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Abstract: There are currently around 78 Nuclear Power Plants (NPP) in the world based on Boiling 12 
Water Reactors (BWR). The current parameter to assess BWR instability issues is the linear Decay 13 
Ratio (DR). However, it is well known that BWRs are complex non-linear dynamical systems that 14 
may even exhibit chaotic dynamics that normally preclude the use of the DR when the BWR is 15 
working at a specific operating point during instability. In this work a novel methodology based on 16 
an adaptive Shannon Entropy estimator and on Noise Assisted Empirical Mode Decomposition 17 
variants is presented. This methodology was developed for real-time implementation of a stability 18 
monitor. This methodology was applied to a set of signals stemming from several NPPs reactors 19 
(Ringhals-Sweden, Forsmark-Sweden and Laguna Verde-Mexico) under commercial operating 20 
conditions, that experienced instabilities events, each one of a different nature. 21 

Keywords: Boiling Water Reactors; density wave oscillations; stability monitor; Shannon Entropy; 22 
noise-assisted Empirical Mode Decomposition variants; mode-mixing; Hilbert-Huang transform; 23 
instantaneous frequency. 24 

 25 

 26 

1. Introduction 27 

Currently, there are 78 nuclear boiling water reactors (BWR) in the world for the generation of 28 
electricity. The BWR contribute significantly to the production of global electric power and to date 29 
are the simplest energy system to transform fission energy into electrical energy, due to the direct 30 
cycle to turbine with dry saturated steam. However, there are still fundamental aspects in its 31 
operation related to the interaction of thermohydraulic processes (heat transfer in fuel and 32 
refrigerant) with that of neutron kinetics. Such interaction may, under certain operating conditions, 33 
cause BWR to malfunction and affect its stability. The problem of the stability of the BWR has been 34 
the subject of important scientific and technological work during more than 4 decades dedicated to 35 
its study. 36 

Instability events are rare and may occur during BWR start up or during transients that may change 37 
the operation region of the reactor. Figure 1 shows the example of a typical Power-flow map 38 
diagram of a nuclear power plant (NPP), which shows the regions where the reactor should not be 39 
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operated (red box) for reasons of stability, those ones where the BWR can be operated only under 40 
supervision (brown box) and finally, the diagram shows the regions of stable reactor operation 41 
(regions where the core flow is high). Currently, there is a tendency to design higher power reactors. 42 
In addition, refinement of fuel elements has encouraged the introduction of increasingly efficient 43 
fuels that allow the plant to operate at increasingly high power levels. Such a power increase induces 44 
a higher reactivity feedback and a decrease in response time, resulting in a lower BWR stability 45 
range when the plant operates at a low mass flow and at high nominal power. Another current trend 46 
is to increase the size of the core, which causes a weaker special coupling in the neutron field which 47 
increases the susceptibility of the reactor to experiencing unstable oscillations. In summary, all 48 
current tendencies related to reactor design enhance the regions where the reactor should not be 49 
operated (reactor operation at low flow and high power). 50 

 51 

Figure 1. Typical Power-flow map of a NPP. 52 

Events of instability have already occurred in the past in commercial BWRs, such as the Laguna 53 
Verde Nuclear Power Plant [1-2]. Some cases of instability occurred inadvertently, while others were 54 
intentionally provoked for experimental purposes [3]. Periodic oscillations in the neutron flux were 55 
observed during these instability events via the electronic instrumentation of the reactor. After the 56 
first events of instability occurred, the corresponding authorities (regulatory commissions) 57 
requested the development of research projects to study the mechanisms involved in reactor 58 
stability in order to: 59 

• Study the stability margins of the plant under normal operating conditions and in unusual 60 
conditions. 61 

• Predict reactor transients in an event of instability. 62 

• Develop measures to prevent and mitigate the consequences of an event of instability. 63 

In BWR instability events, two kinds of instabilities are found: in-phase (global or core-wide) 64 
oscillations, and out-of-phase (regional) oscillations. In-phase oscillation, i.e. where neutron flux 65 
oscillations are in-phase at all the fuel bundles in the core, are caused by the lag introduced into the 66 
thermal-hydraulic system by the finite speed of propagation of density perturbation [4]. At 67 
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high-core void fractions and low flow conditions, the feedback becomes so strong that it induces 68 
oscillations at frequency about 0.5 Hz. When this feedback increases, the oscillation becomes more 69 
pronounced, and oscillatory instability is reached. The term out-of-phase oscillation is applied to 70 
those instabilities in which different reactor core zones show a considerable phase shift (180o) in 71 
neutron flux oscillation, i.e. where neutron flux from one half of the core oscillates out-of-phase with 72 
respect to that one of the other half. It has been shown that stability depends on several variables 73 
such as control rod patterns, void fraction, burnup, inlet mass flow, among others. 74 

Currently, the most common parameter to evaluate BWR stability is known as the decay ratio (DR), 75 
which is calculated from the impulse response function that stems from an autoregressive (AR) 76 
modeling of BWR signals. The decay ratio is a simple straightforward index to scale a margin to the 77 
stability boundary and this property is the main output of most stability monitoring systems [5]. The 78 
use of the DR as a feasible BWR stability measure has been widely accepted, nonetheless, it has been 79 
observed that a BWR working at an operating point with a small DR can be close to instability [6]. 80 
Also, the DR often jumps discontinuously from the well stable to the far-unstable region [7]. The 81 
BWR stability is of primary interest from the point of view of BWR operation, due to the fact, that the 82 
stability margin may be strongly reduced during plant maneuvering and transients [8]. According to 83 
these issues, the DR might not be a reliable monitoring index after all, under certain operating 84 
conditions. Besides, in regular operating conditions, the need for stationary signals might be a 85 
handicap for DR estimation. Thus, it is relevant to explore new alternative methodologies and 86 
indexes adapted to accommodate for non-stationary and non-linear BWR signal behavior. 87 

In [9] a short time Fourier transform based technique was explored to study the time dependence of 88 
the natural frequency when the BWR signal is non-stationary. Later, the wavelet theory was applied 89 
to explore new alternatives for transient instability analysis [10-11]. However, in general BWR 90 
signals are non-stationary and non-linear, thus Fourier-based or wavelet-based approaches might 91 
lead to a biased stability analysis. Several methods for non-linear BWR stability analysis have been 92 
applied before [12-13], to study BWR signals containing stationary and non-stationary segments. In 93 
this work, the Shannon Entropy (SE) was applied, to infer whether it can be used as a novel stability 94 
parameter for BWRs. The SE is a concept that was developed by Claude E. Shannon [14] to study a 95 
discrete source through the information content of this source. The SE is a statistical index that 96 
quantifies the complexity of a signal. In this case, the BWR stability issue is assessed quantifying the 97 
complexity of BWR signals through this proposed parameter SE. A low SE value is linked to a 98 
predictable BWR event (stable scenario) whereas a high SE indicates an unpredictable BWR event (an 99 
unstable scenario).  100 

To properly estimate the SE from BWR signals, two noise assisted empirical mode decomposition 101 
(EMD) methods were explored: the improved complete ensemble empirical mode decomposition with 102 
assisted noise (iCEEMDAN) and the noise assisted multivariate empirical mode decomposition 103 
(NA-MEMD). Both techniques were proposed in [15] and [16] respectively. Henceforth, for 104 
simplicity, we will refer to any of these two methods as noise assisted empirical mode decomposition 105 
method (NA-EMDm). The NA-EMDm is an algorithm that decomposes non-stationary signals that 106 
stem from non-linear systems. The method also alleviates the mode mixing phenomenon of the 107 
default EMD method, that was first proposed in [17] by Huang et al. The NA-EMDm produces a 108 
local and fully data-driven separation of a signal in fast and slow oscillations. At the end of the 109 
procedure, the original signal can be expressed as a sum of amplitude and frequency modulated 110 
(AM-FM) functions called intrinsic mode functions (IMFs), also known as modes, plus a final 111 
monotonic trend. The combination of NA-EMDm and the Hilbert transform is known as the 112 
Hilbert-Huang transform (HHT). The method we propose is based on the HHT and it estimates a 113 
parameter associated to BWR stability, in this case the previously mentioned SE. The NA-EMDm 114 
decomposes the studied BWR signal (signals in the NA-MEMD case) into IMFs. One or more of 115 
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these extracted modes can be associated to the instability problem in BWRs. Through HHT it is 116 
possible to get the instantaneous frequency (IF) associated to each IMF. By tracking this IF and the 117 
SE of the IMF linked to instability, the estimation of the SE-based stability indicator is accomplished. 118 
The methodology here proposed is a continuation of a previous work [18] developed by the authors, 119 
in which a SE/iCEEMDAN technique was tested with artificial signals generated with the aid of a 120 
simple but powerful Reduced Order Model (ROM) that fits the BWR non-linear dynamic behavior. 121 
The work presented in [18] is now expanded in here to assess the stability of real BWR signals 122 
through iCEEMDAN and NA-MEMD. 123 

The combination of EMD variants plus Entropy measures has been applied before in various 124 
scientific disciplines, for instance, in [19] a methodology for the classification of 125 
electroencephalogram (EEG) signals was developed using entropy measures. The EEG signals were 126 
first decomposed through default EMD into IMFs. Later, the Shannon entropy, the Renyi entropy, 127 
the approximate entropy, the sample entropy, among other entropy measures, were computed from 128 
the extracted IMFs to study the complex electrical activities of the brain. In [20] a study was 129 
developed to analyze EEG signals to compare them with existing Bispectral-indexes (BIS), which are 130 
indicators that are often used to assess the depth of anesthesia. The MEMD was utilized to filter EEG 131 
data, later the combination of two MEMD components (IMF 2 + IMF 3) were used to express raw 132 
EEG data. Then, the sample entropy algorithm was used in the study to calculate the complexity of 133 
the patients EEG data. Furthermore, linear regression and artificial neural network methods were 134 
used to model the sample entropy using the BIS index. In [21] the original CEEMDAN was used to 135 
develop a new method for filtering time series originating from non-linear impact (signals used to 136 
study the impact events in mechanical systems for health monitoring analysis) systems. Then, the 137 
complexity of the extracted IMFs was quantified by fuzzy entropy. In [22] multiscale entropy 138 
measures were computed over different scales of IMFs extracted by EMD to study the regularity of a 139 
time series related to brain dynamics, their methodology was also extended to study multi-channel 140 
multi-trial neural data through the MEMD approach. The list of applications of methods combining 141 
a NA-EMDm plus a measure of entropy go onward, to the degree that this combination is now 142 
becoming an entropic analysis strategy to provide an information based-interpretation of data [23]. 143 
However, Shannon entropy measure was never used before [18] as a stability indicator for a BWR.       144 

This paper is organized as follows: in Section 2 a brief introduction about BWRs and its 145 
instrumentation inside of the core are presented. A full review of the two chosen NA-EMDm 146 
algorithms to understand the basic background of the decomposition methods employed, are 147 
detailed in Section 3. The SE estimator, employed as BWR stability indicator, is introduced in Section 148 
4. In Section 5, the methodology to estimate the instantaneous frequency and the proposed SE 149 
parameter is detailed. The validation of the methodology presented in this paper is performed doing 150 
experiments with real signals taken from the Forsmark and Ringhals stability benchmarks and from 151 
a Laguna Verde instability event and presented in Section 6. Also in this same section, the SE results 152 
are compared with current DR estimations, computed via techniques based on default EMD [24-25]. 153 
Our major findings regarding our novel methodology are talked through in Section 7. 154 

 155 

 156 

 157 

2. BWRs background 158 

2.1 Description of a BWR 159 
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The BWR configuration and the flow paths are illustrated in Figure 2 [26]. The reactor water 160 
recirculation system, whose objective is to circulate the required coolant flow through the reactor 161 
core, consists of two external loops to the reactor vessel. Each loop contains a pump with a directly 162 
coupled motor, a flow control valve, and two shut-off valves. The jet pump located within the 163 
reactor vessel provides a continuous internal circulation path for a major portion of the core coolant 164 
flow. The recirculation pumps take the suction from the downward flow in the annulus between the 165 
core shroud and the vessel wall. The core flow is taken from the vessel through two recirculation 166 
nozzles. Into this site, the flow is pumped to a higher pressure, distributed through a manifold to 167 
which a number of riser pipes are connected, and returned to the vessel inlet nozzles.  168 

This flow is discharged from jet pump nozzles into the initial stage of the jet pumps throat where, 169 
due to a momentum exchange process, induces the surrounding water in the downcomer region to 170 
be drawn into the jet pumps throats. Here, these two flows are mixed and then diffused in the 171 
diffuser, to be finally discharged into the lower core plenum. The coolant water passes along the 172 
individual fuel rods inside the fuel channel where it boils and becomes a two-phase steam/water 173 
mixture. In the core, the two-phase fluid generates upward flows through the axial steam separators 174 
while the steam continues through the dryers and flows directly out through the steam lines into the 175 
turbine-generator. The condensate flow is then returned through the feedwater heaters by the 176 
condensate-feedwater pumps into the vesssel. The water, which is separated from the steam in the 177 
steam separators, flows downward in the periphery of the reactor vessel and mixes with the 178 
incoming main feed flow from the turbine. This downward flow enters to the jet pumps and the 179 
remainder exits from the vessel as recirculation flow. 180 

 2.2 Instrumentation inside the core of a BWR 181 

It is possible to detect BWR oscillations linked to instability via a series of detectors known as local 182 
power range monitor (LPRM), these detectors are located radially and axially within the core vessel, 183 
as depicted in Figure 2. Their task is to monitor the local neutron flux of the reactor at a certain locality. 184 
Within the core, there is a particular detector which averages a series of LPRMs, the latter is known 185 
as average power range monitor (APRM). The APRM detectors control the emergency shutdown of 186 
a BWR (i.e., SCRAM) through a reactor protection system (RPS) mechanism that triggers when the 187 
detected APRM oscillation exceeds the security threshold. The in-phase (global or core-wide) 188 
oscillations can be observed in the APRM detectors and via the RPS and it is possible to SCRAM the 189 
reactor if a strong in-phase oscillation is observed (or the operator can also shutdown the reactor if 190 
necessary). However, the out-of-phase (regional) oscillations cannot be observed in the APRM 191 
detectors, because one out-of-phase oscillation with perfect symmetry (a phase shift of 180o between 192 
the reactor core zones that participate in the averaging operation via their respective LPRMs) will 193 
cancel the LPRMs averaging, disabling in this way the APRM monitors. Therefore, the out-of-phase 194 
oscillations must be studied at a local LPRM level. Events related to diverging power oscillations have 195 
happened before in various BWRs facilities in the past. Such events encouraged researchers to 196 
develop correction techniques to suppress these events. Nonetheless, in spite of the existence of 197 
these corrective methods, unstable events continued to occur. Thus, as an answer to these BWR 198 
unstable events, several works were developed to study the physical phenomena behind these 199 
events. The detection and suppression mechanisms dedicated to mitigate these unstable oscillations 200 
need to identify the type of oscillation through LPRM signal monitoring. The development of 201 
methods to detect unstable event is of vital importance in terms of reactor security. The main goal of 202 
these methods is to provide a stability indicator (estimated via the study of BWR signals) which 203 
grants the operator enough time to act accordingly and in such a way that his actions do not involve a 204 
SCRAM straight away. The estimated stability indicator must provide as much information as 205 
possible regarding BWR unstable dynamics with enough reliability, precision and predictive 206 
capability to bestow the operator the time needed to act.  207 
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DETECTOR Inside the Core

REFLECTOR FUEL

LPRM

Schematic diagram of a 
Boiling Water Reactor (BWR)

 208 

Figure 2. Schematic diagram of a BWR and an example of a distribution of 36 LPRM (red dots) detectors located 209 
at a radial position within the core. 210 

 211 

The current BWR stability indicator is the decay rate or Decay Ratio (DR) and the frequency of the 212 
unstable oscillation (it is known that the frequency associated to unstable oscillations, due to density 213 
waves, fluctuates around 0.5 Hz). For DR validity, it is compulsory to assume that the BWR behaves 214 
as a stationary second order linear system (i.e., a harmonic oscillator). Thus, an accurate prediction 215 
for the onset of BWR instability with methods that take into account the non-stationarity and 216 
non-linearity of the signal, is the next step in the research for the operation safety in BWRs.    217 

In the next sections the proposed non-linear methods to make an early detection (and tracking) of the 218 
density wave are introduced. Likewise, we describe the methodologies dedicated to estimate the 219 
Shannon Entropy, a measure that fulfills the role of a novel non-linear BWR stability indicator. 220 

 221 

 222 

 223 

3. Empirical mode decomposition (EMD) algorithms  224 

3.1 The default EMD method 225 
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Before introducing the noise assisted variants of the empirical mode decomposition (EMD). Let us 226 
recall the basics of the default EMD method, which was first proposed by Huang et al., [17]. The 227 
standard EMD permits the decomposition of a non-stationary signal that stems from a non-linear 228 
source, into various intrinsic mode functions (IMFs) or simply modes. To be considered an IMF, a 229 
signal of interest must fulfill two criteria:  230 

I. The number of extrema (maxima and minima) and the number of zero-crossings must be equal 231 
or differ at most by one. 232 

II. The local mean, defined as the mean of the upper and lower envelopes, must be zero.  233 

Method 1: The default EMD method can be described by the next steps, but first, let x be the signal of 234 
interest to decompose into IMFs: 235 

Step 1. Set = 0k  and find all extrema of =or x . 236 

Step 2. Interpolate between minima (maxima) of kr  to obtain the lower (upper) envelope 237 
min max( )e e . 238 

Step 3. Compute the mean envelope = +min max( ) / 2m e e . 239 

Step 4. Compute the IMF candidate + = −1k kd r m .  240 

Step 5. Is +1kd  an IMF? 241 

• Yes. Save +1kd , compute the residue + =
= −1 1

k
k ii

r x d , do = +1k k , and treat kr  242 
as input data in step 2.  243 

• No. Treat +1kd  as input data in step 2. 244 

Step 6. Continue until the final residue kr  satisfies some predefined stopping criterion.   245 

The refinement process (steps 2 to 5) needed to extract every mode, requires a certain number of 246 
iterations named as siftings. The extracted modes kd , = 1,2,...k K  decompose x and are in theory, 247 
nearly orthogonal to each other. However, one of the major drawbacks of the EMD is the frequent 248 
appearance of a problem that is known as mode mixing, which is defined as a single intrinsic mode 249 
function (IMF) either consisting of signals of widely disparate scales, or a signal of a similar scale 250 
residing in different IMF components. Such issue might spoil the meaning of individual IMFs and 251 
thus, thwart any default EMD signal analysis methodology. For further details about the impact of 252 
the mode mixing problem in BWR signals, please refer to [25]. To alleviate the mode mixing 253 
inconvenient, an interesting property of the EMD is exploited: such property appears when the 254 
signal to decompose is a white Gaussian noise. When this white Gaussian noise is decomposed, the 255 
EMD behaves as an adaptive dyadic filter bank, as it is shown in Figure 3, in which, 5000 256 
independent time series (of white Gaussian noise) of 512 points each have been generated, and the 257 
average power spectrum density (PSD) of the first seven IMFs are plotted as a function of the 258 
normalized frequency. 259 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 May 2017                   doi:10.20944/preprints201705.0196.v1

Peer-reviewed version available at Entropy 2017, 19, 359; doi:10.3390/e19070359

http://dx.doi.org/10.20944/preprints201705.0196.v1
http://dx.doi.org/10.3390/e19070359


 8 of 43 

 

10
-3

10
-2

10
-1

10
-6

10
-4

10
-2

10
0

Frequency (log) [Hz]

PS
D

 260 

Figure 3. EMD equivalent filter bank for a white Gaussian noise for the first 7 IMFs. 261 

Thus, the methods that are discussed in the following sections to mitigate the mode mixing issue, add 262 
an ensemble of realizations of white noise to the signal of interest (hence, the name noise assisted method is 263 
used to define improved variations of EMD), to repair and exploit this dyadic filter bank property of 264 
the EMD, to improve IMF acquisition of the signal of interest x. 265 

3.2 The improved complete ensemble empirical mode decomposition method with assisted noise (iCEEMDAN) 266 

The iCEEMDAN [15] is a recent noise assisted (NA) variation of EMD that compensates for mode 267 
mixing. This method also addresses the most relevant disadvantages of previous NA variants of 268 
EMD, of techniques such as the EEMD [27] and the original CEEMDAN [28] method. Such 269 
handicaps are: the presence of residual noise in the modes and the existence of spurious modes (and 270 
both of them are addressed by iCEEMDAN).  271 

Method 2: Let x be the signal to decompose into IMFs through iCEEMDAN. Before proceeding, let 272 
us define the next three operators: 273 

(i) Let ( )M �  be the operator which produces the local mean (the mean envelope of the upper 274 
and lower envelopes of the studied signal interpolated by cubic splines) of the signal it is 275 
applied to. 276 

(ii) Let �  be the action of averaging throughout an ensemble of realizations of default EMD. 277 

(iii) Let �( )kE  be the operator that produces the k-th mode obtained by default EMD.  278 

Let ( )iw  be a realization of white Gaussian noise with zero mean and unit variance. With this in 279 
mind, the iCEEMDAN method is described as follows:  280 
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Step 1. Calculate by default EMD the local means of I realizations β= +( ) ( )
1( )i i

ox x E w  to obtain 281 
the first residue 282 

= ( )
1 ( )ir M x   

Step 2.  At the first stage (k = 1) calculate the first mode: = −
1 1d x r     283 

Step 3. Estimate the second residue as the average of local means of the realizations 284 
β ω+ ( )

1 1 2 ( )ir E  and define the second mode:  285 

β ω= − = − + ( )
2 1 2 1 1 1 2( ( ))id r r r M r E

 
 

Step 4.  For = 3...k K calculate the k-th residue 286 

β ω− −= + ( )
1 1( ( ))i

k k k kr M r E
 
 

Step 5.  Compute the k-th mode 287 

−= −
1k k kd r r

 
 

Step 6.  Go to step 4 for next k. 288 

Constants β ε= std( )j j jr  are chosen to obtain the desired signal to noise ratio (SNR) between the 289 
added noise and the residue to which the noise is added, nonetheless, in this work, we fixed the 290 
same SNR for all the stages of this procedure ( ε ε= 0j ). Studies about this parameter can be found in 291 
[29]. Although this NA-EMDm is quite useful to mitigate the mode mixing issue, there is a backlash, 292 
for it creates other problems: such as the proper choosing of parameters I which is the number of 293 
realizations of the ensemble and the standard deviation ε0  of the assisted noise added to the 294 
original signal for decomposition and thus, further works must be developed to properly estimate 295 
these two parameters (such endeavor leaves the scope of this work until further studies in the EMD 296 
literature are developed to infer the iCEEMDAN properties). Once such parameters are well 297 
established, then the BWR stability analysis might be at last fully adaptive and data driven. For all of 298 
our computations, the aforementioned parameters are fixed at: I = 100 and ε =0 0.2 .  299 

3.3 The noise assisted multivariate empirical mode decomposition (NA-MEMD) 300 

The multivariate empirical mode decomposition (MEMD) is a technique that was proposed in [30] to 301 
make the classic empirical mode decomposition (EMD) suitable for processing of multichannel 302 
signals. To shed further light in the performance of this MEMD method, its behavior was analyzed 303 
in the presence of white Gaussian noise in [16] and it was found that, similarly to EMD. MEMD also 304 
in essence acts as a dyadic filter bank on each channel of the multivariate input signal, such MEMD 305 
property is illustrated in Figure 4 and its algorithm is given below. Nonetheless, unlike EMD, the 306 
MEMD better aligns the corresponding IMFs (i.e., modes) from different channels across the same 307 
frequency range which is crucial for real world applications and from such studies, the NA-MEMD 308 
method was developed to help resolve the mode mixing problem in the existing EMD algorithms.  309 
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 310 

Figure 4. Averaged spectra of IMFs (1-9) obtained for 50 realizations of eight-channel white Gaussian noise via 311 
MEMD. 312 

The NA-MEMD method which makes use of the quasi-dyadic filter bank properties of MEMD on 313 
white noise (see Figure 4), it is capable of significantly reducing the mode mixing problem for classes 314 
of signals where the quasi-dyadic filter bank structure proves useful. Embarking upon the 315 
quasi-dyadic filter bank structure of standard EMD for broadband noise, many EMD variants were 316 
proposed, in which multiple realizations of white noise were added to the input signal before being 317 
decomposed via EMD. This helps to establish a uniformly distributed reference scale which, in turn, 318 
results in corresponding IMFs exhibiting a quasi-dyadic filter bank structure.  319 

Following the latter idea, to explore the benefits of the quasi-dyadic filter bank structure of the 320 
default MEMD [30] on white noise, in [16] a total of m extra independent channels containing white 321 
noise are added in the MEMD decomposition of the multivariate signal of interest to exploit such 322 
interesting benefits of this filter bank property. The extracted IMFs (or modes) corresponding to the m 323 
channels of white noise are then discarded yielding a set of IMFs associated with only the original 324 
input signal. Since the added noise channels occupy a broad range in the frequency spectrum, 325 
MEMD aligns its IMFs based on the quasi-dyadic filter bank, with each component carrying a 326 
frequency sub band of the original signal. In doing so, IMFs corresponding to the original input 327 
signal also align themselves according to the structure of the quasi-dyadic filter bank. This, in turn, 328 
helps to mitigate the mode mixing problem within the extracted IMFs. The details of the NA-MEMD 329 
method are as follows, but first let us introduce the steps of the classic MEMD method: 330 

Method 3: Multivariate Extension of EMD for a multivariate signal ( )tv  331 

Consider a sequence of N dimensional vectors = =1 1 2{ ( )} { ( ), ( ),..., ( )}T
t Nt v t v t v tv  representing a 332 

multivariate signal with N components, and θ = 1 2{ , ,..., }k k k k
Nx x xx  denoting a set of direction vectors 333 

along the direction given by angles θ θ θ θ −= 1 2 1{ , ,..., }k k k k
N  on a (l-1) sphere. Then the extraction of the 334 

first IMF from the given MEMD steps is summarized in next steps:  335 

Step 1. Generate the point set based on the Hammersley sequence for sampling on an (l-1)  336 
sphere [31].  337 
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Step 2. Calculate a projection, denoted by θ
=1( )}k T

tp t , of the input multivariate signal =1{ ( )}T
ttv  338 

along the direction vector θkx , for all k (the whole set of direction vectors), giving 339 
θ

=1( )k K
kp t  as the set of projections. 340 

Step 3. Find the time instants θ
=1{ }k K

i kt  corresponding to the maxima of the set of projected 341 
signals θ

=1( )}k K
kp t . 342 

Step 4. Interpolate θ θ[ , ( )]k k
i it tv , for all values of k, to obtain multivariate envelope curves 343 

θ
=1( )}k K

kte . 344 

Step 5. For a set of K direction vectors, calculate the mean ( )tm  of the envelope curves as  345 

θ

=

= 
1

1( ) ( )k
K

k
t t

K
m e   

Step 6. Extract the detail ( )c t  using = −( ) ( ) ( )c t x t m t . If the detail ( )c t  fulfills the stoppage 346 
criterion [30] for a multivariate IMF, apply the above procedure to −( ) ( )x t c t , otherwise 347 
apply it to ( )c t . 348 

Once the first IMF (or mode) is extracted, it is subtracted from the input signal and the same process 349 
(steps from Method 3) is applied to the resulting signal yielding the second IMF and so on, the 350 
process is repeated until all the IMFs are extracted and only a residue is left; in the multivariate case, 351 
the residue corresponds to a signal whose projections do not contain enough extrema to form a 352 
meaningful multivariate envelope. The sifting process for a multivariate IMF can be stopped when 353 
all the projected signals fulfill any of the stoppage criteria adopted in the default EMD [17].  354 

Now, that the steps of the MEMD method have been given, the NA-MEMD is computed as follows:  355 

Method 4: The noise assisted multivariate empirical mode decomposition (NA-MEMD) 356 

Step 1. Create an uncorrelated Gaussian white noise time-series (m-channel) of the same length 357 
as that of the input.  358 

Step 2. Add the noise channels (m-channels) created in step 1 to the input multivariate 359 
(N-channels) signal, obtaining an (N + m)-channel signal. 360 

Step 3. Process the resulting (N + m)-channel multivariate signal using the MEMD algorithm 361 
(listed above), to obtain multivariate IMFs. 362 

Step 4. From the resulting (N + m)-variate IMFs, discard the m channels corresponding to the 363 
noise, giving a set of N-channel IMFs corresponding to the original signal.   364 

However, it should be mentioned that the NA methods (both the iCEEMDAN and NA-MEMD) for 365 
mitigating the mode mixing problem are expected to be most useful for signals in which the dyadic 366 
filter bank decomposition is relevant. This is the case for the studied BWR signals. 367 

4. The Shannon Entropy as stability indicator  368 
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In order to capture the complex dynamics of a BWR system, the Shannon Entropy (SE) [14] is 369 
studied. In statistical mechanics and information theory, entropy is a functional that quantifies the 370 
information content of a statistical ensemble or equivalently, the uncertainty of a random variable. Its 371 
application in various scientific disciplines is countless. Nonetheless, the most important example of 372 
such a functional is the Shannon Entropy (also known as average information), the concept was 373 
developed by Claude E. Shannon in 1948 [14]. Now, consider a discrete random variable x, which 374 
can take a finite number of M of possible values ∈ 1{ ,..., }i Mx x x  with corresponding probabilities 375 

1{ ,..., }i Mp p p , its entropy ( )sH x  is defined as: 376 

=

= −
1

( ) ln( )
M

s i i
i

H x p p   (1)

In general, the probability distribution for a given stochastic process is not known, and, in most 377 
situations, only small data sets from which to infer the entropy are available. For instance, it could be 378 
of interest to figure out the Shannon Entropy of a given BWR signal (or of one of its extracted 379 
through a NA-EMDm). In such circumstances, one could estimate the probability of each element i   380 
to occur, ip , by making some assumption on the probability distribution, as for example: 381 

i. Parametrizing it. 382 

ii. Dropping the most unlikely values. 383 

iii. Assuming some a priori shape for the probability distribution. 384 

Nevertheless, the easiest and most straightforward path to estimate them is by counting how often 385 
the value ix  appears in the available data set. Denoting this number by il  and dividing by the total 386 
size N of available data set, we can obtain a relative frequency estimator given by:  387 

= i
i

l
p

N   (2)

Which naively approximates the probability ip  associated to the value ix . With this simple 388 
estimator in mind, the easiest way to compute the SE of the data set can be done by simply replacing 389 
the probabilities ip  by ip  in the entropy functional, giving an estimate of the Shannon Entropy: 390 

= =

 
≈ = − = −  

 
 

  

1 1
( ) ( ) ln( ) ln

M M
naive i i

s s i i
i i

l l
H x H x p p

N N   (3)

The quantity ( )naive
sH x  is an example of an entropy estimator, in a very similar sense as ip  is an 391 

estimator of ip . In particular, the minimum =( ) 0sH x  is reached for a constant random variable, 392 
i.e., a variable with a determined outcome, which reflects in a fully localized probability distribution 393 

= 1ip  and = 0jp  for ≠i j . At the opposite, ( )sH x  is maximal, equal to ln( )M , for a uniform 394 
distribution ( = = =1 2 ... Mp p p ). The SE is a quantity that increases with the number of possible states: 395 
for an unbiased coin, = ≈( ) ln(2) 0.6931sH x  while for an unbiased dice = ≈( ) ln(6) 1.7918sH x . To 396 
estimate equation (3), a histogram is required to infer the probabilities ip  of the data set. In this 397 
work, the number of bins M of such histogram was calculated with an optimal estimator proposed in 398 
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[32], which for reasons of space, this method will not be introduced in this work, but the idea behind 399 
this optimal M estimator dwells within the Bayesian probability theory.  400 

Claude E. Shannon intitially proposed this functional to quantify the information loss in 401 
transmitting a given message in a communication channel [14]. A noticeable aspect of Shannon 402 
approach is to ignore semantics and focus on the physical and statistical constraints limiting the 403 
transmission of a message, regardless of its meaning. The source generating the inputs ∈ix x  is 404 
characterized by the probability distribution ip . Shannon entropy ( )sH x  thus appears as the 405 
average missing information. That is, the average information required to specify the outcome x 406 
when the receiver knows the distribution ip . It equivalently measures the amount of uncertainty 407 
represented by a probability distribution. In the context of communication theory, it amounts to the 408 
minimal number of bits that should be transmitted to specify x. 409 

Based on these facts and considering that the estimator in (3) is the easiest way to estimate SE, it is 410 
the estimator used in our proposed methodologies to study the BWR stability. The SE, estimated by 411 
our naive estimator, quantifies the uncertainty of the artificial studied signals. Through this approach, 412 
the instability problem of a chaotic dynamical system such as a BWR is studied. The SE is our tool to 413 
study reactor instability and as such, the SE might serve as an alternative option to the conventional 414 
DR indicator. Our goal is to detect through SE the beginning of an incipient stability event (via a 415 
stability monitor), prior any further development of that unstable event. And to obtain from this 416 
indicator (based on SE) as much information as possible regarding the dynamics of the BWR system. 417 

  418 

5. Methodology based on Shannon Entropy 419 

In this section, two stability methodologies are introduced, labeled as methodology 1 and 420 
methodology 2, based on iCEEMDAN and NA-MEMD respectively, to study individual BWR 421 
unstable events and multivariate ones. Both proposals are given by the next steps. 422 

5. 1 Methodology 1: Stability monitor based on the iCEEMDAN and the SE 423 

Step 1.  The considered signal (APRM or LPRM) obtained from the BWR is segmented in 424 
windows of 15 s of duration.  425 

Step 2.  Each segmented signal (APRM or LPRM) is studied (decomposed) using the 426 
iCEEMDAN method for a number of realizations of the ensemble I = 100 and standard 427 
deviation of the assisted noise ε =0 0.2 , described above, obtaining in this way the 428 
corresponding IMFs. It is worth mentioning that the APRM or LPRM signals are not 429 
being processed before. For instance, to remove the signal trend, due that this 430 
information is contained in the residue of the decomposition. 431 

Step 3.  The Hilbert transform of each IMF is computed in order to get the instantaneous 432 
frequencies contained in each IMF (this step is also known as Hilbert Huang transform, 433 
HHT, [17]).  434 

Step 4.  When tracking these frequencies, it is possible to get the mode linked to instability 435 
processes. In this regard, only the IMF associated to BWR instability is considered for 436 
further processing.  437 
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Step 5.  The SE of the tracked IMF (mode of interest linked to BWR instability) is computed 438 
considering the estimator given in equation (3), using the probability estimator given in 439 
equation (2). The optimal number of bins M for the histogram, is calculated with a 440 
technique based on the Bayesian probability theory [32], within the interval 441 

≤ ≤5 20M (Several rules of thumb exist for determining the number of bins, such as the 442 
belief that between 5-20 bins is usually adequate [32]). 443 

Step 6.  The mean and variance of the SE are calculated and averaged along all the studied 444 
segments of 15 s.  445 

Step 7.  In order to range the SE between 0 and 1, the following normalization process is 446 
applied:  447 

=

−
=


1

ˆ ˆln( )
( )

ln( )

M

i i
naive i
s

p p
H x

M
  (4)

A reminder, a high SE estimate indicates high unpredictability of the mode linked to BWR instability 448 
(thus indicating an unstable state of operation) whereas a low SE value indicates a predictable event 449 
(thus, SE in this case, points towards a stable BWR scenario).  450 

5.2 Methodology 2: Stability monitor based on the NA-MEMD and the SE 451 

Step 1.  The considered multivariate signal (an array of N independent LPRM signals) obtained 452 
from the BWR are segmented in small windows of 15 s.  453 

Step 2.  These segments (of 15 s each of time span) are decomposed in parallel through 454 
NA-MEMD in N independent channels. Also, m independent channels of white 455 
Gaussian noise are added (to mitigate the mode mixing problem) for decomposition (m = 456 
3 for all of our computer simulations).  457 

Step 3.  After decomposition, discard the m channels corresponding to the noise, giving a set of 458 
N-channel IMFs corresponding to the original signal segments.  459 

Step 4.  The Hilbert transform of each IMF is computed in order to get the instantaneous 460 
frequencies contained in each N -channel IMFs frequencies (i.e. the HHT).  461 

Step 5.  When tracking these frequencies, it is possible to get the IMFs (or modes) linked to 462 
instability processes. In this regard, only the IMFs associated to BWR instability are 463 
considered for further processing. Exploiting the NA-MEMD properties, the chosen 464 
IMFs of interest are all located at the same level of decomposition.   465 

Step 6.  The SE of the tracked IMFs (modes of interest linked to BWR instability) are computed 466 
via equation (3). The optimal number of bins M for the histogram, is calculated with the 467 
method given in [32] in a local way, within the interval ≤ ≤5 20M .There are thus, N 468 
different values of SE (each SE value is linked to one LPRM in particular).    469 

Step 7.  The mean and variance of the SE values are calculated and averaged along all the 470 
studied multivariate segments of 15 s.  471 
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Step 8.  In order to range the SE estimates between 0 and 1, the normalization procedure given 472 
in equation (4) is again applied.  473 

 474 

6. Results: methodologies performances and discussions 475 

The BWR signals stem from the Forsmark [3], Ringhals [33] stability Benchmarks and the Laguna 476 
Verde instability event [1-2]. The Ringhals plant stability benchmark test data has been widely 477 
applied to BWR stability studies because they cover various stability conditions, e.g. dominant 478 
fundamental mode related with in-phase instabilities, dominant first harmonic mode related with 479 
out-of-phase instabilities, and an overlapping of the two modes. The stability tests were performed 480 
(and controlled) in the Swedish BWR Ringhals Unit 1 from cycle 14 through cycle 17. The Forsmark 481 
benchmark is based on data from several measurements performed (and controlled) in the Swedish 482 
BWR reactor Forsmark 1 and 2, in the period 1989 to 1997. The Laguna Verde instability event was 483 
recorded during an unstable event that occurred in 1995 and is considered in the literature as a 484 
prototype of an in-phase instability. 485 

6.1 Stability analysis of the chosen real cases through the Methodology 1 486 

This particular Methodology 1 is applied to the next three following cases:  487 

I. Case 4 of the Forsmark stability benchmark. This event is considered a challenging case to 488 
be analyzed by the complexity of the phenomenon. For reasons of space, only this 489 
challenging case is presented in a detailed way. The studied case 4 contains a mixture 490 
between a global oscillation mode and a regional (half core) oscillation. This event 491 
corresponds to a situation where the neutronic power reactor suffers abnormal and 492 
apparently unstable oscillations. The C4_APRM and C4_LPRM_x signals correspond to 493 
average power range monitor (APRM) and local power range monitor (LPRM) registers 494 
respectively, during the instability event. The entire case 4 was studied (a total of 23 signals, 495 
22 LPRMs plus an APRM). However, only the analysis of one signal (C4_APRM_1) is 496 
detailed in this work and the others results (22 LPRMs) are summarized in a table. 497 

II. Case 9 cycle 14 of the Ringhals stability benchmark. Data given comes from measurements 498 
in the Swedish BWR reactor Ringhals 1. This case consists of a total of 36 LPRMs. Again, the 499 
whole case 9 (36 LPRMs) was studied, however only the analysis of one signal (LRPM 1) is 500 
detailed in this work and the others results of LPRMs are summarized in a table. 501 

III. An APRM signal that stems from the Laguna Verde BWR that was recorded during an 502 
unstable event that occurred in 1995. On January 24, 1995 a power instability event 503 
occurred in Laguna Verde Unit 1, which is a BWR-5 and is operated since 1990 at a rated 504 
power of 1931 MWt. The instability event happened during a Cycle 4 power ascension 505 
without fuel damage. When the thermal power reached 37% of the rated power, the 506 
recirculation pumps were running at low speed driving 37.8% of the total core flow. The 507 
flow control valves were set to their minimum, closed position in order to operate the 508 
recirculation pumps at a high speed. The drop in drive flow resulted in a core flow 509 
reduction of 32% and, a power reduction also of 32%. Two control rods were also partially 510 
withdrawn during valve closure. The new low flow operating conditions resulted in 511 
growing power oscillations. This prototype of in-phase instability has been widely studied 512 
[1, 2, 34-37]. 513 
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6.1.1 APRM signal from the Forsmark benchmark 514 

The studied signal in this subsection is the APRM 1 of the Forsmark stability benchmark, Case 4. 515 
This signal of interest is shown in Figure 5.  516 
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Figure 5. APRM 1 signal from the Forsmark stability benchmark Case 4. 518 

 519 

The Methodology 1 based on the iCEEMDAN and the SE is applied to signal shown in Figure 5. 520 
Such methodology splits the signal of interest in segments of 15 s, later the segment is decomposed 521 
through iCEEMDAN into IMFs, the HHT is calculated to obtain the instantaneous frequencies (IFs) 522 
of the IMFs. The IF of interest linked to instability is tracked (the energy of this mode connected to 523 
BWR instability is highly concentrated around 0.5 Hz in the Fourier domain, according to previous 524 
BWR stability observations). Later, the IMF linked to the IF of interest is selected for SE calculation. 525 
Figure 6, shows the analysis of one studied segment that was decomposed through iCEEMDAN into 526 
K IMFs and the IMF 3 is selected for further processing (because the IF (IF 3) of this IMF (IMF 3) is 527 
linked to BWR instability, this key IF is shown in Figure 7).  528 
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Figure 6. iCEEMDAN decomposition of one of the segments of the APRM 1 signal, Case 4. 530 

 531 

Figure 8 shows a power spectral density (PSD) estimation of the extracted IMFs of the studied 532 
segment, to visualize the spectrum of the IMF 3 linked to instability and to observe the iCEEMDAN 533 
capabilities to compensate for mode mixing, which translates into less overlap of contiguous IMFs 534 
spectrums. Figure 9 shows the plot of the estimated SE of all of the studied segments of the signal of 535 
interest. Also, in this same figure, a DR estimate of the segments is shown to illustrate the 536 
performance of the SE over the DR to analyze the stability of the studied signal. The DR was 537 
estimated in the same way as in [25]. We have established empirical stability thresholds based on 538 
our numerical experiments for the SE (Although more experiments are needed in this direction to 539 
accurately confirm this finding, but such studies leave the scope of this work). This stability 540 
threshold value is located around 0.8 (a stable segment has a SE < 0.8 whereas an unstable one has a 541 
SE > 0.8). Now, regarding the DR, a stable segment has a DR < 1. For this signal, the DR estimate 542 
indicates the beginning of an unstable event (an incipient one) whereas the SE throughout the whole 543 
time span of the signal, points to the existence of a fully developed instability event from the very 544 
beginning of the simulation. Figure 10 shows the estimated number of bins M for the extracted IMF 545 
for the studied case which remained very close to 5 bins and jumping beyond 5 in some segments.  546 
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Figure 7. Instantaneous frequency (IF 3) linked to BWR instability. The time series of IF 3 oscillates around 0.5 548 
Hz (the region of interest for BWR instability events). 549 
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Figure 8. PSD estimate of the extracted IMFs of the studied segment through the iCEEMDAN method. 551 
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Figure 9. Estimated Shannon Entropy (SE) and Decay Ratio (DR) along time for the APRM 1 signal. The purple 553 
dotted line located at 0.8 is the SE threshold (segments whose SE is above this line are unstable) whereas the 554 

blue dotted line at 1 is the DR threshold (segments whose DR is above this line are unstable). 555 
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Figure 10. Estimated optimal number of bins M computed with [32] in the interval 5 ≤ M ≤ 20. 557 
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Ultimately, the estimated SE, DR and oscillation frequency (f0) for the rest of the LPRMs of the 559 
studied Case 4 are shown in Table 1 (only average (Mean) and their standard deviations (Std) values 560 
along all the studied segments are shown in Table 1). The estimated averaged values for the DR are 561 
in perfect agreement with those estimated by the different methodologies presented in the 562 
benchmark [3]. The DR estimates indicate the beginning of an incipient instability event whereas the 563 
SE estimates indicate a fully developed instability event in the BWR.  Thus, it is naive to assume 564 
that we can infer the dynamics of a complex system such as a BWR through an estimate of a linear 565 
parameter such as the DR alone. In spite of the contradictions of what these two parameters (SE and 566 
DR) are indicating, they nevertheless pinpoint to an instability event in the BWR core. Although the 567 
SE does this from the very beginning of the stability analysis.        568 

 569 

Table 1. Average and standard deviations values for the SE, the DR and the oscillation frequency (f0) linked to 570 
instability of the Forsmark stability benchmark, Case 4, studied through Methodology 1 based on the 571 

iCEEMDAN. 572 
Detectors Mean SE Std SE Mean DR Std DR Mean f0  Std f0

APRM 0.9553 0.0377 0.8136 0.0842 0.5279 0.0299 
LPRM 1 0.9527 0.0236 0.801 0.0765 0.519 0.0282 
LPRM 2 0.9564 0.0344 0.8007 0.1048 0.5101 0.03 
LPMR 3 0.9607 0.0222 0.8211 0.0778 0.5036 0.0202 
LPMR 4 0.9515 0.0268 0.7649 0.123 0.5116 0.0345 
LPRM 5 0.9323 0.0493 0.771 0.1269 0.5424 0.0317 
LPRM 6 0.9422 0.0304 0.765 0.1376 0.5444 0.0265 
LPRM 7 0.9409 0.0313 0.7623 0.0843 0.5513 0.0346 
LPMR 8 0.921 0.0411 0.6991 0.0873 0.5683 0.0509 
LPRM 9 0.9331 0.049 0.752 0.0966 0.5461 0.0384 

LPRM 10 0.9272 0.0429 0.7043 0.1315 0.574 0.0373 
LPRM 11 0.9224 0.0586 0.7527 0.0885 0.5513 0.0425 
LPRM 12 0.9074 0.0521 0.545 0.1649 0.5796 0.078 
LPRM 13 0.9436 0.0356 0.7753 0.1208 0.5462 0.0315 
LPRM 14 0.9334 0.0396 0.7783 0.0907 0.5386 0.0397 
LPRM 15 0.9428 0.0356 0.7569 0.1241 0.537 0.0408 
LPMR 16 0.9477 0.0331 0.7831 0.092 0.5362 0.0341 
LPMR 17 0.9449 0.0375 0.7683 0.089 0.5302 0.0486 
LPRM 18 0.9489 0.0375 0.7487 0.1392 0.5253 0.0362 
LPRM 19 0.915 0.0575 0.6295 0.1206 0.5111 0.0703 
LPRM 20 0.9152 0.0429 0.6834 0.1149 0.5631 0.0487 
LPMR 21 0.9227 0.0368 0.6841 0.1882 0.5777 0.0566 
LPRM 22 0.9026 0.0408 0.518 0.1275 0.5606 0.1011 

 573 

 574 
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6.1.2 LPRM signal from Ringhals benchmark 575 

The studied signal in this subsection stems from the Ringhals stability benchmark Case 9 cycle 576 
14. This studied signal is shown in Figure 11.   577 
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Figure 11. LPRM 1 from the Ringhals stability benchmark, Case 9, Cycle 14. 579 

 580 

The Methodology 1, based on the iCEEMDAN and the SE, is applied to signal shown in Figure 11. 581 
This stability methodology splits the signal of interest in short segments of 15 s, later the studied 582 
segment is decomposed through iCEEMDAN into IMFs (or modes), the Hilbert-Huang Transform 583 
(HHT) [17] is calculated to obtain the instantaneous frequencies (IFs) of the extracted IMFs. The IF of 584 
interest linked to instability (the energy of this IF of interest oscillates around 0.5 Hz) is tracked. 585 
Later, the IMF associated to this IF is selected for SE calculation. Figure 12, shows the analysis of one 586 
studied segment that was decomposed through iCEEMDAN into n IMFs and the IMF 3 is selected 587 
for further processing (because the IF (IF 3) of this IMF (IMF 3) is linked to BWR instability, this key 588 
IF is shown in Figure 13). 589 
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Figure 12. iCEEMDAN decomposition of one of the segments of the signal LPRM 1, Case 9. 591 
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Figure 13. Instantaneous frequency (IF 3) linked to BWR instability. The time series of IF 3 oscillates 593 
around 0.5 Hz (the region of interest for BWR instability events). 594 

 595 

Figure 14 shows a power spectral density (PSD) estimation of the extracted IMFs of the studied 596 
segment, to visualize the spectrum of the IMF 3 linked to instability and to observe again the 597 
iCEEMDAN capabilities to compensate for mode mixing, which translates into less overlap of 598 
contiguous IMFs spectrums. 599 
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Figure 14. PSD estimate of the extracted IMFs of the studied segment through the iCEEMDAN method. 601 

 602 

Figure 15 shows the plot of the estimated SE of all of the studied segments of the signal of 603 
interest. As before, in this figure, a DR estimate of the segments is also shown to illustrate the 604 
performance of the SE over the DR to analyze the stability of the studied signal. The instability 605 
thresholds for the DR and for the SE are the same as before. For this signal, again the SE 606 
indicates a fully developed unstable BWR behavior whereas the DR is pointing to an early 607 
development of an instability event (a quasi-instable event), because the average DR is high (not 608 
exactly one, but approaching it). Again, the high SE estimates of the studied segments of this 609 
LRPM 1 signal are clearly indicating an out of the ordinary BWR behavior. The estimated 610 
number of bins M remained throughout most the simulation constant at 7 bins. The proposed 611 
stability monitor, given in Methodology 1, proves again to be suitable to detect unstable or not 612 
ordinary BWR behavior prior further growth of such unforeseen unstable events, that may in 613 
the worst case scenarios, trigger increasing power oscillations beyond the nominal BWR 614 
constraints. Thus, it is necessary to be able to detect any incipient unstable events as fast as 615 
possible.   616 
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Figure 15. Estimated Shannon Entropy (SE) and Decay Ratio (DR) estimate along time for the LRPM 1 618 
signal, Case 9 from Ringhals stability benchmark. The purple dotted line located at 0.8 is the SE threshold 619 
(segments whose SE is above this line are unstable) whereas the blue dotted line at 1 is the DR threshold 620 

(segments whose DR is above this line are unstable). 621 

 622 

Finally, the estimated SE, DR and oscillation frequency for the rest of the LPRMs of the studied 623 
Cycle 14 Case 9 are shown in Table 2 (only average values and standard deviations along all the 624 
studied segments are shown in Table 2). The entire case consists of a total of 72 LPRMs 625 
distributed on two different floors or levels (2 and 4) within the BWR core. In Table 2, only the 626 
analysis of the floor number 2 is studied. This floor consists of 36 LPRM detectors marked by odd 627 
numbers.    628 

The estimated DR results of this studied case and shown in Table 2, were in most LPRMs high 629 
and apparently this case exhibits and out-of-phase oscillation [33] which will be scoped in more 630 
detail once Methodology 2 based on NA-MEMD is used to perform a multivariate analysis of 631 
this particular case. Overall the high SE estimated values, clearly indicate a fully developed 632 
unstable behavior of this case. Thus, the studied BWR floor 2 is unstable. The high DR estimates 633 
(but still not above the 1, which is the stability threshold that must be exceeded by the DR to 634 
trigger BWR peril alarms) although high and depicting that there is something unusual going 635 
on in the BWR core. But, the estimates are not high enough to trigger BWR protection alarms to 636 
warn the operators whereas the SE estimates would have trigger these BWR protection 637 
mechanisms.    638 

 639 

 640 
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 641 

Table 2. Average and standard deviations values for the SE, the DR and the oscillation frequency (f0) 642 
linked to instability of the Ringhals stability benchmark Case 9 Cycle 14 studied through the Methodology 643 

1 based on the iCEEMDAN. 644 
Detectors Mean SE Std SE Mean DR Std DR Mean f0 Std f0

LPRM 1 0.9809 0.0084 0.9132 0.0161 0.5164 0.0248 
LPRM 3 0.9826 0.0069 0.9122 0.0171 0.5153 0.0226 
LPRM 5 0.9834 0.0094 0.9102 0.0162 0.5157 0.0246 
LPRM 7 0.9877 0.0153 0.8897 0.0367 0.5149 0.0243 
LPRM 9 0.9854 0.0082 0.9135 0.0184 0.5139 0.0266 

LPRM 11 0.9823 0.0078 0.9134 0.0172 0.5175 0.0248 
LPRM 13 0.9820 0.0106 0.9108 0.0214 0.5169 0.0219 
LPRM 15 0.9856 0.0088 0.9091 0.0179 0.5106 0.0270 
LPRM 17 0.9883 0.0080 0.9006 0.0221 0.5188 0.0241 
LPRM 19 0.9621 0.0436 0.8332 0.0778 0.5180 0.0274 
LPRM 21 0.9814 0.0270 0.8693 0.0506 0.5218 0.0267 
LPRM 23 0.9862 0.0149 0.8909 0.0301 0.5174 0.0248 
LPRM 25 0.9841 0.0122 0.8997 0.0273 0.5125 0.0267 
LPRM 27 0.9869 0.0142 0.8951 0.0352 0.5136 0.0281 
LPRM 29 0.9653 0.0509 0.8309 0.0762 0.5186 0.0364 
LPRM 31 0.9500 0.0441 0.8106 0.0820 0.5049 0.0348 
LPRM 33 0.9429 0.0409 0.6562 0.1321 0.4868 0.0286 
LPRM 35 0.9630 0.0352 0.7145 0.2115 0.5020 0.0365 
LPRM 37 0.9771 0.0203 0.8538 0.0490 0.5124 0.0272 
LPRM 39 0.9598 0.0335 0.7558 0.0766 0.5062 0.0338 
LPRM 41 0.9141 0.0637 0.5868 0.2425 0.4987 0.0423 
LPRM 43 0.8814 0.0672 0.4893 0.2241 0.4922 0.0386 
LPRM 45 0.9858 0.0124 0.8496 0.0415 0.5126 0.0265 
LPRM 47 0.9854 0.0094 0.8816 0.0284 0.5071 0.0242 
LPRM 49 0.9807 0.0091 0.9110 0.0173 0.5102 0.0279 
LPRM 51 0.9771 0.0086 0.9120 0.0133 0.5121 0.0218 
LPRM 53 0.9823 0.0077 0.9096 0.0184 0.5154 0.0262 
LPRM 55 0.9868 0.0091 0.8974 0.0250 0.5204 0.0218 
LPRM 57 0.9804 0.0076 0.9061 0.0143 0.5195 0.0188 
LPRM 59 0.9771 0.0087 0.9084 0.0149 0.5126 0.0223 
LPRM 61 0.9765 0.0101 0.9126 0.0149 0.5140 0.0229 
LPRM 63 0.9764 0.0089 0.9123 0.0137 0.5112 0.0245 
LPRM 65 0.9805 0.0085 0.9059 0.0185 0.5117 0.0268 
LPRM 67 0.9832 0.0113 0.9054 0.0202 0.5149 0.0223 
LPRM 69 0.9817 0.0093 0.9023 0.0184 0.5155 0.0197 
LPRM 71 0.9831 0.0073 0.9029 0.0181 0.5156 0.0253 

 645 

6.1.3 APRM Laguna Verde 646 

The studied signal in this subsection stems from an instability event that happened in Laguna 647 
Verde, in the year 1995. This signal is shown in Figure 16 and was obtained via the Integral 648 
Information Process System (IIPS). The channel A of the APRM trace shows no unstable 649 
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behavior at 3:28:00 h. The value closure was initiated at 03:28:20 h. A small core flow reduction 650 
was noticeable 40 s later, and the APRM-A trace depicts signs of instability although the 651 
variations in the magnitude of the signal remained within the noise level. As the valve 652 
continued to close, the APRM-A trace shows clear unstable behavior starting at 03:30:30 h. The 653 
valve reached the minimum position at 03:31:30 h. The valve reached the minimum position at 654 
03:31:30 h, and the oscillations continued without any significant increase in their growth rate. 655 
The operator attempted to stabilize the power level by increasing the core flow opening the 656 
vales at 03:33:20 h. As a result of increasing the core flow, the oscillation started to decay at 657 
03:34:40 h. At 03:35:20 h the oscillation reached 3% of amplitude, when the reactor was 658 
manually scrammed (see the red boxes in Figure 16). 659 
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Figure 16. Laguna Verde (LV) APRM signal of an unstable event that occurred in 1995. 661 

 662 

As before, Figure 17 shows the decomposition of one of the segments of the signal shown in 663 
Figure 14, decomposed according to methodology number 1 based on iCEEMDAN. The IMF 664 
linked to BWR instability in this case is the IMF 1, see its instantaneous frequency IF (IF 1) 665 
oscillating around 0.5 Hz. This IF 1 is shown in Figure 18 and also the power spectral density 666 
(PSDs) estimates of all the extracted IMFs are shown in Figure 19. Observe that the PSD of IMF 2 667 
is slightly mixed with the PSD estimate of IMF 1, but the spectral energetic content of IMF 2 is 668 
negligible in comparison with that of IMF 1.   669 
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Figure 17. iCEEMDAN decomposition of one of the segments of the APRM signal of LV instability event. 671 
Only the first 2 extracted IMFs are shown in this plot. 672 
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Figure 18. Instantaneous frequency (IF 1) linked to BWR instability. The time series of IF 1 oscillates in a 674 
quasi-sinusoidal manner around 0.5 Hz (the region of interest for BWR instability events). 675 
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Figure 19. PSD estimate of the extracted IMFs of the studied segment through the iCEEMDAN method.  677 

 678 

Figure 20 shows the SE and DR estimates along all the studied segments of the APRM signal of 679 
interest. Prior the first 300 s of the signal, the DR oscillates between stability and instability. But, 680 
it is cumbersome to infer the dominant DR value due to its strong discontinuous jumps between 681 
stability and instability. However, after the 300 s mark, the DR is high and greater that its 682 
threshold value (DR = 1) and remains as such (and oscillating around 1.1) throughout the rest of 683 
the simulation. Thus, the DR indicates unstable BWR behavior but only after the 300 s mark. 684 

The SE estimate is highly more consistent than the DR prior the 300 s mark, because the SE 685 
clearly indicates unstable behavior (whereas the DR is unable to differentiate between the two) 686 
and after the 300 s mark, the SE slightly oscillates around 1 (and not in a dramatic way as the DR 687 
does). Nevertheless, the SE always indicates unstable BWR behavior, long before the DR is able 688 
to detect it. Thus, the SE is capable of indicating unstable behavior prior any further growth in 689 
power of the unstable oscillation within the core whereas the DR is only able to detect 690 
instability (without bias) once the unstable oscillation is fully sustained and powerful enough to 691 
damage the core. The optimal number of bins for this case remained most of the simulation 692 
constant at 10 and it was again calculated with the technique described in [32]. 693 
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Figure 20. Estimated Shannon Entropy (SE) and Decay Ratio (DR) estimate along time for the APRM 695 
signal. The purple dotted line located at 0.8 is the SE threshold (segments whose SE is above this line are 696 
unstable) whereas the blue dotted line at 1 is the DR threshold (segments whose DR is above this line are 697 
unstable). 698 

Finally, Table 3 shows the mean SE, DR and instantaneous frequency averaged along all the 699 
segments of the signal of interest depicted previously in Figure 14.  700 

Table 3. Average and standard deviations values for the SE, the DR and the oscillation frequency (f0) 701 
linked to instability of the Laguna Verde APRM signal studied through the Methodology 1 based on 702 

the iCEEMDAN. 703 
Detector Mean SE Std SE Mean DR Std DR Mean fo  Std fo
APRM 0.9592 0.0444 1.0079 0.1655 0.5385 0.0158 

 704 

 705 
6.2 Stability analysis of the chosen real cases through the Methodology 2 706 

The stability methodology 2 is applied with the next following cases of nuclear power plants (NPP):  707 

I. Multidimensional analysis of the already mentioned Case 4 of the Forsmark stability 708 
benchmark. 709 

II. Multidimensional analysis of the also mentioned Case 9 Cycle 14 of the Ringhals stability 710 
benchmark. 711 
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Regarding Laguna Verde instability event, the methodology 2 can also be applied. However, the 712 
signals from 96 LPRMs monitoring the core are not available for this specific instability 713 
phenomenon.  714 

 715 
6.2.1 LPRMs signals from Forsmark benchmark 716 
Now, the Case 4 of the Formark stability benchmark is going to be studied with the stability 717 
Methodology 2 based on the NA-MEMD in a multivariate way with m = 3 independent channels of 718 
noise to mitigate mode mixing. In here, the ensemble of LPRM signals is considered in the NA-MEMD 719 
and a local estimation of SE and of the DR (calculated according to [38]) are computed based on the 720 
IMFs associated to the instability event (the oscillatory IMF around 0.5 Hz). Figure 21 shows the 721 
IMFs linked to BWR instability.  722 
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Figure 21. NA-MEMD applied to a short time segment of the Case 4 of the Forsmark stability benchmark. 724 

 725 
Exploiting the time alignment property of the NA-MEMD, these IMFs of interest are located at the 726 
same level of decompositions, in this case the IMFs of interest are located at the fourth level of the 727 
NA-MEMD decomposition (IMFs number 4). We highlight that in Figure 21, the IMFs of interest 728 
linked to instability are in-phase among them. The instantaneous frequencies (IFs number 4) around 729 
the region of interest (0.5 Hz) of these IMFs of interest are shown in Figure 22. Later, Figure 23 shows 730 
the estimated SE locally for each IMF of interest (IMFs number 4). However, for simplicity, only a 731 
sample of 4 IMFs are shown in this plot, the selected IMFs are LPRM 1, LPRM 7, LPRM 11 and LPRM 732 
21. Also, the DR (depicted in Figure 24 and estimated in the same way as before) is estimated locally 733 
for each IMF but again, only 4 IMFs (the aforementioned 4 LPRM signals) are shown in such figure. 734 
In the multivariate scenario, overall the BWR is unstable because of the high SE estimates along time, 735 
in spite of 4 segments that had an SE below the stability threshold (SE < 0.8). Thus, again from the 736 
very beginning of the simulation, the SE is able to detect an unusual BWR unstable behavior. The DR 737 
in the multivariate case prior the 150 s mark is apparently stable and after this 150 s mark, it 738 
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fluctuates around 0.75, the DR estimate is high but not high enough to trigger the BWR warning 739 
mechanisms and thus the DR indicates quasi-instability.   740 
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Figure 22. Multivariate instantaneous frequency IF (IF 4) linked to BWR instability oscillating around the region 742 

of interest (0.5 Hz). 743 
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 744 
Figure 23. Local SE estimate along time for the selected 4 LPRM sample. The threshold SE bar is located at the 745 

same locus as before. 746 
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 747 
Figure 24. Local DR estimate along time for the selected 4 LPRM sample. The threshold DR bar is located at the 748 

same locus as before. 749 
 750 

Finally, Table 4 shows the SE, DR and f0 (all of them calculated locally) of the entire studied Case 4 of 751 
the Forsmark stability benchmark, the APRM was ignored for this analysis. The estimated 752 
parameters are similar to those that stem from the univariate analysis performed through the 753 
Methodology 1 in Table 1 of this case (the estimates in Table 4 are similar to those depicted in Table 1 754 
and within the 10% difference).   755 
 756 
Table 4. Average and standard deviation values for the SE, the DR and the oscillation frequency (f0) linked to 757 

instability of the Forsmark benchmark stability Case 4 studied via stability methodology 2 based on 758 
NA-MEMD. 759 

Detectors   Mean SE    Std SE Mean DR  Std DR  Mean f0    Std f0

LPRM 1 0.9208 0.0816 0.7669 0.1417 0.4754 0.0283 
LPRM 2 0.9220 0.0842 0.7670 0.1526 0.4867 0.0250 
LPMR 3 0.9164 0.0924 0.7791 0.1457 0.4875 0.0260 
LPMR 4 0.9034 0.1001 0.7551 0.1476 0.4867 0.0214 
LPRM 5 0.9278 0.0762 0.7328 0.1585 0.5030 0.0373 
LPRM 6 0.9234 0.0783 0.7383 0.1338 0.5034 0.0357 
LPRM 7 0.9176 0.0789 0.7232 0.1232 0.5012 0.0368 
LPMR 8 0.9160 0.0761 0.6595 0.1511 0.5047 0.0447 
LPRM 9 0.9241 0.0767 0.6749 0.1703 0.5016 0.0355 

LPRM 10 0.9127 0.0700 0.6131 0.1748 0.5129 0.0425 
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LPRM 11 0.9278 0.0618 0.6466 0.1482 0.4980 0.0395 
LPRM 12 0.9167 0.0450 0.5177 0.1378 0.5163 0.0636 
LPRM 13 0.9218 0.0721 0.7076 0.1327 0.5020 0.0292 
LPRM 14 0.9130 0.0756 0.6945 0.1537 0.5047 0.0300 
LPRM 15 0.9162 0.0785 0.7021 0.1281 0.5028 0.0385 
LPMR 16 0.9108 0.0889 0.7145 0.1088 0.5018 0.0299 
LPMR 17 0.9235 0.0814 0.7331 0.1506 0.4927 0.0242 
LPRM 18 0.9233 0.0851 0.7158 0.1693 0.4990 0.0282 
LPRM 19 0.9235 0.0670 0.6521 0.1686 0.4947 0.0477 
LPRM 20 0.9060 0.0884 0.6337 0.1861 0.5020 0.0428 
LPMR 21 0.9256 0.0668 0.6290 0.1512 0.5037 0.0413 
LPRM 22 0.8900 0.0593 0.4413 0.1466 0.5118 0.0840 

 760 
6.2.2 LPRMs from Ringhals benchmark 761 
Now, the Case 9 Cycle 14 of the Ringhals stability benchmark is studied through the Methodology 2 762 
based on NA-MEMD. Figure 25 shows the NA-MEMD decomposition (with 3 independent channels 763 
of noise to compensate for mode mixing) of one of the signal segments, the IMF (IMF 4) linked to 764 
instability is shown in this figure and the type of observed oscillation is known as out-of-phase 765 
oscillation [33]. These type of oscillations can only be observed locally at the LPRM level because at 766 
the APRM level (an APRM signal is an average of n LPRMs) the averaging might cancel data, if the 767 
signals that participate in the average have ideal phase differences of 180 degrees among them. 768 
Figure 26 shows the instantaneous frequencies IFs (IF 4) of the IMFs (IMF at the 4 level of 769 
NA-MEMD decomposition) associated to BWR instability, all of the IFs oscillate around 0.5 Hz in a 770 
quasi sinusoid way. Figure 27 shows the SE estimates along time of a sample of 4 LPRMs that were 771 
selected at random, the selected LPRMs were: LPRM 1, LPRM 10, LPRM 20 and LPRM 29. The SE 772 
estimates along time were high (beyond the SE stability threshold located at SE = 0.8) throughout the 773 
time span of the simulation for the 4 chosen LPRMs, thus the BWR is clearly unstable. 774 
 Figure 28 shows the DR estimates along time for the chosen LPRMs, the DR estimates were high, 775 
clearly indicating the beginning of an unstable event, but they did not exceed the stability threshold 776 
to trigger the BWR protection mechanisms. Finally Table 5 shows the SE, DR and oscillation 777 
frequency of the entire Ringhals Case 9. Again, the computer parameters in Table 5 are similar (less 778 
than 10 % of difference) with the estimates shown previously in Table 2 when this case was analyzed 779 
(in an univariate way) through Methodology 1. We highlight the NA-MEMD capabilities to 780 
compensate for mode mixing with only one realization of the algorithm whereas the iCEEMDAN 781 
required a total of I = 100 (the size of the ensemble) realizations of the default EMD algorithm to 782 
compensate for it. Thus, the NA-MEMD excels in computation time and the SE and DR estimates 783 
Methodology 2 provides were slightly the same as those given by stability methodology 1.      784 
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Figure 25. NA-MEMD applied to a short time segment of the Case 9 Cycle 14 of the Ringhals stability 786 

benchmark. 787 
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Figure 26. Multivariate instantaneous frequency IF (IF 4) linked to BWR instability oscillating around the region 789 
of interest (0.5 Hz). 790 
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Figure 27. Local SE estimate along time for the selected 4 LPRM sample. All of the SE estimates exceed the 792 
stability threshold (located at SE=0.8). 793 
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Figure 28. Local DR estimate along time for the selected 4 LPRM sample. The threshold DR bar is located at the 795 
same locus as before. 796 
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Table 5. Average and standard deviations values for the SE, the DR and the oscillation frequency (f0) linked to 797 
instability of the Ringhals benchmark stability Case 9 Cycle 14 studied via Methodology 2 based on NA-MEMD 798 

Detectors Mean SE Std SE Mean DR Std DR Mean f0 Std f0

LPRM 1 0.9792 0.0064 0.9033 0.0170 0.5271 0.0223 
LPRM 3 0.9779 0.0062 0.9006 0.0158 0.5284 0.0215 
LPRM 5 0.9786 0.0089 0.8997 0.0194 0.5286 0.0209 
LPRM 7 0.9793 0.0091 0.8841 0.0315 0.5251 0.0235 
LPRM 9 0.9791 0.0057 0.9003 0.0207 0.5244 0.0268 

LPRM 11 0.9792 0.0065 0.9007 0.0206 0.5270 0.0237 
LPRM 13 0.9762 0.0087 0.9005 0.0196 0.5306 0.0182 
LPRM 15 0.9790 0.0070 0.8977 0.0196 0.5256 0.0247 
LPRM 17 0.9808 0.0083 0.8910 0.0237 0.5239 0.0260 
LPRM 19 0.9708 0.0192 0.8468 0.0594 0.5373 0.0073 
LPRM 21 0.9750 0.0121 0.8682 0.0421 0.5337 0.0141 
LPRM 23 0.9802 0.0086 0.8894 0.0266 0.5307 0.0193 
LPRM 25 0.9789 0.0074 0.8930 0.0230 0.5286 0.0221 
LPRM 27 0.9776 0.0141 0.8881 0.0360 0.5314 0.0189 
LPRM 29 0.9728 0.0229 0.8402 0.0591 0.5346 0.0181 
LPRM 31 0.9635 0.0363 0.8150 0.0792 0.5381 0.0140 
LPRM 33 0.9648 0.0187 0.7227 0.1068 0.5318 0.0224 
LPRM 35 0.9681 0.0213 0.7680 0.0865 0.5308 0.0196 
LPRM 37 0.9769 0.0123 0.8573 0.0393 0.5304 0.0166 
LPRM 39 0.9731 0.0113 0.7923 0.0483 0.5310 0.0228 
LPRM 41 0.9544 0.0306 0.6935 0.1651 0.5312 0.0324 
LPRM 43 0.9600 0.0295 0.7080 0.1310 0.5368 0.0316 
LPRM 45 0.9471 0.0349 0.5754 0.2262 0.5408 0.0456 
LPRM 47 0.9782 0.0073 0.8511 0.0418 0.5279 0.0199 
LPRM 49 0.9796 0.0074 0.8805 0.0255 0.5310 0.0162 
LPRM 51 0.9803 0.0065 0.8992 0.0179 0.5299 0.0169 
LPRM 53 0.9786 0.0055 0.8999 0.0149 0.5271 0.0194 
LPRM 55 0.9813 0.0043 0.8970 0.0195 0.5293 0.0185 
LPRM 57 0.9802 0.0068 0.8868 0.0263 0.5274 0.0204 
LPRM 59 0.9730 0.0329 0.8719 0.1111 0.5254 0.0202 
LPRM 61 0.9698 0.0446 0.8734 0.1171 0.5272 0.0189 
LPRM 63 0.9680 0.0529 0.8790 0.0999 0.5276 0.0187 
LPRM 65 0.9646 0.0669 0.8737 0.1080 0.5265 0.0186 
LPRM 67 0.9685 0.0489 0.8734 0.0948 0.5269 0.0189 
LPRM 69 0.9717 0.0416 0.8735 0.1010 0.5239 0.0228 
LPRM 71 0.9752 0.0218 0.8722 0.1014 0.5275 0.0177 
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6.3 Discussions and remarks  799 

Some important final remarks can be done regarding our proposal and recent researches about BWR 800 
stability:  801 

The common mechanism for BWR instability is the density wave oscillations (DWO) effect [39]. A 802 
decrease in coolant flow increases the void fraction for a given reactor power. A high wave 803 
propagation velocity of voids (wave void) is then formed and accompanied by a high wave 804 
propagation velocity of pressure (wave pressure). Since an increase in pressure drop decreases the 805 
flow due to increased resistance to flow, a feedback loop results between inlet flow and pressure 806 
drop, which may lead to oscillations in time. In addition, as the void fraction is increased as 807 
described above, the associated decrease in moderator density induces a negative reactivity 808 
feedback. This causes the power to decrease, which reduces the void fraction and fuel temperature 809 
and allows the power to build up again. As a result, self-sustained power oscillations may appear, 810 
depending on the operation conditions.  811 

According with [40] the in-phase instabilities are driven by the interaction between the DWO 812 
mechanism and its coupling via the void reactivity feedback with the core neutron population. On 813 
the other hand, an in-phase instability implies growing neutron oscillations that are dominated by 814 
the fundamental neutronic mode. Regarding to the first azimuthal neutronic mode may also be 815 
unstable and growing, but its contribution to the total neutron population is relatively insignificant 816 
[41]. 817 

The mechanism of density wave oscillations for two-phase flow has recently received great 818 
attention, remaining as an important issue of scientific and technological interest (e.g. [40], [42-48]. 819 
However, the core stability is due to fluctuations in coolant flow and power generation process 820 
coupled via nuclear feedback where the non-linear nature has been a challenge for the development 821 
of stability monitors. Therefore the methodology presented in this work constitutes a significant 822 
and novel advance towards the development of stability monitors able to predict linear and 823 
nonlinear effects, as well as the transition between them.  824 

Experiments on natural circulation BWR stability show that changing the fuel rods diameter affect to 825 
the stability performance of the system [48]. These authors clearly observed that at least two 826 
oscillatory modes exists in the system, one of them is the so-called reactor mode related to density 827 
waves travelling through the core, which is amplified by increasing the void reactivity feedback 828 
coefficient. Therefore, the methods based on SE presented in this work, are applicable to existing and 829 
advanced reactors of type BWR, and any two-phase flow system as well as characterization of 830 
stability limits [47]. A recent work showed that the stability of a BWR reactor was applied to 831 
assessment of optimum Fuel Reload Patterns for a BWR [49].  832 

The methodology 1, developed in this work, is limited to the cases of neutron signal analysis of an 833 
APRM or LPRM where the instability in-phase can be detected like in a NPP as Laguna Verde which 834 
characteristic is its size (smaller compare to Forsmark and Ringhals) and where this kind of 835 
instability phenomena is expected. Regarding to methodology 2, it can be applied to both phase 836 
in-phase and out-of-phase instabilities. Given that the stability phenomena in BWR is a complex 837 
phenomenon in a heterogeneous two-phase flow system, where void propagation waves 838 
(propagation of the gas phase in the liquid phase) and pressure propagation waves (both in gas 839 
phase and liquid phase) generate the DWO mechanics, then is preferable to implement an oscillation 840 
detector based on methodology 2.  841 

 842 
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7. Conclusions 843 
In this work two non-linear stability monitor methodologies based on noise assisted empirical mode 844 
decomposition methods (NA-EMDm) were proposed to analyze unstable BWR signals that 845 
stemmed from the Ringhals, Forsmark stability benchmarks and the Laguna Verde instability event, 846 
with the goal in mind of estimating the Shannon Entropy of those signals to measure their 847 
uncertainty and thus assess BWR stability through such novel measure. Also, the SE estimates were 848 
compared with Decay Ratio results computed via previous methods based on EMD variants. The 849 
proposed stability methodologies are rooted in noise assisted empirical mode decomposition 850 
algorithms, which are techniques that decompose non stationary signals that stem from non-linear 851 
sources in an adaptive (data-driven) way to grant a physically meaningful decomposition of data, the 852 
data (the LRPM or APRM signals are split first in segments of 15 s) is decomposed into intrinsic 853 
mode functions (or simply modes), via the Hilbert transform it is possible to compute the 854 
instantaneous frequencies of the extracted modes to track the mode linked to BWR instability (whose 855 
IF is strongly concentrated around 0.5 Hz, the region of interest for BWR unstable events). Later, 856 
once the IMF (IMFs in the multidimensional case) of interest has been detected, the SE of this 857 
particular IMF is computed to assess the BWR stability of that particular 15 s signal segment that was 858 
analyzed via any of our stability methodologies. The major findings of our BWR stability studies are 859 
resumed in the following:  860 

a) regarding Methodology 1 based on the iCEEMDAN (univariate signal analysis) 861 
•  Case 4 of the Forsmark stability benchmark  862 

The estimated averaged values for the DR are in perfect agreement with those estimated 863 
by the different methodologies presented in [3]. The DR estimates indicate the beginning 864 
of an incipient instability event whereas the SE estimates indicate a fully developed instability 865 
event in the BWR core.   866 

•  Case 9 Cycle 14 of the Ringhals stability benchmark 867 
The high SE estimated values, clearly indicate again a fully developed unstable behavior of 868 
this case. Thus, the studied BWR floor 2 is unstable. The high DR estimates (but still not 869 
above the locus DR = 1) although high and depicting that there is something unusual 870 
going on in the BWR core but not high enough to trigger BWR protection mechanisms. 871 

•  The Laguna Verde instability event 872 
Prior the first 300 s of the signal, the DR oscillates between stability and instability. But, it 873 
is hard to infer the dominant DR value due to its strong discontinuous jumps between 874 
stability and instability. However, after the 300 s mark, the DR is high and greater that its 875 
threshold value (DR = 1) and remains as such (and oscillating around 1.1) throughout the 876 
rest of the simulation. Thus, the DR indicates unstable BWR behavior but only after the 877 
300 s mark. The SE estimate is highly more consistent than the DR prior the 300 s mark, 878 
because the SE clearly indicates unstable behavior (whereas the DR is unable to 879 
differentiate between the two) and after the 300 s mark, the SE slightly oscillates around 1 880 
(and not in a dramatic way as the DR does). Nevertheless, the SE always indicates unstable 881 
BWR behavior, long before the DR is able to detect it. Thus, the SE is capable of indicating 882 
unstable behavior prior any further growth in power of the unstable oscillation within the 883 
core whereas the DR is only able to detect instability (without bias) once the unstable 884 
oscillation is fully sustained and powerful enough to damage the core. 885 

  b)  regarding Methodology 2 based on the NA-MEMD (multivariate signal analysis) 886 
•  Multivariate analysis of the Forsmark stability benchmark (based on a sample of 4 887 

LPRMs)  888 
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Overall the BWR is unstable because of the high SE estimates along time, in spite of 4 889 
segments that had an SE below the stability threshold (SE < 0.8). Thus, again from the very 890 
beginning of the simulation, the SE is able to detect an unusual BWR unstable behavior. 891 
The DR in the multivariate case prior the 150 s mark is apparently stable and after this 150 892 
s mark, it fluctuates around 0.75, the DR estimate is high but not high enough to be a 893 
nuisance for BWR operation.  894 

•  Multivariate analysis of the Forsmark stability benchmark (based on a sample of 4 895 
LPRMs): 896 

The SE estimates along time were high (beyond the SE stability threshold located at SE = 897 
0.8) throughout the time span of the simulation for the 4 chosen LPRMs, thus the BWR is 898 
clearly unstable whereas, the DR estimates were high, clearly indicating the beginning of 899 
an unstable event, but they did not exceed the stability threshold to trigger the BWR 900 
protection mechanisms. 901 

According to our simulations it is naive to assume to infer information associated to BWR dynamics 902 
through one linear parameter alone such as the DR, because in most of our simulations, the DR only 903 
rises above its stability threshold (DR above 1) once the unstable oscillation has grown enough in 904 
power to damage the core (according to the stability analysis of the LV signal). Thus, it is necessary 905 
to propose another non-linear stability indicator (to replace the DR or to accompany it) to assess 906 
BWR stability, and the SE might be a suitable candidate to fulfill that role via our simple SE estimator 907 
or another more elaborate one that will be studied in future works.  908 
To select which stability methodology (between 1 and 2) is the most adequate to analyze BWR 909 
signals, is still not known and further stability cases must be studied in detail to decide which type of 910 
analysis works better; whether a univariate one or a mutlivariate one. Nevertheless, the SE (and DR) 911 
estimates extracted through these decomposition methods were similar (within the 10 % of 912 
difference). These noise assisted techniques have one cumbersome inconvenient and a difficult one 913 
to overcome. For instance, how to properly select the iCEEMDAN parameters I (the size of the 914 
ensemble of realizations of the EMD that this noise assisted method requires) and ε0  (the standard 915 
deviation of the added assisted noise)? Nobody knows that answer yet in the EMD literature, thus 916 
further studies are required to infer these two parameters. A similar question arises with the 917 
NA-MEMD, how many independent channels of noise are required in the decomposition scheme to 918 
mitigate the mode-mixing problem?, again, another question that has not been addressed in the 919 
specialized literature. However, once these questions are answered, then, our stability 920 
methodologies might be fully adaptive to be implemented in a real stability monitor and well 921 
adapted to decompose non stationary non linear data. 922 
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