0) = pB and

p(x, 0) = pF , respectively and reach the equilibrium PDFs, p(x, t→∞) = pF and pB,

respectively. pF and pB have equilibrium variances, D/2γ and 2
√
D/µΓ

(
3
4

)
/Γ
(

1
4

)
,

respectively. σ0 and σF are the initial and final variances at t = 0 and t→∞, respectively,

for each process.

III. TIME-EVOLUTION OF PDFS

To solve Eq. (5) numerically, we note first that γ, D and t can always be rescaled

such that µ = 1, thereby reducing the number of parameters that need to be explored to

only γ and D. Any numerical solution also requires x to be restricted to a finite interval,

which can always be rescaled to x ∈ [−1, 1] without any loss of generality. If γ and D

are chosen such that pF (x) is restricted well away from the boundaries |x| = 1, then

this finite interval in x is an excellent match to the analytically more convenient infinite

extent. Taking γ ≤ 0.7 and D ≤ 10−3 ensures that the bimodal peaks at x = ±√γ

are still sufficiently far from the boundaries, and sufficiently narrow, that p = 0 can

simply be imposed as the boundary condition at x = ±1. The details of the numerical

implementation then involve second-order finite-differencing in x and t, using up to O(106)

grid-points in space, and time-steps as small as O(10−7). This spatial resolution allows

D to be reduced down to 10−7 while still fully resolving the bimodal peaks of width O(D1/2).
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A. Overall comparison of FP and BP

One of the most significant differences between FP and BP is the timescale on which

the process evolves and settles in. There are many diagnostic quantities that could be used

to quantify this, but a useful one is simply the ratio
√
〈x4〉/〈x2〉. This can be evaluated

analytically for the two endstates, yielding 1.48 for pB(x) and 1 for pF (x) (taking D � 1).

The evolution in time must therefore be that FP is 1.48 → 1 and BP is 1 → 1.48, and the

question is on what timescales this happens.

As shown in Fig. 1(a), for FP the dependence on D is such that every reduction in D by a

factor of 100 shifts the curves by a constant amount in t. That is, the ratio does not deviate

significantly from 1.48 until a time c lnD−1 has elapsed, but except for this shift the three

curves are essentially identical. The numerically determined value of c is 0.355 and is very

close to the factor of 1
4γ

= 0.357 in t2 in Eq. (23), discussed later. It is interesting that this

value of c is exactly half of that in [41], but otherwise the scaling with D is the same. The

reason for the faster adjustment in this case is because the initial condition already starts

out much broader, with a width O(D1/4) here as opposed to O(D1/2) in [41]. We recall that

x = 0 is an unstable equilibrium point when ξ = 0, and the instability slowly builds up

due to ξ (e.g. see [46, 47]) and a finite width of the initial PDF until t ∝ O(| lnD|). If the

initial condition is already broader, then it is not surprising that the instability can develop

sooner. However, this factor of half in the settling time does not mean that the evolution

of PDFs in on- and off-quenching processes has any similarity. In fact, we will show

that they are quite different and that the off-quenching cannot simply be made up of the

two phases where effectively λ = γ → 0 and λ = 0→ −γ (as for the on-quenching case here).

Fig. 1(b) shows that for BP the dependence on D is very different, with every reduction

in D by a factor of 100 shifting the curves by a factor of 10; that is, time scales as

D−1/2. The backward process is initially driven by the movement of the two peaks towards

x = 0 before diffusion becomes crucial in forming a single peak at x = 0; it is this final

diffusive adjustment process that requires an O(D−1/2) time to happen. This is in sharp

contrast with the results in [41], where FP and BP both exhibited the same c lnD−1 scaling

(and even with the same value of c). In comparison with the off-quenching in [41], the
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on-quenching considered here thus has a forward process that is faster by a factor of 2, but

a backward process that is much slower, with a completely different D−1/2 as opposed to

lnD−1 scaling.

0 2 4 6 8 10 12
1.0

1.1

1.2

1.3

1.4

1.5

D=10
−3

D=10
−7

(a)

t

<
 x

4
 >

1
/2

 /
 <

 x
2
 >

10
−1

10
0

10
1

10
2

10
3

10
4

1.0

1.1

1.2

1.3

1.4

1.5

D=10
−3

D=10
−7

(b)

t
<

 x
4
 >

1
/2

 /
 <

 x
2
 >

FIG. 1: The ratio
√
〈x4〉/〈x2〉 as a function of t, for the three values D = 10−3 (red), 10−5

(blue) and 10−7 (black). Panel (a) shows FP with t on a linear scale, (b) shows BP with t

on a logarithmic scale. All six curves are for γ = 0.7. The three dots on each curve

correspond to the solutions shown in Figs. 2 and 3. The central dot is always when√
〈x4〉/〈x2〉 = 1.25. In (a) the other two dots are at t± 1 relative to the central one; in (b)

they are at t/2 and 2t relative to the central one.

B. PDF of Forward Process

Fig. 2 shows the structure of p(x, t) for FP. The particular times are chosen to take

the shift c lnD−1 into account; that is, different values of D are shown at the times where

they have the same ratios
√
〈x4〉/〈x2〉. The results are seen to be identical for the three

different values of D. The initial condition obviously does depend on D (as indicated also

by the red curves), but once a certain broadening has occurred, in this time frame c lnD−1,

the subsequent evolution is independent of D, relying only on the instability process (as

measured by γ). It is only in the last stages of the evolution (not shown in Fig. 2), when

the solution settles in to the final bimodal structure, that diffusion plays a role again and

determines the O(D1/2) width of the peaks. Comparing with results in [41], it is interesting
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to note also that here a double-peak emerges essentially immediately, whereas in [41] a

finite time had to elapse before the central peak split into two separate peaks. The reason

for this is that here the initial condition is at a critical state with a much broader profile

than the Gaussian profile at the subcritical state considered in [41].

−1 −0.5 0 0.5 1
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10
0

10
1

10
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x
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(x

,t
)

(a)

−1 −0.5 0 0.5 1
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p
(x
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−1 −0.5 0 0.5 1
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10
−1

10
0

10
1

10
2

x

p
(x

,t
)

(c)

FIG. 2: The PDFs for FP, for (a) D = 10−3, (b) D = 10−5, (c) D = 10−7. The initial

condition is indicated by the red central peak. Subsequent times are indicated in green,

black and blue, taking the c lnD−1 shift into account. For (a) these are t = 1.25, 2.25 and

3.25; for (b) t = 2.79, 3.79 and 4.79; for (c) t = 4.43, 5.43 and 6.43. The middle time (the

black line) is always when the ratio
√
〈x4〉/〈x2〉 = 1.25; the green line is always t− 1

relative to that, and the black line is t+ 1. See also the three dots on each curve in

Fig. 1(a).

To understand these results better, it is of value to perform analytical analysis in the limit-

ing cases. To this end, we transform the nonlinear term in Eq. (3) into a linear (anti)damping

term [45] by seeking a variable y such that Eq. (3) becomes dy/dt = γy+ ξF (y) where F (y)

is a function of y. We then easily show that dy/dx = γy/(γx− µx3) which has the solution

x = y/
√

1 + αy2 (α = µ
γ
). Specifically, y satisfies

dy

dt
= γy + ξ(1 + αy2)

3
2 . (9)

Eq. (9) provides a convenient way of computing the PDF of x through y by approximating

ξ(1+αy2)
3
2 ∼ ξ for small y [46]. Thus, to leading order y is a Gaussian process, simply given
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by the Ornstein–Uhlenbeck process [44] with a negative damping. The transition probability

is thus Gaussian:

p(y, t; y0, 0) =

√
β1

π
e−β1(y−y0)2 , (10)

where y0 = x0√
1−αx20

and 1
β1(t)

= D
γ

(e2γt − 1).

By using the conservation of the probability p(x, t)dx = p(y, t)dy and Eq. (10), we obtain

the transition probability of x as follows:

p(x, t;x0, 0) =
1

(1− αx2)
3
2

√
β1

π
exp

−β1

(
x√

1− αx2
− x0√

1− αx2
0

eγt

)2
 , (11)

which recovers the previous results [46, 47] when α = 1 and x0 = 0.

To obtain a (marginal) PDF of x, we recall that FP has an initial PDF given by a quartic

exponential:

p(x0, 0) = Mβ
1
4
0 e
−β0x40 . (12)

Here, β0 = µ
4D

; M = 2Γ
(

1
4

)−1
is a normalisation constant where Γ(x) is the Gamma function.

Eqs. (10) and (12) then give:

p(x, t) = Mβ
1
4
0

√
β1

π

∫ ∞
−∞

dx0
1

(1− αx2)
3
2

exp

−β1

(
x√

1− αx2
− x0√

1− αx2
0

eγt

)2
 e−β0x40 .

(13)

Here, 1
β1(t)

= D
γ

(e2γt − 1).

We now show that the initial quartic exponential PDF (12) undergoes roughly two stages

of the time evolution: stage (i) driven by diffusion/advection with the continuous movement

of the PDF peak from x = 0 towards
√

γ
µ
, and then stage (ii) of settling into an equilibrium

PDF with the adjustment of the PDF shape. To this end, we examine the behaviour of

p(x, t) in Eq. (13) for a sufficiently small β1 such that

β1 =
γ

D(e2γt − 1)
� 1. (14)
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Eq. (14) will later be shown to be valid in stage (i) (e.g. for t < t2 where t2 is defined in

Eq. (23)). By using Eq. (14), we can approximate the exponential function in Eq. (13):√
β1

π
exp

−β1

(
x√

1− αx2
− x0√

1− αx2
0

eγt

)2
 ∼ δ

(
x√

1− αx2
− x0√

1− αx2
0

eγt

)

= e−γt(1− αx2)
3
2 (1− αx2)−

3
2 δ

(
x0 −

xe−γt√
1− αx2

)
, (15)

where

α ≡ α(1− e−2γt). (16)

Then, using Eq. (15) in Eq. (13) gives us

p(x, t) ∼ Mβ
1
4
0

e−γt

(1− αx2)
3
2

e
−β0e−4γt

(
x2

1−αx2

)2

≡Mβ
1
4
0 e
−γte−ψ, (17)

where ψ is defined by

ψ = β0e
−4γt

(
x2

1− αx2

)2

+
3

2
ln (1− αx2). (18)

By using α = 0 at t = 0, we can easily show that Eq. (17) matches the initial PDF p(x, 0)

at t = 0 in Eq. (12). From ∂ψ
∂x
|x=x1,2 = 0, we find the value of x = x1,2 where the PDF takes

its local maximum or minimum:

x1 = 0, 4β0e
−4γtx2

2 = 3α(1− αx2
2)2. (19)

Since ∂xx ln p(x, t) = −∂xxψ > 0 at x = 0, x = x1 = 0 is a local minimum of p(x, t) for all

t > 0. On the other hand, two values of x2 (note αx2
2 < 1) represent the location of the

local maximum in x > 0 and x < 0, respectively. Thus, x = x1 = 0, the (global) maximum

at t = 0, becomes a local minimum for any infinitesimal time t > 0, two peaks forming at

x2. For instance, for αx2
2 � 1, we can easily show that

x2
2 ∼

3D

γ

(
e4γt − e2γt

)
. (20)

This reveals the diffusive nature of the peak movement from x = 0 due to instability γ

towards the equilibrium value ±
√

γ
µ
. In the limit of a very small time t � 1

4γ
, Eq. (20)

gives x2 ∼ ±
√

6Dt by using e−2γt = 1 − 2γt + . . . and β0 = µ
4D

, showing that the initial

movement of the two peaks is via random walk. Our numerical solutions confirmed the

predicted scaling of x2 ∝ D1/2 in Eq. (20) as well as x2 ∝
√
Dt for small time, followed by

11
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almost exponential increase (no figure is shown here).

To examine the evolution in more detail, we consider the characteristic time t2 where the

width of the PDF in Eq. (17) becomes comparable to the peak position x2 in Eq. (20). To

estimate the PDF width R in Eq. (17), we find x = R when the exponent becomes unity:

1 ∼ β0e
−4γt

(
x2

1− αx2

)2

∼ β0e
−4γtx4, (21)

for αx2 � 1. We then find x = R from Eq. (21) as

R2 ∼ e2γt

(
4D

µ

)1/2

. (22)

By equating R in Eq. (22) and x2 in Eq. (20) and using e4γt − e2γt ∼ e4γt for γt � 1, we

find the characteristic time t2 as follows:

t2 ∼
1

4γ
ln

(
4γ2

3µD

)
, (23)

where β0 = µ
4D

was used. For γ = 0.7 and D = 10−3, 10−5, 10−7, t2 = 2.3, 3.9, 5.6.

Notably, the value of t2 will later be shown to be very close to the other time scales tm

signifying order formation. t2 in Eq. (23) marks the time when the peak position becomes

comparable to the rms (Gaussian) fluctuation. For t � t2, PDF in settling into the final

equilibrium PDF is approximated by the Gaussian [46]. We have confirmed this prediction

from our numerical solutions (as discussed in more detail later). Finally, we have checked

that Eq. (14) is valid for t2 given in Eq. (23).

C. PDF of Backward Process

We recall that BP starts with a bimodal PDF pF which has two peaks at ±
√
γ/µ, which

is the final equilibrium PDF of FP. For sufficiently small D, the distance between these two

peaks is much larger than the width of the PDFs and are thus well separated so that PDF

is approximated as the sum of the two Gaussian (double Gaussian) PDFs given by Eq. (8).

The latter evolve almost independently in x > 0 and x < 0, respectively, until t ∼ O(1) when

PDFs undergo significant change in the shape with large fluctuation. Since the Gaussian

evolution is completely determined by mean value and variance, we now compute mean

12
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value and variance in x > 0 or x < 0 separately by taking advantage of small fluctuations

compared to mean value. Specifically, we let x = z+δx where z = 〈x〉 is the mean component

averaged over ξ and the initial PDF in x > 0 (or x < 0) while δx is the fluctuation 〈δx〉 = 0.

This gives us

dz

dt
= −µz3 − 3µ〈(δx)2〉 ∼ −µz3, (24)

dσ

dt
= −6µz2σ + 2D. (25)

The solutions to Eqs. (24) and (25) are as follows (c.f. [48]):

z(t) =
z0

(1 + 2µz2
0t)

1/2
,

σ(t) =
σ0

G′(t)
+ 2D

G(t)

G′(t)
, (26)

where G′(t) = (1 + 2µz2
0t)

3 and G =
∫ t

0
G′(t) dt, z0 =

√
γ
µ

and σ0 = D
2γ

(see Eq. (8) and

Table 1). Eqs. (25) and (26) will be used for computing L in the next section.

We show p(x, t) for BP in Fig. 3. We choose the particular times again to take the

D−1/2 scaling into account, and show results at the times where they have the same ratios√
〈x4〉/〈x2〉. The initial evolution (not shown in Fig. 3) consists simply of a motion toward

the origin, with the width of the peaks remaining O(D1/2). The scaling of this movement

is found to be consistent with the prediction in Eq. (26).

Once the peaks get within a distance D1/4 of the origin they start to sense the presence

of the potential well, and diffusion starts to collapse them to a single peak. As seen in

Fig. 3, if x is rescaled as D1/4, and p correspondingly rescaled as D−1/4, then the results

again look the same for all three values of D. This final diffusive adjustment to the single

central peak is very slow though, resulting in the D−1/2 scaling in time.

D. Energy Diagnostics

We now elucidate the role of the linear growth term (positive feedback) and cubic damping

(negative feedback) in FP in energy balance and geodesic. To this end, we multiply Eq. (3)

13
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FIG. 3: The PDFs for BP, for (a) D = 10−3, (b) D = 10−5, (c) D = 10−7. The times are

indicated in green, black and blue, taking the D−1/2 shift into account. For (a) these are

t = 6.4, 12.8 and 25.6; for (b) t = 67, 134 and 268; for (c) t = 675, 1350 and 2700. The

middle time (the black line) is always when the ratio
√
〈x4〉/〈x2〉 = 1.25; the green line is

always t/2 relative to that, and the black line is 2t. See also the three dots on each curve

in Fig. 1(b). Note finally how x and p have been rescaled according to D±1/4.
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FIG. 4: (a) H = 0.7〈x2〉 − 〈x4〉 as a function of time for FP. (b) ∆ =
√
〈x4〉 − 〈x2〉 as a

function of time for FP. (c) −H = 〈x4〉 as a function of time for BP. (d) ∆ =
√
〈x4〉 − 〈x2〉

as a function of time for BP.

by x and take the average over ξ and initial condition to obtain the following equation

1

2

d〈x2〉
dt

= γ〈x2〉 − µ〈x4〉+D. (27)

Here, the last term D, representing the rate of energy injection by ξ, was calculated as

〈ξ(t)x(t)〉 = 〈ξ(t)
∫ t

0
dt1[γx(t1) − µx(t1)3 + ξ(t1)]〉 = D (also confirmed by the numerical

calculations). The middle term γ〈x2〉 − µ〈x4〉 ≡ H represents the energy into the system

14
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or environment, depending on the sign. When H > 0, the energy goes into the system,

contributing to the increase in 〈x2〉; when H < 0, the energy is dissipated in the system,

increasing heat in the environment.

Fig. 4(a) shows H = γ〈x2〉 − µ〈x4〉 for D = 10−3, 10−5, 10−7. Unlike 〈x2〉 and 〈x4〉,

which each increase monotonically in time, H reaches a peak at some time t = tm,

and then decreases to the negative value −D in settling in to the equilibrium PDF.

The maximum H signifies when the positive feedback by the linear growth rate most

dominates over the negative feedback by the nonlinear damping. It is notable that

the times tm = 2.6, 4.3, 5.9 in Fig. 4(a) for the maximum H are similar to the times

t2 = 2.3, 3.9, 5.6 given in Eq. (23), with both exhibiting the same c lnD−1 (c = 1/4γ) scal-

ing. tm will also be shown to be very close to the time for the maximum entropy in Section V.

Physically, tm ∼ t2 signifies the start of order formation. Another diagnostic for the

latter is ∆ =
√
〈x4〉− 〈x2〉, also shown in Fig. 4(b), where similar non-monotonic behaviour

is prominent, with ∆ peaking at the same times as H. This large fluctuation ∆ signifies

the phase transition from disordered to ordered states due to the development of the two

peaks, which occurs on timescales increasing with c lnD−1 as discussed above.

For BP, H = −〈x4〉 and ∆ in Fig. 4(c)-(d) are monotonic during the return to the

disordered state. The monotonic evolution of H and ∆ for BP is also reflected in the

evolution of the differential entropy in Section V.

IV. INFORMATION LENGTH

We calculate information length in Eq. (1) and explore geometric structure during

phase transition. Figs. 5 and 6, for FP and BP respectively, show how E and L evolve

in time, as well as how the total L(t → ∞) = L∞ depends on γ. Since FP and

BP switch between λ = 0 and −γ 6= 0, γ in Figs. 5-6 always refers to the non-zero

value. We are especially interested also in comparing the on-quenching results computed

here with the previous off-quenching results from [41], shown as the dashed lines in Figs. 5-6.

15
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A. Forward Process

For FP, it is useful to consider times less than or greater than t2 in Eq. (23) separately,

by approximating the time-dependent PDF as a quartic exponential and Gaussian in t < t2

and t > t2, respectively. First, for t < t2, by ignoring the contribution from the mean value

〈y〉 = z compared with that from the variance, we obtain τ(t) in Eq. (2) (see Appendix B):

1

[τ(t)]2
∼ 1

4β(t)2

(
dβ

dt

)2

. (28)

Eqs. (2), (23) and (28) then give L between the time t = 0 and t ∼ t2:

L(t2) ∼ 1

2

∣∣∣∣ln(β0e
−4γt2

β0

)∣∣∣∣ ∼ 1

2

∣∣∣∣ln(3µD

γ2

)∣∣∣∣ =
1

2
ln

(
γ2

3µD

)
. (29)

On the other hand, during the time between t ∼ t2 and t → ∞, the PDF settles into the

double Gaussians so that we can estimate the total L between t ∼ t2 and t → ∞ by using

Eq. (C1) (see Appendix C) as

L∞ − L(t ∼ t2) ∼ 1√
2

∣∣∣∣ln( σ(t2)

σ(t→∞)

)∣∣∣∣ ∼ 1√
2

ln

[
2γ2Γ

(
3
4

)
√

3µD Γ
(

1
4

)], (30)

where σ(t2) =
Γ( 3

4)
Γ( 1

4)
1√

2β0e−4γt2
=

Γ( 3
4)

Γ( 1
4)

√
4γ2

3µ2
for FP (see above), α = µ

γ
and σ(t → ∞) = D

2γ

were used. Eqs. (29) and (30) have the same dependence on D, µ and γ. The sum of

Eqs. (29) and (30) gives the total

L∞ ∼ −1.2 +

√
2 + 1

2
ln

(
γ2

D

)
, (31)

when µ = 1 and numerical values for the Γ functions are inserted.

Fig. 5 shows the numerically computed E and L for FP. We see how E starts out

essentially constant, corresponding to a geodesic solution [27]. This constant plateau

continues until the O(| lnD|) equilibration timescale previously also seen in Fig. 1. After

this time E decreases exponentially. Comparing E here with the previous off-quenching

results, we notice three differences: (a) the previous initial adjustment before the plateau

regime is absent here, and the curves are essentially flat from the initial condition onward;
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(b) the plateau here is higher than before; (c) the equilibration, and hence the exponential

decrease in E , happens sooner.

Turning to L next, the combination that the plateau is higher, but ends sooner, has the

interesting consequence that initially L is greater than in the off-quenching case, but the

final values L∞ are always lower. Fig. 5(c) shows the variation of L∞ with γ, and the same

pattern persists throughout; L∞ is consistently ∼ 1 less than before, with the resulting

best-fit formula

L∞ ≈ 2.1 ln γ − 1.05 lnD. (32)

The coefficients of ln γ and lnD are both in generally good agreement with the analytic

predictions from Eq. (31), which has 2.4 and −1.2. The constant terms, 0 versus −1.2,

match less well, but this term is also strongly affected by the best fit to the lnD term,

since e.g. | ln 10−7| = 16 is already as large as the largest L∞ values. (Note finally that the

deviation from straight lines for large D and small γ has the same origin as before in [41]:

the ‘initial’ and ‘final’ states are then so broad (large D) and so close to each other (small

γ) that they overlap, causing the dynamics to be different, but also not very interesting in

this regime.)

B. Backward Process

Fig. 6 shows corresponding results for BP. E now starts off lower than in the off-quenching

case, but the final equilibration is much slower, again as seen previously in Fig. 1. The

result of the initially smaller E is that for small times L is a factor of 2 less than in the

off-quenching case. See also Eq. (33) below, which confirms this analytically. Because the

equilibration is so slow though, there is an additional contribution to L∞ that is not present

before. Curiously, this seems to result in the final L∞ values always being a factor of 1.5

less than in the off-quenching case. The precise origin of this particular factor, or indeed

why it is always the same, independent of D, is not fully understood. As seen in Fig. 6(c),

the results are summarized by the formula L∞ ≈ 0.9γD−1/2.
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FIG. 5: (a) and (b) show E and L, respectively, as functions of time, for γ = 0.7. (c)

shows L∞ as a function of γ. All three panels are for FP only. The solid lines are the

on-quenching process considered here; the dashed lines are for the off-quenching process

considered in [41]. D = 10−3 to 10−7 as indicated. Note the different combinations of

linear and logarithmic scales to emphasize different features in different quantities.

To quantify this scaling, we use Eq. (C1) with Eq. (C12) and z ∼ 0:

L∞ ∼
∫ ∞

0

dt
1

σ

dz

dt

∼ c1(z0)

∫ ∞
0

dt√
σ0 + 2DG

∼ µz3
0

∫ 1
2γ

0

dt√
σ0 + 2Dt

∼
√

3− 1√
2

γ√
µD

, (33)

where σ0 = D
2γ

for BP (see Table 1) was used. The variation with γ and D is exactly as

in the numerical results, whereas the constant factor is an under-estimate, 0.5 versus 0.9.

Given that Eq. (33) only represents the early-time contribution to L though, we would

expect the true L∞ to be larger.

V. DIFFERENTIAL ENTROPY AND FISHER INFORMATION

Entropy is most commonly used to describe complexity. In a continuous system, it is

given by the (Gibbs) differential entropy (e.g. see [49]) defined by

S(t) = −
∫
dx p(x, t) ln p(x, t). (34)
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FIG. 6: (a) and (b) show E and L, respectively, as functions of time, for γ = 0.7. (c)

shows L∞ as a function of γ. All three panels are for BP only. The solid lines are the

on-quenching process considered here; the dashed lines are for the off-quenching process

considered in [41]. D = 10−3 to 10−7 as indicated.

Here we use units in which the Boltzmann constant KB = 1. Unlike the usual entropy,

the absolute value of the differential entropy does not have a physical meaning, only the

difference between two values of the differential entropy being meaningful.

To elucidate the difference in S between the critical and subcritical states, we use equi-

librium PDFs of FP and BP (pF and pB in Eqs. (8) and (7), respectively) and quantify the

difference between S(t = 0) and S(t→∞) in FP and BP. For the equilibrium of FP pF in

Eq. (8), we can show that the entropy Eq. (34) takes the following form [49]

SF =
1

2

[
1 + ln

π

βF

]
+ 2βFx

2
0

[
1− erf(

√
βFx0)

]
−
√
βF
π

2x0e
−βF x20 + ∆. (35)

Here, erf(x) = 2√
π

∫ x
0
du exp(−u2) is the error function; βF = γ/D; ∆ is a function of βF

and x0, taking the value 0 ≤ ∆ ≤ ln 2. For a sufficiently narrow PDF with βFx
2
0 � 1, ∆

takes the maximum value ln 2 (see [49]). Since in this limit βFx
2
0 � 1, erf(

√
βFx0) → 1,

Eq. (35) is simplified as

SF ∼
1

2

[
1 + ln

π

βF

]
+ ln 2 =

1

2

[
1 + ln

πD

γ

]
+ ln 2. (36)

For small values of D as used in our numerical computations, SF is negative, signifying a

strongly localised PDF.
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For BF, for simplicity we use the final equilibrium pB in Eq. (7) or (12) and βB = γ
2D

to

obtain the differential entropy SB

SB = −
∫ ∞
−∞

dx pB ln pB =
1

4

[
ln

Γ
(

1
4

)
2

+ 1 + ln
4D

µ

]
. (37)

For small D, SF ∼ 1
2

ln Dπ
γ

while SB ∼ ln 4D
µ

. Thus, the difference in differential entropy

between pF and pB is

∆S = SF − SB =
1

4
ln
Dµπ

γ2
, (38)

which is negative for small D. That is, the quartic exponential PDF at the critical state

has much larger entropy than the bimodal PDF at the subcritical state.
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FIG. 7: (a) Entropy S(t) for FP; (b) Fisher information I(t) for FP; (c) Entropy S(t) for

BP; (d) Fisher information I(t) for BP. Note how S and I are essentially opposites of each

other. Again also note how the equilibration timescale is O(lnD−1) for FP, and O(D−1/2)

for BP.

Fig. 7 shows the time evolution of (Gibbs) differential entropy defined by Eq. (34).

As theoretically predicted above, we see much larger difference between the initial and

final states compared with the off-quenching case [41]. It is interesting to observe that

for the forward process, S takes its maximum values at times 2.4, 4.0, and 5.5, very close

to whereH took its maximum values, and both broadly following the t2 scaling from Eq. (23).

To complement S(t), we also show in Fig. 7 the Fisher information defined by

I(t) =

∫
1

p

[
∂p(x, t)

∂x

]2

dx. (39)
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As the Fisher information measures the degree of ‘order’, increasing as the PDF develops

large gradients, it shows the opposite tendency to S(t), which increases with the degree of

‘disorder’. In particular, the Fisher information I(t) in Fig. 7(b) for FP takes the minimum

value around tm where the entropy S(t) is maximum and starts increasing beyond t > tm.

These results thus confirm that tm marks the start of the formation of order, as noted

previously.

VI. CONCLUSION

We investigated information geometry associated with order-to-disorder and disorder-

to-order transitions in a 0D Ginzburg-Landau model where the formation (disappearance)

of an ordered state is modelled by the transition from a unimodal (bimodal) to bimodal

(unimodal) PDF of a stochastic variable x. Our 0D model permitted us to perform a

detailed statistical analysis. We considered on-critical quenching with a pair of forward

and backward processes FP and BP for disorder-to-order (critical to subcritical) and order-

to-disorder (subcritical to critical) transitions, respectively by selecting the initial PDF of

FP/BP the same as the final equilibrium PDF of BP/FP. A pair of disorder-to-order and

order-to-disorder transitions models a burst, for example, in the gene expression consisting

of a pair of induction and repression (e.g. see [50]). In such bistable systems, a continuous

switching between ordered and disordered states is often observed, the transition occurring

in bursts interspersed by a quiescent period (e.g. see [50]). For our cyclic order-disorder

transition, an initial condition represents the ‘resting’ state between the two bursts. We

thus paid particular attention to the effect of initial conditions on information change by

comparing on-quenching and off-quenching cases.

We showed that FP and BP exhibit strikingly different evolution of time-dependent PDFs

during transient relaxation due to non-equilibrium initial PDFs. In particular, FP driven

by instability undergoes the broadening of the PDF with large increase in (anomalous)

fluctuations before the transition to the ordered state accompanied by narrowing the PDF

width/decreased fluctuation. This large fluctuation essentially facilitates the existence of

a geodesic solution in FP. This geodesic solution is a result of the self-regulation between
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the positive feedback (γx) and the negative feedback (−µx3) which regulate each other,

minimising the information change. In a biological context, this minimal geodesic path

could be understood in terms of ‘fitness’ in the growth phase (e.g. gene expression). This

suggests that the predator-prey type self-regulation with a nonlinear interaction facilitates

a geodesic. In comparison, BP is mainly driven by the macroscopic motion due to the

movement of the PDF peak, with much less prominent appearance of a geodesic solution.

Specifically, the information length L was found to be much larger in BP than in FP,

scaling as 0.9γD−1/2 for BP, but only 2.1 ln(γD−1/2) for FP, where D is the strength of an

additive stochastic noise with a short correlation time. These results demonstrate a great

advantage of L in revealing different physical processes (diffusion/advection) and different

role of diffusion D in transition.

To elucidate the importance of the initial condition between two bursts in cyclic tran-

sition, we summarise the striking differences between on-quenching and off-quenching as

follows: i) for FP, double-peaks emerge essentially immediately in on-quenching compared

to their appearance only after a finite time in off-quenching; ii) for FP, the on-quenching has

the equilibration time shorter by a factor of 2 and information length L∞ slightly less than

in off-quenching; iii) for BP, the equilibration time is much longer in on-quenching than in

off-quenching, because the final state is at critical; iv) for BP, the information length L∞ is

nevertheless reduced by a factor of 1.5 than in off-quenching. It is worth noting that from

the perspective of a system’s ‘fitness’, the result ii) could be advantageous when adjusting

to a changing environment is costly, and thus the minimum total change (measured by L∞)

and the minimum equilibration time are beneficial (see below). We highlight that L∞ is a

‘Lagrangian’ measure that quantifies the total change in information content in the system

over time. We discuss this further in the following.

We note that our control parameter models the effect of environment (e.g. the tempera-

ture of the heat bath, etc) and thus a sudden change in the control parameter represents a

sudden change in environment. The time-evolution of PDFs occurs in order for the system

to reach a new equilibrium state as the equilibrium state is optimal for the given new

parameter (for the new environment). On the other hand, the smaller information length

represents the smaller number of different states that a system undergoes to reach this
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new equilibrium state. Intriguingly, these seem to be closely related to the novel concept

in microbial metabolism that states evolve under the trade-off between two principles:

optimality under one given condition and minimal adjustment between conditions [51].

That is, when an environment changes, the initial state (optimal for the old environment)

should change to the new optimal state (the final equilibrium) by undergoing time-evolution.

And the smaller the information length, the less change in the system in adjustment. Thus

our results suggest that the initial “critical” state would be more advantageous for the

system in changing environment.

Finally, in future work it is planned to extend this model to more realistic cases (e.g. 1D

or 2D models, a system of coupled equations, etc.).

Appendix A: Relation between L and relative entropy

We first show the relation between τ(t) in Eq. (2) and the second derivative of the relative

entropy (or Kullback-Leibler divergence) D(p1, p2) =
∫
dx p2 ln (p2/p1) where p1 = p(x, t1)

and p2 = p(x, t2) as follows:

∂

∂t1
D(p1, p2) = −

∫
dxp2

∂t1p1

p1

, (A1)

∂2

∂t21
D(p1, p2) =

∫
dxp2

[
(∂t1p1)2

p2
1

−
∂2
t1
p1

p1

]
, (A2)

∂

∂t2
D(p1, p2) =

∫
dx [∂t2p2 + ∂t2p2(ln p2 − ln p1)] , (A3)

∂2

∂t22
D(p1, p2) =

∫
dx

[
∂2
t2
p2 +

(∂t2p2)2

p2

+ ∂2
t2
p2(ln p2 − ln p1)

]
. (A4)

By taking the limit where t2 → t1 = t (p2 → p1 = p) and by using the total probability

conservation (e.g.
∫
dx∂tp = 0), Eqs. (A1) and (A3) above lead to

lim
t2→t1=t

∂

∂t1
D(p1, p2) = lim

t2→t1=t

∂

∂t2
D(p1, p2) =

∫
dx∂tp = 0,

while Eqs. (A2) and (A4) give

lim
t2→t1=t

∂2

∂t21
D(p1, p2) = lim

t2→t1=t

∂2

∂t22
D(p1, p2) =

∫
dx

(∂tp)
2

p
.
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See also [37] for similar derivation.

To link this to information length L, we then express D(p1, p2) for small dt = t2 − t1 as

D(p1, p2) =

[∫
dx

(∂t1p(x, t1))2

p

]
(dt)2 +O((dt)3), (A5)

where O((dt)3) is higher order term in dt. We define the infinitesimal distance (information

length) dl(t1) between t1 and t1 + dt by

dl(t1) =
√
D(p1, p2) =

√∫
dx

(∂tp)2

p
dt+O((dt)3/2). (A6)

The total change in information between time 0 and t is then obtained by summing over

dt(t1) and then taking the limit of dt→ 0 as

L(t) = lim
dt→0

[dl(0) + dl(dt) + dl(2dt) + dl(3dt) + · · ·dl(t− dt)]

= lim
dt→0

[√
D(p(x, 0), p(x, dt)) +

√
D(p(x, dt), p(x, 2dt)) + · · ·

√
D(p(x, t− dt), p(x, t))

]
∝
∫ t

0

dt1

√∫
dx

(∂t1p)
2

p
. (A7)

Appendix B: Derivation of Eq. (28)

For small αx2 < 1, we approximate p(x, t) in Eq. (17)

p(x, t) ∼ Mβ
1
4
0

e−γt

(1− αx2)
3
2

e
−β0e−4γt

(
x2

1−αx2

)2

∼ Mβ(t)
1
4 e−β(t)x4 , (B1)

where the normalisation factor M and β(t) are

M = 2

[
Γ

(
1

4

)]−1

,

β(t) = β0e
−γt,

β0 =
µ

4D
. (B2)

Then,
∂p

∂t
=
dβ(t)

dt

(
1

4β
− x4

)
p(x, t). (B3)
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Thus, Eq. (2) becomes

1

[τ(t)]2
=

∫
dx

1

p(x, t)

[
∂p(x, t)

∂t

]2

= β̇2

[
1

16β2
− 1

2β
〈x4〉+ 〈x8〉

]
=

β̇2

4β2
. (B4)

Here, we used 〈x4〉 = 1
4β

and 〈x8〉 = 5
16β2 ; the dot denotes the time derivative. Thus, using

Eqs. (B3) and (B4) in L(t) in Eq. (1) gives us

L(t) =

∫ t

0

dt1
1

2β

dβ(t)

dt
=

1

2

∣∣∣∣ln( β(t)

β(t = 0)

)∣∣∣∣. (B5)

Appendix C: Properties of the sum of two Gaussian PDFs

We recall that for a single Gaussian PDF with mean value z = 〈x〉 and variance σ =

〈(δx)2〉, τ in Eq. (2) is given by (e.g. [26, 27])

1

[τ(t)]2
=

1

2β(t)2

(
dσ

dt

)2

+ 2β

(
dz

dt

)2

=
1

2σ(t)2

(
dσ

dt

)2

+
1

σ

(
dz

dt

)2

. (C1)

Here, σ = 1/2β.

We now show the information length for double Gaussian PDFs which are well-separated

is approximately the same as that for a single Gaussian PDF. To this end, for a double

Gaussian, we let

p = p1 + p2 = N(t)[p̃1 + p̃2],

N(t) =

√
β(t)

2
√
π
,

p̃1 = e−β(t)(x+x0)2 = e−β(t)x21 ,

p̃2 = e−β(t)(x−x0)2 = e−β(t)x22 . (C2)

Here, N is the normalisation constant (e.g. N−1 =
∫
dx(p̃1 + p̃2)) and x1 = x + x0 and

x2 = x− x0.

25

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 June 2017                   doi:10.20944/preprints201706.0020.v1

Peer-reviewed version available at Entropy 2017, 19, , 268; doi:10.3390/e19060268

http://dx.doi.org/10.20944/preprints201706.0020.v1
http://dx.doi.org/10.3390/e19060268


To show Eq. (28), we assume x0 is constant given by the peak location x0 =
√

γ
µ

in x > 0

while β = β(t) depending on time. Then, we can show

1

p(x, t)

[
∂p(x, t)

∂t

]2

=
Ṅ2

N
(p̃1 + p̃2) + 2Ṅ( ˙̃p1 + ˙̃p2) +N

( ˙̃p1 + ˙̃p2)2

p̃1 + p̃2

. (C3)

Now, we compute the various quantities in Eq. (C3) as follows:

˙̃p1 = −β̇x2
1p̃1 = β̇∂β p̃1,

( ˙̃p1)2 = β̇2p̃1∂ββ p̃1. (C4)

Similarly,

˙̃p2 = −β̇x2
2p̃2 = β̇∂β p̃2,

( ˙̃p2)2 = β̇2p̃2∂ββ p̃2. (C5)

Thus, by using Eqs. (C4) and (C5), we calculate the last term in Eq. (C3) as follows:

( ˙̃p1 + ˙̃p2)2 = β̇2 [p̃1∂ββ p̃1 + p̃2∂ββ p̃2 + 2∂β p̃1∂β p̃2] (C6)

= β̇2 [(p̃1 + p̃2)∂ββ p̃1 + (p̃1 + p̃2)∂ββ p̃2 +G1] (C7)

= β̇2 [(p̃1 + p̃2)∂ββ(p̃1 + p̃2) +G2] , (C8)

where G1 and G2 are terms involving the product of p̃1 and p̃2. For the PDF peaks that are

well-separated and thus independent, there is no overlap between p̃1 and p̃2 in x, leading to∫
dxp̃1(x)p̃2(x) = 0. That is, in this case,

∫
dxG1 =

∫
dxG2 = 0. Thus, these terms G1 and

G2 do not contribute to Eq. (2). By using these results in Eq. (2), we obtain∫
dx

1

p(x, t)

[
∂p(x, t)

∂t

]2

=
Ṅ2

N2
+ 2β̇Ṅ∂β

1

N
+Nβ̇2∂ββ

1

N
. (C9)

By using N = 1
2

√
β
π
, we simplify Eq. (C9) as

∫
dx

1

p(x, t)

[
∂p(x, t)

∂t

]2

=
β̇2

2β2
=

σ̇2

2σ2
. (C10)

Thus, Eq. (C10) is the same as Eq. (C1) in the limit z = 0. We note that Eq. (28) is

obtained by the time integral of Eq. (C10) by using the results in Appendix B.
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Next to show Eq. (30), we need to consider the case where β is constant in Eq. (C2) while

x0 = x0(t) depends on time. In this case, we have

( ˙̃p1 + ˙̃p2)2 = 4β2ẋ0
2N2

[
x2(p̃1 + p̃2)2 + 2xx0(p̃2

1 − p̃2
2) + x2

0(p̃1 − p̃2)2
]

= 4β2ẋ0
2N2

[
x2(p̃1 + p̃2)2 + 2xx0(p̃2

1 − p̃2
2) + x2

0(p̃1 + p̃2)2 +G3

]
, (C11)

where G3 is a function depending on the product of p̃1 and p̃2, which vanishes upon integral

over x when p̃1 and p̃2 are well-separated with negligible overlap. In this case,∫
dx

1

p(x, t)

[
∂p(x, t)

∂t

]2

= 4β2ẋ0
2N

∫
dx
[
(x+ x0)2p̃1 + (x− x0)2p̃2

]
= −4β2ẋ0

2N∂β

∫
dx (p̃1 + p̃2)

= −4β2ẋ0
2N∂β

1

N

= 2βẋ0
2, (C12)

where we used N = 1
2

√
β
π

and thus ∂β
1
N

= − 1
2βN

. Eq. (C12) is the same as Eq. (C1) in the

opposite limit where z = x0 and β̇ = 0.
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