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Abstract: There are currently around 78 Nuclear Power Plants (NPP) in the world based on Boiling
Water Reactors (BWR). The current parameter to assess BWR instability issues is the linear Decay
Ratio (DR). However, it is well known that BWRs are complex non-linear dynamical systems that
may even exhibit chaotic dynamics that normally preclude the use of the DR when the BWR is
working at a specific operating point during instability. In this work a novel methodology based on
an adaptive Shannon Entropy estimator and on Noise Assisted Empirical Mode Decomposition
variants is presented. This methodology was developed for real-time implementation of a stability
monitor. This methodology was applied to a set of signals stemming from several NPPs reactors
(Ringhals-Sweden, Forsmark-Sweden and Laguna Verde-Mexico) under commercial operating
conditions, that experienced instabilities events, each one of a different nature.

Keywords: Boiling Water Reactors; density wave oscillations; stability monitor; Shannon Entropy;
noise-assisted Empirical Mode Decomposition variants; mode-mixing; Hilbert-Huang transform;
instantaneous frequency.

1. Introduction

Currently, there are 78 nuclear boiling water reactors (BWR) in the world for the generation of
electricity. The BWR contribute significantly to the production of global electric power and to date
are the simplest energy system to transform fission energy into electrical energy, due to the direct
cycle to turbine with dry saturated steam. However, there are still fundamental aspects in its
operation related to the interaction of thermohydraulic processes (heat transfer in fuel and
refrigerant) with that of neutron kinetics. Such interaction may, under certain operating conditions,
cause BWR to malfunction and affect its stability. The problem of the stability of the BWR has been
the subject of important scientific and technological work during more than 4 decades dedicated to
its study.

Instability events are rare and may occur during BWR start up or during transients that may change
the operation region of the reactor. Figure 1 shows the example of a typical Power-flow map
diagram of a nuclear power plant (NPP), which shows the regions where the reactor should not be
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40  operated (red box) for reasons of stability, those ones where the BWR can be operated only under
41  supervision (brown box) and finally, the diagram shows the regions of stable reactor operation
42 (regions where the core flow is high). Currently, there is a tendency to design higher power reactors.
43 In addition, refinement of fuel elements has encouraged the introduction of increasingly efficient
44 fuels that allow the plant to operate at increasingly high power levels. Such a power increase induces
45  a higher reactivity feedback and a decrease in response time, resulting in a lower BWR stability
46  range when the plant operates at a low mass flow and at high nominal power. Another current trend
47 s to increase the size of the core, which causes a weaker special coupling in the neutron field which
48  increases the susceptibility of the reactor to experiencing unstable oscillations. In summary, all
49  current tendencies related to reactor design enhance the regions where the reactor should not be
50  operated (reactor operation at low flow and high power).
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52 Figure 1. Typical Power-flow map of a NPP.

53 Events of instability have already occurred in the past in commercial BWRs, such as the Laguna
54 Verde Nuclear Power Plant [1-2]. Some cases of instability occurred inadvertently, while others were
55  intentionally provoked for experimental purposes [3]. Periodic oscillations in the neutron flux were
56  observed during these instability events via the electronic instrumentation of the reactor. After the
57  first events of instability occurred, the corresponding authorities (regulatory commissions)
58  requested the development of research projects to study the mechanisms involved in reactor
59  stability in order to:

60 o Study the stability margins of the plant under normal operating conditions and in unusual
61  conditions.

62 e Predict reactor transients in an event of instability.
63 e Develop measures to prevent and mitigate the consequences of an event of instability.

64 In BWR instability events, two kinds of instabilities are found: in-phase (global or core-wide)
65  oscillations, and out-of-phase (regional) oscillations. In-phase oscillation, i.e. where neutron flux
66  oscillations are in-phase at all the fuel bundles in the core, are caused by the lag introduced into the
67  thermal-hydraulic system by the finite speed of propagation of density perturbation [4]. At
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68  high-core void fractions and low flow conditions, the feedback becomes so strong that it induces
69  oscillations at frequency about 0.5 Hz. When this feedback increases, the oscillation becomes more
70 pronounced, and oscillatory instability is reached. The term out-of-phase oscillation is applied to
71 those instabilities in which different reactor core zones show a considerable phase shift (180°) in
72 neutron flux oscillation, i.e. where neutron flux from one half of the core oscillates out-of-phase with
73 respect to that one of the other half. It has been shown that stability depends on several variables
74 such as control rod patterns, void fraction, burnup, inlet mass flow, among others.

75  Currently, the most common parameter to evaluate BWR stability is known as the decay ratio (DR),
76 which is calculated from the impulse response function that stems from an autoregressive (AR)
77  modeling of BWR signals. The decay ratio is a simple straightforward index to scale a margin to the
78  stability boundary and this property is the main output of most stability monitoring systems [5]. The
79  use of the DR as a feasible BWR stability measure has been widely accepted, nonetheless, it has been
80  observed that a BWR working at an operating point with a small DR can be close to instability [6].
81  Also, the DR often jumps discontinuously from the well stable to the far-unstable region [7]. The
82  BWR stability is of primary interest from the point of view of BWR operation, due to the fact, that the
83  stability margin may be strongly reduced during plant maneuvering and transients [8]. According to
84  these issues, the DR might not be a reliable monitoring index after all, under certain operating
85  conditions. Besides, in regular operating conditions, the need for stationary signals might be a
86  handicap for DR estimation. Thus, it is relevant to explore new alternative methodologies and
87  indexes adapted to accommodate for non-stationary and non-linear BWR signal behavior.

88  In[9] a short time Fourier transform based technique was explored to study the time dependence of
89  the natural frequency when the BWR signal is non-stationary. Later, the wavelet theory was applied
90  to explore new alternatives for transient instability analysis [10-11]. However, in general BWR
91  signals are non-stationary and non-linear, thus Fourier-based or wavelet-based approaches might
92 lead to a biased stability analysis. Several methods for non-linear BWR stability analysis have been
93  applied before [12-13], to study BWR signals containing stationary and non-stationary segments. In
94 this work, the Shannon Entropy (SE) was applied, to infer whether it can be used as a novel stability
95  parameter for BWRs. The SE is a concept that was developed by Claude E. Shannon [14] to study a
96  discrete source through the information content of this source. The SE is a statistical index that
97  quantifies the complexity of a signal. In this case, the BWR stability issue is assessed quantifying the
98  complexity of BWR signals through this proposed parameter SE. A low SE value is linked to a
99  predictable BWR event (stable scenario) whereas a high SE indicates an unpredictable BWR event (an
100  unstable scenario).

101  To properly estimate the SE from BWR signals, two noise assisted empirical mode decomposition
102 (EMD) methods were explored: the improved complete ensemble empirical mode decomposition with
103 assisted noise (iCEEMDAN) and the mnoise assisted multivariate empirical mode decomposition
104  (NA-MEMD). Both techniques were proposed in [15] and [16] respectively. Henceforth, for
105  simplicity, we will refer to any of these two methods as noise assisted empirical mode decomposition
106  method (NA-EMDm). The NA-EMDm is an algorithm that decomposes non-stationary signals that
107  stem from non-linear systems. The method also alleviates the mode mixing phenomenon of the
108  default EMD method, that was first proposed in [17] by Huang et al. The NA-EMDm produces a
109  local and fully data-driven separation of a signal in fast and slow oscillations. At the end of the
110 procedure, the original signal can be expressed as a sum of amplitude and frequency modulated
111 (AM-FM) functions called intrinsic mode functions (IMFs), also known as modes, plus a final
112 monotonic trend. The combination of NA-EMDm and the Hilbert transform is known as the
113 Hilbert-Huang transform (HHT). The method we propose is based on the HHT and it estimates a
114  parameter associated to BWR stability, in this case the previously mentioned SE. The NA-EMDm
115 decomposes the studied BWR signal (signals in the NA-MEMD case) into IMFs. One or more of
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116  these extracted modes can be associated to the instability problem in BWRs. Through HHT it is
117  possible to get the instantaneous frequency (IF) associated to each IMF. By tracking this IF and the
118  SE of the IMF linked to instability, the estimation of the SE-based stability indicator is accomplished.
119  The methodology here proposed is a continuation of a previous work [18] developed by the authors,
120 in which a SE/iCEEMDAN technique was tested with artificial signals generated with the aid of a
121 simple but powerful Reduced Order Model (ROM) that fits the BWR non-linear dynamic behavior.
122 The work presented in [18] is now expanded in here to assess the stability of real BWR signals
123 through iCEEMDAN and NA-MEMD.

124 The combination of EMD variants plus Entropy measures has been applied before in various
125  scientific disciplines, for instance, in [19] a methodology for the classification of
126  electroencephalogram (EEG) signals was developed using entropy measures. The EEG signals were
127 first decomposed through default EMD into IMFs. Later, the Shannon entropy, the Renyi entropy,
128  the approximate entropy, the sample entropy, among other entropy measures, were computed from
129  the extracted IMFs to study the complex electrical activities of the brain. In [20] a study was
130 developed to analyze EEG signals to compare them with existing Bispectral-indexes (BIS), which are
131  indicators that are often used to assess the depth of anesthesia. The MEMD was utilized to filter EEG
132 data, later the combination of two MEMD components (IMF 2 + IMF 3) were used to express raw
133 EEG data. Then, the sample entropy algorithm was used in the study to calculate the complexity of
134 the patients EEG data. Furthermore, linear regression and artificial neural network methods were
135 used to model the sample entropy using the BIS index. In [21] the original CEEMDAN was used to
136  develop a new method for filtering time series originating from non-linear impact (signals used to
137  study the impact events in mechanical systems for health monitoring analysis) systems. Then, the
138 complexity of the extracted IMFs was quantified by fuzzy entropy. In [22] multiscale entropy
139 measures were computed over different scales of IMFs extracted by EMD to study the regularity of a
140  time series related to brain dynamics, their methodology was also extended to study multi-channel
141  multi-trial neural data through the MEMD approach. The list of applications of methods combining
142 a NA-EMDm plus a measure of entropy go onward, to the degree that this combination is now
143 becoming an entropic analysis strategy to provide an information based-interpretation of data [23].
144 However, Shannon entropy measure was never used before [18] as a stability indicator for a BWR.

145  This paper is organized as follows: in Section 2 a brief introduction about BWRs and its
146  instrumentation inside of the core are presented. A full review of the two chosen NA-EMDm
147  algorithms to understand the basic background of the decomposition methods employed, are
148  detailed in Section 3. The SE estimator, employed as BWR stability indicator, is introduced in Section
149 4. In Section 5, the methodology to estimate the instantaneous frequency and the proposed SE
150  parameter is detailed. The validation of the methodology presented in this paper is performed doing
151  experiments with real signals taken from the Forsmark and Ringhals stability benchmarks and from
152 aLaguna Verde instability event and presented in Section 6. Also in this same section, the SE results
153 are compared with current DR estimations, computed via techniques based on default EMD [24-25].
154 Our major findings regarding our novel methodology are talked through in Section 7.

155
156
157
158 2. BWRs background

159 2.1 Description of a BWR
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160  The BWR configuration and the flow paths are illustrated in Figure 2 [26]. The reactor water
161  recirculation system, whose objective is to circulate the required coolant flow through the reactor
162 core, consists of two external loops to the reactor vessel. Each loop contains a pump with a directly
163 coupled motor, a flow control valve, and two shut-off valves. The jet pump located within the
164 reactor vessel provides a continuous internal circulation path for a major portion of the core coolant
165  flow. The recirculation pumps take the suction from the downward flow in the annulus between the
166  core shroud and the vessel wall. The core flow is taken from the vessel through two recirculation
167  nozzles. Into this site, the flow is pumped to a higher pressure, distributed through a manifold to
168  which a number of riser pipes are connected, and returned to the vessel inlet nozzles.

169  This flow is discharged from jet pump nozzles into the initial stage of the jet pumps throat where,
170  due to a momentum exchange process, induces the surrounding water in the downcomer region to
171  be drawn into the jet pumps throats. Here, these two flows are mixed and then diffused in the
172 diffuser, to be finally discharged into the lower core plenum. The coolant water passes along the
173 individual fuel rods inside the fuel channel where it boils and becomes a two-phase steam/water
174 mixture. In the core, the two-phase fluid generates upward flows through the axial steam separators
175  while the steam continues through the dryers and flows directly out through the steam lines into the
176  turbine-generator. The condensate flow is then returned through the feedwater heaters by the
177  condensate-feedwater pumps into the vesssel. The water, which is separated from the steam in the
178  steam separators, flows downward in the periphery of the reactor vessel and mixes with the
179  incoming main feed flow from the turbine. This downward flow enters to the jet pumps and the
180  remainder exits from the vessel as recirculation flow.

181 2.2 Instrumentation inside the core of a BWR

182  Ttis possible to detect BWR oscillations linked to instability via a series of detectors known as local
183  power range monitor (LPRM), these detectors are located radially and axially within the core vessel,
184  asdepicted in Figure 2. Their task is to monitor the local neutron flux of the reactor at a certain locality.
185  Within the core, there is a particular detector which averages a series of LPRMs, the latter is known
186  as average power range monitor (APRM). The APRM detectors control the emergency shutdown of
187  a BWR (i.e.,, SCRAM) through a reactor protection system (RPS) mechanism that triggers when the
188  detected APRM oscillation exceeds the security threshold. The in-phase (global or core-wide)
189  oscillations can be observed in the APRM detectors and via the RPS and it is possible to SCRAM the
190  reactor if a strong in-phase oscillation is observed (or the operator can also shutdown the reactor if
191 necessary). However, the out-of-phase (regional) oscillations cannot be observed in the APRM
192 detectors, because one out-of-phase oscillation with perfect symmetry (a phase shift of 180° between
193 the reactor core zones that participate in the averaging operation via their respective LPRMs) will
194 cancel the LPRMs averaging, disabling in this way the APRM monitors. Therefore, the out-of-phase
195 oscillations must be studied at a local LPRM level. Events related to diverging power oscillations have
196  happened before in various BWRs facilities in the past. Such events encouraged researchers to
197  develop correction techniques to suppress these events. Nonetheless, in spite of the existence of
198 these corrective methods, unstable events continued to occur. Thus, as an answer to these BWR
199  unstable events, several works were developed to study the physical phenomena behind these
200  events. The detection and suppression mechanisms dedicated to mitigate these unstable oscillations
201  need to identify the type of oscillation through LPRM signal monitoring. The development of
202 methods to detect unstable event is of vital importance in terms of reactor security. The main goal of
203  these methods is to provide a stability indicator (estimated via the study of BWR signals) which
204  grants the operator enough time to act accordingly and in such a way that his actions do not involve a
205  SCRAM straight away. The estimated stability indicator must provide as much information as
206  possible regarding BWR unstable dynamics with enough reliability, precision and predictive
207  capability to bestow the operator the time needed to act.
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208

209 Figure 2. Schematic diagram of a BWR and an example of a distribution of 36 LPRM (red dots) detectors located
210 at a radial position within the core.

211

212 The current BWR stability indicator is the decay rate or Decay Ratio (DR) and the frequency of the
213 unstable oscillation (it is known that the frequency associated to unstable oscillations, due to density
214 waves, fluctuates around 0.5 Hz). For DR validity, it is compulsory to assume that the BWR behaves
215  as a stationary second order linear system (i.e., a harmonic oscillator). Thus, an accurate prediction
216  for the onset of BWR instability with methods that take into account the non-stationarity and
217  non-linearity of the signal, is the next step in the research for the operation safety in BWRs.

218  Inthe next sections the proposed non-linear methods to make an early detection (and tracking) of the
219 density wave are introduced. Likewise, we describe the methodologies dedicated to estimate the
220  Shannon Entropy, a measure that fulfills the role of a novel non-linear BWR stability indicator.

221
222
223
224 3. Empirical mode decomposition (EMD) algorithms

225 3.1 The default EMD method
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Before introducing the noise assisted variants of the empirical mode decomposition (EMD). Let us
recall the basics of the default EMD method, which was first proposed by Huang et al., [17]. The
standard EMD permits the decomposition of a non-stationary signal that stems from a non-linear
source, into various intrinsic mode functions (IMFs) or simply modes. To be considered an IMF, a
signal of interest must fulfill two criteria:

I. The number of extrema (maxima and minima) and the number of zero-crossings must be equal
or differ at most by one.

II. The local mean, defined as the mean of the upper and lower envelopes, must be zero.

Method 1: The default EMD method can be described by the next steps, but first, let x be the signal of
interest to decompose into IMFs:

Step 1.Set k=0 and find all extrema of 7, =x.

Step 2. Interpolate between minima (maxima) of 7, to obtain the lower (upper) envelope

e

min (emax ) °

Step 3. Compute the mean envelope m=(e_, +e_ _)/2.

max )

Step 4. Compute the IMF candidate d,,, =7, —m.

Step5.1s d,,, an IMF?

. k
compute the residue r,, = x_z,-= .

e Yes. Save d d ,do k=k+1, and treat r,

k+17

as input data in step 2.

e No. Treat d,,, asinput data in step 2.
Step 6. Continue until the final residue r, satisfies some predefined stopping criterion.

The refinement process (steps 2 to 5) needed to extract every mode, requires a certain number of
iterations named as siftings. The extracted modes d,, k=1,2,..K decompose x and are in theory,

nearly orthogonal to each other. However, one of the major drawbacks of the EMD is the frequent
appearance of a problem that is known as mode mixing, which is defined as a single intrinsic mode
function (IMF) either consisting of signals of widely disparate scales, or a signal of a similar scale
residing in different IMF components. Such issue might spoil the meaning of individual IMFs and
thus, thwart any default EMD signal analysis methodology. For further details about the impact of
the mode mixing problem in BWR signals, please refer to [25]. To alleviate the mode mixing
inconvenient, an interesting property of the EMD is exploited: such property appears when the
signal to decompose is a white Gaussian noise. When this white Gaussian noise is decomposed, the
EMD behaves as an adaptive dyadic filter bank, as it is shown in Figure 3, in which, 5000
independent time series (of white Gaussian noise) of 512 points each have been generated, and the
average power spectrum density (PSD) of the first seven IMFs are plotted as a function of the
normalized frequency.

d0i:10.20944/preprints201705.0196.v1
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261 Figure 3. EMD equivalent filter bank for a white Gaussian noise for the first 7 IMFs.

262 Thus, the methods that are discussed in the following sections to mitigate the mode mixing issue, add
263 an ensemble of realizations of white noise to the signal of interest (hence, the name noise assisted method is
264  used to define improved variations of EMD), to repair and exploit this dyadic filter bank property of
265  the EMD, to improve IMF acquisition of the signal of interest x.

266 3.2 The improved complete ensemble empirical mode decomposition method with assisted noise iCEEMDAN)

267  The iCEEMDAN [15] is a recent noise assisted (NA) variation of EMD that compensates for mode
268  mixing. This method also addresses the most relevant disadvantages of previous NA variants of
269  EMD, of techniques such as the EEMD [27] and the original CEEMDAN [28] method. Such
270  handicaps are: the presence of residual noise in the modes and the existence of spurious modes (and
271  both of them are addressed by iCEEMDAN).

272 Method 2: Let x be the signal to decompose into IMFs through iCEEMDAN. Before proceeding, let
273  us define the next three operators:

274 (i) Let M(D) be the operator which produces the local mean (the mean envelope of the upper
275 and lower envelopes of the studied signal interpolated by cubic splines) of the signal it is
276 applied to.

277 (ii) Let <D> be the action of averaging throughout an ensemble of realizations of default EMD.
278 (iii) Let E (D be the operator that produces the k-th mode obtained by default EMD.

279 Let w'” be a realization of white Gaussian noise with zero mean and unit variance. With this in
280  mind, the iCEEMDAN method is described as follows:
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Step 1. Calculate by default EMD the local means of I realizations x"” =x+ 8 E,(w") to obtain

the first residue

= <M(x(i))>

Step 2. At the first stage (k = 1) calculate the first mode: d, =x—r,

Step 3. Estimate the second residue as the average of local means of the realizations
1+ BE,(#"”) and define the second mode:

d, =1, =1, =1,=(M(r, + BE, ("))

Step 4. For k=3..K calculate the k-th residue

r = <M(1’k_1 + ﬂk_lEk(a)“)))>

Step 5. Compute the k-th mode

Step 6. Go to step 4 for next k.

Constants [, =¢;std(r;) are chosen to obtain the desired signal to noise ratio (SNR) between the

added noise and the residue to which the noise is added, nonetheless, in this work, we fixed the
same SNR for all the stages of this procedure (¢, = ¢,). Studies about this parameter can be found in

[29]. Although this NA-EMDm is quite useful to mitigate the mode mixing issue, there is a backlash,
for it creates other problems: such as the proper choosing of parameters I which is the number of
realizations of the ensemble and the standard deviation g, of the assisted noise added to the

original signal for decomposition and thus, further works must be developed to properly estimate
these two parameters (such endeavor leaves the scope of this work until further studies in the EMD
literature are developed to infer the iCEEMDAN properties). Once such parameters are well
established, then the BWR stability analysis might be at last fully adaptive and data driven. For all of
our computations, the aforementioned parameters are fixed at: =100 and &, =0.2.

3.3 The noise assisted multivariate empirical mode decomposition (NA-MEMD)

The multivariate empirical mode decomposition (MEMD) is a technique that was proposed in [30] to
make the classic empirical mode decomposition (EMD) suitable for processing of multichannel
signals. To shed further light in the performance of this MEMD method, its behavior was analyzed
in the presence of white Gaussian noise in [16] and it was found that, similarly to EMD. MEMD also
in essence acts as a dyadic filter bank on each channel of the multivariate input signal, such MEMD
property is illustrated in Figure 4 and its algorithm is given below. Nonetheless, unlike EMD, the
MEMD better aligns the corresponding IMFs (i.e., modes) from different channels across the same
frequency range which is crucial for real world applications and from such studies, the NA-MEMD
method was developed to help resolve the mode mixing problem in the existing EMD algorithms.

d0i:10.20944/preprints201705.0196.v1
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311 Figure 4. Averaged spectra of IMFs (1-9) obtained for 50 realizations of eight-channel white Gaussian noise via
312 MEMD.

313  The NA-MEMD method which makes use of the quasi-dyadic filter bank properties of MEMD on
314 white noise (see Figure 4), it is capable of significantly reducing the mode mixing problem for classes
315  of signals where the quasi-dyadic filter bank structure proves useful. Embarking upon the
316  quasi-dyadic filter bank structure of standard EMD for broadband noise, many EMD variants were
317  proposed, in which multiple realizations of white noise were added to the input signal before being
318  decomposed via EMD. This helps to establish a uniformly distributed reference scale which, in turn,
319  results in corresponding IMFs exhibiting a quasi-dyadic filter bank structure.

320  Following the latter idea, to explore the benefits of the quasi-dyadic filter bank structure of the
321  default MEMD [30] on white noise, in [16] a total of m extra independent channels containing white
322 noise are added in the MEMD decomposition of the multivariate signal of interest to exploit such
323 interesting benefits of this filter bank property. The extracted IMFs (or modes) corresponding to the m
324 channels of white noise are then discarded yielding a set of IMFs associated with only the original
325  input signal. Since the added noise channels occupy a broad range in the frequency spectrum,
326 MEMD aligns its IMFs based on the quasi-dyadic filter bank, with each component carrying a
327  frequency sub band of the original signal. In doing so, IMFs corresponding to the original input
328  signal also align themselves according to the structure of the quasi-dyadic filter bank. This, in turn,
329  helps to mitigate the mode mixing problem within the extracted IMFs. The details of the NA-MEMD
330  method are as follows, but first let us introduce the steps of the classic MEMD method:

331 Method 3: Multivariate Extension of EMD for a multivariate signal v(t)

332 Consider a sequence of N dimensional vectors {v(t)}_, ={v,(t),v,(t),... v, ()} representing a

k

Y,..,x} denoting a set of direction vectors

333 multivariate signal with N components, and x* ={x/,x
334  along the direction given by angles 6 ={6},6},....6)_,} on a (I-1) sphere. Then the extraction of the

335  first IMF from the given MEMD steps is summarized in next steps:

336 Step 1. Generate the point set based on the Hammersley sequence for sampling on an (I-1)
337 sphere [31].
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338 Step 2. Calculate a projection, denoted by p*(t)}_,, of the input multivariate signal {v(t)}’_,
339 along the direction vector x*, for all k (the whole set of direction vectors), giving
340 p% (t)X, as the set of projections.
341 Step 3. Find the time instants {t}, corresponding to the maxima of the set of projected
342 signals p* (1)}, .
343 Step 4. Interpolate [tigk,v(tfk )], for all values of k, to obtain multivariate envelope curves
344 e’ (D}, -
345 Step 5. For a set of K direction vectors, calculate the mean m(t) of the envelope curves as

m(t) = e ()
K=

346 Step 6. Extract the detail c(t) using c(t)=x(t)—m(t). If the detail c(t) fulfills the stoppage
347 criterion [30] for a multivariate IMF, apply the above procedure to x(t)—c(t), otherwise

348 apply itto c(t).

349 Once the first IMF (or mode) is extracted, it is subtracted from the input signal and the same process
350  (steps from Method 3) is applied to the resulting signal yielding the second IMF and so on, the
351  process is repeated until all the IMFs are extracted and only a residue is left; in the multivariate case,
352 the residue corresponds to a signal whose projections do not contain enough extrema to form a
353  meaningful multivariate envelope. The sifting process for a multivariate IMF can be stopped when
354 all the projected signals fulfill any of the stoppage criteria adopted in the default EMD [17].

355  Now, that the steps of the MEMD method have been given, the NA-MEMD is computed as follows:

356  Method 4: The noise assisted multivariate empirical mode decomposition (NA-MEMD)

357 Step 1. Create an uncorrelated Gaussian white noise time-series (m-channel) of the same length
358 as that of the input.

359 Step 2. Add the noise channels (m-channels) created in step 1 to the input multivariate
360 (N-channels) signal, obtaining an (N + m)-channel signal.

361 Step 3. Process the resulting (N + m)-channel multivariate signal using the MEMD algorithm
362 (listed above), to obtain multivariate IMFs.

363 Step 4. From the resulting (N + m)-variate IMFs, discard the m channels corresponding to the
364 noise, giving a set of N-channel IMFs corresponding to the original signal.

365  However, it should be mentioned that the NA methods (both the iCEEMDAN and NA-MEMD) for
366  mitigating the mode mixing problem are expected to be most useful for signals in which the dyadic
367 filter bank decomposition is relevant. This is the case for the studied BWR signals.

368 4. The Shannon Entropy as stability indicator
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369 In order to capture the complex dynamics of a BWR system, the Shannon Entropy (SE) [14] is
370  studied. In statistical mechanics and information theory, entropy is a functional that quantifies the
371  information content of a statistical ensemble or equivalently, the uncertainty of a random variable. Its
372 application in various scientific disciplines is countless. Nonetheless, the most important example of
373  such a functional is the Shannon Entropy (also known as average information), the concept was
374  developed by Claude E. Shannon in 1948 [14]. Now, consider a discrete random variable x, which
375  can take a finite number of M of possible values x, € {x,,....x,,} with corresponding probabilities

376 pdAp, ... Py}, itsentropy H (x) is defined as:
M
H,(x)==2_pIn(p,) M)
i=1

377  In general, the probability distribution for a given stochastic process is not known, and, in most
378  situations, only small data sets from which to infer the entropy are available. For instance, it could be
379  of interest to figure out the Shannon Entropy of a given BWR signal (or of one of its extracted
380  through a NA-EMDm). In such circumstances, one could estimate the probability of each element i
381  tooccur, p,, by making some assumption on the probability distribution, as for example:

382 i.  Parametrizing it.
383 ii.  Dropping the most unlikely values.
384 iii. ~ Assuming some a priori shape for the probability distribution.

385  Nevertheless, the easiest and most straightforward path to estimate them is by counting how often
386  thevalue x, appears in the available data set. Denoting this number by I, and dividing by the total

387  size N of available data set, we can obtain a relative frequency estimator given by:

L3 2
x @

=
388  Which naively approximates the probability p, associated to the value x,. With this simple

389  estimator in mind, the easiest way to compute the SE of the data set can be done by simply replacing
390  the probabilities p, by p, in the entropy functional, giving an estimate of the Shannon Entropy:

o M Mo L.
Hs (X) - H;mzve(x) — _Z ]51. h’l(ﬁz) = —ZNIIH[NIJ (3)

391  The quantity H'*(x) is an example of an entropy estimator, in a very similar sense as p, is an
392 estimator of p,.In particular, the minimum H (x)=0 is reached for a constant random variable,

393  ie, avariable with a determined outcome, which reflects in a fully localized probability distribution
394 p,=1 and p;=0 for i#j. At the opposite, H (x) is maximal, equal to In(M), for a uniform

395  distribution (p, =p, =...=p,, ). The SE is a quantity that increases with the number of possible states:
396  for an unbiased coin, H (x)=In(2)=0.6931 while for an unbiased dice H (x)=In(6)=1.7918. To
397  estimate equation (3), a histogram is required to infer the probabilities p, of the data set. In this

398  work, the number of bins M of such histogram was calculated with an optimal estimator proposed in
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[32], which for reasons of space, this method will not be introduced in this work, but the idea behind
this optimal M estimator dwells within the Bayesian probability theory.

Claude E. Shannon intitially proposed this functional to quantify the information loss in
transmitting a given message in a communication channel [14]. A noticeable aspect of Shannon
approach is to ignore semantics and focus on the physical and statistical constraints limiting the
transmission of a message, regardless of its meaning. The source generating the inputs x, e x is

characterized by the probability distribution p,. Shannon entropy H (x) thus appears as the

average missing information. That is, the average information required to specify the outcome x
when the receiver knows the distribution p,. It equivalently measures the amount of uncertainty

represented by a probability distribution. In the context of communication theory, it amounts to the
minimal number of bits that should be transmitted to specify x.

Based on these facts and considering that the estimator in (3) is the easiest way to estimate SE, it is
the estimator used in our proposed methodologies to study the BWR stability. The SE, estimated by
our naive estimator, quantifies the uncertainty of the artificial studied signals. Through this approach,
the instability problem of a chaotic dynamical system such as a BWR is studied. The SE is our tool to
study reactor instability and as such, the SE might serve as an alternative option to the conventional
DR indicator. Our goal is to detect through SE the beginning of an incipient stability event (via a
stability monitor), prior any further development of that unstable event. And to obtain from this
indicator (based on SE) as much information as possible regarding the dynamics of the BWR system.

5. Methodology based on Shannon Entropy

In this section, two stability methodologies are introduced, labeled as methodology 1 and
methodology 2, based on iCEEMDAN and NA-MEMD respectively, to study individual BWR
unstable events and multivariate ones. Both proposals are given by the next steps.

5. 1 Methodology 1: Stability monitor based on the iCEEMDAN and the SE

Step 1. The considered signal (APRM or LPRM) obtained from the BWR is segmented in
windows of 15 s of duration.

Step 2. Each segmented signal (APRM or LPRM) is studied (decomposed) using the
iCEEMDAN method for a number of realizations of the ensemble I = 100 and standard
deviation of the assisted noise & =0.2, described above, obtaining in this way the

corresponding IMFs. It is worth mentioning that the APRM or LPRM signals are not
being processed before. For instance, to remove the signal trend, due that this
information is contained in the residue of the decomposition.

Step 3. The Hilbert transform of each IMF is computed in order to get the instantaneous
frequencies contained in each IMF (this step is also known as Hilbert Huang transform,
HHT, [17]).

Step 4. When tracking these frequencies, it is possible to get the mode linked to instability
processes. In this regard, only the IMF associated to BWR instability is considered for
further processing.

d0i:10.20944/preprints201705.0196.v1
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Step 5. The SE of the tracked IMF (mode of interest linked to BWR instability) is computed
considering the estimator given in equation (3), using the probability estimator given in
equation (2). The optimal number of bins M for the histogram, is calculated with a
technique based on the Bayesian probability theory [32], within the interval
5< M <20 (Several rules of thumb exist for determining the number of bins, such as the
belief that between 5-20 bins is usually adequate [32]).

Step 6. The mean and variance of the SE are calculated and averaged along all the studied
segments of 15 s.

Step 7. In order to range the SE between 0 and 1, the following normalization process is
applied:

_i ﬁi ln(ﬁi)
[ ] naive _ =1 (4)
B0 ==

A reminder, a high SE estimate indicates high unpredictability of the mode linked to BWR instability
(thus indicating an unstable state of operation) whereas a low SE value indicates a predictable event
(thus, SE in this case, points towards a stable BWR scenario).

5.2 Methodology 2: Stability monitor based on the NA-MEMD and the SE

Step 1. The considered multivariate signal (an array of N independent LPRM signals) obtained
from the BWR are segmented in small windows of 15 s.

Step 2. These segments (of 15 s each of time span) are decomposed in parallel through
NA-MEMD in N independent channels. Also, m independent channels of white
Gaussian noise are added (to mitigate the mode mixing problem) for decomposition (m =
3 for all of our computer simulations).

Step 3. After decomposition, discard the m channels corresponding to the noise, giving a set of
N-channel IMFs corresponding to the original signal segments.

Step 4. The Hilbert transform of each IMF is computed in order to get the instantaneous
frequencies contained in each N -channel IMFs frequencies (i.e. the HHT).

Step 5. When tracking these frequencies, it is possible to get the IMFs (or modes) linked to
instability processes. In this regard, only the IMFs associated to BWR instability are
considered for further processing. Exploiting the NA-MEMD properties, the chosen
IMFs of interest are all located at the same level of decomposition.

Step 6. The SE of the tracked IMFs (modes of interest linked to BWR instability) are computed
via equation (3). The optimal number of bins M for the histogram, is calculated with the
method given in [32] in a local way, within the interval 5< M <20 .There are thus, N
different values of SE (each SE value is linked to one LPRM in particular).

Step 7. The mean and variance of the SE values are calculated and averaged along all the
studied multivariate segments of 15 s.
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472 Step 8. In order to range the SE estimates between 0 and 1, the normalization procedure given
473 in equation (4) is again applied.
474

475 6. Results: methodologies performances and discussions

476  The BWR signals stem from the Forsmark [3], Ringhals [33] stability Benchmarks and the Laguna
477  Verde instability event [1-2]. The Ringhals plant stability benchmark test data has been widely
478  applied to BWR stability studies because they cover various stability conditions, e.g. dominant
479  fundamental mode related with in-phase instabilities, dominant first harmonic mode related with
480  out-of-phase instabilities, and an overlapping of the two modes. The stability tests were performed
481 (and controlled) in the Swedish BWR Ringhals Unit 1 from cycle 14 through cycle 17. The Forsmark
482  benchmark is based on data from several measurements performed (and controlled) in the Swedish
483  BWR reactor Forsmark 1 and 2, in the period 1989 to 1997. The Laguna Verde instability event was
484  recorded during an unstable event that occurred in 1995 and is considered in the literature as a
485  prototype of an in-phase instability.

486 6.1 Stability analysis of the chosen real cases through the Methodology 1

487  This particular Methodology 1 is applied to the next three following cases:

488 I.  Case 4 of the Forsmark stability benchmark. This event is considered a challenging case to
489 be analyzed by the complexity of the phenomenon. For reasons of space, only this
490 challenging case is presented in a detailed way. The studied case 4 contains a mixture
491 between a global oscillation mode and a regional (half core) oscillation. This event
492 corresponds to a situation where the neutronic power reactor suffers abnormal and
493 apparently unstable oscillations. The C4_APRM and C4_LPRM_x signals correspond to
494 average power range monitor (APRM) and local power range monitor (LPRM) registers
495 respectively, during the instability event. The entire case 4 was studied (a total of 23 signals,
496 22 LPRMs plus an APRM). However, only the analysis of one signal (C4_APRM_1) is
497 detailed in this work and the others results (22 LPRMs) are summarized in a table.

498 II.  Case9 cycle 14 of the Ringhals stability benchmark. Data given comes from measurements
499 in the Swedish BWR reactor Ringhals 1. This case consists of a total of 36 LPRMs. Again, the
500 whole case 9 (36 LPRMs) was studied, however only the analysis of one signal (LRPM 1) is
501 detailed in this work and the others results of LPRMs are summarized in a table.

502 III. ~ An APRM signal that stems from the Laguna Verde BWR that was recorded during an
503 unstable event that occurred in 1995. On January 24, 1995 a power instability event
504 occurred in Laguna Verde Unit 1, which is a BWR-5 and is operated since 1990 at a rated
505 power of 1931 MWt. The instability event happened during a Cycle 4 power ascension
506 without fuel damage. When the thermal power reached 37% of the rated power, the
507 recirculation pumps were running at low speed driving 37.8% of the total core flow. The
508 flow control valves were set to their minimum, closed position in order to operate the
509 recirculation pumps at a high speed. The drop in drive flow resulted in a core flow
510 reduction of 32% and, a power reduction also of 32%. Two control rods were also partially
511 withdrawn during valve closure. The new low flow operating conditions resulted in
512 growing power oscillations. This prototype of in-phase instability has been widely studied

513 1, 2, 34-37].
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514  6.1.1 APRM signal from the Forsmark benchmark

515  The studied signal in this subsection is the APRM 1 of the Forsmark stability benchmark, Case 4.
516  This signal of interest is shown in Figure 5.

FORSMARK C4 APRM 1
73

Neutron Density [%]

64 1 1 1 1 1 1
0 50 100 150 200 250 300 350
517 Time [s]
518 Figure 5. APRM 1 signal from the Forsmark stability benchmark Case 4.

519

520  The Methodology 1 based on the iCEEMDAN and the SE is applied to signal shown in Figure 5.
521  Such methodology splits the signal of interest in segments of 15 s, later the segment is decomposed
522 through iCEEMDAN into IMFs, the HHT is calculated to obtain the instantaneous frequencies (IFs)
523 of the IMFs. The IF of interest linked to instability is tracked (the energy of this mode connected to
524  BWR instability is highly concentrated around 0.5 Hz in the Fourier domain, according to previous
525  BWR stability observations). Later, the IMF linked to the IF of interest is selected for SE calculation.
526  Figure 6, shows the analysis of one studied segment that was decomposed through iCEEMDAN into
527  KIMFs and the IMF 3 is selected for further processing (because the IF (IF 3) of this IMF (IMF 3) is
528  linked to BWR instability, this key IF is shown in Figure 7).
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192 194 196 198 200 202 204 206 208
IMF 3
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0 W
_5 | 1 1 1 1 | |
192 194 196 198 200 202 204 206 208
529 Time [s]
530 Figure 6. iCEEMDAN decomposition of one of the segments of the APRM 1 signal, Case 4.

531

532 Figure 8 shows a power spectral density (PSD) estimation of the extracted IMFs of the studied
533 segment, to visualize the spectrum of the IMF 3 linked to instability and to observe the iCEEMDAN
534 capabilities to compensate for mode mixing, which translates into less overlap of contiguous IMFs
535  spectrums. Figure 9 shows the plot of the estimated SE of all of the studied segments of the signal of
536 interest. Also, in this same figure, a DR estimate of the segments is shown to illustrate the
537  performance of the SE over the DR to analyze the stability of the studied signal. The DR was
538  estimated in the same way as in [25]. We have established empirical stability thresholds based on
539  our numerical experiments for the SE (Although more experiments are needed in this direction to
540  accurately confirm this finding, but such studies leave the scope of this work). This stability
541  threshold value is located around 0.8 (a stable segment has a SE < 0.8 whereas an unstable one has a
542 SE > 0.8). Now, regarding the DR, a stable segment has a DR < 1. For this signal, the DR estimate
543  indicates the beginning of an unstable event (an incipient one) whereas the SE throughout the whole
544  time span of the signal, points to the existence of a fully developed instability event from the very
545  beginning of the simulation. Figure 10 shows the estimated number of bins M for the extracted IMF
546  for the studied case which remained very close to 5 bins and jumping beyond 5 in some segments.
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548 Figure 7. Instantaneous frequency (IF 3) linked to BWR instability. The time series of IF 3 oscillates around 0.5
549 Hz (the region of interest for BWR instability events).
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551 Figure 8. PSD estimate of the extracted IMFs of the studied segment through the iCEEMDAN method.
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552
553 Figure 9. Estimated Shannon Entropy (SE) and Decay Ratio (DR) along time for the APRM 1 signal. The purple
554 dotted line located at 0.8 is the SE threshold (segments whose SE is above this line are unstable) whereas the
555 blue dotted line at 1 is the DR threshold (segments whose DR is above this line are unstable).
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557 Figure 10. Estimated optimal number of bins M computed with [32] in the interval 5 <M < 20.
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559 Ultimately, the estimated SE, DR and oscillation frequency (fo) for the rest of the LPRMs of the
560  studied Case 4 are shown in Table 1 (only average (Mean) and their standard deviations (Std) values
561  along all the studied segments are shown in Table 1). The estimated averaged values for the DR are
562  in perfect agreement with those estimated by the different methodologies presented in the
563  benchmark [3]. The DR estimates indicate the beginning of an incipient instability event whereas the
564  SE estimates indicate a fully developed instability event in the BWR. Thus, it is naive to assume
565  that we can infer the dynamics of a complex system such as a BWR through an estimate of a linear
566  parameter such as the DR alone. In spite of the contradictions of what these two parameters (SE and
567  DR) are indicating, they nevertheless pinpoint to an instability event in the BWR core. Although the
568  SE does this from the very beginning of the stability analysis.

569
570 Table 1. Average and standard deviations values for the SE, the DR and the oscillation frequency (fo) linked to
571 instability of the Forsmark stability benchmark, Case 4, studied through Methodology 1 based on the
572 iCEEMDAN.
Detectors  Mean SE Std SE Mean DR Std DR Mean fo Std fo
APRM 0.9553 0.0377 0.8136 0.0842 0.5279 0.0299
LPRM 1 0.9527 0.0236 0.801 0.0765 0.519 0.0282
LPRM2 09564 0.0344 0.8007 0.1048 0.5101 0.03
LPMR3  0.9607 0.0222 0.8211 0.0778 0.5036 0.0202
LPMR4 09515 0.0268 0.7649 0.123 0.5116 0.0345
LPRM 5 0.9323 0.0493 0.771 0.1269 0.5424 0.0317
LPRM6 09422 0.0304 0.765 0.1376 0.5444 0.0265
LPRM7 09409 0.0313 0.7623 0.0843 0.5513 0.0346
LPMR 8 0921 0.0411 0.6991 0.0873 0.5683 0.0509
LPRMY9 09331 0.049 0.752 0.0966 0.5461 0.0384
LPRM 10 09272 0.0429 0.7043 0.1315 0.574 0.0373
LPRM 11 0.9224 0.0586 0.7527 0.0885 0.5513 0.0425
LPRM 12 09074 0.0521 0.545 0.1649 0.5796 0.078
LPRM 13 0.9436 0.0356 0.7753 0.1208 0.5462 0.0315
LPRM 14 09334 0.0396 0.7783 0.0907 0.5386 0.0397
LPRM15  0.9428 0.0356 0.7569 0.1241 0.537 0.0408
LPMR 16 0.9477 0.0331 0.7831 0.092 0.5362 0.0341
LPMR 17 09449 0.0375 0.7683 0.089 0.5302 0.0486
LPRM 18 0.9489 0.0375 0.7487 0.1392 0.5253 0.0362
LPRM19 0915 0.0575 0.6295 0.1206 05111 0.0703
LPRM20 (9152 0.0429 0.6834 0.1149 0.5631 0.0487
LPMR 21 (.9227 0.0368 0.6841 0.1882 0.5777 0.0566
LPRM 22 09026 0.0408 0.518 0.1275 0.5606 0.1011
573

574
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575 6.1.2 LPRM signal from Ringhals benchmark

576  The studied signal in this subsection stems from the Ringhals stability benchmark Case 9 cycle
577  14. This studied signal is shown in Figure 11.

Ringhals case 9 cycle 14 LPRM 1
42 T T T

Neutron Density [%)]

32
30 1 1 1 1 1 1
0 100 200 300 400 500 600
578 Time [s]
579 Figure 11. LPRM 1 from the Ringhals stability benchmark, Case 9, Cycle 14.

580

581  The Methodology 1, based on the iCEEMDAN and the SE, is applied to signal shown in Figure 11.
582  This stability methodology splits the signal of interest in short segments of 15 s, later the studied
583  segment is decomposed through iCEEMDAN into IMFs (or modes), the Hilbert-Huang Transform
584 (HHT) [17] is calculated to obtain the instantaneous frequencies (IFs) of the extracted IMFs. The IF of
585  interest linked to instability (the energy of this IF of interest oscillates around 0.5 Hz) is tracked.
586  Later, the IMF associated to this IF is selected for SE calculation. Figure 12, shows the analysis of one
587  studied segment that was decomposed through iCEEMDAN into n IMFs and the IMF 3 is selected

588  for further processing (because the IF (IF 3) of this IMF (IMF 3) is linked to BWR instability, this key
589  IF is shown in Figure 13).
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591 Figure 12. iCEEMDAN decomposition of one of the segments of the signal LPRM 1, Case 9.
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593 Figure 13. Instantaneous frequency (IF 3) linked to BWR instability. The time series of IF 3 oscillates
594 around 0.5 Hz (the region of interest for BWR instability events).
595

596  Figure 14 shows a power spectral density (PSD) estimation of the extracted IMFs of the studied
597  segment, to visualize the spectrum of the IMF 3 linked to instability and to observe again the
598  iCEEMDAN capabilities to compensate for mode mixing, which translates into less overlap of
599  contiguous IMFs spectrums.
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601 Figure 14. PSD estimate of the extracted IMFs of the studied segment through the iCEEMDAN method.

602

603  Figure 15 shows the plot of the estimated SE of all of the studied segments of the signal of
604 interest. As before, in this figure, a DR estimate of the segments is also shown to illustrate the
605  performance of the SE over the DR to analyze the stability of the studied signal. The instability
606  thresholds for the DR and for the SE are the same as before. For this signal, again the SE
607  indicates a fully developed unstable BWR behavior whereas the DR is pointing to an early
608  development of an instability event (a quasi-instable event), because the average DR is high (not
609  exactly one, but approaching it). Again, the high SE estimates of the studied segments of this
610 LRPM 1 signal are clearly indicating an out of the ordinary BWR behavior. The estimated
611  number of bins M remained throughout most the simulation constant at 7 bins. The proposed
612  stability monitor, given in Methodology 1, proves again to be suitable to detect unstable or not
613  ordinary BWR behavior prior further growth of such unforeseen unstable events, that may in
614  the worst case scenarios, trigger increasing power oscillations beyond the nominal BWR
615  constraints. Thus, it is necessary to be able to detect any incipient unstable events as fast as

616  possible.
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618 Figure 15. Estimated Shannon Entropy (SE) and Decay Ratio (DR) estimate along time for the LRPM 1

619 signal, Case 9 from Ringhals stability benchmark. The purple dotted line located at 0.8 is the SE threshold
620 (segments whose SE is above this line are unstable) whereas the blue dotted line at 1 is the DR threshold
621 (segments whose DR is above this line are unstable).

622

623  Finally, the estimated SE, DR and oscillation frequency for the rest of the LPRMs of the studied
624  Cycle 14 Case 9 are shown in Table 2 (only average values and standard deviations along all the
625  studied segments are shown in Table 2). The entire case consists of a total of 72 LPRMs
626  distributed on two different floors or levels (2 and 4) within the BWR core. In Table 2, only the
627  analysis of the floor number 2 is studied. This floor consists of 36 LPRM detectors marked by odd
628  numbers.

629  The estimated DR results of this studied case and shown in Table 2, were in most LPRMs high
630  and apparently this case exhibits and out-of-phase oscillation [33] which will be scoped in more
631  detail once Methodology 2 based on NA-MEMD is used to perform a multivariate analysis of
632 this particular case. Overall the high SE estimated values, clearly indicate a fully developed
633 unstable behavior of this case. Thus, the studied BWR floor 2 is unstable. The high DR estimates
634  (but still not above the 1, which is the stability threshold that must be exceeded by the DR to
635  trigger BWR peril alarms) although high and depicting that there is something unusual going
636  onin the BWR core. But, the estimates are not high enough to trigger BWR protection alarms to
637  warn the operators whereas the SE estimates would have trigger these BWR protection
638  mechanisms.

639

640
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Table 2. Average and standard deviations values for the SE, the DR and the oscillation frequency (fo)
linked to instability of the Ringhals stability benchmark Case 9 Cycle 14 studied through the Methodology

1 based on the iCEEMDAN.

Detectors Mean SE Std SE Mean DR Std DR Mean fo Std fo
LPRM 1 0.9809 0.0084 0.9132 0.0161 0.5164 0.0248
LPRM 3 0.9826 0.0069 0.9122 0.0171 0.5153 0.0226
LPRM 5 0.9834 0.0094 0.9102 0.0162 0.5157 0.0246
LPRM 7 0.9877 0.0153 0.8897 0.0367 0.5149 0.0243
LPRM 9 0.9854 0.0082 0.9135 0.0184 0.5139 0.0266

LPRM 11 0.9823 0.0078 0.9134 0.0172 0.5175 0.0248

LPRM 13 0.9820 0.0106 0.9108 0.0214 0.5169 0.0219

LPRM 15 0.9856 0.0088 0.9091 0.0179 0.5106 0.0270

LPRM 17 0.9883 0.0080 0.9006 0.0221 0.5188 0.0241

LPRM 19 0.9621 0.0436 0.8332 0.0778 0.5180 0.0274

LPRM 21 0.9814 0.0270 0.8693 0.0506 0.5218 0.0267

LPRM 23 0.9862 0.0149 0.8909 0.0301 0.5174 0.0248

LPRM 25 0.9841 0.0122 0.8997 0.0273 0.5125 0.0267

LPRM 27 0.9869 0.0142 0.8951 0.0352 0.5136 0.0281

LPRM 29 0.9653 0.0509 0.8309 0.0762 0.5186 0.0364

LPRM 31 0.9500 0.0441 0.8106 0.0820 0.5049 0.0348

LPRM 33 0.9429 0.0409 0.6562 0.1321 0.4868 0.0286

LPRM 35 0.9630 0.0352 0.7145 0.2115 0.5020 0.0365

LPRM 37 0.9771 0.0203 0.8538 0.0490 0.5124 0.0272

LPRM 39 0.9598 0.0335 0.7558 0.0766 0.5062 0.0338

LPRM 41 0.9141 0.0637 0.5868 0.2425 0.4987 0.0423

LPRM 43 0.8814 0.0672 0.4893 0.2241 0.4922 0.0386

LPRM 45 0.9858 0.0124 0.8496 0.0415 0.5126 0.0265

LPRM 47 0.9854 0.0094 0.8816 0.0284 0.5071 0.0242

LPRM 49 0.9807 0.0091 0.9110 0.0173 0.5102 0.0279

LPRM 51 0.9771 0.0086 0.9120 0.0133 0.5121 0.0218

LPRM 53 0.9823 0.0077 0.9096 0.0184 0.5154 0.0262

LPRM 55 0.9868 0.0091 0.8974 0.0250 0.5204 0.0218

LPRM 57 0.9804 0.0076 0.9061 0.0143 0.5195 0.0188

LPRM 59 0.9771 0.0087 0.9084 0.0149 0.5126 0.0223

LPRM 61 0.9765 0.0101 0.9126 0.0149 0.5140 0.0229

LPRM 63 0.9764 0.0089 0.9123 0.0137 0.5112 0.0245

LPRM 65 0.9805 0.0085 0.9059 0.0185 0.5117 0.0268

LPRM 67 0.9832 0.0113 0.9054 0.0202 0.5149 0.0223

LPRM 69 0.9817 0.0093 0.9023 0.0184 0.5155 0.0197

LPRM 71 0.9831 0.0073 0.9029 0.0181 0.5156 0.0253

6.1.3 APRM Laguna Verde

The studied signal in this subsection stems from an instability event that happened in Laguna
Verde, in the year 1995. This signal is shown in Figure 16 and was obtained via the Integral
Information Process System (IIPS). The channel A of the APRM trace shows no unstable
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behavior at 3:28:00 h. The value closure was initiated at 03:28:20 h. A small core flow reduction
was noticeable 40 s later, and the APRM-A trace depicts signs of instability although the
variations in the magnitude of the signal remained within the noise level. As the valve
continued to close, the APRM-A trace shows clear unstable behavior starting at 03:30:30 h. The
valve reached the minimum position at 03:31:30 h. The valve reached the minimum position at
03:31:30 h, and the oscillations continued without any significant increase in their growth rate.
The operator attempted to stabilize the power level by increasing the core flow opening the
vales at 03:33:20 h. As a result of increasing the core flow, the oscillation started to decay at
03:34:40 h. At 03:35:20 h the oscillation reached 3% of amplitude, when the reactor was
manually scrammed (see the red boxes in Figure 16).

Power (%)

28. I 1 1 1 1 I L
0 100 200 300 400 500 600 700 800

Time [s]

Figure 16. Laguna Verde (LV) APRM signal of an unstable event that occurred in 1995.

As before, Figure 17 shows the decomposition of one of the segments of the signal shown in
Figure 14, decomposed according to methodology number 1 based on iCEEMDAN. The IMF
linked to BWR instability in this case is the IMF 1, see its instantaneous frequency IF (IF 1)
oscillating around 0.5 Hz. This IF 1 is shown in Figure 18 and also the power spectral density
(PSDs) estimates of all the extracted IMFs are shown in Figure 19. Observe that the PSD of IMF 2
is slightly mixed with the PSD estimate of IMF 1, but the spectral energetic content of IMF 2 is
negligible in comparison with that of IMF 1.
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671 Figure 17. iCEEMDAN decomposition of one of the segments of the APRM signal of LV instability event.
672 Only the first 2 extracted IMFs are shown in this plot.
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674 Figure 18. Instantaneous frequency (IF 1) linked to BWR instability. The time series of IF 1 oscillates in a
675  quasi-sinusoidal manner around 0.5 Hz (the region of interest for BWR instability events).
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Figure 19. PSD estimate of the extracted IMFs of the studied segment through the iCEEMDAN method.

Figure 20 shows the SE and DR estimates along all the studied segments of the APRM signal of
interest. Prior the first 300 s of the signal, the DR oscillates between stability and instability. But,
it is cumbersome to infer the dominant DR value due to its strong discontinuous jumps between
stability and instability. However, after the 300 s mark, the DR is high and greater that its
threshold value (DR = 1) and remains as such (and oscillating around 1.1) throughout the rest of
the simulation. Thus, the DR indicates unstable BWR behavior but only after the 300 s mark.

The SE estimate is highly more consistent than the DR prior the 300 s mark, because the SE
clearly indicates unstable behavior (whereas the DR is unable to differentiate between the two)
and after the 300 s mark, the SE slightly oscillates around 1 (and not in a dramatic way as the DR
does). Nevertheless, the SE always indicates unstable BWR behavior, long before the DR is able
to detect it. Thus, the SE is capable of indicating unstable behavior prior any further growth in
power of the unstable oscillation within the core whereas the DR is only able to detect
instability (without bias) once the unstable oscillation is fully sustained and powerful enough to
damage the core. The optimal number of bins for this case remained most of the simulation
constant at 10 and it was again calculated with the technique described in [32].
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695 Figure 20. Estimated Shannon Entropy (SE) and Decay Ratio (DR) estimate along time for the APRM
696 signal. The purple dotted line located at 0.8 is the SE threshold (segments whose SE is above this line are
697 unstable) whereas the blue dotted line at 1 is the DR threshold (segments whose DR is above this line are
698 unstable).

699  Finally, Table 3 shows the mean SE, DR and instantaneous frequency averaged along all the
700  segments of the signal of interest depicted previously in Figure 14.

701 Table 3. Average and standard deviations values for the SE, the DR and the oscillation frequency (fo)
702 linked to instability of the Laguna Verde APRM signal studied through the Methodology 1 based on
703 the iCEEMDAN.
Detector Mean SE Std SE Mean DR Std DR Mean fo Std fo
APRM 0.9592 0.0444 1.0079 0.1655 0.5385 0.0158
704
705

706 6.2 Stability analysis of the chosen real cases through the Methodology 2

707  The stability methodology 2 is applied with the next following cases of nuclear power plants (NPP):

708 I.  Multidimensional analysis of the already mentioned Case 4 of the Forsmark stability
709 benchmark.
710 II.  Multidimensional analysis of the also mentioned Case 9 Cycle 14 of the Ringhals stability

711 benchmark.
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712 Regarding Laguna Verde instability event, the methodology 2 can also be applied. However, the
713 signals from 96 LPRMs monitoring the core are not available for this specific instability
714 phenomenon.

715
716  6.2.1 LPRMs signals from Forsmark benchmark

717  Now, the Case 4 of the Formark stability benchmark is going to be studied with the stability
718  Methodology 2 based on the NA-MEMD in a multivariate way with m = 3 independent channels of
719 noise to mitigate mode mixing. In here, the ensemble of LPRM signals is considered in the NA-MEMD
720 and a local estimation of SE and of the DR (calculated according to [38]) are computed based on the
721  IMFs associated to the instability event (the oscillatory IMF around 0.5 Hz). Figure 21 shows the
722 IMFs linked to BWR instability.

IMF 4 (linked to BWR instability)
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724 Figure 21. NA-MEMD applied to a short time segment of the Case 4 of the Forsmark stability benchmark.
725

726  Exploiting the time alignment property of the NA-MEMD, these IMFs of interest are located at the
727 same level of decompositions, in this case the IMFs of interest are located at the fourth level of the
728  NA-MEMD decomposition (IMFs number 4). We highlight that in Figure 21, the IMFs of interest
729  linked to instability are in-phase among them. The instantaneous frequencies (IFs number 4) around
730  the region of interest (0.5 Hz) of these IMFs of interest are shown in Figure 22. Later, Figure 23 shows
731  the estimated SE locally for each IMF of interest (IMFs number 4). However, for simplicity, only a
732 sample of 4 IMFs are shown in this plot, the selected IMFs are LPRM 1, LPRM 7, LPRM 11 and LPRM
733 21. Also, the DR (depicted in Figure 24 and estimated in the same way as before) is estimated locally
734 for each IMF but again, only 4 IMFs (the aforementioned 4 LPRM signals) are shown in such figure.
735  Inthe multivariate scenario, overall the BWR is unstable because of the high SE estimates along time,
736 in spite of 4 segments that had an SE below the stability threshold (SE < 0.8). Thus, again from the
737  very beginning of the simulation, the SE is able to detect an unusual BWR unstable behavior. The DR
738  in the multivariate case prior the 150 s mark is apparently stable and after this 150 s mark, it
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739 fluctuates around 0.75, the DR estimate is high but not high enough to trigger the BWR warning
740  mechanisms and thus the DR indicates quasi-instability.
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742 Figure 22. Multivariate instantaneous frequency IF (IF 4) linked to BWR instability oscillating around the region
743 of interest (0.5 Hz).
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744

745 Figure 23. Local SE estimate along time for the selected 4 LPRM sample. The threshold SE bar is located at the
746 same locus as before.
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Figure 24. Local DR estimate along time for the selected 4 LPRM sample. The threshold DR bar is located at the
same locus as before.

Finally, Table 4 shows the SE, DR and fo (all of them calculated locally) of the entire studied Case 4 of
the Forsmark stability benchmark, the APRM was ignored for this analysis. The estimated
parameters are similar to those that stem from the univariate analysis performed through the
Methodology 1 in Table 1 of this case (the estimates in Table 4 are similar to those depicted in Table 1
and within the 10% difference).

Table 4. Average and standard deviation values for the SE, the DR and the oscillation frequency (fo) linked to
instability of the Forsmark benchmark stability Case 4 studied via stability methodology 2 based on

NA-MEMD.

Detectors Mean SE Std SE Mean DR Std DR Mean fo Std fo
LPRM 1 0.9208 0.0816 0.7669 0.1417 0.4754 0.0283
LPRM 2 0.9220 0.0842 0.7670 0.1526 0.4867 0.0250
LPMR 3 0.9164 0.0924 0.7791 0.1457 0.4875 0.0260
LPMR 4 0.9034 0.1001 0.7551 0.1476 0.4867 0.0214
LPRM 5 0.9278 0.0762 0.7328 0.1585 0.5030 0.0373
LPRM 6 0.9234 0.0783 0.7383 0.1338 0.5034 0.0357
LPRM 7 0.9176 0.0789 0.7232 0.1232 0.5012 0.0368
LPMR 8 0.9160 0.0761 0.6595 0.1511 0.5047 0.0447
LPRM9 0.9241 0.0767 0.6749 0.1703 0.5016 0.0355

LPRM 10 0.9127 0.0700 0.6131 0.1748 0.5129 0.0425
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LPRM 11 0.9278 0.0618 0.6466 0.1482 0.4980 0.0395
LPRM 12 0.9167 0.0450 0.5177 0.1378 0.5163 0.0636
LPRM 13 0.9218 0.0721 0.7076 0.1327 0.5020 0.0292
LPRM 14 0.9130 0.0756 0.6945 0.1537 0.5047 0.0300
LPRM 15 0.9162 0.0785 0.7021 0.1281 0.5028 0.0385
LPMR 16 0.9108 0.0889 0.7145 0.1088 0.5018 0.0299
LPMR 17 0.9235 0.0814 0.7331 0.1506 0.4927 0.0242
LPRM 18 0.9233 0.0851 0.7158 0.1693 0.4990 0.0282
LPRM 19 0.9235 0.0670 0.6521 0.1686 0.4947 0.0477
LPRM 20 0.9060 0.0884 0.6337 0.1861 0.5020 0.0428
LPMR 21 0.9256 0.0668 0.6290 0.1512 0.5037 0.0413
LPRM 22 0.8900 0.0593 0.4413 0.1466 0.5118 0.0840

760
761  6.2.2 LPRMs from Ringhals benchmark

762 Now, the Case 9 Cycle 14 of the Ringhals stability benchmark is studied through the Methodology 2
763  based on NA-MEMD. Figure 25 shows the NA-MEMD decomposition (with 3 independent channels
764  of noise to compensate for mode mixing) of one of the signal segments, the IMF (IMF 4) linked to
765  instability is shown in this figure and the type of observed oscillation is known as out-of-phase
766  oscillation [33]. These type of oscillations can only be observed locally at the LPRM level because at
767  the APRM level (an APRM signal is an average of n LPRMs) the averaging might cancel data, if the
768  signals that participate in the average have ideal phase differences of 180 degrees among them.
769  Figure 26 shows the instantaneous frequencies IFs (IF 4) of the IMFs (IMF at the 4 level of
770  NA-MEMD decomposition) associated to BWR instability, all of the IFs oscillate around 0.5 Hz in a
771  quasi sinusoid way. Figure 27 shows the SE estimates along time of a sample of 4 LPRMs that were
772 selected at random, the selected LPRMs were: LPRM 1, LPRM 10, LPRM 20 and LPRM 29. The SE
773  estimates along time were high (beyond the SE stability threshold located at SE = 0.8) throughout the
774 time span of the simulation for the 4 chosen LPRMs, thus the BWR is clearly unstable.

775 Figure 28 shows the DR estimates along time for the chosen LPRMs, the DR estimates were high,
776  clearly indicating the beginning of an unstable event, but they did not exceed the stability threshold
777  to trigger the BWR protection mechanisms. Finally Table 5 shows the SE, DR and oscillation
778  frequency of the entire Ringhals Case 9. Again, the computer parameters in Table 5 are similar (less
779  than 10 % of difference) with the estimates shown previously in Table 2 when this case was analyzed
780  (in an univariate way) through Methodology 1. We highlight the NA-MEMD capabilities to
781  compensate for mode mixing with only one realization of the algorithm whereas the iCEEMDAN
782  required a total of I = 100 (the size of the ensemble) realizations of the default EMD algorithm to
783  compensate for it. Thus, the NA-MEMD excels in computation time and the SE and DR estimates
784  Methodology 2 provides were slightly the same as those given by stability methodology 1.


http://dx.doi.org/10.20944/preprints201705.0196.v1
http://dx.doi.org/10.3390/e19070359

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 May 2017

785

786
787

788

789
790

Frequency [Hz]

d0i:10.20944/preprints201705.0196.v1

34 0f 43

IMF 4 (linked to BWR instability)

S

e

S

=

—_
T

10 15
Time [s]

Figure 25. NA-MEMD applied to a short time segment of the Case 9 Cycle 14 of the Ringhals stability

benchmark.
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Figure 26. Multivariate instantaneous frequency IF (IF 4) linked to BWR instability oscillating around the region

of interest (0.5 Hz).
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795 Figure 28. Local DR estimate along time for the selected 4 LPRM sample. The threshold DR bar is located at the
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same locus as before.
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Table 5. Average and standard deviations values for the SE, the DR and the oscillation frequency (fo) linked to
instability of the Ringhals benchmark stability Case 9 Cycle 14 studied via Methodology 2 based on NA-MEMD

Detectors Mean SE Std SE Mean DR Std DR Mean fo Std fo
LPRM 1 0.9792 0.0064 0.9033 0.0170 0.5271 0.0223
LPRM 3 0.9779 0.0062 0.9006 0.0158 0.5284 0.0215
LPRM 5 0.9786 0.0089 0.8997 0.0194 0.5286 0.0209
LPRM 7 0.9793 0.0091 0.8841 0.0315 0.5251 0.0235
LPRM 9 0.9791 0.0057 0.9003 0.0207 0.5244 0.0268

LPRM 11 0.9792 0.0065 0.9007 0.0206 0.5270 0.0237

LPRM 13 0.9762 0.0087 0.9005 0.0196 0.5306 0.0182

LPRM 15 0.9790 0.0070 0.8977 0.0196 0.5256 0.0247

LPRM 17 0.9808 0.0083 0.8910 0.0237 0.5239 0.0260

LPRM 19 0.9708 0.0192 0.8468 0.0594 0.5373 0.0073

LPRM 21 0.9750 0.0121 0.8682 0.0421 0.5337 0.0141

LPRM 23 0.9802 0.0086 0.8894 0.0266 0.5307 0.0193

LPRM 25 0.9789 0.0074 0.8930 0.0230 0.5286 0.0221

LPRM 27 0.9776 0.0141 0.8881 0.0360 0.5314 0.0189

LPRM 29 0.9728 0.0229 0.8402 0.0591 0.5346 0.0181

LPRM 31 0.9635 0.0363 0.8150 0.0792 0.5381 0.0140

LPRM 33 0.9648 0.0187 0.7227 0.1068 0.5318 0.0224

LPRM 35 0.9681 0.0213 0.7680 0.0865 0.5308 0.0196

LPRM 37 0.9769 0.0123 0.8573 0.0393 0.5304 0.0166

LPRM 39 0.9731 0.0113 0.7923 0.0483 0.5310 0.0228

LPRM 41 0.9544 0.0306 0.6935 0.1651 0.5312 0.0324

LPRM 43 0.9600 0.0295 0.7080 0.1310 0.5368 0.0316

LPRM 45 0.9471 0.0349 0.5754 0.2262 0.5408 0.0456

LPRM 47 0.9782 0.0073 0.8511 0.0418 0.5279 0.0199

LPRM 49 0.9796 0.0074 0.8805 0.0255 0.5310 0.0162

LPRM 51 0.9803 0.0065 0.8992 0.0179 0.5299 0.0169

LPRM 53 0.9786 0.0055 0.8999 0.0149 0.5271 0.0194

LPRM 55 0.9813 0.0043 0.8970 0.0195 0.5293 0.0185

LPRM 57 0.9802 0.0068 0.8868 0.0263 0.5274 0.0204

LPRM 59 0.9730 0.0329 0.8719 0.1111 0.5254 0.0202

LPRM 61 0.9698 0.0446 0.8734 0.1171 0.5272 0.0189

LPRM 63 0.9680 0.0529 0.8790 0.0999 0.5276 0.0187

LPRM 65 0.9646 0.0669 0.8737 0.1080 0.5265 0.0186

LPRM 67 0.9685 0.0489 0.8734 0.0948 0.5269 0.0189

LPRM 69 0.9717 0.0416 0.8735 0.1010 0.5239 0.0228

LPRM 71 0.9752 0.0218 0.8722 0.1014 0.5275 0.0177
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6.3 Discussions and remarks

Some important final remarks can be done regarding our proposal and recent researches about BWR
stability:

The common mechanism for BWR instability is the density wave oscillations (DWO) effect [39]. A
decrease in coolant flow increases the void fraction for a given reactor power. A high wave
propagation velocity of voids (wave void) is then formed and accompanied by a high wave
propagation velocity of pressure (wave pressure). Since an increase in pressure drop decreases the
flow due to increased resistance to flow, a feedback loop results between inlet flow and pressure
drop, which may lead to oscillations in time. In addition, as the void fraction is increased as
described above, the associated decrease in moderator density induces a negative reactivity
feedback. This causes the power to decrease, which reduces the void fraction and fuel temperature
and allows the power to build up again. As a result, self-sustained power oscillations may appear,
depending on the operation conditions.

According with [40] the in-phase instabilities are driven by the interaction between the DWO
mechanism and its coupling via the void reactivity feedback with the core neutron population. On
the other hand, an in-phase instability implies growing neutron oscillations that are dominated by
the fundamental neutronic mode. Regarding to the first azimuthal neutronic mode may also be
unstable and growing, but its contribution to the total neutron population is relatively insignificant
[41].

The mechanism of density wave oscillations for two-phase flow has recently received great
attention, remaining as an important issue of scientific and technological interest (e.g. [40], [42-48].
However, the core stability is due to fluctuations in coolant flow and power generation process
coupled via nuclear feedback where the non-linear nature has been a challenge for the development
of stability monitors. Therefore the methodology presented in this work constitutes a significant
and novel advance towards the development of stability monitors able to predict linear and
nonlinear effects, as well as the transition between them.

Experiments on natural circulation BWR stability show that changing the fuel rods diameter affect to
the stability performance of the system [48]. These authors clearly observed that at least two
oscillatory modes exists in the system, one of them is the so-called reactor mode related to density
waves travelling through the core, which is amplified by increasing the void reactivity feedback
coefficient. Therefore, the methods based on SE presented in this work, are applicable to existing and
advanced reactors of type BWR, and any two-phase flow system as well as characterization of
stability limits [47]. A recent work showed that the stability of a BWR reactor was applied to
assessment of optimum Fuel Reload Patterns for a BWR [49].

The methodology 1, developed in this work, is limited to the cases of neutron signal analysis of an
APRM or LPRM where the instability in-phase can be detected like in a NPP as Laguna Verde which
characteristic is its size (smaller compare to Forsmark and Ringhals) and where this kind of
instability phenomena is expected. Regarding to methodology 2, it can be applied to both phase
in-phase and out-of-phase instabilities. Given that the stability phenomena in BWR is a complex
phenomenon in a heterogeneous two-phase flow system, where void propagation waves
(propagation of the gas phase in the liquid phase) and pressure propagation waves (both in gas
phase and liquid phase) generate the DWO mechanics, then is preferable to implement an oscillation
detector based on methodology 2.

d0i:10.20944/preprints201705.0196.v1
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7. Conclusions

In this work two non-linear stability monitor methodologies based on noise assisted empirical mode
decomposition methods (NA-EMDm) were proposed to analyze unstable BWR signals that
stemmed from the Ringhals, Forsmark stability benchmarks and the Laguna Verde instability event,
with the goal in mind of estimating the Shannon Entropy of those signals to measure their
uncertainty and thus assess BWR stability through such novel measure. Also, the SE estimates were
compared with Decay Ratio results computed via previous methods based on EMD variants. The
proposed stability methodologies are rooted in noise assisted empirical mode decomposition
algorithms, which are techniques that decompose non stationary signals that stem from non-linear
sources in an adaptive (data-driven) way to grant a physically meaningful decomposition of data, the
data (the LRPM or APRM signals are split first in segments of 15 s) is decomposed into intrinsic
mode functions (or simply modes), via the Hilbert transform it is possible to compute the
instantaneous frequencies of the extracted modes to track the mode linked to BWR instability (whose
IF is strongly concentrated around 0.5 Hz, the region of interest for BWR unstable events). Later,
once the IMF (IMFs in the multidimensional case) of interest has been detected, the SE of this
particular IMF is computed to assess the BWR stability of that particular 15 s signal segment that was
analyzed via any of our stability methodologies. The major findings of our BWR stability studies are
resumed in the following:

a) regarding Methodology 1 based on the iCEEMDAN (univariate signal analysis)
e Case 4 of the Forsmark stability benchmark

The estimated averaged values for the DR are in perfect agreement with those estimated
by the different methodologies presented in [3]. The DR estimates indicate the beginning
of an incipient instability event whereas the SE estimates indicate a fully developed instability
event in the BWR core.

e Case 9 Cycle 14 of the Ringhals stability benchmark

The high SE estimated values, clearly indicate again a fully developed unstable behavior of
this case. Thus, the studied BWR floor 2 is unstable. The high DR estimates (but still not
above the locus DR = 1) although high and depicting that there is something unusual
going on in the BWR core but not high enough to trigger BWR protection mechanisms.

¢ The Laguna Verde instability event

Prior the first 300 s of the signal, the DR oscillates between stability and instability. But, it
is hard to infer the dominant DR value due to its strong discontinuous jumps between
stability and instability. However, after the 300 s mark, the DR is high and greater that its
threshold value (DR = 1) and remains as such (and oscillating around 1.1) throughout the
rest of the simulation. Thus, the DR indicates unstable BWR behavior but only after the
300 s mark. The SE estimate is highly more consistent than the DR prior the 300 s mark,
because the SE clearly indicates unstable behavior (whereas the DR is unable to
differentiate between the two) and after the 300 s mark, the SE slightly oscillates around 1
(and not in a dramatic way as the DR does). Nevertheless, the SE always indicates unstable
BWR behavior, long before the DR is able to detect it. Thus, the SE is capable of indicating
unstable behavior prior any further growth in power of the unstable oscillation within the
core whereas the DR is only able to detect instability (without bias) once the unstable
oscillation is fully sustained and powerful enough to damage the core.

b) regarding Methodology 2 based on the NA-MEMD (multivariate signal analysis)

e Multivariate analysis of the Forsmark stability benchmark (based on a sample of 4
LPRMs)

d0i:10.20944/preprints201705.0196.v1
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889 Overall the BWR is unstable because of the high SE estimates along time, in spite of 4
890 segments that had an SE below the stability threshold (SE < 0.8). Thus, again from the very
891 beginning of the simulation, the SE is able to detect an unusual BWR unstable behavior.
892 The DR in the multivariate case prior the 150 s mark is apparently stable and after this 150
893 s mark, it fluctuates around 0.75, the DR estimate is high but not high enough to be a
894 nuisance for BWR operation.
895 e Multivariate analysis of the Forsmark stability benchmark (based on a sample of 4
896 LPRMs):
897 The SE estimates along time were high (beyond the SE stability threshold located at SE =
898 0.8) throughout the time span of the simulation for the 4 chosen LPRMs, thus the BWR is
899 clearly unstable whereas, the DR estimates were high, clearly indicating the beginning of
900 an unstable event, but they did not exceed the stability threshold to trigger the BWR
901 protection mechanisms.

902  According to our simulations it is naive to assume to infer information associated to BWR dynamics
903  through one linear parameter alone such as the DR, because in most of our simulations, the DR only
904  rises above its stability threshold (DR above 1) once the unstable oscillation has grown enough in
905  power to damage the core (according to the stability analysis of the LV signal). Thus, it is necessary
906  to propose another non-linear stability indicator (to replace the DR or to accompany it) to assess
907  BWR stability, and the SE might be a suitable candidate to fulfill that role via our simple SE estimator
908  or another more elaborate one that will be studied in future works.

909  To select which stability methodology (between 1 and 2) is the most adequate to analyze BWR
910  signals, is still not known and further stability cases must be studied in detail to decide which type of
911 analysis works better; whether a univariate one or a mutlivariate one. Nevertheless, the SE (and DR)
912  estimates extracted through these decomposition methods were similar (within the 10 % of
913  difference). These noise assisted techniques have one cumbersome inconvenient and a difficult one
914  to overcome. For instance, how to properly select the iCEEMDAN parameters I (the size of the
915 ensemble of realizations of the EMD that this noise assisted method requires) and g, (the standard

916  deviation of the added assisted noise)? Nobody knows that answer yet in the EMD literature, thus
917  further studies are required to infer these two parameters. A similar question arises with the
918  NA-MEMD, how many independent channels of noise are required in the decomposition scheme to
919  mitigate the mode-mixing problem?, again, another question that has not been addressed in the
920  specialized literature. However, once these questions are answered, then, our stability
921  methodologies might be fully adaptive to be implemented in a real stability monitor and well
922  adapted to decompose non stationary non linear data.
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