

1 Article

2 **Non-Linear Stability Analysis of Real Signals from
3 Nuclear Power Plants (Boiling Water Reactors) based
4 on Noise Assisted Empirical Mode Decomposition
5 Variants and the Shannon Entropy**6 **Omar Alejandro Olvera-Guerrero, Alfonso Prieto-Guerrero and Gilberto Espinosa-Paredes***7 División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael
8 Atlixco 186, Col. Vicentina, Cd. de México 09340, México; omar_olverag@hotmail.com

9 * Correspondence: gepe@xanum.uam.mx; Tel.: +52 15558041260

10

11

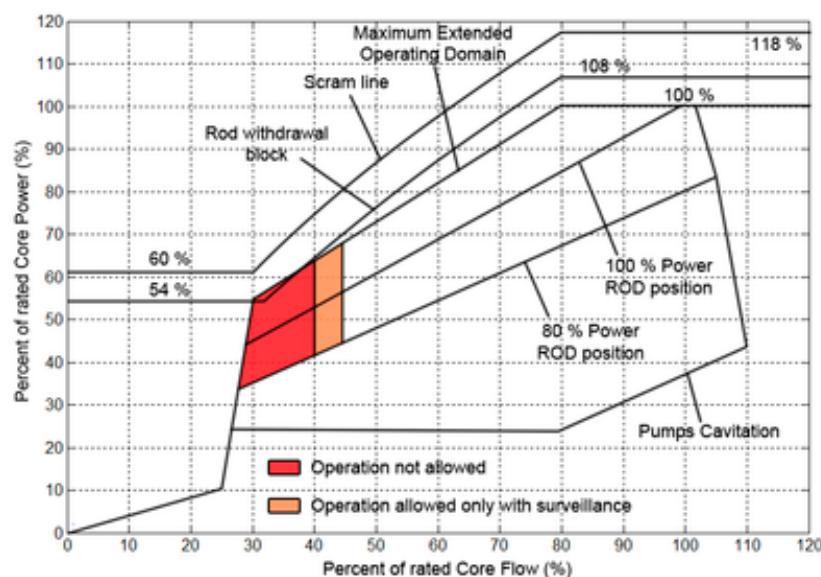
12 **Abstract:** There are currently around 78 Nuclear Power Plants (NPP) in the world based on Boiling
13 Water Reactors (BWR). The current parameter to assess BWR instability issues is the linear Decay
14 Ratio (DR). However, it is well known that BWRs are complex non-linear dynamical systems that
15 may even exhibit chaotic dynamics that normally preclude the use of the DR when the BWR is
16 working at a specific operating point during instability. In this work a novel methodology based on
17 an adaptive Shannon Entropy estimator and on Noise Assisted Empirical Mode Decomposition
18 variants is presented. This methodology was developed for real-time implementation of a stability
19 monitor. This methodology was applied to a set of signals stemming from several NPPs reactors
20 (Ringhals-Sweden, Forsmark-Sweden and Laguna Verde-Mexico) under commercial operating
21 conditions, that experienced instabilities events, each one of a different nature.22 **Keywords:** Boiling Water Reactors; density wave oscillations; stability monitor; Shannon Entropy;
23 noise-assisted Empirical Mode Decomposition variants; mode-mixing; Hilbert-Huang transform;
24 instantaneous frequency.

25

26

27 **1. Introduction**28 Currently, there are 78 nuclear boiling water reactors (BWR) in the world for the generation of
29 electricity. The BWR contribute significantly to the production of global electric power and to date
30 are the simplest energy system to transform fission energy into electrical energy, due to the direct
31 cycle to turbine with dry saturated steam. However, there are still fundamental aspects in its
32 operation related to the interaction of thermohydraulic processes (heat transfer in fuel and
33 refrigerant) with that of neutron kinetics. Such interaction may, under certain operating conditions,
34 cause BWR to malfunction and affect its stability. The problem of the stability of the BWR has been
35 the subject of important scientific and technological work during more than 4 decades dedicated to
36 its study.37 Instability events are rare and may occur during BWR start up or during transients that may change
38 the operation region of the reactor. Figure 1 shows the example of a typical Power-flow map
39 diagram of a nuclear power plant (NPP), which shows the regions where the reactor should not be

40 operated (red box) for reasons of stability, those ones where the BWR can be operated only under
 41 supervision (brown box) and finally, the diagram shows the regions of stable reactor operation
 42 (regions where the core flow is high). Currently, there is a tendency to design higher power reactors.
 43 In addition, refinement of fuel elements has encouraged the introduction of increasingly efficient
 44 fuels that allow the plant to operate at increasingly high power levels. Such a power increase induces
 45 a higher reactivity feedback and a decrease in response time, resulting in a lower BWR stability
 46 range when the plant operates at a low mass flow and at high nominal power. Another current trend
 47 is to increase the size of the core, which causes a weaker special coupling in the neutron field which
 48 increases the susceptibility of the reactor to experiencing unstable oscillations. In summary, all
 49 current tendencies related to reactor design enhance the regions where the reactor should not be
 50 operated (reactor operation at low flow and high power).



51

52

Figure 1. Typical Power-flow map of a NPP.

53 Events of instability have already occurred in the past in commercial BWRs, such as the Laguna
 54 Verde Nuclear Power Plant [1-2]. Some cases of instability occurred inadvertently, while others were
 55 intentionally provoked for experimental purposes [3]. Periodic oscillations in the neutron flux were
 56 observed during these instability events via the electronic instrumentation of the reactor. After the
 57 first events of instability occurred, the corresponding authorities (regulatory commissions)
 58 requested the development of research projects to study the mechanisms involved in reactor
 59 stability in order to:

- 60 • Study the stability margins of the plant under normal operating conditions and in unusual
 61 conditions.
- 62 • Predict reactor transients in an event of instability.
- 63 • Develop measures to prevent and mitigate the consequences of an event of instability.

64 In BWR instability events, two kinds of instabilities are found: in-phase (global or core-wide)
 65 oscillations, and out-of-phase (regional) oscillations. In-phase oscillation, i.e. where neutron flux
 66 oscillations are in-phase at all the fuel bundles in the core, are caused by the lag introduced into the
 67 thermal-hydraulic system by the finite speed of propagation of density perturbation [4]. At

68 high-core void fractions and low flow conditions, the feedback becomes so strong that it induces
69 oscillations at frequency about 0.5 Hz. When this feedback increases, the oscillation becomes more
70 pronounced, and oscillatory instability is reached. The term out-of-phase oscillation is applied to
71 those instabilities in which different reactor core zones show a considerable phase shift (180°) in
72 neutron flux oscillation, i.e. where neutron flux from one half of the core oscillates out-of-phase with
73 respect to that one of the other half. It has been shown that stability depends on several variables
74 such as control rod patterns, void fraction, burnup, inlet mass flow, among others.

75 Currently, the most common parameter to evaluate BWR stability is known as the decay ratio (DR),
76 which is calculated from the impulse response function that stems from an autoregressive (AR)
77 modeling of BWR signals. The decay ratio is a simple straightforward index to scale a margin to the
78 stability boundary and this property is the main output of most stability monitoring systems [5]. The
79 use of the DR as a feasible BWR stability measure has been widely accepted, nonetheless, it has been
80 observed that a BWR working at an operating point with a small DR can be close to instability [6].
81 Also, the DR often jumps discontinuously from the well stable to the far-unstable region [7]. The
82 BWR stability is of primary interest from the point of view of BWR operation, due to the fact, that the
83 stability margin may be strongly reduced during plant maneuvering and transients [8]. According to
84 these issues, the DR might not be a reliable monitoring index after all, under certain operating
85 conditions. Besides, in regular operating conditions, the need for stationary signals might be a
86 handicap for DR estimation. Thus, it is relevant to explore new alternative methodologies and
87 indexes adapted to accommodate for non-stationary and non-linear BWR signal behavior.

88 In [9] a short time Fourier transform based technique was explored to study the time dependence of
89 the natural frequency when the BWR signal is non-stationary. Later, the wavelet theory was applied
90 to explore new alternatives for transient instability analysis [10-11]. However, in general BWR
91 signals are non-stationary and non-linear, thus Fourier-based or wavelet-based approaches might
92 lead to a biased stability analysis. Several methods for non-linear BWR stability analysis have been
93 applied before [12-13], to study BWR signals containing stationary and non-stationary segments. In
94 this work, the Shannon Entropy (SE) was applied, to infer whether it can be used as a novel stability
95 parameter for BWRs. The SE is a concept that was developed by Claude E. Shannon [14] to study a
96 discrete source through the *information content* of this source. The SE is a statistical index that
97 quantifies the *complexity* of a signal. In this case, the BWR stability issue is assessed quantifying the
98 *complexity* of BWR signals through this proposed parameter SE. A *low* SE value is linked to a
99 predictable BWR event (stable scenario) whereas a *high* SE indicates an unpredictable BWR event (an
100 unstable scenario).

101 To properly estimate the SE from BWR signals, two noise assisted empirical mode decomposition
102 (EMD) methods were explored: the *improved complete ensemble empirical mode decomposition with*
103 *assisted noise* (iCEEMDAN) and the *noise assisted multivariate empirical mode decomposition*
104 (NA-MEMD). Both techniques were proposed in [15] and [16] respectively. Henceforth, for
105 simplicity, we will refer to any of these two methods as *noise assisted empirical mode decomposition*
106 *method* (NA-EMDm). The NA-EMDm is an algorithm that decomposes non-stationary signals that
107 stem from non-linear systems. The method also alleviates the *mode mixing* phenomenon of the
108 default EMD method, that was first proposed in [17] by Huang et al. The NA-EMDm produces a
109 local and fully data-driven separation of a signal in fast and slow oscillations. At the end of the
110 procedure, the original signal can be expressed as a sum of amplitude and frequency modulated
111 (AM-FM) functions called intrinsic mode functions (IMFs), also known as *modes*, plus a final
112 monotonic trend. The combination of NA-EMDm and the Hilbert transform is known as the
113 Hilbert-Huang transform (HHT). The method we propose is based on the HHT and it estimates a
114 parameter associated to BWR stability, in this case the previously mentioned SE. The NA-EMDm
115 decomposes the studied BWR signal (signals in the NA-MEMD case) into IMFs. One or more of

116 these extracted modes can be associated to the instability problem in BWRs. Through HHT it is
117 possible to get the instantaneous frequency (IF) associated to each IMF. By tracking this IF and the
118 SE of the IMF linked to instability, the estimation of the SE-based stability indicator is accomplished.
119 The methodology here proposed is a continuation of a previous work [18] developed by the authors,
120 in which a SE/iCEEMDAN technique was tested with artificial signals generated with the aid of a
121 simple but powerful Reduced Order Model (ROM) that fits the BWR non-linear dynamic behavior.
122 The work presented in [18] is now expanded in here to assess the stability of real BWR signals
123 through iCEEMDAN and NA-MEMD.

124 The combination of EMD variants plus Entropy *measures* has been applied before in various
125 scientific disciplines, for instance, in [19] a methodology for the classification of
126 electroencephalogram (EEG) signals was developed using entropy measures. The EEG signals were
127 first decomposed through default EMD into IMFs. Later, the Shannon entropy, the Renyi entropy,
128 the approximate entropy, the sample entropy, among other entropy measures, were computed from
129 the extracted IMFs to study the complex electrical activities of the brain. In [20] a study was
130 developed to analyze EEG signals to compare them with existing Bispectral-indexes (BIS), which are
131 indicators that are often used to assess the depth of anesthesia. The MEMD was utilized to filter EEG
132 data, later the combination of two MEMD components (IMF 2 + IMF 3) were used to express raw
133 EEG data. Then, the sample entropy algorithm was used in the study to calculate the complexity of
134 the patients EEG data. Furthermore, linear regression and artificial neural network methods were
135 used to model the sample entropy using the BIS index. In [21] the original CEEMDAN was used to
136 develop a new method for filtering time series originating from non-linear *impact* (signals used to
137 study the impact events in mechanical systems for health monitoring analysis) systems. Then, the
138 complexity of the extracted IMFs was quantified by *fuzzy* entropy. In [22] multiscale entropy
139 measures were computed over different scales of IMFs extracted by EMD to study the regularity of a
140 time series related to brain dynamics, their methodology was also extended to study multi-channel
141 multi-trial neural data through the MEMD approach. The list of applications of methods combining
142 a NA-EMDm plus a measure of entropy go onward, to the degree that this combination is now
143 becoming an *entropic analysis strategy* to provide an information based-interpretation of data [23].
144 However, Shannon entropy measure was never used before [18] as a stability indicator for a BWR.

145 This paper is organized as follows: in Section 2 a brief introduction about BWRs and its
146 instrumentation inside of the core are presented. A full review of the two chosen NA-EMDm
147 algorithms to understand the basic background of the decomposition methods employed, are
148 detailed in Section 3. The SE estimator, employed as BWR stability indicator, is introduced in Section
149 4. In Section 5, the methodology to estimate the instantaneous frequency and the proposed SE
150 parameter is detailed. The validation of the methodology presented in this paper is performed doing
151 experiments with real signals taken from the Forsmark and Ringhals stability benchmarks and from
152 a Laguna Verde instability event and presented in Section 6. Also in this same section, the SE results
153 are compared with current DR estimations, computed via techniques based on default EMD [24-25].
154 Our major findings regarding our novel methodology are talked through in Section 7.

155

156

157

158 **2. BWRs background**

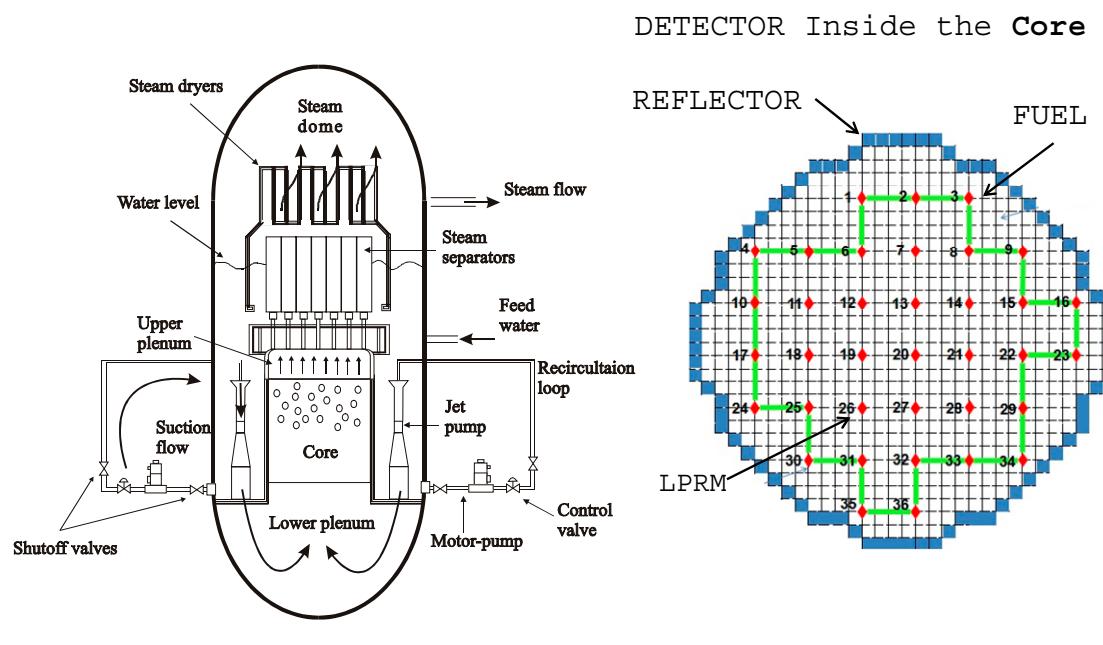
159 *2.1 Description of a BWR*

160 The BWR configuration and the flow paths are illustrated in Figure 2 [26]. The reactor water
161 recirculation system, whose objective is to circulate the required coolant flow through the reactor
162 core, consists of two external loops to the reactor vessel. Each loop contains a pump with a directly
163 coupled motor, a flow control valve, and two shut-off valves. The jet pump located within the
164 reactor vessel provides a continuous internal circulation path for a major portion of the core coolant
165 flow. The recirculation pumps take the suction from the downward flow in the annulus between the
166 core shroud and the vessel wall. The core flow is taken from the vessel through two recirculation
167 nozzles. Into this site, the flow is pumped to a higher pressure, distributed through a manifold to
168 which a number of riser pipes are connected, and returned to the vessel inlet nozzles.

169 This flow is discharged from jet pump nozzles into the initial stage of the jet pumps throat where,
170 due to a momentum exchange process, induces the surrounding water in the downcomer region to
171 be drawn into the jet pumps throats. Here, these two flows are mixed and then diffused in the
172 diffuser, to be finally discharged into the lower core plenum. The coolant water passes along the
173 individual fuel rods inside the fuel channel where it boils and becomes a two-phase steam/water
174 mixture. In the core, the two-phase fluid generates upward flows through the axial steam separators
175 while the steam continues through the dryers and flows directly out through the steam lines into the
176 turbine-generator. The condensate flow is then returned through the feedwater heaters by the
177 condensate-feedwater pumps into the vessel. The water, which is separated from the steam in the
178 steam separators, flows downward in the periphery of the reactor vessel and mixes with the
179 incoming main feed flow from the turbine. This downward flow enters to the jet pumps and the
180 remainder exits from the vessel as recirculation flow.

181 2.2 Instrumentation inside the core of a BWR

182 It is possible to detect BWR oscillations linked to instability via a series of detectors known as local
183 power range monitor (LPRM), these detectors are located radially and axially within the core vessel,
184 as depicted in Figure 2. Their task is to monitor the *local neutron flux* of the reactor at a certain *locality*.
185 Within the core, there is a particular detector which averages a series of LPRMs, the latter is known
186 as average power range monitor (APRM). The APRM detectors control the emergency shutdown of
187 a BWR (i.e., SCRAM) through a reactor protection system (RPS) mechanism that triggers when the
188 detected APRM oscillation exceeds the security threshold. The in-phase (global or core-wide)
189 oscillations can be observed in the APRM detectors and via the RPS and it is possible to SCRAM the
190 reactor if a *strong* in-phase oscillation is observed (or the operator can also shutdown the reactor if
191 necessary). However, the out-of-phase (regional) oscillations cannot be observed in the APRM
192 detectors, because one out-of-phase oscillation with *perfect symmetry* (a phase shift of 180° between
193 the reactor core zones that participate in the averaging operation via their respective LPRMs) will
194 cancel the LPRMs averaging, disabling in this way the APRM monitors. Therefore, the out-of-phase
195 oscillations must be studied at a *local LPRM level*. Events related to diverging power oscillations have
196 happened before in various BWRs facilities in the past. Such events encouraged researchers to
197 develop correction techniques to suppress these events. Nonetheless, in spite of the existence of
198 these corrective methods, unstable events continued to occur. Thus, as an answer to these BWR
199 unstable events, several works were developed to study the physical phenomena behind these
200 events. The detection and suppression mechanisms dedicated to mitigate these unstable oscillations
201 need to identify the type of oscillation through LPRM signal monitoring. The development of
202 methods to detect unstable event is of vital importance in terms of reactor security. The main goal of
203 these methods is to provide a stability indicator (estimated via the study of BWR signals) which
204 grants the operator enough time to act *accordingly* and in such a way that his actions do not involve a
205 SCRAM straight away. The estimated stability indicator must provide as much information as
206 possible regarding BWR unstable dynamics with enough reliability, precision and *predictive*
207 capability to bestow the operator the time needed to act.



Schematic diagram of a Boiling Water Reactor (BWR)

208

209 **Figure 2.** Schematic diagram of a BWR and an example of a distribution of 36 LPRM (red dots) detectors located
210 at a radial position within the core.

211

212 The current BWR stability indicator is the decay rate or *Decay Ratio* (DR) and the frequency of the
213 unstable oscillation (it is known that the frequency associated to unstable oscillations, due to density
214 waves, fluctuates around 0.5 Hz). For DR validity, it is compulsory to assume that the BWR behaves
215 as a stationary second order linear system (i.e., a harmonic oscillator). Thus, an accurate prediction
216 for the onset of BWR instability with methods that take into account the non-stationarity and
217 non-linearity of the signal, is the next step in the research for the operation safety in BWRs.

218 In the next sections the proposed non-linear methods to make an early detection (and *tracking*) of the
219 density wave are introduced. Likewise, we describe the methodologies dedicated to estimate the
220 Shannon Entropy, a *measure* that fulfills the role of a novel non-linear BWR stability indicator.

221

222

223

224 **3. Empirical mode decomposition (EMD) algorithms**

225 *3.1 The default EMD method*

226 Before introducing the noise assisted variants of the empirical mode decomposition (EMD). Let us
227 recall the basics of the default EMD method, which was first proposed by Huang et al., [17]. The
228 standard EMD permits the decomposition of a non-stationary signal that stems from a non-linear
229 source, into various intrinsic mode functions (IMFs) or simply *modes*. To be considered an IMF, a
230 signal of interest must fulfill two criteria:

231 I. The number of extrema (maxima and minima) and the number of zero-crossings must be equal
232 or differ at most by one.

233 II. The local mean, defined as the mean of the upper and lower envelopes, must be zero.

234 **Method 1:** The default EMD method can be described by the next steps, but first, let x be the signal of
235 interest to decompose into IMFs:

236 **Step 1.** Set $k = 0$ and find all extrema of $r_0 = x$.

237 **Step 2.** Interpolate between minima (maxima) of r_k to obtain the lower (upper) envelope
238 $e_{\min}(e_{\max})$.

239 **Step 3.** Compute the mean envelope $m = (e_{\min} + e_{\max}) / 2$.

240 **Step 4.** Compute the IMF candidate $d_{k+1} = r_k - m$.

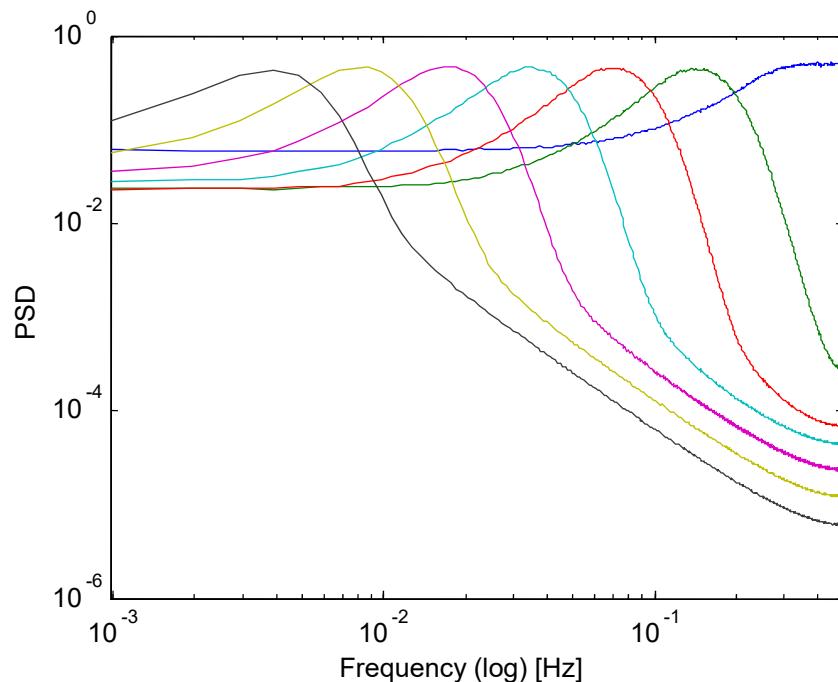
241 **Step 5.** Is d_{k+1} an IMF?

242 • Yes. Save d_{k+1} , compute the residue $r_{k+1} = x - \sum_{i=1}^k d_i$, do $k = k + 1$, and treat r_k
243 as input data in step 2.

244 • No. Treat d_{k+1} as input data in step 2.

245 **Step 6.** Continue until the final residue r_k satisfies some predefined stopping criterion.

246 The refinement process (steps 2 to 5) needed to extract every *mode*, requires a certain number of
247 iterations named as *siftings*. The extracted *modes* d_k , $k = 1, 2, \dots, K$ decompose x and are in theory,
248 nearly orthogonal to each other. However, one of the major drawbacks of the EMD is the frequent
249 appearance of a problem that is known as *mode mixing*, which is defined as a single intrinsic mode
250 function (IMF) either consisting of signals of widely disparate scales, or a signal of a similar scale
251 residing in different IMF components. Such issue might spoil the meaning of individual IMFs and
252 thus, thwart any default EMD signal analysis methodology. For further details about the impact of
253 the *mode mixing* problem in BWR signals, please refer to [25]. To alleviate the *mode mixing*
254 inconvenient, an interesting property of the EMD is exploited: such property appears when the
255 signal to decompose is a white Gaussian noise. When this white Gaussian noise is decomposed, the
256 EMD behaves as an adaptive dyadic filter bank, as it is shown in Figure 3, in which, 5000
257 independent time series (of white Gaussian noise) of 512 points each have been generated, and the
258 average power spectrum density (PSD) of the first seven IMFs are plotted as a function of the
259 normalized frequency.



260

261

Figure 3. EMD equivalent filter bank for a white Gaussian noise for the first 7 IMFs.

262 Thus, the methods that are discussed in the following sections to mitigate the *mode mixing* issue, *add*
 263 *an ensemble of realizations of white noise to the signal of interest* (hence, the name *noise assisted* method is
 264 used to define improved variations of EMD), to repair and exploit this dyadic filter bank property of
 265 the EMD, to improve IMF acquisition of the signal of interest x .

266 *3.2 The improved complete ensemble empirical mode decomposition method with assisted noise (iCEEMDAN)*

267 The iCEEMDAN [15] is a recent noise assisted (NA) variation of EMD that compensates for *mode*
 268 *mixing*. This method also addresses the most relevant disadvantages of previous NA variants of
 269 EMD, of techniques such as the EEMD [27] and the original CEEMDAN [28] method. Such
 270 handicaps are: the presence of residual noise in the modes and the existence of spurious modes (and
 271 both of them are addressed by iCEEMDAN).

272 **Method 2:** Let x be the signal to decompose into IMFs through iCEEMDAN. Before proceeding, let
 273 us define the next three operators:

274 (i) Let $M(\square)$ be the operator which produces the local mean (the mean envelope of the upper
 275 and lower envelopes of the studied signal interpolated by cubic splines) of the signal it is
 276 applied to.

277 (ii) Let $\langle \square \rangle$ be the action of averaging throughout an ensemble of realizations of default EMD.

278 (iii) Let $E_k(\square)$ be the operator that produces the k -th mode obtained by default EMD.

279 Let $w^{(i)}$ be a realization of white Gaussian noise with zero mean and unit variance. With this in
 280 mind, the iCEEMDAN method is described as follows:

281 **Step 1.** Calculate by default EMD the local means of I realizations $x^{(i)} = x + \beta_o E_1(w^{(i)})$ to obtain
 282 the first residue

$$r_1 = \langle M(x^{(i)}) \rangle$$

283 **Step 2.** At the first stage ($k = 1$) calculate the first mode: $\tilde{d}_1 = x - r_1$

284 **Step 3.** Estimate the second residue as the average of local means of the realizations
 285 $r_1 + \beta_1 E_2(\omega^{(i)})$ and define the second mode:

$$\tilde{d}_2 = r_1 - r_2 = r_1 - \langle M(r_1 + \beta_1 E_2(\omega^{(i)})) \rangle$$

286 **Step 4.** For $k = 3 \dots K$ calculate the k -th residue

$$r_k = \langle M(r_{k-1} + \beta_{k-1} E_k(\omega^{(i)})) \rangle$$

287 **Step 5.** Compute the k -th mode

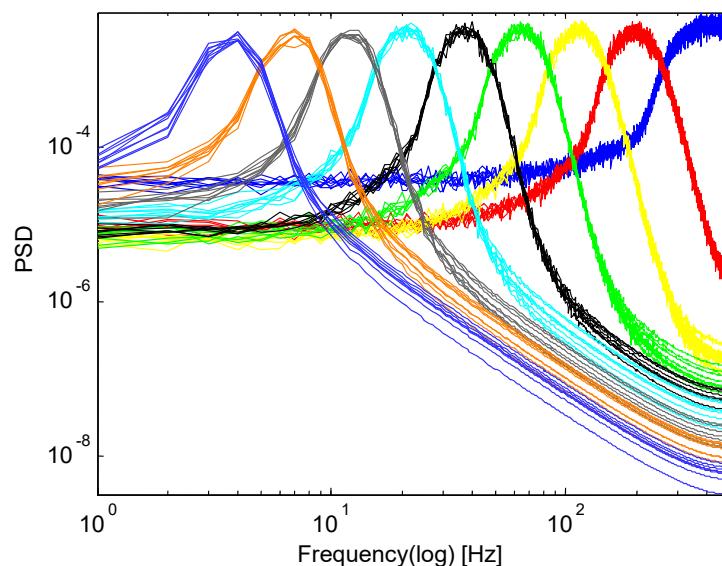
$$\tilde{d}_k = r_{k-1} - r_k$$

288 **Step 6.** Go to step 4 for next k .

289 Constants $\beta_j = \varepsilon_j \text{std}(r_j)$ are chosen to obtain the desired signal to noise ratio (SNR) between the
 290 added noise and the residue to which the noise is added, nonetheless, in this work, we fixed the
 291 same SNR for all the stages of this procedure ($\varepsilon_j = \varepsilon_0$). Studies about this parameter can be found in
 292 [29]. Although this NA-EMDm is quite useful to mitigate the *mode mixing* issue, there is a backlash,
 293 for it creates other problems: such as the proper choosing of parameters I which is the number of
 294 realizations of the ensemble and the standard deviation ε_0 of the assisted noise added to the
 295 original signal for decomposition and thus, further works must be developed to properly estimate
 296 these two parameters (such endeavor leaves the scope of this work until further studies in the EMD
 297 literature are developed to infer the iCEEMDAN properties). Once such parameters are well
 298 established, then the BWR stability analysis might be at last fully adaptive and data driven. For all of
 299 our computations, the aforementioned parameters are fixed at: $I = 100$ and $\varepsilon_0 = 0.2$.

300 3.3 *The noise assisted multivariate empirical mode decomposition (NA-MEMD)*

301 The multivariate empirical mode decomposition (MEMD) is a technique that was proposed in [30] to
 302 make the classic empirical mode decomposition (EMD) suitable for processing of multichannel
 303 signals. To shed further light in the performance of this MEMD method, its behavior was analyzed
 304 in the presence of white Gaussian noise in [16] and it was found that, similarly to EMD. MEMD also
 305 in essence acts as a dyadic filter bank on each channel of the multivariate input signal, such MEMD
 306 property is illustrated in Figure 4 and its algorithm is given below. Nonetheless, unlike EMD, the
 307 MEMD better aligns the corresponding IMFs (i.e., *modes*) from different channels across the same
 308 frequency range which is crucial for real world applications and from such studies, the NA-MEMD
 309 method was developed to help resolve the *mode mixing* problem in the existing EMD algorithms.



310

311 **Figure 4.** Averaged spectra of IMFs (1-9) obtained for 50 realizations of eight-channel white Gaussian noise via
 312 MEMD.

313 The NA-MEMD method which makes use of the quasi-dyadic filter bank properties of MEMD on
 314 white noise (see Figure 4), it is capable of significantly reducing the *mode mixing* problem for classes
 315 of signals where the quasi-dyadic filter bank structure proves useful. Embarking upon the
 316 quasi-dyadic filter bank structure of standard EMD for broadband noise, many EMD variants were
 317 proposed, in which multiple realizations of white noise were added to the input signal before being
 318 decomposed via EMD. This helps to establish a uniformly distributed reference scale which, in turn,
 319 results in corresponding IMFs exhibiting a quasi-dyadic filter bank structure.

320 Following the latter idea, to explore the benefits of the quasi-dyadic filter bank structure of the
 321 default MEMD [30] on white noise, in [16] a total of m extra independent channels containing white
 322 noise are added in the MEMD decomposition of the multivariate signal of interest to exploit such
 323 interesting benefits of this filter bank property. The extracted IMFs (or *modes*) corresponding to the m
 324 channels of white noise are then discarded yielding a set of IMFs associated with only the original
 325 input signal. Since the added noise channels occupy a broad range in the frequency spectrum,
 326 MEMD aligns its IMFs based on the quasi-dyadic filter bank, with each component carrying a
 327 frequency sub band of the original signal. In doing so, IMFs corresponding to the original input
 328 signal also align themselves according to the structure of the quasi-dyadic filter bank. This, in turn,
 329 helps to mitigate the mode mixing problem within the extracted IMFs. The details of the NA-MEMD
 330 method are as follows, but first let us introduce the steps of the classic MEMD method:

331 **Method 3:** Multivariate Extension of EMD for a multivariate signal $\mathbf{v}(t)$

332 Consider a sequence of N dimensional vectors $\{\mathbf{v}(t)\}_{t=1}^T = \{v_1(t), v_2(t), \dots, v_N(t)\}$ representing a
 333 multivariate signal with N components, and $\mathbf{x}^{\theta_k} = \{x_1^k, x_2^k, \dots, x_N^k\}$ denoting a set of direction vectors
 334 along the direction given by angles $\theta^k = \{\theta_1^k, \theta_2^k, \dots, \theta_{N-1}^k\}$ on a $(l-1)$ sphere. Then the extraction of the
 335 first IMF from the given MEMD steps is summarized in next steps:

336 **Step 1.** Generate the point set based on the Hammersley sequence for sampling on an $(l-1)$
 337 sphere [31].

338 **Step 2.** Calculate a projection, denoted by $p^{\theta_k}(t)_{t=1}^T$, of the input multivariate signal $\{\mathbf{v}(t)\}_{t=1}^T$
 339 along the direction vector \mathbf{x}^{θ_k} , for all k (the whole set of direction vectors), giving
 340 $p^{\theta_k}(t)_{k=1}^K$ as the set of projections.

341 **Step 3.** Find the time instants $\{t_i^{\theta_k}\}_{k=1}^K$ corresponding to the maxima of the set of projected
 342 signals $p^{\theta_k}(t)_{k=1}^K$.

343 **Step 4.** Interpolate $[t_i^{\theta_k}, \mathbf{v}(t_i^{\theta_k})]$, for all values of k , to obtain multivariate envelope curves
 344 $\mathbf{e}^{\theta_k}(t)_{k=1}^K$.

345 **Step 5.** For a set of K direction vectors, calculate the mean $\mathbf{m}(t)$ of the envelope curves as

$$\mathbf{m}(t) = \frac{1}{K} \sum_{k=1}^K \mathbf{e}^{\theta_k}(t)$$

346 **Step 6.** Extract the *detail* $c(t)$ using $c(t) = x(t) - m(t)$. If the *detail* $c(t)$ fulfills the stoppage
 347 criterion [30] for a multivariate IMF, apply the above procedure to $x(t) - c(t)$, otherwise
 348 apply it to $c(t)$.

349 Once the first IMF (or *mode*) is extracted, it is subtracted from the input signal and the same process
 350 (steps from **Method 3**) is applied to the resulting signal yielding the second IMF and so on, the
 351 process is repeated until all the IMFs are extracted and only a residue is left; in the multivariate case,
 352 the residue corresponds to a signal whose projections do not contain enough extrema to form a
 353 meaningful multivariate envelope. The sifting process for a multivariate IMF can be stopped when
 354 all the projected signals fulfill any of the stoppage criteria adopted in the default EMD [17].

355 Now, that the steps of the MEMD method have been given, the NA-MEMD is computed as follows:

356 **Method 4:** The noise assisted multivariate empirical mode decomposition (NA-MEMD)

357 **Step 1.** Create an uncorrelated Gaussian white noise time-series (m -channel) of the same length
 358 as that of the input.

359 **Step 2.** Add the noise channels (m -channels) created in step 1 to the input multivariate
 360 (N -channels) signal, obtaining an $(N + m)$ -channel signal.

361 **Step 3.** Process the resulting $(N + m)$ -channel multivariate signal using the MEMD algorithm
 362 (listed above), to obtain multivariate IMFs.

363 **Step 4.** From the resulting $(N + m)$ -variate IMFs, discard the m channels corresponding to the
 364 noise, giving a set of N -channel IMFs corresponding to the original signal.

365 However, it should be mentioned that the NA methods (both the iCEEMDAN and NA-MEMD) for
 366 mitigating the *mode mixing* problem are expected to be most useful for signals in which the dyadic
 367 filter bank decomposition is relevant. This is the case for the studied BWR signals.

368 **4. The Shannon Entropy as stability indicator**

369 In order to capture the complex dynamics of a BWR system, the Shannon Entropy (SE) [14] is
 370 studied. In statistical mechanics and information theory, entropy is a functional that quantifies the
 371 information content of a statistical ensemble or equivalently, the *uncertainty* of a random variable. Its
 372 application in various scientific disciplines is countless. Nonetheless, the most important example of
 373 such a functional is the Shannon Entropy (also known as average *information*), the concept was
 374 developed by Claude E. Shannon in 1948 [14]. Now, consider a discrete random variable x , which
 375 can take a finite number of M of possible values $x_i \in \{x_1, \dots, x_M\}$ with corresponding probabilities
 376 $p_i \{p_1, \dots, p_M\}$, its entropy $H_s(x)$ is defined as:

$$H_s(x) = -\sum_{i=1}^M p_i \ln(p_i) \quad (1)$$

377 In general, the probability distribution for a given stochastic process is not known, and, in most
 378 situations, only small data sets from which to infer the entropy are available. For instance, it could be
 379 of interest to figure out the Shannon Entropy of a given BWR signal (or of one of its extracted
 380 through a NA-EMDm). In such circumstances, one could estimate the probability of each element i
 381 to occur, p_i , by making some assumption on the probability distribution, as for example:

- 382 i. Parametrizing it.
 383 ii. Dropping the most unlikely values.
 384 iii. Assuming some a priori shape for the probability distribution.

385 Nevertheless, the easiest and most straightforward path to estimate them is by counting how often
 386 the value x_i appears in the available data set. Denoting this number by l_i and dividing by the total
 387 size N of available data set, we can obtain a relative frequency estimator given by:

$$\hat{p}_i = \frac{l_i}{N} \quad (2)$$

388 Which *naively* approximates the probability p_i associated to the value x_i . With this simple
 389 estimator in mind, the easiest way to compute the SE of the data set can be done by simply replacing
 390 the probabilities p_i by \hat{p}_i in the entropy functional, giving an estimate of the Shannon Entropy:

$$H_s(x) \approx \hat{H}_s^{naive}(x) = -\sum_{i=1}^M \hat{p}_i \ln(\hat{p}_i) = -\sum_{i=1}^M \frac{l_i}{N} \ln\left(\frac{l_i}{N}\right) \quad (3)$$

391 The quantity $H_s^{naive}(x)$ is an example of an entropy *estimator*, in a very similar sense as \hat{p}_i is an
 392 estimator of p_i . In particular, the minimum $H_s(x)=0$ is reached for a constant random variable,
 393 i.e., a variable with a determined outcome, which reflects in a fully localized probability distribution
 394 $p_i=1$ and $p_j=0$ for $i \neq j$. At the opposite, $H_s(x)$ is maximal, equal to $\ln(M)$, for a uniform
 395 distribution ($p_1=p_2=\dots=p_M$). The SE is a quantity that increases with the number of possible states:
 396 for an unbiased coin, $H_s(x)=\ln(2) \approx 0.6931$ while for an unbiased dice $H_s(x)=\ln(6) \approx 1.7918$. To
 397 estimate equation (3), a histogram is required to infer the probabilities p_i of the data set. In this
 398 work, the number of bins M of such histogram was calculated with an optimal estimator proposed in

399 [32], which for reasons of space, this method will not be introduced in this work, but the idea behind
400 this optimal M estimator dwells within the Bayesian probability theory.

401 Claude E. Shannon initially proposed this functional to quantify the information loss in
402 transmitting a given message in a communication channel [14]. A noticeable aspect of Shannon
403 approach is to ignore semantics and focus on the physical and statistical constraints limiting the
404 transmission of a message, regardless of its meaning. The source generating the inputs $x_i \in x$ is
405 characterized by the probability distribution p_i . Shannon entropy $H_s(x)$ thus appears as the
406 average missing information. That is, the average information required to specify the outcome x
407 when the receiver knows the distribution p_i . It equivalently measures the amount of uncertainty
408 represented by a probability distribution. In the context of communication theory, it amounts to the
409 minimal number of bits that should be transmitted to specify x .

410 Based on these facts and considering that the estimator in (3) is the easiest way to estimate SE, it is
411 the estimator used in our proposed methodologies to study the BWR stability. The SE, estimated by
412 our *naive* estimator, quantifies the *uncertainty* of the artificial studied signals. Through this approach,
413 the instability problem of a *chaotic* dynamical system such as a BWR is studied. The SE is our tool to
414 study reactor instability and as such, the SE might serve as an alternative option to the conventional
415 DR indicator. Our goal is to detect through SE the beginning of an incipient stability event (via a
416 stability monitor), prior any further development of that unstable event. And to obtain from this
417 indicator (based on SE) as much information as possible regarding the dynamics of the BWR system.

418

419 5. Methodology based on Shannon Entropy

420 In this section, two stability methodologies are introduced, labeled as **methodology 1** and
421 **methodology 2**, based on iCEEMDAN and NA-MEMD respectively, to study individual BWR
422 unstable events and multivariate ones. Both proposals are given by the next steps.

423 5.1 Methodology 1: Stability monitor based on the iCEEMDAN and the SE

424 **Step 1.** The considered signal (APRM or LPRM) obtained from the BWR is segmented in
425 windows of 15 s of duration.

426 **Step 2.** Each segmented signal (APRM or LPRM) is studied (decomposed) using the
427 iCEEMDAN method for a number of realizations of the ensemble $I = 100$ and standard
428 deviation of the assisted noise $\varepsilon_0 = 0.2$, described above, obtaining in this way the
429 corresponding IMFs. It is worth mentioning that the APRM or LPRM signals are not
430 being processed before. For instance, to remove the signal trend, due that this
431 information is contained in the residue of the decomposition.

432 **Step 3.** The Hilbert transform of each IMF is computed in order to get the instantaneous
433 frequencies contained in each IMF (this step is also known as Hilbert Huang transform,
434 HHT, [17]).

435 **Step 4.** When tracking these frequencies, it is possible to get the mode linked to instability
436 processes. In this regard, only the IMF associated to BWR instability is considered for
437 further processing.

438 **Step 5.** The SE of the tracked IMF (*mode* of interest linked to BWR instability) is computed
 439 considering the estimator given in equation (3), using the probability estimator given in
 440 equation (2). The optimal number of bins M for the histogram, is calculated with a
 441 technique based on the Bayesian probability theory [32], within the interval
 442 $5 \leq M \leq 20$ (Several rules of thumb exist for determining the number of bins, such as the
 443 belief that between 5-20 bins is usually adequate [32]).

444 **Step 6.** The mean and variance of the SE are calculated and averaged along all the studied
 445 segments of 15 s.

446 **Step 7.** In order to range the SE between 0 and 1, the following normalization process is
 447 applied:

$$\hat{H}_s^{naive}(x) = \frac{-\sum_{i=1}^M \hat{p}_i \ln(\hat{p}_i)}{\ln(M)} \quad (4)$$

448 A reminder, a *high* SE estimate indicates high unpredictability of the *mode* linked to BWR instability
 449 (thus indicating an unstable state of operation) whereas a *low* SE value indicates a predictable event
 450 (thus, SE in this case, points towards a stable BWR scenario).

451 5.2 *Methodology 2: Stability monitor based on the NA-MEMD and the SE*

452 **Step 1.** The considered multivariate signal (an array of N independent LPRM signals) obtained
 453 from the BWR are segmented in small windows of 15 s.

454 **Step 2.** These segments (of 15 s each of time span) are decomposed in parallel through
 455 NA-MEMD in N independent channels. Also, m independent channels of white
 456 Gaussian noise are added (to mitigate the *mode mixing* problem) for decomposition ($m =$
 457 3 for all of our computer simulations).

458 **Step 3.** After decomposition, discard the m channels corresponding to the noise, giving a set of
 459 N -channel IMFs corresponding to the original signal segments.

460 **Step 4.** The Hilbert transform of each IMF is computed in order to get the instantaneous
 461 frequencies contained in each N -channel IMFs frequencies (i.e. the HHT).

462 **Step 5.** When tracking these frequencies, it is possible to get the IMFs (or *modes*) linked to
 463 instability processes. In this regard, only the IMFs associated to BWR instability are
 464 considered for further processing. Exploiting the NA-MEMD properties, the chosen
 465 IMFs of interest are all located at the same *level* of decomposition.

466 **Step 6.** The SE of the tracked IMFs (*modes* of interest linked to BWR instability) are computed
 467 via equation (3). The optimal number of bins M for the histogram, is calculated with the
 468 method given in [32] in a local way, within the interval $5 \leq M \leq 20$. There are thus, N
 469 different values of SE (each SE value is linked to one LPRM in particular).

470 **Step 7.** The mean and variance of the SE values are calculated and averaged along all the
 471 studied multivariate segments of 15 s.

472 **Step 8.** In order to range the SE estimates between 0 and 1, the normalization procedure given
473 in equation (4) is again applied.

474

475 **6. Results: methodologies performances and discussions**

476 The BWR signals stem from the Forsmark [3], Ringhals [33] stability Benchmarks and the Laguna
477 Verde instability event [1-2]. The Ringhals plant stability benchmark test data has been widely
478 applied to BWR stability studies because they cover various stability conditions, e.g. dominant
479 fundamental mode related with in-phase instabilities, dominant first harmonic mode related with
480 out-of-phase instabilities, and an overlapping of the two modes. The stability tests were performed
481 (and controlled) in the Swedish BWR Ringhals Unit 1 from cycle 14 through cycle 17. The Forsmark
482 benchmark is based on data from several measurements performed (and controlled) in the Swedish
483 BWR reactor Forsmark 1 and 2, in the period 1989 to 1997. The Laguna Verde instability event was
484 recorded during an unstable event that occurred in 1995 and is considered in the literature as a
485 prototype of an in-phase instability.

486 *6.1 Stability analysis of the chosen real cases through the Methodology 1*

487 This particular Methodology 1 is applied to the next three following cases:

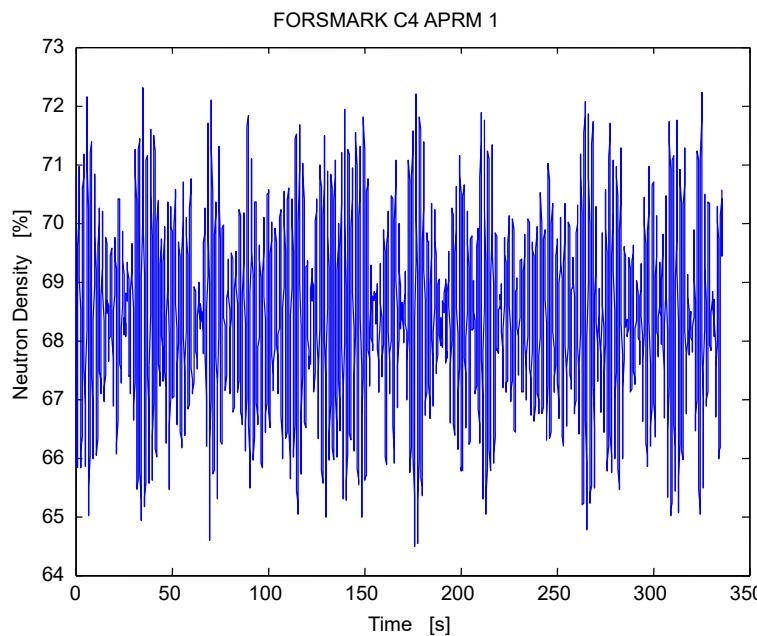
488 I. Case 4 of the Forsmark stability benchmark. This event is considered a challenging case to
489 be analyzed by the complexity of the phenomenon. For reasons of space, only this
490 challenging case is presented in a detailed way. The studied case 4 contains a mixture
491 between a global oscillation mode and a regional (half core) oscillation. This event
492 corresponds to a situation where the neutronic power reactor suffers abnormal and
493 apparently unstable oscillations. The C4(APRM) and C4(LPRM_x) signals correspond to
494 average power range monitor (APRM) and local power range monitor (LPRM) registers
495 respectively, during the instability event. The entire case 4 was studied (a total of 23 signals,
496 22 LPRMs plus an APRM). However, only the analysis of one signal (C4(APRM_1) is
497 detailed in this work and the others results (22 LPRMs) are summarized in a table.

498 II. Case 9 cycle 14 of the Ringhals stability benchmark. Data given comes from measurements
499 in the Swedish BWR reactor Ringhals 1. This case consists of a total of 36 LPRMs. Again, the
500 whole case 9 (36 LPRMs) was studied, however only the analysis of one signal (LRPM 1) is
501 detailed in this work and the others results of LPRMs are summarized in a table.

502 III. An APRM signal that stems from the Laguna Verde BWR that was recorded during an
503 unstable event that occurred in 1995. On January 24, 1995 a power instability event
504 occurred in Laguna Verde Unit 1, which is a BWR-5 and is operated since 1990 at a rated
505 power of 1931 MWt. The instability event happened during a Cycle 4 power ascension
506 without fuel damage. When the thermal power reached 37% of the rated power, the
507 recirculation pumps were running at low speed driving 37.8% of the total core flow. The
508 flow control valves were set to their minimum, closed position in order to operate the
509 recirculation pumps at a high speed. The drop in drive flow resulted in a core flow
510 reduction of 32% and, a power reduction also of 32%. Two control rods were also partially
511 withdrawn during valve closure. The new low flow operating conditions resulted in
512 growing power oscillations. This prototype of in-phase instability has been widely studied
513 [1, 2, 34-37].

514 6.1.1 APRM signal from the Forsmark benchmark

515 The studied signal in this subsection is the APRM 1 of the Forsmark stability benchmark, Case 4.
516 This signal of interest is shown in Figure 5.

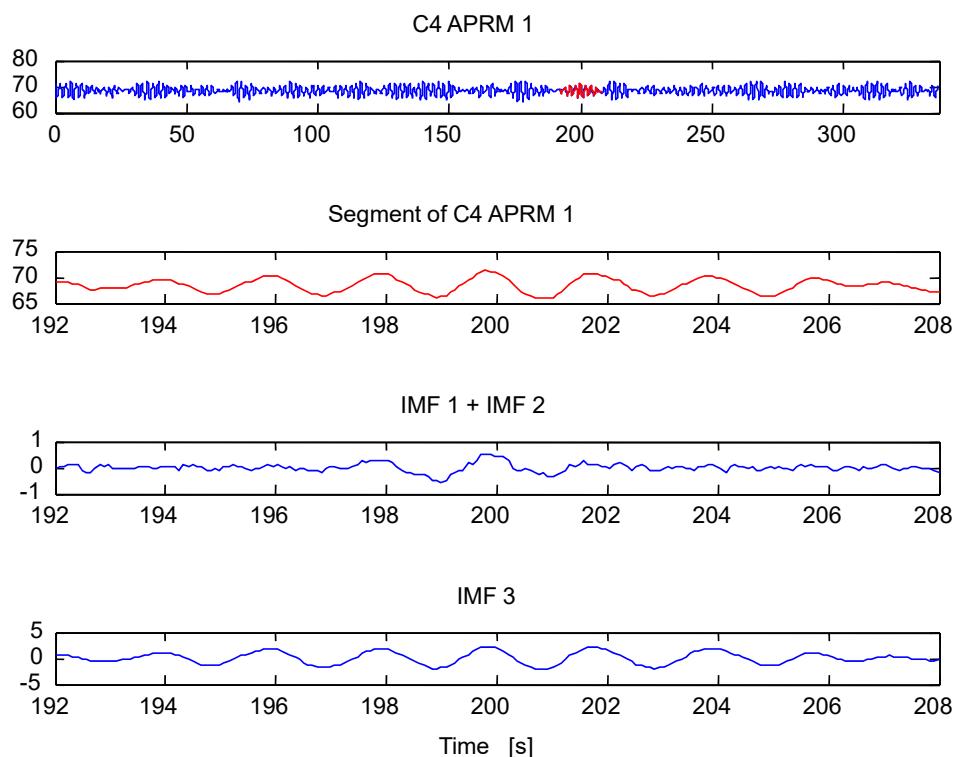


517

518 **Figure 5.** APRM 1 signal from the Forsmark stability benchmark Case 4.

519

520 The Methodology 1 based on the iCEEMDAN and the SE is applied to signal shown in Figure 5.
521 Such methodology splits the signal of interest in segments of 15 s, later the segment is decomposed
522 through iCEEMDAN into IMFs, the HHT is calculated to obtain the instantaneous frequencies (IFs)
523 of the IMFs. The IF of interest linked to instability is tracked (the energy of this *mode* connected to
524 BWR instability is highly concentrated around 0.5 Hz in the Fourier domain, according to previous
525 BWR stability observations). Later, the IMF linked to the IF of interest is selected for SE calculation.
526 Figure 6, shows the analysis of one studied segment that was decomposed through iCEEMDAN into
527 K IMFs and the IMF 3 is selected for further processing (because the IF (IF 3) of this IMF (IMF 3) is
528 linked to BWR instability, this key IF is shown in Figure 7).



529

530

Figure 6. iCEEMDAN decomposition of one of the segments of the APRM 1 signal, Case 4.

531

532

Figure 8 shows a power spectral density (PSD) estimation of the extracted IMFs of the studied segment, to visualize the spectrum of the IMF 3 linked to instability and to observe the iCEEMDAN capabilities to compensate for *mode mixing*, which translates into less overlap of contiguous IMFs spectrums. Figure 9 shows the plot of the estimated SE of all of the studied segments of the signal of interest. Also, in this same figure, a DR estimate of the segments is shown to illustrate the performance of the SE over the DR to analyze the stability of the studied signal. The DR was estimated in the same way as in [25]. We have established empirical stability thresholds based on our numerical experiments for the SE (Although more experiments are needed in this direction to accurately confirm this finding, but such studies leave the scope of this work). This stability threshold value is located around 0.8 (a stable segment has a $SE < 0.8$ whereas an unstable one has a $SE > 0.8$). Now, regarding the DR, a stable segment has a $DR < 1$. For this signal, the DR estimate indicates the beginning of an unstable event (an incipient one) whereas the SE throughout the whole time span of the signal, points to the existence of a *fully developed* instability event from the very beginning of the simulation. Figure 10 shows the estimated number of bins M for the extracted IMF for the studied case which remained very close to 5 bins and *jumping* beyond 5 in some segments.

533

534

535

536

537

538

539

540

541

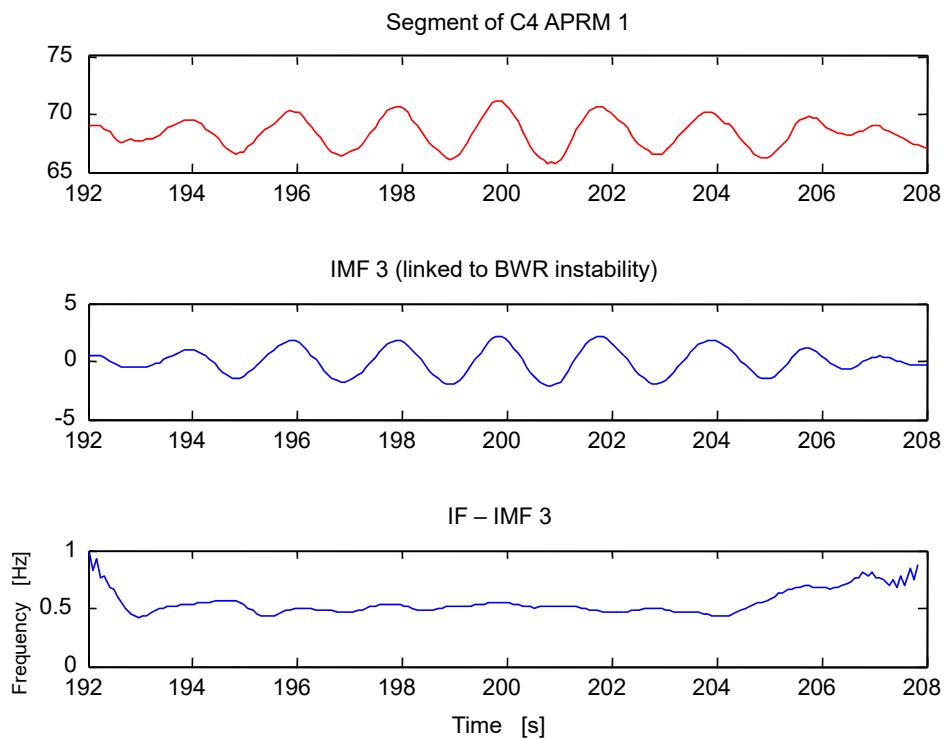
542

543

544

545

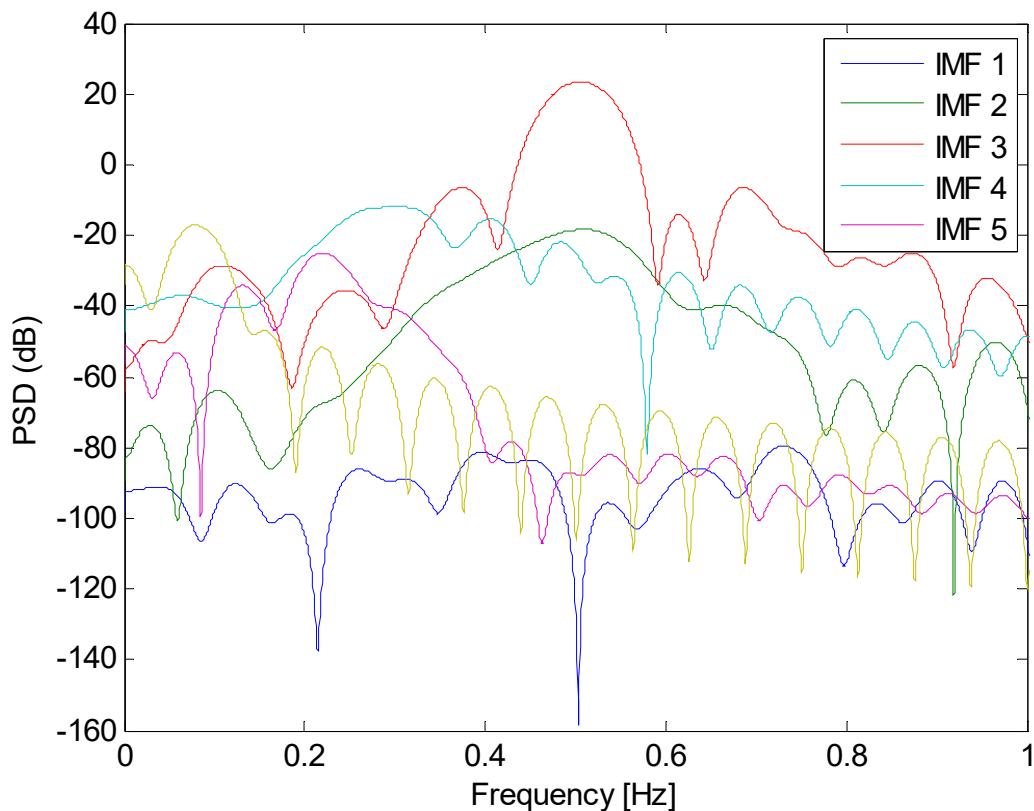
546



547

548
549

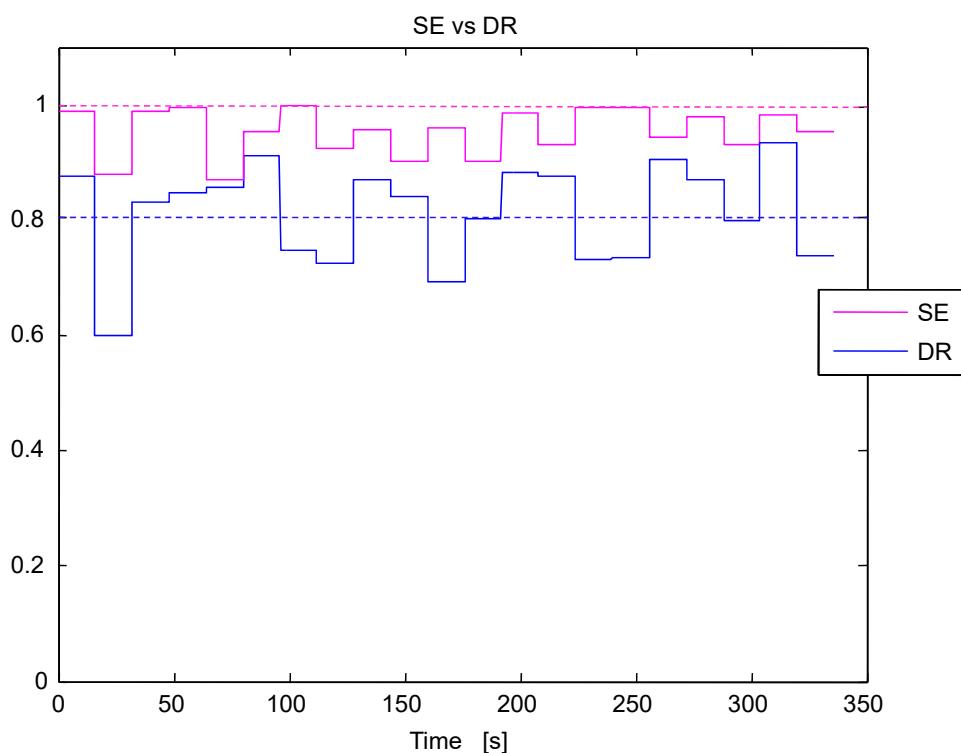
Figure 7. Instantaneous frequency (IF 3) linked to BWR instability. The time series of IF 3 *oscillates* around 0.5 Hz (the region of interest for BWR instability events).



550

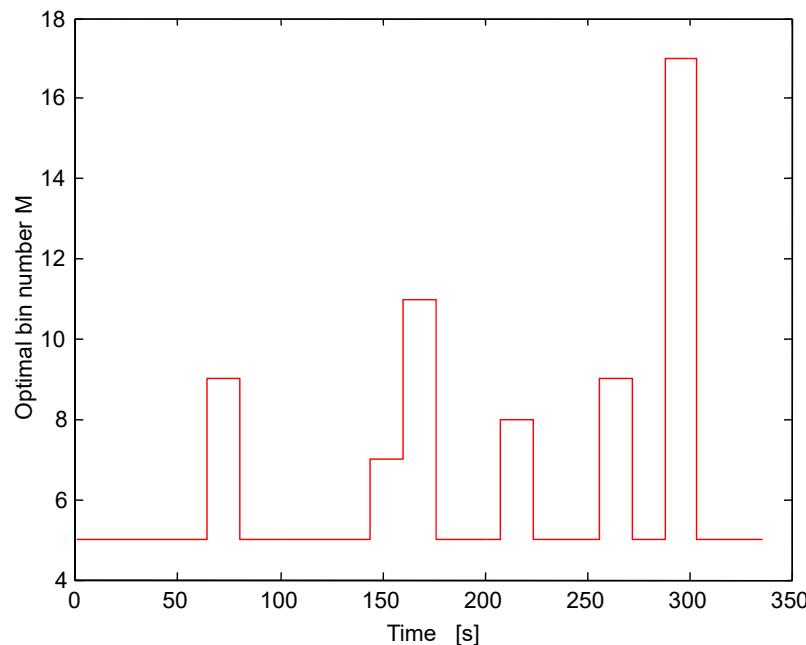
551

Figure 8. PSD estimate of the extracted IMFs of the studied segment through the iCEEMDAN method.



552

553 **Figure 9.** Estimated Shannon Entropy (SE) and Decay Ratio (DR) along time for the APRM 1 signal. The purple
 554 dotted line located at 0.8 is the SE threshold (segments whose SE is above this line are unstable) whereas the
 555 blue dotted line at 1 is the DR threshold (segments whose DR is above this line are unstable).



556

557 **Figure 10.** Estimated optimal number of bins M computed with [32] in the interval $5 \leq M \leq 20$.

558

559 Ultimately, the estimated SE, DR and oscillation frequency (f_0) for the rest of the LPRMs of the
 560 studied Case 4 are shown in Table 1 (only average (Mean) and their standard deviations (Std) values
 561 along all the studied segments are shown in Table 1). The estimated averaged values for the DR are
 562 in perfect agreement with those estimated by the different methodologies presented in the
 563 benchmark [3]. The DR estimates indicate the beginning of an incipient instability event whereas the
 564 SE estimates indicate a fully developed instability event in the BWR. Thus, it is naive to assume
 565 that we can infer the dynamics of a complex system such as a BWR through an estimate of a linear
 566 parameter such as the DR alone. In spite of the contradictions of what these two parameters (SE and
 567 DR) are indicating, they nevertheless pinpoint to an instability event in the BWR core. Although the
 568 SE does this from the very beginning of the stability analysis.

569

570 **Table 1.** Average and standard deviations values for the SE, the DR and the oscillation frequency (f_0) linked to
 571 instability of the Forsmark stability benchmark, Case 4, studied through Methodology 1 based on the
 572 iCEEMDAN.

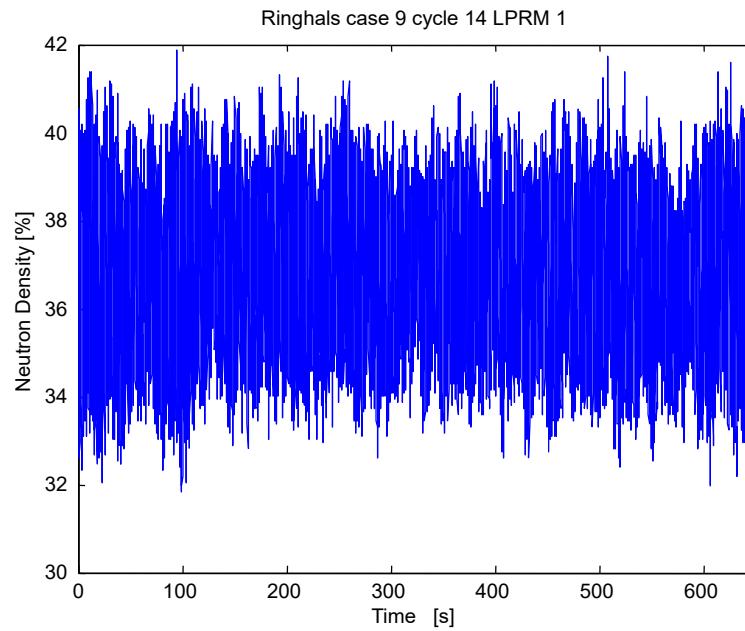
Detectors	Mean SE	Std SE	Mean DR	Std DR	Mean f_0	Std f_0
APRM	0.9553	0.0377	0.8136	0.0842	0.5279	0.0299
LPRM 1	0.9527	0.0236	0.801	0.0765	0.519	0.0282
LPRM 2	0.9564	0.0344	0.8007	0.1048	0.5101	0.03
LPMR 3	0.9607	0.0222	0.8211	0.0778	0.5036	0.0202
LPMR 4	0.9515	0.0268	0.7649	0.123	0.5116	0.0345
LPRM 5	0.9323	0.0493	0.771	0.1269	0.5424	0.0317
LPRM 6	0.9422	0.0304	0.765	0.1376	0.5444	0.0265
LPRM 7	0.9409	0.0313	0.7623	0.0843	0.5513	0.0346
LPMR 8	0.921	0.0411	0.6991	0.0873	0.5683	0.0509
LPRM 9	0.9331	0.049	0.752	0.0966	0.5461	0.0384
LPRM 10	0.9272	0.0429	0.7043	0.1315	0.574	0.0373
LPRM 11	0.9224	0.0586	0.7527	0.0885	0.5513	0.0425
LPRM 12	0.9074	0.0521	0.545	0.1649	0.5796	0.078
LPRM 13	0.9436	0.0356	0.7753	0.1208	0.5462	0.0315
LPRM 14	0.9334	0.0396	0.7783	0.0907	0.5386	0.0397
LPRM 15	0.9428	0.0356	0.7569	0.1241	0.537	0.0408
LPMR 16	0.9477	0.0331	0.7831	0.092	0.5362	0.0341
LPMR 17	0.9449	0.0375	0.7683	0.089	0.5302	0.0486
LPRM 18	0.9489	0.0375	0.7487	0.1392	0.5253	0.0362
LPRM 19	0.915	0.0575	0.6295	0.1206	0.5111	0.0703
LPRM 20	0.9152	0.0429	0.6834	0.1149	0.5631	0.0487
LPMR 21	0.9227	0.0368	0.6841	0.1882	0.5777	0.0566
LPRM 22	0.9026	0.0408	0.518	0.1275	0.5606	0.1011

573

574

575 6.1.2 LPRM signal from Ringhals benchmark

576 The studied signal in this subsection stems from the Ringhals stability benchmark Case 9 cycle
577 14. This studied signal is shown in Figure 11.

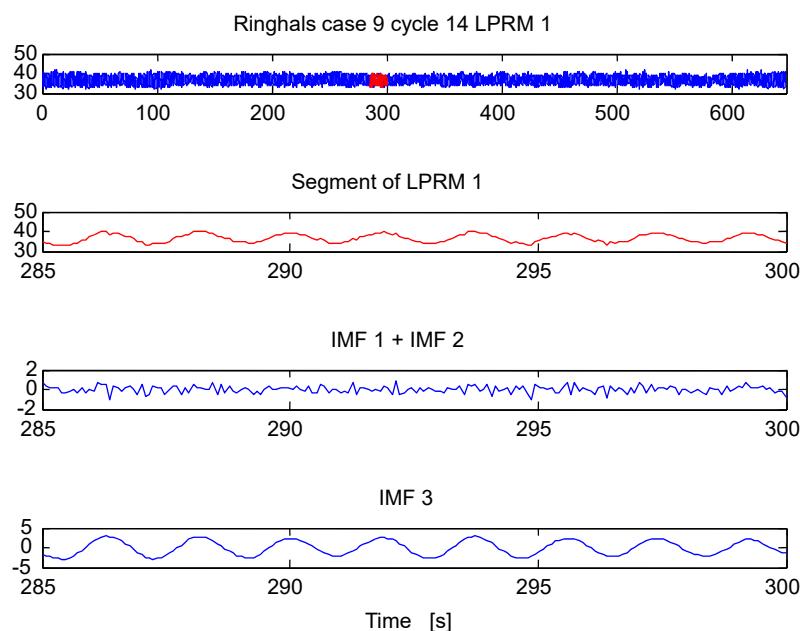


578

579 **Figure 11.** LPRM 1 from the Ringhals stability benchmark, Case 9, Cycle 14.

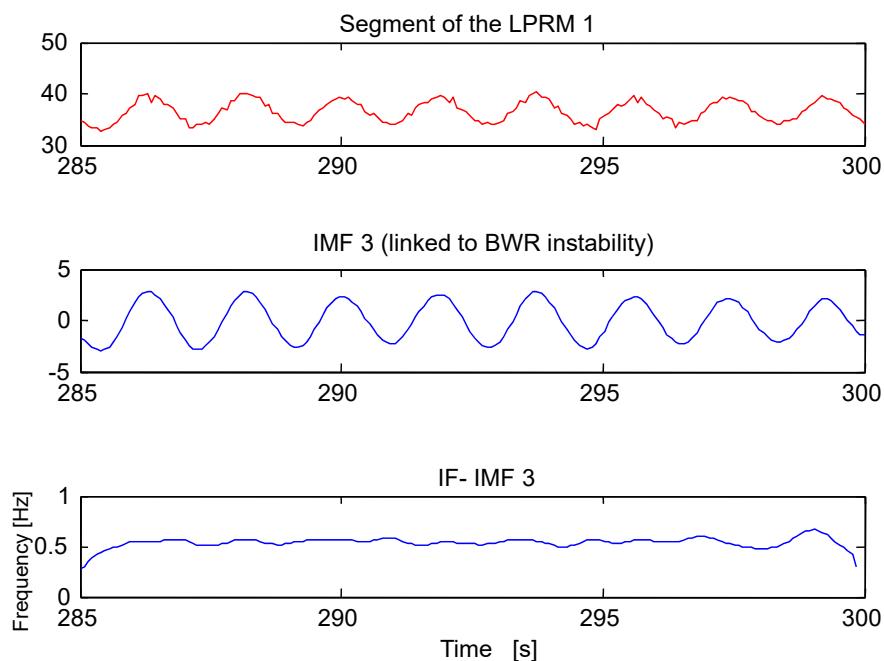
580

581 The Methodology 1, based on the iCEEMDAN and the SE, is applied to signal shown in Figure 11.
582 This stability methodology splits the signal of interest in short segments of 15 s, later the studied
583 segment is decomposed through iCEEMDAN into IMFs (or *modes*), the Hilbert-Huang Transform
584 (HHT) [17] is calculated to obtain the instantaneous frequencies (IFs) of the extracted IMFs. The IF of
585 interest linked to instability (the energy of this IF of interest oscillates around 0.5 Hz) is tracked.
586 Later, the IMF associated to this IF is selected for SE calculation. Figure 12, shows the analysis of one
587 studied segment that was decomposed through iCEEMDAN into n IMFs and the IMF 3 is selected
588 for further processing (because the IF (IF 3) of this IMF (IMF 3) is linked to BWR instability, this key
589 IF is shown in Figure 13).



590

591

Figure 12. iCEEMDAN decomposition of one of the segments of the signal LPRM 1, Case 9.

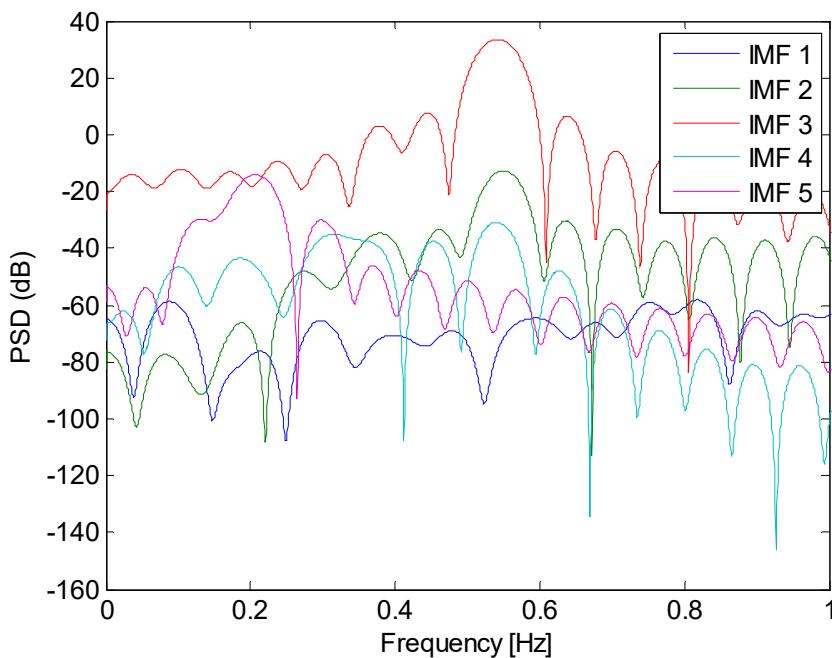
592

593
594**Figure 13.** Instantaneous frequency (IF 3) linked to BWR instability. The time series of IF 3 oscillates around 0.5 Hz (the region of interest for BWR instability events).

595

596
597
598
599

Figure 14 shows a power spectral density (PSD) estimation of the extracted IMFs of the studied segment, to visualize the spectrum of the IMF 3 linked to instability and to observe again the iCEEMDAN capabilities to compensate for *mode mixing*, which translates into less overlap of contiguous IMFs spectrums.

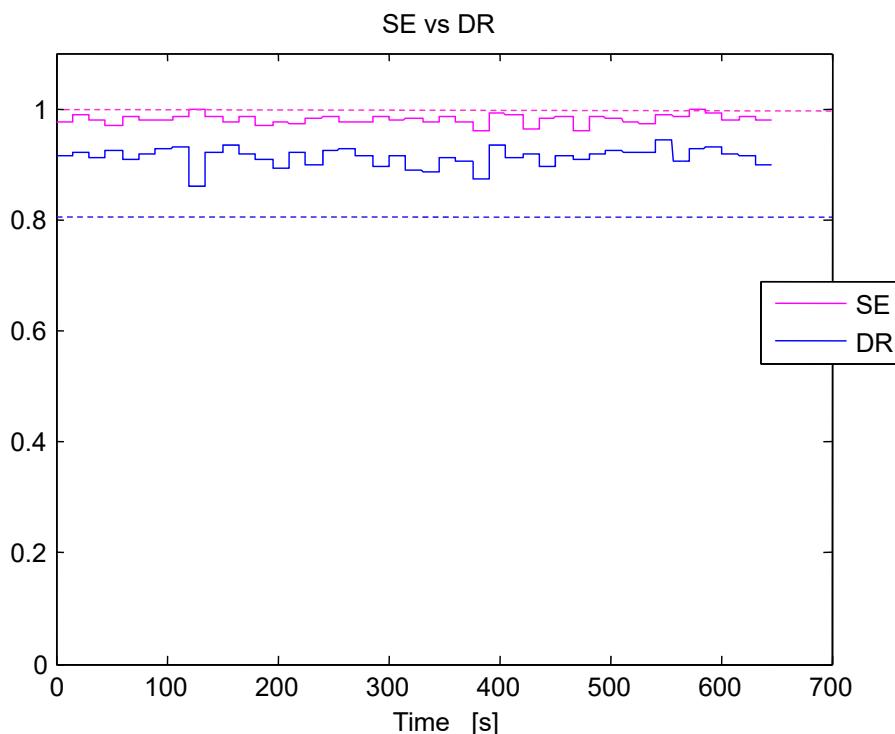


600

601 **Figure 14.** PSD estimate of the extracted IMFs of the studied segment through the iCEEMDAN method.

602

603 Figure 15 shows the plot of the estimated SE of all of the studied segments of the signal of
 604 interest. As before, in this figure, a DR estimate of the segments is also shown to illustrate the
 605 performance of the SE over the DR to analyze the stability of the studied signal. The instability
 606 thresholds for the DR and for the SE are the same as before. For this signal, again the SE
 607 indicates a fully developed unstable BWR behavior whereas the DR is pointing to an early
 608 development of an instability event (a quasi-instable event), because the average DR is high (not
 609 exactly one, but approaching it). Again, the high SE estimates of the studied segments of this
 610 LRPMP 1 signal are clearly indicating an out of the ordinary BWR behavior. The estimated
 611 number of bins M remained throughout most the simulation constant at 7 bins. The proposed
 612 stability monitor, given in Methodology 1, proves again to be suitable to detect unstable or not
 613 ordinary BWR behavior prior further growth of such unforeseen unstable events, that may in
 614 the worst case scenarios, trigger increasing power oscillations beyond the nominal BWR
 615 constraints. Thus, it is necessary to be able to detect any incipient unstable events as fast as
 616 possible.



617

618 **Figure 15.** Estimated Shannon Entropy (SE) and Decay Ratio (DR) estimate along time for the LRPM 1
 619 signal, Case 9 from Ringhals stability benchmark. The purple dotted line located at 0.8 is the SE threshold
 620 (segments whose SE is above this line are unstable) whereas the blue dotted line at 1 is the DR threshold
 621 (segments whose DR is above this line are unstable).

622

623 Finally, the estimated SE, DR and oscillation frequency for the rest of the LPRMs of the studied
 624 Cycle 14 Case 9 are shown in Table 2 (only average values and standard deviations along all the
 625 studied segments are shown in Table 2). The entire case consists of a total of 72 LPRMs
 626 distributed on two different *floors or levels* (2 and 4) within the BWR core. In Table 2, only the
 627 analysis of the *floor* number 2 is studied. This floor consists of 36 LPRM detectors marked by *odd*
 628 numbers.

629 The estimated DR results of this studied case and shown in Table 2, were in most LPRMs high
 630 and apparently this case exhibits and out-of-phase oscillation [33] which will be scoped in more
 631 detail once Methodology 2 based on NA-MEMD is used to perform a multivariate analysis of
 632 this particular case. Overall the high SE estimated values, clearly indicate a fully developed
 633 unstable behavior of this case. Thus, the studied BWR floor 2 is unstable. The high DR estimates
 634 (but still not above the 1, which is the stability threshold that must be exceeded by the DR to
 635 trigger BWR peril alarms) although high and depicting that there is something unusual going
 636 on in the BWR core. But, the estimates are not high enough to trigger BWR protection alarms to
 637 warn the operators whereas the SE estimates would have trigger these BWR protection
 638 mechanisms.

639

640

641

642 **Table 2.** Average and standard deviations values for the SE, the DR and the oscillation frequency (f_0)
 643 linked to instability of the Ringhals stability benchmark Case 9 Cycle 14 studied through the Methodology
 644 1 based on the iCEEMDAN.

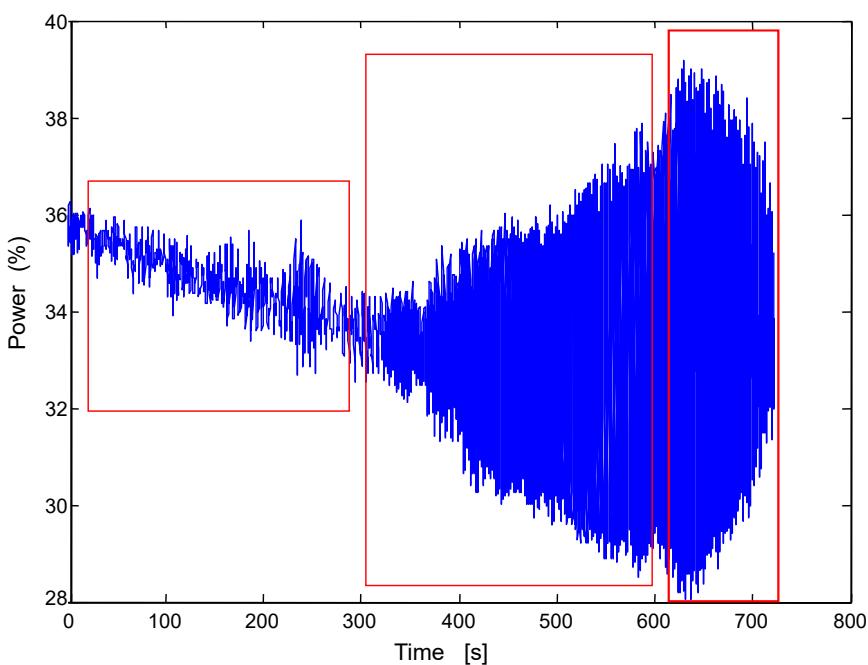
Detectors	Mean SE	Std SE	Mean DR	Std DR	Mean f_0	Std f_0
LPRM 1	0.9809	0.0084	0.9132	0.0161	0.5164	0.0248
LPRM 3	0.9826	0.0069	0.9122	0.0171	0.5153	0.0226
LPRM 5	0.9834	0.0094	0.9102	0.0162	0.5157	0.0246
LPRM 7	0.9877	0.0153	0.8897	0.0367	0.5149	0.0243
LPRM 9	0.9854	0.0082	0.9135	0.0184	0.5139	0.0266
LPRM 11	0.9823	0.0078	0.9134	0.0172	0.5175	0.0248
LPRM 13	0.9820	0.0106	0.9108	0.0214	0.5169	0.0219
LPRM 15	0.9856	0.0088	0.9091	0.0179	0.5106	0.0270
LPRM 17	0.9883	0.0080	0.9006	0.0221	0.5188	0.0241
LPRM 19	0.9621	0.0436	0.8332	0.0778	0.5180	0.0274
LPRM 21	0.9814	0.0270	0.8693	0.0506	0.5218	0.0267
LPRM 23	0.9862	0.0149	0.8909	0.0301	0.5174	0.0248
LPRM 25	0.9841	0.0122	0.8997	0.0273	0.5125	0.0267
LPRM 27	0.9869	0.0142	0.8951	0.0352	0.5136	0.0281
LPRM 29	0.9653	0.0509	0.8309	0.0762	0.5186	0.0364
LPRM 31	0.9500	0.0441	0.8106	0.0820	0.5049	0.0348
LPRM 33	0.9429	0.0409	0.6562	0.1321	0.4868	0.0286
LPRM 35	0.9630	0.0352	0.7145	0.2115	0.5020	0.0365
LPRM 37	0.9771	0.0203	0.8538	0.0490	0.5124	0.0272
LPRM 39	0.9598	0.0335	0.7558	0.0766	0.5062	0.0338
LPRM 41	0.9141	0.0637	0.5868	0.2425	0.4987	0.0423
LPRM 43	0.8814	0.0672	0.4893	0.2241	0.4922	0.0386
LPRM 45	0.9858	0.0124	0.8496	0.0415	0.5126	0.0265
LPRM 47	0.9854	0.0094	0.8816	0.0284	0.5071	0.0242
LPRM 49	0.9807	0.0091	0.9110	0.0173	0.5102	0.0279
LPRM 51	0.9771	0.0086	0.9120	0.0133	0.5121	0.0218
LPRM 53	0.9823	0.0077	0.9096	0.0184	0.5154	0.0262
LPRM 55	0.9868	0.0091	0.8974	0.0250	0.5204	0.0218
LPRM 57	0.9804	0.0076	0.9061	0.0143	0.5195	0.0188
LPRM 59	0.9771	0.0087	0.9084	0.0149	0.5126	0.0223
LPRM 61	0.9765	0.0101	0.9126	0.0149	0.5140	0.0229
LPRM 63	0.9764	0.0089	0.9123	0.0137	0.5112	0.0245
LPRM 65	0.9805	0.0085	0.9059	0.0185	0.5117	0.0268
LPRM 67	0.9832	0.0113	0.9054	0.0202	0.5149	0.0223
LPRM 69	0.9817	0.0093	0.9023	0.0184	0.5155	0.0197
LPRM 71	0.9831	0.0073	0.9029	0.0181	0.5156	0.0253

645

646 6.1.3 APRM Laguna Verde

647 The studied signal in this subsection stems from an instability event that happened in Laguna
 648 Verde, in the year 1995. This signal is shown in Figure 16 and was obtained via the Integral
 649 Information Process System (IIPS). The channel A of the APRM trace shows no unstable

650 behavior at 3:28:00 h. The value closure was initiated at 03:28:20 h. A small core flow reduction
651 was noticeable 40 s later, and the APRM-A trace depicts signs of instability although the
652 variations in the magnitude of the signal remained within the noise level. As the valve
653 continued to close, the APRM-A trace shows clear unstable behavior starting at 03:30:30 h. The
654 valve reached the minimum position at 03:31:30 h. The valve reached the minimum position at
655 03:31:30 h, and the oscillations continued without any significant increase in their growth rate.
656 The operator attempted to stabilize the power level by increasing the core flow opening the
657 valves at 03:33:20 h. As a result of increasing the core flow, the oscillation started to decay at
658 03:34:40 h. At 03:35:20 h the oscillation reached 3% of amplitude, when the reactor was
659 manually scrambled (see the red boxes in Figure 16).

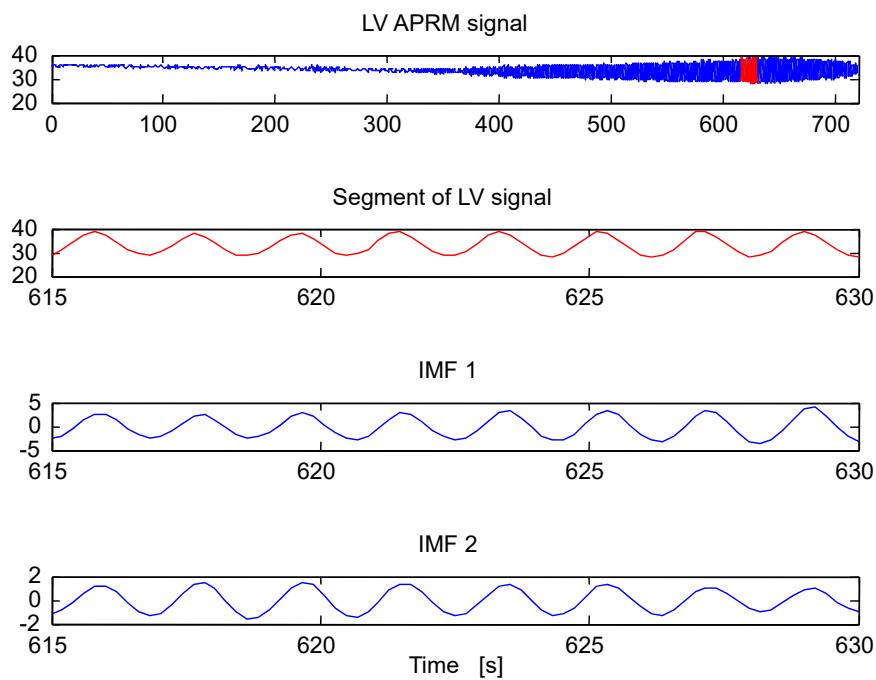


660

661 **Figure 16.** Laguna Verde (LV) APRM signal of an unstable event that occurred in 1995.

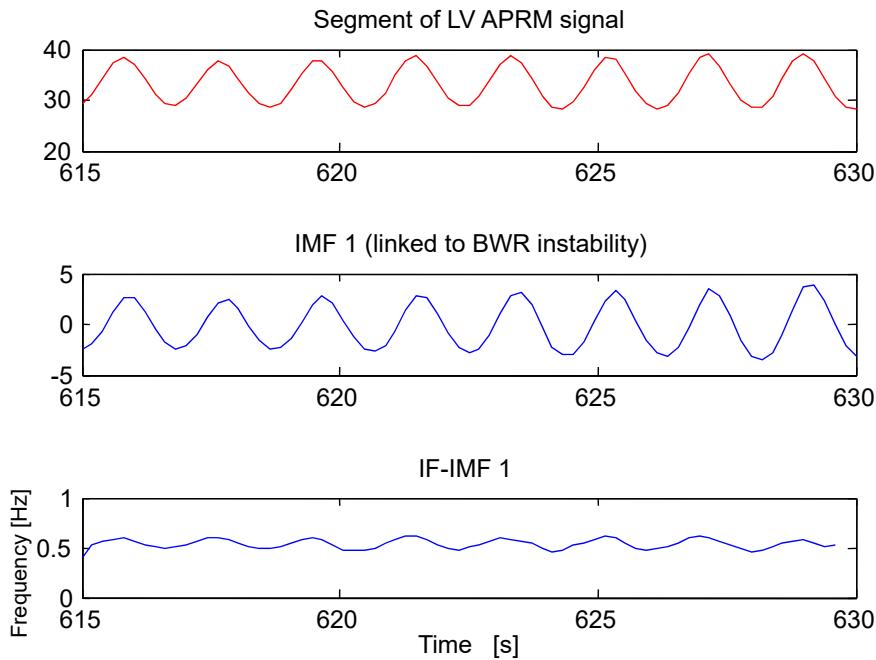
662

663 As before, Figure 17 shows the decomposition of one of the segments of the signal shown in
664 Figure 14, decomposed according to methodology number 1 based on iCEEMDAN. The IMF
665 linked to BWR instability in this case is the IMF 1, see its instantaneous frequency IF (IF 1)
666 oscillating around 0.5 Hz. This IF 1 is shown in Figure 18 and also the power spectral density
667 (PSDs) estimates of all the extracted IMFs are shown in Figure 19. Observe that the PSD of IMF 2
668 is slightly mixed with the PSD estimate of IMF 1, but the spectral *energetic* content of IMF 2 is
669 negligible in comparison with that of IMF 1.



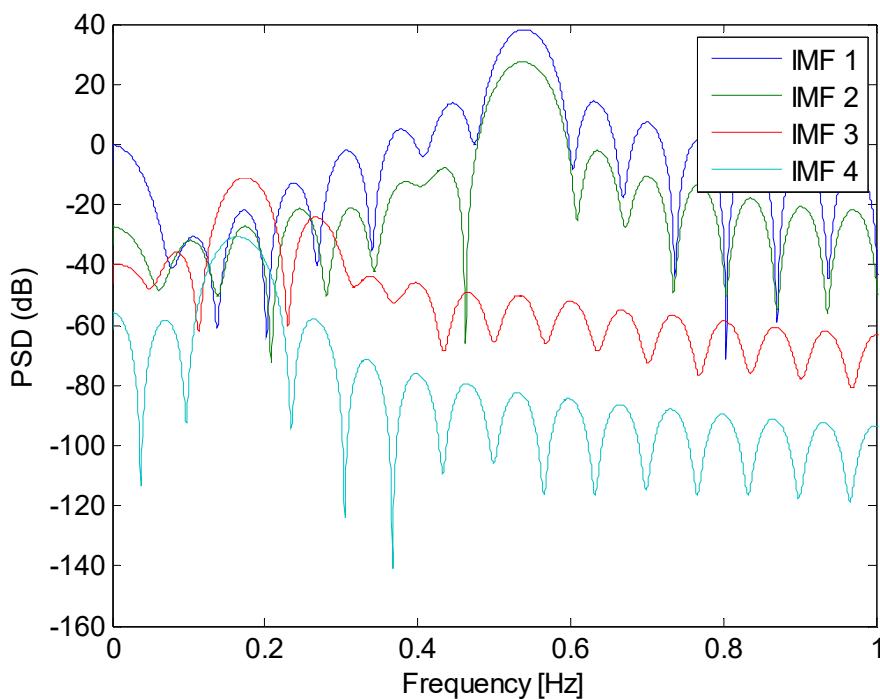
670

671 **Figure 17.** iCEEMDAN decomposition of one of the segments of the APRM signal of LV instability event.
 672 Only the first 2 extracted IMFs are shown in this plot.



673

674 **Figure 18.** Instantaneous frequency (IF 1) linked to BWR instability. The time series of IF 1 oscillates in a
 675 quasi-sinusoidal manner around 0.5 Hz (the region of interest for BWR instability events).



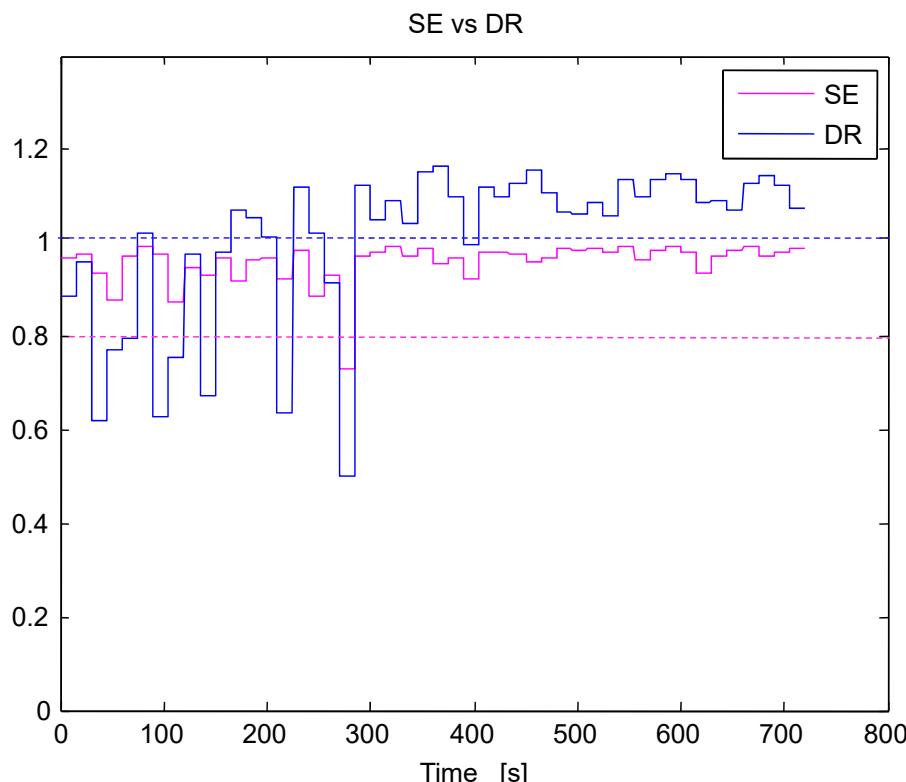
676

677 **Figure 19.** PSD estimate of the extracted IMFs of the studied segment through the iCEEMDAN method.

678

679 Figure 20 shows the SE and DR estimates along all the studied segments of the APRM signal of
 680 interest. Prior the first 300 s of the signal, the DR oscillates between stability and instability. But,
 681 it is cumbersome to infer the dominant DR value due to its *strong* discontinuous jumps between
 682 stability and instability. However, after the 300 s mark, the DR is high and greater than its
 683 threshold value (DR = 1) and remains as such (and oscillating around 1.1) throughout the rest of
 684 the simulation. Thus, the DR indicates unstable BWR behavior but only after the 300 s mark.

685 The SE estimate is highly more consistent than the DR prior the 300 s mark, because the SE
 686 clearly indicates unstable behavior (whereas the DR is unable to differentiate between the two)
 687 and after the 300 s mark, the SE slightly oscillates around 1 (and not in a *dramatic* way as the DR
 688 does). Nevertheless, the SE always indicates unstable BWR behavior, long before the DR is able
 689 to detect it. Thus, the SE is capable of indicating unstable behavior prior any further growth in
 690 power of the unstable oscillation within the core whereas the DR is only able to detect
 691 instability (without bias) once the unstable oscillation is fully sustained and *powerful* enough to
 692 damage the core. The optimal number of bins for this case remained most of the simulation
 693 constant at 10 and it was again calculated with the technique described in [32].



694

695 **Figure 20.** Estimated Shannon Entropy (SE) and Decay Ratio (DR) estimate along time for the APRM
 696 signal. The purple dotted line located at 0.8 is the SE threshold (segments whose SE is above this line are
 697 unstable) whereas the blue dotted line at 1 is the DR threshold (segments whose DR is above this line are
 698 unstable).

699 Finally, Table 3 shows the mean SE, DR and instantaneous frequency averaged along all the
 700 segments of the signal of interest depicted previously in Figure 14.

701 **Table 3.** Average and standard deviations values for the SE, the DR and the oscillation frequency (f_0)
 702 linked to instability of the Laguna Verde APRM signal studied through the Methodology 1 based on
 703 the iCEEMDAN.

Detector	Mean SE	Std SE	Mean DR	Std DR	Mean f_0	Std f_0
APRM	0.9592	0.0444	1.0079	0.1655	0.5385	0.0158

704

705

706 *6.2 Stability analysis of the chosen real cases through the Methodology 2*

707 The stability methodology 2 is applied with the next following cases of nuclear power plants (NPP):

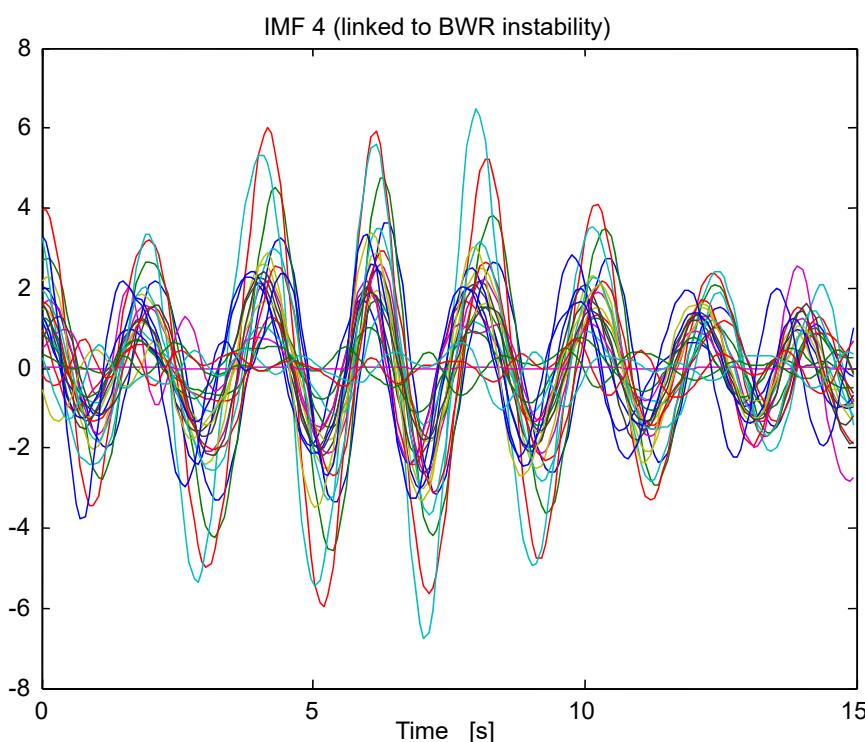
- 708 I. Multidimensional analysis of the already mentioned Case 4 of the Forsmark stability
 709 benchmark.
- 710 II. Multidimensional analysis of the also mentioned Case 9 Cycle 14 of the Ringhals stability
 711 benchmark.

712 Regarding Laguna Verde instability event, the methodology 2 can also be applied. However, the
 713 signals from 96 LPRMs monitoring the core are not available for this specific instability
 714 phenomenon.

715

716 6.2.1 LPRMs signals from Forsmark benchmark

717 Now, the Case 4 of the Formark stability benchmark is going to be studied with the stability
 718 Methodology 2 based on the NA-MEMD in a multivariate way with $m = 3$ independent channels of
 719 noise to mitigate *mode mixing*. In here, the ensemble of LPRM signals is considered in the NA-MEMD
 720 and a local estimation of SE and of the DR (calculated according to [38]) are computed based on the
 721 IMFs associated to the instability event (the oscillatory IMF around 0.5 Hz). Figure 21 shows the
 722 IMFs linked to BWR instability.



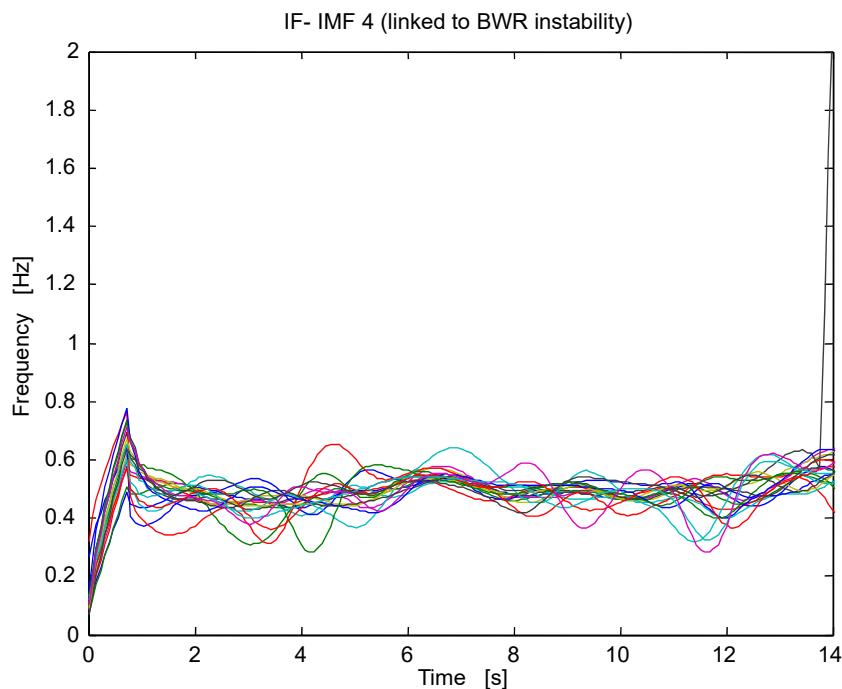
723

724 **Figure 21.** NA-MEMD applied to a short time segment of the Case 4 of the Forsmark stability benchmark.

725

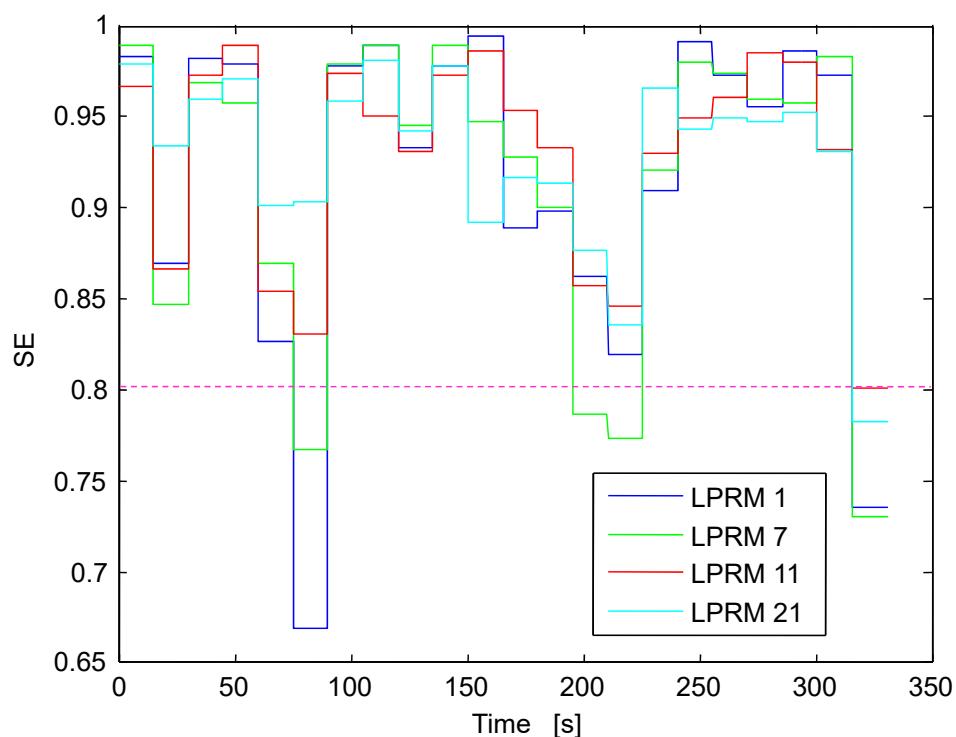
726 Exploiting the time alignment property of the NA-MEMD, these IMFs of interest are located at the
 727 same level of decompositions, in this case the IMFs of interest are located at the fourth level of the
 728 NA-MEMD decomposition (IMFs number 4). We highlight that in Figure 21, the IMFs of interest
 729 linked to instability are *in-phase* among them. The instantaneous frequencies (IFs number 4) around
 730 the region of interest (0.5 Hz) of these IMFs of interest are shown in Figure 22. Later, Figure 23 shows
 731 the estimated SE locally for each IMF of interest (IMFs number 4). However, for simplicity, only a
 732 sample of 4 IMFs are shown in this plot, the selected IMFs are LPRM 1, LPRM 7, LPRM 11 and LPRM
 733 21. Also, the DR (depicted in Figure 24 and estimated in the same way as before) is estimated locally
 734 for each IMF but again, only 4 IMFs (the aforementioned 4 LPRM signals) are shown in such figure.
 735 In the multivariate scenario, overall the BWR is unstable because of the high SE estimates along time,
 736 in spite of 4 segments that had an SE below the stability threshold (SE < 0.8). Thus, again from the
 737 very beginning of the simulation, the SE is able to detect an unusual BWR unstable behavior. The DR
 738 in the multivariate case prior the 150 s mark is apparently stable and after this 150 s mark, it

739 fluctuates around 0.75, the DR estimate is high but not high enough to trigger the BWR warning
 740 mechanisms and thus the DR indicates quasi-instability.



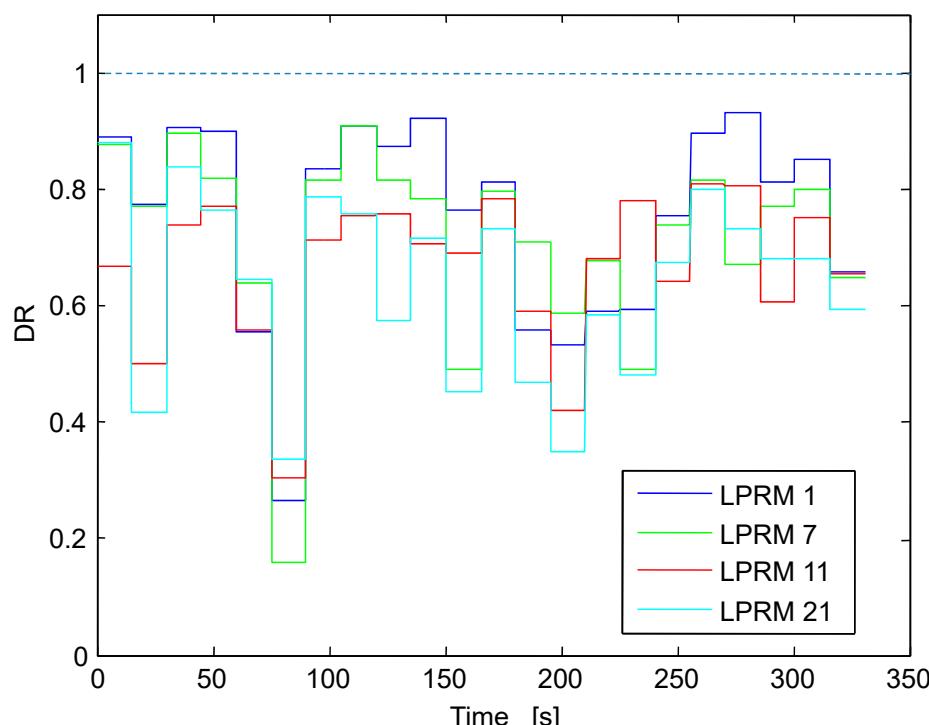
741

742 **Figure 22.** Multivariate instantaneous frequency IF (IF 4) linked to BWR instability oscillating around the region
 743 of interest (0.5 Hz).



744

745 **Figure 23.** Local SE estimate along time for the selected 4 LPRM sample. The threshold SE bar is located at the
 746 same locus as before.



747

748 **Figure 24.** Local DR estimate along time for the selected 4 LPRM sample. The threshold DR bar is located at the
 749 same locus as before.

750

751 Finally, Table 4 shows the SE, DR and f_0 (all of them calculated locally) of the entire studied Case 4 of
 752 the Forsmark stability benchmark, the APRM was ignored for this analysis. The estimated
 753 parameters are similar to those that stem from the univariate analysis performed through the
 754 Methodology 1 in Table 1 of this case (the estimates in Table 4 are similar to those depicted in Table 1
 755 and within the 10% difference).

756

757 **Table 4.** Average and standard deviation values for the SE, the DR and the oscillation frequency (f_0) linked to
 758 instability of the Forsmark benchmark stability Case 4 studied via stability methodology 2 based on
 759 NA-MEMD.

Detectors	Mean SE	Std SE	Mean DR	Std DR	Mean f_0	Std f_0
LPRM 1	0.9208	0.0816	0.7669	0.1417	0.4754	0.0283
LPRM 2	0.9220	0.0842	0.7670	0.1526	0.4867	0.0250
LPRM 3	0.9164	0.0924	0.7791	0.1457	0.4875	0.0260
LPRM 4	0.9034	0.1001	0.7551	0.1476	0.4867	0.0214
LPRM 5	0.9278	0.0762	0.7328	0.1585	0.5030	0.0373
LPRM 6	0.9234	0.0783	0.7383	0.1338	0.5034	0.0357
LPRM 7	0.9176	0.0789	0.7232	0.1232	0.5012	0.0368
LPRM 8	0.9160	0.0761	0.6595	0.1511	0.5047	0.0447
LPRM 9	0.9241	0.0767	0.6749	0.1703	0.5016	0.0355
LPRM 10	0.9127	0.0700	0.6131	0.1748	0.5129	0.0425

LPRM 11	0.9278	0.0618	0.6466	0.1482	0.4980	0.0395
LPRM 12	0.9167	0.0450	0.5177	0.1378	0.5163	0.0636
LPRM 13	0.9218	0.0721	0.7076	0.1327	0.5020	0.0292
LPRM 14	0.9130	0.0756	0.6945	0.1537	0.5047	0.0300
LPRM 15	0.9162	0.0785	0.7021	0.1281	0.5028	0.0385
LPMR 16	0.9108	0.0889	0.7145	0.1088	0.5018	0.0299
LPMR 17	0.9235	0.0814	0.7331	0.1506	0.4927	0.0242
LPRM 18	0.9233	0.0851	0.7158	0.1693	0.4990	0.0282
LPRM 19	0.9235	0.0670	0.6521	0.1686	0.4947	0.0477
LPRM 20	0.9060	0.0884	0.6337	0.1861	0.5020	0.0428
LPMR 21	0.9256	0.0668	0.6290	0.1512	0.5037	0.0413
LPRM 22	0.8900	0.0593	0.4413	0.1466	0.5118	0.0840

760

761 6.2.2 LPRMs from Ringhals benchmark

762 Now, the Case 9 Cycle 14 of the Ringhals stability benchmark is studied through the Methodology 2
 763 based on NA-MEMD. Figure 25 shows the NA-MEMD decomposition (with 3 independent channels
 764 of noise to compensate for *mode mixing*) of one of the signal segments, the IMF (IMF 4) linked to
 765 instability is shown in this figure and the type of observed oscillation is known as *out-of-phase*
 766 oscillation [33]. These type of oscillations can only be observed locally at the LPRM level because at
 767 the APRM level (an APRM signal is an average of n LPRMs) the averaging might cancel data, if the
 768 signals that participate in the average have ideal phase differences of 180 degrees among them.
 769 Figure 26 shows the instantaneous frequencies IFs (IF 4) of the IMFs (IMF at the 4 level of
 770 NA-MEMD decomposition) associated to BWR instability, all of the IFs oscillate around 0.5 Hz in a
 771 quasi sinusoid way. Figure 27 shows the SE estimates along time of a sample of 4 LPRMs that were
 772 selected at random, the selected LPRMs were: LPRM 1, LPRM 10, LPRM 20 and LPRM 29. The SE
 773 estimates along time were high (beyond the SE stability threshold located at SE = 0.8) throughout the
 774 time span of the simulation for the 4 chosen LPRMs, thus the BWR is clearly unstable.

775 Figure 28 shows the DR estimates along time for the chosen LPRMs, the DR estimates were high,
 776 clearly indicating the beginning of an unstable event, but they did not exceed the stability threshold
 777 to trigger the BWR protection mechanisms. Finally Table 5 shows the SE, DR and oscillation
 778 frequency of the entire Ringhals Case 9. Again, the computer parameters in Table 5 are similar (less
 779 than 10 % of difference) with the estimates shown previously in Table 2 when this case was analyzed
 780 (in an univariate way) through Methodology 1. We highlight the NA-MEMD capabilities to
 781 compensate for mode mixing with only one realization of the algorithm whereas the iCEEMDAN
 782 required a total of $I = 100$ (the size of the ensemble) realizations of the default EMD algorithm to
 783 compensate for it. Thus, the NA-MEMD excels in computation time and the SE and DR estimates
 784 Methodology 2 provides were slightly the same as those given by stability methodology 1.

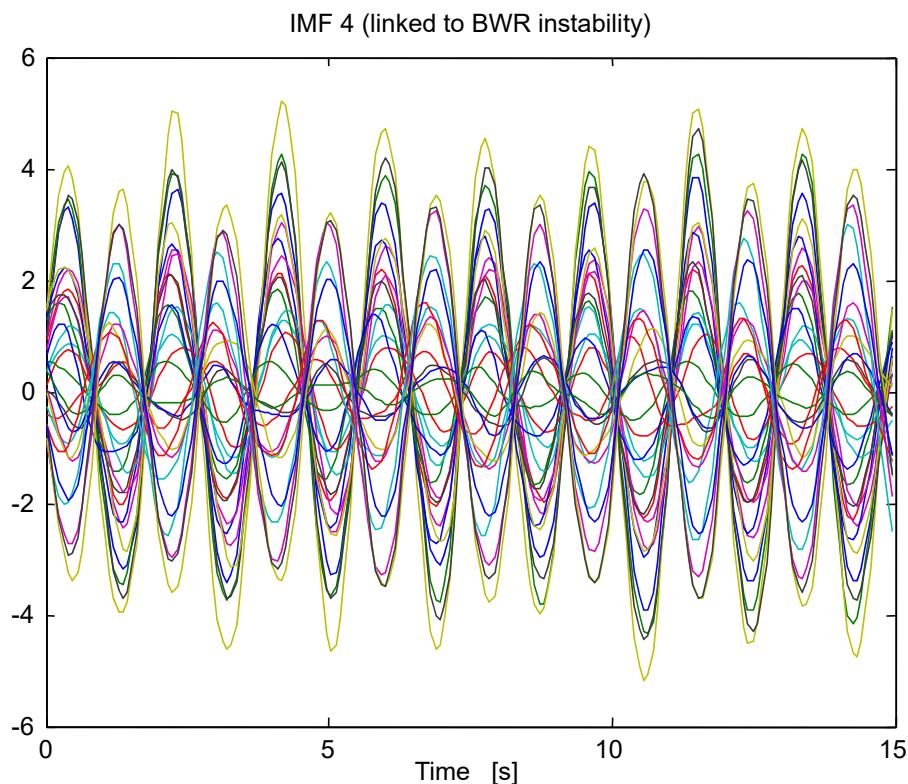


Figure 25. NA-MEMD applied to a short time segment of the Case 9 Cycle 14 of the Ringhals stability benchmark.

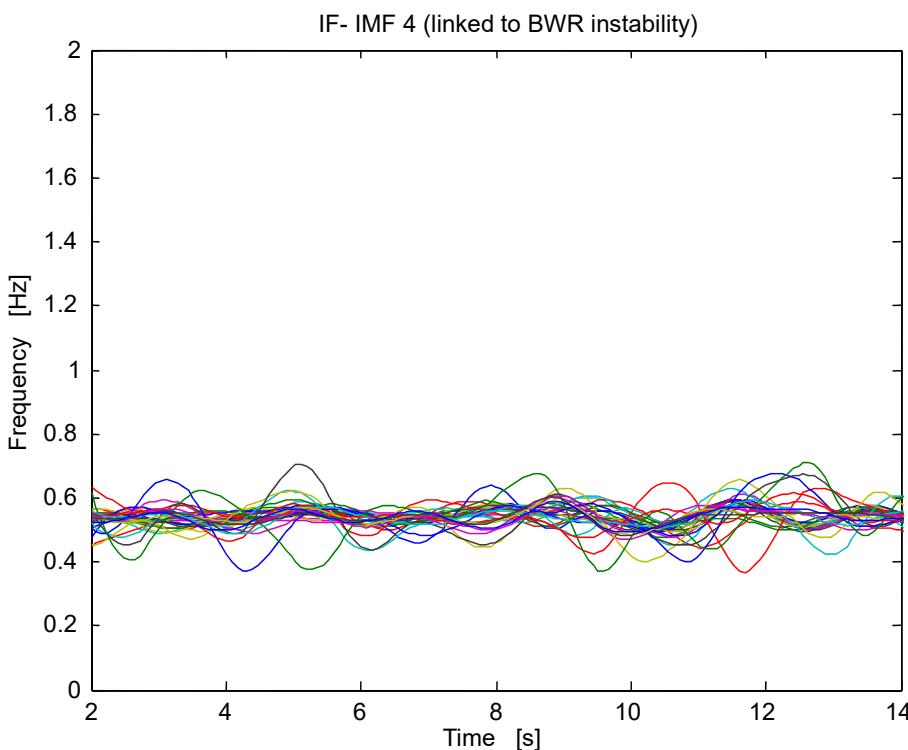
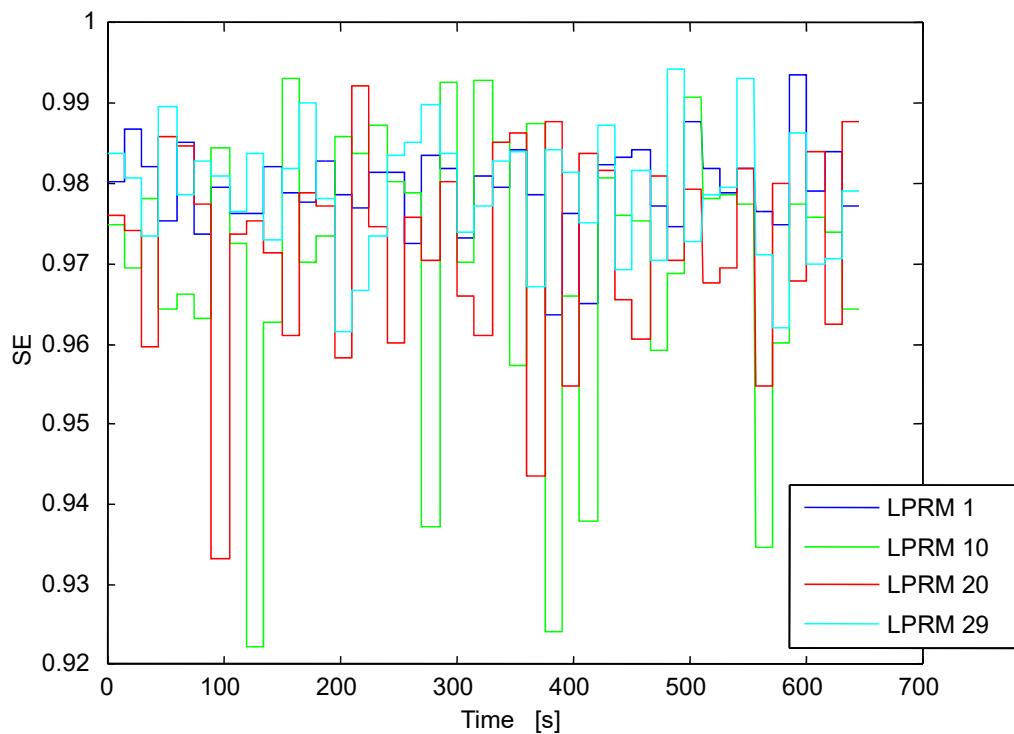


Figure 26. Multivariate instantaneous frequency IF (IF 4) linked to BWR instability oscillating around the region of interest (0.5 Hz).

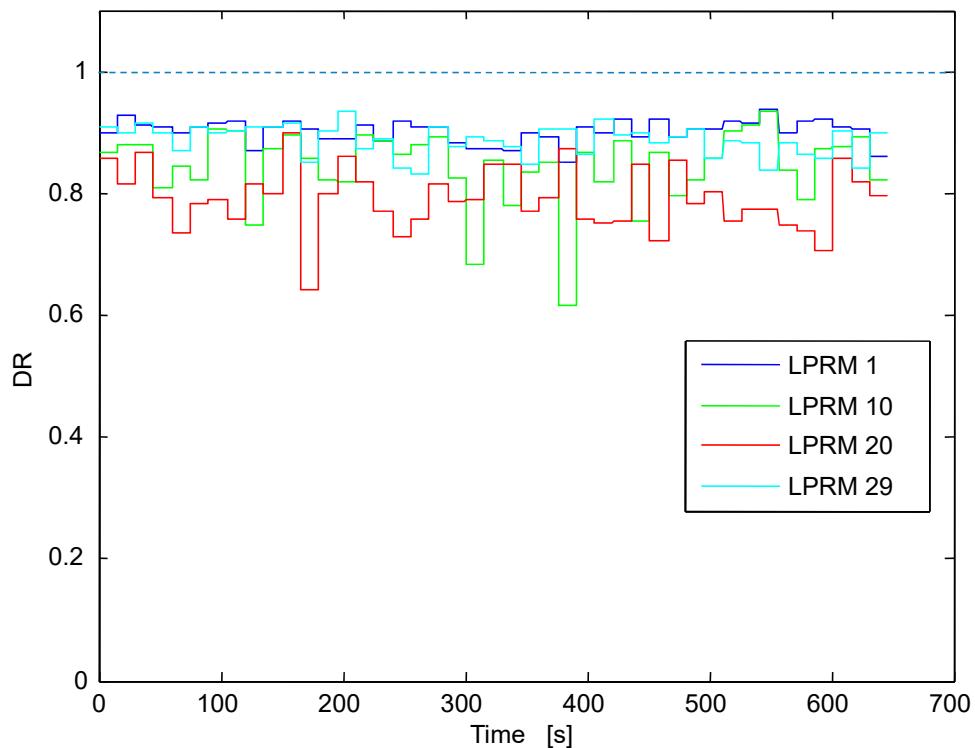
789

790



791

792 **Figure 27.** Local SE estimate along time for the selected 4 LPRM sample. All of the SE estimates exceed the
793 stability threshold (located at SE=0.8).



794

795 **Figure 28.** Local DR estimate along time for the selected 4 LPRM sample. The threshold DR bar is located at the
796 same locus as before.

797
798**Table 5.** Average and standard deviations values for the SE, the DR and the oscillation frequency (f_0) linked to instability of the Ringhals benchmark stability Case 9 Cycle 14 studied via Methodology 2 based on NA-MEMD

Detectors	Mean SE	Std SE	Mean DR	Std DR	Mean f_0	Std f_0
LPRM 1	0.9792	0.0064	0.9033	0.0170	0.5271	0.0223
LPRM 3	0.9779	0.0062	0.9006	0.0158	0.5284	0.0215
LPRM 5	0.9786	0.0089	0.8997	0.0194	0.5286	0.0209
LPRM 7	0.9793	0.0091	0.8841	0.0315	0.5251	0.0235
LPRM 9	0.9791	0.0057	0.9003	0.0207	0.5244	0.0268
LPRM 11	0.9792	0.0065	0.9007	0.0206	0.5270	0.0237
LPRM 13	0.9762	0.0087	0.9005	0.0196	0.5306	0.0182
LPRM 15	0.9790	0.0070	0.8977	0.0196	0.5256	0.0247
LPRM 17	0.9808	0.0083	0.8910	0.0237	0.5239	0.0260
LPRM 19	0.9708	0.0192	0.8468	0.0594	0.5373	0.0073
LPRM 21	0.9750	0.0121	0.8682	0.0421	0.5337	0.0141
LPRM 23	0.9802	0.0086	0.8894	0.0266	0.5307	0.0193
LPRM 25	0.9789	0.0074	0.8930	0.0230	0.5286	0.0221
LPRM 27	0.9776	0.0141	0.8881	0.0360	0.5314	0.0189
LPRM 29	0.9728	0.0229	0.8402	0.0591	0.5346	0.0181
LPRM 31	0.9635	0.0363	0.8150	0.0792	0.5381	0.0140
LPRM 33	0.9648	0.0187	0.7227	0.1068	0.5318	0.0224
LPRM 35	0.9681	0.0213	0.7680	0.0865	0.5308	0.0196
LPRM 37	0.9769	0.0123	0.8573	0.0393	0.5304	0.0166
LPRM 39	0.9731	0.0113	0.7923	0.0483	0.5310	0.0228
LPRM 41	0.9544	0.0306	0.6935	0.1651	0.5312	0.0324
LPRM 43	0.9600	0.0295	0.7080	0.1310	0.5368	0.0316
LPRM 45	0.9471	0.0349	0.5754	0.2262	0.5408	0.0456
LPRM 47	0.9782	0.0073	0.8511	0.0418	0.5279	0.0199
LPRM 49	0.9796	0.0074	0.8805	0.0255	0.5310	0.0162
LPRM 51	0.9803	0.0065	0.8992	0.0179	0.5299	0.0169
LPRM 53	0.9786	0.0055	0.8999	0.0149	0.5271	0.0194
LPRM 55	0.9813	0.0043	0.8970	0.0195	0.5293	0.0185
LPRM 57	0.9802	0.0068	0.8868	0.0263	0.5274	0.0204
LPRM 59	0.9730	0.0329	0.8719	0.1111	0.5254	0.0202
LPRM 61	0.9698	0.0446	0.8734	0.1171	0.5272	0.0189
LPRM 63	0.9680	0.0529	0.8790	0.0999	0.5276	0.0187
LPRM 65	0.9646	0.0669	0.8737	0.1080	0.5265	0.0186
LPRM 67	0.9685	0.0489	0.8734	0.0948	0.5269	0.0189
LPRM 69	0.9717	0.0416	0.8735	0.1010	0.5239	0.0228
LPRM 71	0.9752	0.0218	0.8722	0.1014	0.5275	0.0177

799 **6.3 Discussions and remarks**800 Some important final remarks can be done regarding our proposal and recent researches about BWR
801 stability:802 The common mechanism for BWR instability is the density wave oscillations (DWO) effect [39]. A
803 decrease in coolant flow increases the void fraction for a given reactor power. A high wave
804 propagation velocity of voids (wave void) is then formed and accompanied by a high wave
805 propagation velocity of pressure (wave pressure). Since an increase in pressure drop decreases the
806 flow due to increased resistance to flow, a feedback loop results between inlet flow and pressure
807 drop, which may lead to oscillations in time. In addition, as the void fraction is increased as
808 described above, the associated decrease in moderator density induces a negative reactivity
809 feedback. This causes the power to decrease, which reduces the void fraction and fuel temperature
810 and allows the power to build up again. As a result, self-sustained power oscillations may appear,
811 depending on the operation conditions.812 According with [40] the in-phase instabilities are driven by the interaction between the DWO
813 mechanism and its coupling via the void reactivity feedback with the core neutron population. On
814 the other hand, an in-phase instability implies growing neutron oscillations that are dominated by
815 the fundamental neutronic mode. Regarding to the first azimuthal neutronic mode may also be
816 unstable and growing, but its contribution to the total neutron population is relatively insignificant
817 [41].818 The mechanism of density wave oscillations for two-phase flow has recently received great
819 attention, remaining as an important issue of scientific and technological interest (e.g. [40], [42-48]).
820 However, the core stability is due to fluctuations in coolant flow and power generation process
821 coupled via nuclear feedback where the non-linear nature has been a challenge for the development
822 of stability monitors. Therefore the methodology presented in this work constitutes a significant
823 and novel advance towards the development of stability monitors able to predict linear and
824 nonlinear effects, as well as the transition between them.825 Experiments on natural circulation BWR stability show that changing the fuel rods diameter affect to
826 the stability performance of the system [48]. These authors clearly observed that at least two
827 oscillatory modes exists in the system, one of them is the so-called reactor mode related to density
828 waves travelling through the core, which is amplified by increasing the void reactivity feedback
829 coefficient. Therefore, the methods based on SE presented in this work, are applicable to existing and
830 advanced reactors of type BWR, and any two-phase flow system as well as characterization of
831 stability limits [47]. A recent work showed that the stability of a BWR reactor was applied to
832 assessment of optimum Fuel Reload Patterns for a BWR [49].833 The methodology 1, developed in this work, is limited to the cases of neutron signal analysis of an
834 APRM or LPRM where the instability in-phase can be detected like in a NPP as Laguna Verde which
835 characteristic is its size (smaller compare to Forsmark and Ringhals) and where this kind of
836 instability phenomena is expected. Regarding to methodology 2, it can be applied to both phase
837 in-phase and out-of-phase instabilities. Given that the stability phenomena in BWR is a complex
838 phenomenon in a heterogeneous two-phase flow system, where void propagation waves
839 (propagation of the gas phase in the liquid phase) and pressure propagation waves (both in gas
840 phase and liquid phase) generate the DWO mechanics, then is preferable to implement an oscillation
841 detector based on methodology 2.

842

843 **7. Conclusions**

844 In this work two non-linear stability monitor methodologies based on noise assisted empirical mode
845 decomposition methods (NA-EMDm) were proposed to analyze unstable BWR signals that
846 stemmed from the Ringhals, Forsmark stability benchmarks and the Laguna Verde instability event,
847 with the goal in mind of estimating the Shannon Entropy of those signals to measure their
848 *uncertainty* and thus assess BWR stability through such novel measure. Also, the SE estimates were
849 compared with Decay Ratio results computed via previous methods based on EMD variants. The
850 proposed stability methodologies are rooted in noise assisted empirical mode decomposition
851 algorithms, which are techniques that decompose non stationary signals that stem from non-linear
852 sources in an adaptive (data-driven) way to grant a *physically* meaningful decomposition of data, the
853 data (the LRPM or APRM signals are split first in segments of 15 s) is decomposed into intrinsic
854 mode functions (or simply *modes*), via the Hilbert transform it is possible to compute the
855 instantaneous frequencies of the extracted *modes* to track the *mode* linked to BWR instability (whose
856 IF is strongly concentrated around 0.5 Hz, the region of interest for BWR unstable events). Later,
857 once the IMF (IMFs in the multidimensional case) of interest has been detected, the SE of this
858 particular IMF is computed to assess the BWR stability of that particular 15 s signal segment that was
859 analyzed via any of our stability methodologies. The major findings of our BWR stability studies are
860 resumed in the following:

861 a) regarding **Methodology 1** based on the iCEEMDAN (univariate signal analysis)

- 862 • Case 4 of the Forsmark stability benchmark

863 The estimated averaged values for the DR are in perfect agreement with those estimated
864 by the different methodologies presented in [3]. The DR estimates indicate the beginning
865 of an *incipient instability* event whereas the SE estimates indicate a *fully developed* instability
866 event in the BWR core.

- 867 • Case 9 Cycle 14 of the Ringhals stability benchmark

868 The high SE estimated values, clearly indicate again a *fully developed* unstable behavior of
869 this case. Thus, the studied BWR *floor 2* is unstable. The high DR estimates (but still not
870 above the locus $DR = 1$) although high and depicting that there is something unusual
871 going on in the BWR core but not high enough to trigger BWR protection mechanisms.

- 872 • The Laguna Verde instability event

873 Prior the first 300 s of the signal, the DR oscillates between stability and instability. But, it
874 is hard to infer the dominant DR value due to its *strong* discontinuous jumps between
875 stability and instability. However, after the 300 s mark, the DR is high and greater than its
876 threshold value ($DR = 1$) and remains as such (and oscillating around 1.1) throughout the
877 rest of the simulation. Thus, the DR indicates unstable BWR behavior but only after the
878 300 s mark. The SE estimate is highly more consistent than the DR prior the 300 s mark,
879 because the SE clearly indicates unstable behavior (whereas the DR is unable to
880 differentiate between the two) and after the 300 s mark, the SE slightly oscillates around 1
881 (and not in a *dramatic* way as the DR does). Nevertheless, the SE always indicates unstable
882 BWR behavior, long before the DR is able to detect it. Thus, the SE is capable of indicating
883 unstable behavior prior any further growth in power of the unstable oscillation within the
884 core whereas the DR is only able to detect instability (without bias) once the unstable
885 oscillation is fully sustained and *powerful* enough to damage the core.

886 b) regarding **Methodology 2** based on the NA-MEMD (multivariate signal analysis)

- 887 • Multivariate analysis of the Forsmark stability benchmark (based on a sample of 4
888 LPRMs)

889 Overall the BWR is unstable because of the high SE estimates along time, in spite of 4
890 segments that had an SE below the stability threshold ($SE < 0.8$). Thus, again from the very
891 beginning of the simulation, the SE is able to detect an unusual BWR unstable behavior.
892 The DR in the multivariate case prior the 150 s mark is apparently stable and after this 150
893 s mark, it fluctuates around 0.75, the DR estimate is high but not high enough to be a
894 nuisance for BWR operation.

895 • Multivariate analysis of the Forsmark stability benchmark (based on a sample of 4
896 LPRMs):

897 The SE estimates along time were high (beyond the SE stability threshold located at $SE =$
898 0.8) throughout the time span of the simulation for the 4 chosen LPRMs, thus the BWR is
899 clearly unstable whereas, the DR estimates were high, clearly indicating the beginning of
900 an unstable event, but they did not exceed the stability threshold to trigger the BWR
901 protection mechanisms.

902 According to our simulations it is naive to assume to infer information associated to BWR dynamics
903 through one linear parameter alone such as the DR, because in most of our simulations, the DR only
904 rises above its stability threshold (DR above 1) once the unstable oscillation has grown enough in
905 power to damage the core (according to the stability analysis of the LV signal). Thus, it is necessary
906 to propose another non-linear stability indicator (to replace the DR or to accompany it) to assess
907 BWR stability, and the SE might be a suitable candidate to fulfill that role via our simple SE estimator
908 or another more elaborate one that will be studied in future works.

909 To select which stability methodology (between 1 and 2) is the most adequate to analyze BWR
910 signals, is still not known and further stability cases must be studied in detail to decide which type of
911 analysis works better; whether a univariate one or a multivariate one. Nevertheless, the SE (and DR)
912 estimates extracted through these decomposition methods were similar (within the 10 % of
913 difference). These noise assisted techniques have one cumbersome inconvenient and a difficult one
914 to overcome. For instance, how to properly select the iCEEMDAN parameters I (the size of the
915 ensemble of realizations of the EMD that this noise assisted method requires) and ε_0 (the standard
916 deviation of the added assisted noise)? Nobody knows that answer yet in the EMD literature, thus
917 further studies are required to infer these two parameters. A similar question arises with the
918 NA-MEMD, how many independent channels of noise are required in the decomposition scheme to
919 mitigate the *mode-mixing* problem?, again, another question that has not been addressed in the
920 specialized literature. However, once these questions are answered, then, our stability
921 methodologies might be fully adaptive to be implemented in a real stability monitor and well
922 adapted to decompose non stationary non linear data.

923

924 **Acknowledgments:** The source of funding for this publication was provided by the Mexican National Council
925 of Science and Technology (CONACyT-México). Doctoral Scholarship number: 594513, unique CONACyT
926 curriculum vitae (CVU) : 382288. Valid between 01/01/2016 and 31/12/2019. This same scholarship grants the
927 necessary funding to publish in open access.

928 **Author Contributions:** A. Prieto-Guerrero and G. Espinosa-Paredes conceived and designed the proposed
929 stability methodologies in previous published works, and the original idea on the application of the Shanon
930 Entropy in a stability monitor. These proposals were based on the empirical Mode Decomposition and in the
931 Multivariate Empirical Mode Decomposition, O. Olvera-Guerrero improved these proposals considering the
932 mode-mixing compensation of data, O. Olvera-Guerrero performed the experiments of this work, G.
933 Espinosa-Paredes, A. Prieto-Guerero and O. Olvera-Guerrero developed the methodology presented in this
934 work and wrote the paper.

935 **Conflicts of Interest:** The authors declare no conflict of interest.

936

937 **References**

1. Gonzalez, V.M., Amador, R., Castillo, R., 1995. Análisis del evento de oscilaciones de potencia en la CNLV: Informe Preliminar. CNSNS-TR-13, REVISION 0. Comisión Nacional de Seguridad Nuclear y Salvaguardias, México.
2. Farawila, Y.M., Pruitt, D.W., Smith, P.E., Sanchez, L., Fuentes L.P., 1996. Analysis of the Laguna Verde instability event. Proceedings of National Heat Transfer Conference, Houston, Texas, August 3-6, Vol. 9, 198-202.
3. Verdú, G., Ginestar, D., Muñoz-Cobo, J.L., Navarro-Esbri, J., Palomo, M.J., Lansaker, P., Conde, J.M., Recio, M., Sartori, E., 2001. Forsmark 1&2 Stability Benchmark. Time Series Analysis Methods for Oscillations During BWR Operation. Final Report, NEA/NSC/DOC(2001) 2.
4. Lahey, R.T., Podoswski, M.Z., 1989. On the analysis of various instabilities in two-phase flow. *Multiphase Science and Technology* 4, 183- 371.
5. Van der Hagen, T. H. J. J., Zboray, R., de Kruijf, W. J. M., 2000. Questioning the use of the decay ratio in BWR stability monitoring. *Annals of Nuclear Energy* 27, 727-732.
6. Pazsit, I., 1995. Determination of reactor stability in case of dual oscillations. *Annals of Nuclear Energy* 22, 377-387.
7. Gialdi, E., Grifoni, S., Parmeggiani, C., Tricoli, C., 1985. Core stability in operating BWR: operational experience. *Progress in Nuclear Energy* 15, 447-459.
8. Navarro-Esbri, J., Ginestar, D., Verdu, G., 2003b. Time dependence of linear stability parameters of a BWR. *Progress in Nuclear Energy* 43, 187-194.
9. Espinosa-Paredes, G., Prieto-Guerrero, A., Nuñez-Carrera, A., Amador-Garcia, R., 2005. Wavelet-based method for instability analysis in boiling water reactors. *Nuclear Technology* 151, 250-260.
10. Espinosa-Paredes, G., Núñez-Carrera, A., Prieto-Guerrero, A., Ceceñas M., 2007. Wavelet approach for analysis of neutronic power using data of ringhals stability benchmark. *Nuclear Engineering and Design* 237, 1009-1015.
11. Sunde, C., Pazsit, I., 2007. Wavelet techniques for the determination of the decay ratio in boiling water reactors. *Kerntechnik* 72, 7-19.
12. Castillo, R., Alonso, G., Palacios J.C., 2004. Determination of limit cycles using both the slope of correlation integral and dominant Lyapunov methods. *Nuclear technology* 145(2), 139-149.
13. Gavilán-Moreno, C. J., Espinosa-Paredes, G., 2016. Using Largest Lyapunov Exponent to Confirm the Intrinsic Stability of Boiling Water Reactors. *Nuclear Engineering and Technology* 48/2, 434-447.
14. Shannon, C.E., 1948. A mathematical theory of communication. *Bell System Technical Journal* 27(3), 379-423.
15. Colominas, M. A., Schlotthauer, G., Torres, M. E., 2014. Improved complete ensemble emd: A suitable tool for biomedical signal processing. *Biomedical Signal Processing and Control* 14, 19-29.

- 977 16. Ur Rehman, N., Mandic, D. P., 2011. Filter bank property of multivariate empirical mode
978 decomposition. *IEEE Transactions on Signal Processing* 59(5), 2421-2426.
- 979 17. Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C.,
980 Liu, H. H., 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear
981 and non-stationary time series analysis, in: *Proceedings of the royal Society*, pp. 903-995.
- 982 18. Olvera-Guerrero O. A., Prieto-Guerrero, A., Espinosa-Paredes, G., 2017. Non-linear Boiling
983 Water Reactor Stability with Shannon Entropy. *Annals of Nuclear Energy* 108, 1-9.
- 984 19. Sharma, R., Pachori, R. B., Acharya, U. R., 2015. Application of entropy measures on
985 intrinsic mode functions for the automated identification of focal electroencephalogram
986 signals. *Entropy*, 17(2), 669-691.
- 987 20. Huang, J. R., Fan, S. Z., Abbod, M. F., Jen, K. K., Wu, J. F., Shieh, J. S., 2013. Application of
988 multivariate empirical mode decomposition and sample entropy in EEG signals via artificial
989 neural networks for interpreting depth of anesthesia. *Entropy*, 15(9), 3325-3339.
- 990 21. Zhan, L., Li, C., 2016. A comparative study of empirical mode decomposition-based filtering
991 for impact signal. *Entropy*, 19(1), 13.
- 992 22. Hu, M., Liang, H., 2011. Intrinsic mode entropy based on multivariate empirical mode
993 decomposition and its application to neural data analysis. *Cognitive Neurodynamics*, 5(3),
994 277-284.
- 995 23. Tseng, C. Y., Lee, H. C., 2010. Entropic interpretation of empirical mode decomposition and
996 its applications in signal processing. *Advances in Adaptive Data Analysis*, 2(04), 429-449.
- 997 24. Prieto-Guerrero, A., Espinosa-Paredes, G., 2014.. Decay ratio estimation in boiling water
998 reactors based on the empirical mode decomposition and the Hilbert-Huang transform.
999 *Progress in Nuclear Energy* 71, 122-133.
- 1000 25. Olvera-Guerrero, O. A., Prieto-Guerrero, A., Espinosa-Paredes, G., 2017. Decay Ratio
1001 estimation in BWRs based on the improved complete ensemble empirical mode
1002 decomposition with adaptive noise. *Annals of Nuclear Energy*, 102, 280-296.
- 1003 26. BWR/6., 1975. BWR/6 General Description of a Boiling Water Reactor, Nuclear Energy
1004 Division, General Electric Company.
- 1005 27. Wu, Z., Huang, N.E., 2009. Ensemble empirical mode decomposition: a noise assisted data
1006 analysis method. *Adv. Adapt. Data Anal.* 1, 1-41.
- 1007 28. Torres, M.E., Colominas, M.A., Schlotthauer, G., Flandrin, P., 2011. A complete ensemble
1008 empirical mode decomposition with adaptive noise. *IEEE International Conference on
1009 Acoustics, Speech and Signal Processing (ICASSP)*, pp. 4144-4147.
- 1010 29. Colominas, M. A., Schlotthauer, G., Torres, M. E., Flandrin, P., 2012. Noise-assisted EMD
1011 methods in action. *Advances in Adaptive Data Analysis* 4(04), 1250025.
- 1012 30. Rehman, N., Mandic, D. P., 2010. Multivariate Empirical Mode Decomposition. *Proc. Royal
1013 Soc. A* 466, 1291-1302.
- 1014 31. Niederreiter, H., 1992. Random number generation and quasi-Monte Carlo methods.
1015 Philadelphia, PA: Society for Industrial and Applied Mathematics.
- 1016 32. Knuth, K. H., 2006. Optimal data-based binning for histograms. *arXiv:physics/0605197v1*.
- 1017 33. Lefvert, T., 1996. OECD/NEA Ringhals 1 Stability Benchmark. Final Report.
1018 NEA/NSC/DOC(96) 22, Nuclear Energy Agency.

- 1019 34. Blazquez, J., Ruiz, J., 2003. The Laguna Verde BWR/5 instability Event. *Progress in Nuclear*
1020 Energy 43, 195-200.
- 1021 35. Nuñez-Carrera A. y Espinosa-Paredes G., 2006. Time-Scale BWR stability analysis using
1022 wavelet-based method. *Progress in Nuclear Energy* 48, 540-549.
- 1023 36. Prieto-Guerrero, A., Espinosa-Paredes, G., 2008. Decay Ratio Estimation of BWR Signals
1024 based on Wavelet Ridges. *Nuclear Science and Engineering* 160, 302-317.
- 1025 37. Moreno, C. G., 2016. Boiling water reactor instability analysis using attractor characteristics.
1026 *Annals of Nuclear Energy* 88, 41-48.
- 1027 38. Prieto-Guerrero, A., Espinosa-Paredes, G., Laguna-Sánchez, G. A., 2015. Stability monitor
1028 for boiling water reactors based on the multivariate empirical mode decomposition. *Annals*
1029 of Nuclear Energy 85, 453-460.
- 1030 39. March-Leuba, J., Blakeman, E.D., 1991. A mechanism for out-of-phase power instabilities in
1031 Boiling Water Reactors. *Nuclear Science and Engineering* 107, 173-179.
- 1032 40. Muñoz-Cobo, J.L., Escrivá, A., Domingo, M.D., 2016. In-phase instabilities in BWR with
1033 sub-cooled boiling, direct heating, and spacers effects. *Annals of Nuclear Energy* 87,
1034 671-686.
- 1035 41. Dokhane, A., Hennig, D., Chawla, R., 2007. Interpretation of in-phase and out-of-phase
1036 BWR oscillations using an extended reduced order model and semi-analytical bifurcation
1037 analysis. *Annals of Nuclear Energy* 34 271-287.
- 1038 42. Demeshko, M., Dokhane, A., Washio, T., Ferroukhi, H., Kawahara, Y., & Aguirre, C., 2015.
1039 Application of Continuous and Structural ARMA modeling for noise analysis of a BWR
1040 coupled core and plant instability event. *Annals of Nuclear Energy* 75, 645-657.
- 1041 43. Paul, S., Singh, S., 2014. A density variant drift flux model for density wave oscillations.
1042 *International Journal of Heat and Mass Transfer* 69, 151-163.
- 1043 44. Paul, S., Singh, S., 2017. On nonlinear dynamics of density wave oscillations in a channel
1044 with non-uniform axial heating. *International Journal of Thermal Sciences* 116, 172-198.
- 1045 45. Vinai, P., Demazière, C., Dykin, V., 2014. Modelling of a self-sustained density wave
1046 oscillation and its neutronic response in a three-dimensional heterogeneous system. *Annals*
1047 of Nuclear Energy 67, 41-48.
- 1048 46. Paruya, S., Goswami, N., Pushpavanam, S., Pillai, D. S., Bidyarani, O., 2016.
1049 Periodically-forced density wave oscillations in boiling flow at low forcing frequencies:
1050 Nonlinear dynamics and control issues. *Chemical Engineering Science* 140, 123-133.
- 1051 47. Pandey, V., Singh, S., 2017. Characterization of stability limits of Ledinegg instability and
1052 density wave oscillations for two-phase flow in natural circulation loops. *Chemical*
1053 *Engineering Science* 168, 204-224.
- 1054 48. Marcel, C. P., Rohde, M., Van Der Hagen, T. H. J. J., 2017. An experimental parametric study
1055 on natural circulation BWRs stability. *Nuclear Engineering and Design* 318, 135-146.

- 1056 49. Castillo-Durán, R., Ortiz-Servin, J. J., Castillo, A., Montes-Tadeo, J. L., Perusquía-del-Cueto,
1057 R., 2016. A stability assessment of optimum Fuel Reload Patterns for a BWR. *Annals of*
1058 *Nuclear Energy* 94, 841-847.