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16 ABSTRACT
17

18  The concept of remote insect surveillance at large spatial scales for a number of serious insect
19  pests of agricultural and medical importance is introduced in a series of our papers. We
20 augment typical, low-cost plastic traps for many insect pests with the necessary optoelectronic
21 sensors to guard the entrance of the trap in order to detect, time-stamp, GPS tag, and —in
22 relevant cases- identify the species of the incoming insect from their wingbeat. For every
23 important crop pest there are monitoring protocols to be followed in order to decide when to
24  initiate a treatment procedure before a serious infestation occurs. Monitoring protocols are
25  mainly based on specifically designed insect traps. Traditional insect monitoring suffers in that
26 the scope of such monitoring: is curtailed by its cost, requires intensive labor, is time
27  consuming, an expert is often needed for sufficient accuracy and can sometimes raise safety
28  issues for humans. These disadvantages reduce the extent to which manual insect monitoring
29  isapplied and therefore its accuracy, which finally results in significant crop loss due to damage
30 caused by pests. With the term ‘surveillance’ we intend to push the monitoring idea to
31 unprecedented levels of information extraction regarding the presence, time-stamping
32 detection events, species identification and population density of targeted insect pests. Insect

33 counts as well as environmental parameters that correlate with insect’s population development
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34  are wirelessly transmitted to the central monitoring agency in real time, are visualized and
35  streamed to statistical methods to assist enforcement of security control to insect pests. In this
36 work we emphasize on how the traps can be self-organized in networks that collectively report
37  data at local, regional, country, continental, and global scales using the emerging technology
38  of the Internet of Things (IoT).

39  This research is necessarily interdisciplinary and falls at the intersection of entomology,
40  optoelectronic engineering, data-science and crop science and encompasses the design and
41  implementation of low-cost, low-power technology to help reduce the extent of quantitative
42 and qualitative crop losses by many the most significant agricultural pests.

43  We argue that smart traps communicating through IoT to report in real-time the level of the
44  pestpopulation from the field straight to a human controlled agency can, in the very near future,
45  have a profound impact on the decision making process in crop protection and will be
46  disruptive of existing manual practices. In the present study, three cases are investigated :
47  monitoring Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) using a) Picusan
48 and b) Lindgren trap, and ¢) monitoring various stored grain beetle pests using the pitfall trap.

49
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50 INTRODUCTION

51

52 Given the urgency to increase world food production to satisfy the needs of an
53  increasing population, it is vital that we assist farmers to make decisions to mitigate high rates
54  of crop loss due to insect pests and thus implicitly increase food production. Crop losses due
55  to insect pests can be substantial and may be prevented, or reduced, by crop protection
56  measures [1-2]. Farmers rarely have the quality of information needed to make timely decisions
57  about insecticidal treatments. We attribute this case to the fact that their knowledge on when
58 and where the infestation initially occurs, what is the state of the current situation and what
59  was the effect of an applied treatment, is based on manual inspection of monitoring traps
60 deployed on a limited spatial and temporal scale. Inspectors performing visual identification
61  and counting are not always experts, confident to make reliable identification and the protocols
62  they need to follow result into compromises. Manual inspection of traps shows considerable
63  heterogeneity in geographic, and temporal coverage. Since inspection of insect traps, is
64  concentrated in a few sites, this highly aggregated distribution of information, limits our ability
65  to understand the large-scale dynamic of the phenomenon and to benefit from its knowledge.
66 From both a conceptual and management perspective, there is an urgent need to
67  increase the information flow from the field-traps straight to a central monitoring agency over
68 large areas and through time as well as to visualize and summarize this flow in a statistically
69 reliable sense. To this end, we develop technologies to improve, expand and automate global
70  monitoring of insects of economic importance to thousands of nodes around the world.

71 Innovative uses of sensors and networks targeting animals are starting to be translated
72 into new ecological knowledge [3-4]. Automatic monitoring of biodiversity [5-6] mainly in the
73 form of automated species identification of vocalizations of birds [7], bats [8], insects [9-10],
74 whales [11], amphibians [12], is a developing trend in ecology. This knowledge, however, is
75  still fragmented and isolated to small scale paradigms that neither communicate nor are
76  integrated to a universal view of biodiversity.

77 In our vision, a trap is a ‘thing’ in the IoT, i.e. a typical plastic trap augmented with a
78  sensor that records the insect’s presence upon its entrance in the trap and with wireless
79  communication capability to broadcast the sensed data. These individual entities are single
80 nodes that can possibly interact with other nodes to establish their own network or they can
81 report straight to the conventional internet highway through the ubiquitous mobile phone

82  coverage (i.e. through the GPRS functionality). We are currently investigating a multitude of
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83  sensors to detect the insect’s presence in a distributed fashion and in a cost- and power-effective
84  way. Several ways have already been identified to deal with insects’ presence:
85 a) photo-interruption of either entering or falling insects in several types of traps (e.g.
86  Red-palm weevil traps, pitfall traps, funnel traps, beehives). A low power emitter of infrared
87  light and a coupled photodiode form a sheet of light covering the entrance of the trap. The flow
88  of'light is interrupted from an entering insect and thus it is counted,
89 b) Analysis of the wingbeat of entering flying insects in traps (as in McPhail type and
90 mosquito traps). The flow of light is modulated by the wingbeat of the insect flying-in. The
91  wingbeat is recorded and constitutes a biometric signature of a specific species [9, 13],
92 c¢) Picking up their vibrations due to locomotion and feeding (chewing) in grains (only
93  for stored grain pests [10,14,15]).
94 Traps equipped with a detection sensor and wireless communication abilities have some
95  distinct advantages against manual monitoring. They can monitor insect populations 24 h a
96 day, upon their entrance to the trap, every day of the year, in dispersed nodes across a variety
97  of fields, simultaneously, and all counts and recordings can be permanently stored in a cloud
98  service. Another distinct advantage is the determination of the precise onset of an infestation.
99  The time-schedule of trips in the field for trap inspection may not coincide with the initiation
100  of a pest population increase, whereas automatic monitoring and reporting can be set in real-
101  time. Real-time reporting, to our point of view, opens new grounds in agricultural research and
102  mainly in crop protection as -besides a timely control action in response to a pest infestation-,
103 it can help in the evaluation of the impact of a control treatment (e.g. chemical spraying, release
104  of beneficial entomophagous insects etc), and therefore reschedule future actions if necessary.
105 The electronic traps can naturally include a time stamp of each insect incident and
106  formulate new services: to carry out studies that cannot be practically performed manually as
107  explained hereinafter: There have been numerous studies demonstrating the periodicity of trap
108  captures [16-21]. Some insect species appear to respond to pheromone during the daylight,
109  while others are active during night as a result of complicated mechanisms of insect physiology
110 and reproduction [22, 23]. A record including the trap location, time-date,
111 temperature/humidity each time an insect enters the trap, would provide a significant amount
112 of data that would help us understand better the chemical ecology of a pest. It is very difficult
113 to run these studies with direct observation and they are not replicated through time or across
114  sites to any great extent because of the manpower requirement.
115 Another advantage of automated insect surveillance is that long-term population and

116  distribution data for insect species of interest can be universally kept. The logging of adequate
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117  historical data may help us to understand the population dynamics of the pest and use predictive
118 models to estimate statistically meaningful risks of an infestation, its evolution and the
119  possibility of future outbreaks. Finally, communication on a global scale can bring researchers
120  to work together across large distances on the same pest by navigating themselves through the
121 IoT to distant traps or receiving data summaries across all sensors in the network. Infestation
122 data at global scales can be exploited by commercial and colonial interests to forecast prices in
123 crop production.

124 The reported literature on electronic insect traps that employ optical sensors is sparse
125  [45-49]. In [20,24] Hendricks reported the first integrated synergy of a trap with electronic
126  elements with a view of transferring recorded data to a computer. The approach is interesting
127  given the means of that time. In [25,26], the authors presented a stand-alone device that would
128  count and transmit counts of a very destructive fruit pest, the oriental fruit fly, Bactrocera
129  dorsalis (Hendel)(Diptera: Tephritidae), from the field and is in-line with our research efforts.
130 Our approach aims at reducing the necessity of human-in-the loop in any intermediate
131  processing stage of the workflow and reserve the need of expert entomologists only for the
132 highest abstraction layer: the interpretation of the data received (trap catches) normally
133 presented in the form of georeferenced maps and the corresponding decision making and action
134  planning based on pest Economic Injury Levels (EIL) population thresholds that are applied in
135  the frames of Integrated Pest Management (IPM). Our work focuses on leveraging the quality
136  of service of remote surveillance of pest populations to a better and cost-effective status than
137  sparsely applied human inspection.

138

139
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140 MATERIALS & METHODS

141

142 We have embedded our electronics in traps monitoring population of insect pests of
143  olive, cotton, grapes, fruit trees, stored cereals and pulses, pine trees and palm plantations.
144  Mosquitoes and beehives are a category of their own that have also been integrated with our
145  framework. Our approach is not constrained to a specific brand or type of traps. However, we
146  need types of traps that protect to a certain extent the exposure of the electronics and have a
147  shape that allows the insects to pass through a funnel entrance so that they constrain their
148  movement pattern in order to be counted and/or recorded. In this work, we provide field results
149  for three traps: The Picusan (SANSAN Prodecing SL, Valencia, Spain), the Pitfall (EDIALUX,
150 Bornem, Belgium) and the Lindgren (Forestry Distributing, Inc., Boulder, CO) type, as the
151  evaluation of traps in the field is a laborious process. In time, results of all common trap types
152  will be presented in detail.

153  The philosophy in all trap types is common: There is always an emitter of light opposite to a
154  receiver of light and the path of the incoming insect stands in between. The interruption of the
155  path of light effects a voltage drop that exceeds a threshold and constitutes a count. The
156  technology that does not analyse wingbeat (e.g. as in the case of fruit flies and mosquitoes) is
157  simpler than the one that senses only the presence of insects. All three traps presented in this
158  study sense the presence of an incoming insect. Both receiving and emitting elements are
159  deployed as 1D linear arrays that are long enough to cover the entrance to the trap. There are
160  small variations among these three different traps mainly due to the size of the insects and the
161  peculiarities of the trap (see Table 1). Picusan is custom made for R. ferrugineus that is a
162  relatively large insect whereas the pitfall trap needs to count insects possibly smaller that Imm.
163  Inthe Picusan and Lindgren traps the light field is composed of 5 parallel light-beams (5 LEDs
164  with a small emitting angle of +10 degrees) opposite to 5 photodiodes connected in row.
165  Therefore, if there is an interruption of light in any of the 5 beams no light passes through the
166  photodiodes and the insect is detected by comparing the voltage to a threshold. The distance of
167  one beam from the consecutive one is 7 mm. Therefore, it detects insects larger than 6 mm. In
168 the pitfall case, an insect can enter from any hole of the lid. In order to avoid blind spots in the
169  field of view we need to have a uniform field sensing insect sizes < 0.5 mm. We used 16 LEDs
170  and the same number of photodiodes and both emitter and receiver have a light diffuser. All
171  sensors are operated in pulse mode i.e. there is no constant flow of light from emitter to receiver
172 buta pulse train is emitted. This is the key element to long-lasting operation and this is analysed

173 in detail in [9].
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174
175  Table 1. Optical elements of the sensor embedded in the insect traps.
176
Trap Type # LEDs/ Diffuser
photodiodes

Picusan 5 NO

Pitfall 16 YES

Lindgren 5 NO
177
178

Continetital Global Level
Country Level
Mosquitoes
trap
Pine trap
Pitfall trap
Picusan trap
Funnel trap
McPha|I Trap

179

180  Fig. 1. Traps reporting recordings and counts from the regional level to a central agency.

181  Central agencies report to a global level at continental and/or global level.
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182 In Fig. 1 we envisage how insect surveillance can be applied at local, regional, country,
183  continental, and global scales using the emerging technology of IoT. Local networks become
184  themselves nodes in larger networks until reaching global coverage.

185 The detected events due to photo-interruption need to be combined with the use of
186  species specific pheromone attractants. This is due to the fact that photo-interruption senses the
187  presence of the insect during its entrance to the trap but is blind to species identity. Therefore,
188  we must ensure that in the vast majority of cases the insect is attracted by a species specific
189  pheromone. The actual power sufficiency of these traps is 3 months expandable to 12 months
190  with additional batteries. Although the human presence is again vital in order to replace
191  pheromone lures it is possible to greatly reduce the visiting frequency at least to a bimonthly
192  basis and simplify the attendance work during trap check. On the other hand, devices equipped
193  with sensors that can analyse the wingbeat, besides sex-pheromones, can use food baits as well,
194  as the wingbeat is a biometric information that can be used as evidence to identify species in
195  an automated fashion.

196

197  Trap type #1 : The Picusan trap

198  The red palm weevil, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) is the
199  most dangerous and devastating pest of the date palm as it can weaken and eventually kill the
200 tree [27]. Given the importance of the red palm weevil, efforts are being made to develop new
201  monitoring tools, such as the deployment of a new black pyramidal trap design (Picusan trap
202 Fig. 2) [28]. Traps of this type, containing aggregation pheromones of R. ferrugineus are
203  modified to include an optical sensor that senses adult pests falling into the trap. Counts, as
204  well as other environmental parameters are transmitted straight to internet through GPRS. The
205  aggregation pheromone 4-methyl-5-nonanol or ferrugineol with ethyl acetate, was mixed with
206  acombination of food lures and is specialized to attract R. ferrugineus, capturing adults of both
207  sexes [28]. Though it did not occur in our experiments, it is known that another species very
208  similar to R. ferrugineus, the sisal weevil Scyphophorus acupunctatus (Gyllenhal) (Coleoptera:
209  Curculionidae) may be attracted to the specific pheromone and enter into the trap [29]. This
210 insect is an important pest of agave, yucca, and various other plants of the families Agavaceae
211 and Dracenaceae [30]. In such a case, the trap would not discern the entrance of S.
212 acupunctatus against R. ferrugineus. In case of palms absence in the monitored area, the same

213 smart trap configuration can be used for S. acupunctatus.
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214 Fig. 2. (Left) Picusan trap, (Right): Embedding the sensor at the end of the inverted funnel.
215

216  Trap type #2 : The Pitfall trap

217  Pitfall traps are typically used for monitoring several species of stored-grain beetles
218  (Coleoptera) in silos, warehouses and processing plants [31]. They are placed inside the bulk
219  grain near the external surface (Fig. 3). The cone-shaped device is made of clear plastic and
220  has a removable perforated lid, which allows insects to enter, but not escaping. As in the case
221 of'the funnel trap, various pheromone lures targeting different species may be used.

222

223 Fig. 3. Various pictures of the pitfall trap inside grain. A sheet of light covers the lid entrance.
224  Photo interruption due to a falling insect produces a voltage variation that is turned to a count.
225  Counts as well as environmental parameters and a time stamp are transmitted wirelessly and
226  uploaded to server.

227

228  Many destructive beetle pests of stored grain may be monitored by this type of trap: the flour
229  beetles Tribolium spp. (Tenebrionidae), the grain weevils Sitophilus sp. (Curculionidae), the
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lesser grain borer Rhyzopertha dominica (F.) (Bostrichidae), the cigarette beetle Lasioderma
serricorne (F.) (Anobiidac) and the khapra beetle Trogoderma granarium Everts
(Dermestidae) [32-35].

For the purposes of our study, a prototype equipped with a linear array of five Light Emitting
Diodes (LED) opposite to 5 receiving photodiodes was evaluated. The prototype trap was put
in a large plastic barrel (1201t) with 80 Kgr maize. Adult beetles of various species were
collected from laboratory rearings and transferred to the experimental barrel. In order to ensure
trap catches a large number of adult beetles was used resulting in an infestation level of more
than 15 adults per Kgr maize. Caught beetle adults were checked and counted after 24h and

were compared with the counts from the electronic system.

Trap type #3 : The Lindgren trap

Pine Beetle Lindgren Trap (Fig. 4) is a form of a funnel trap. Lindgren pheromone traps are
widely used to attract the pine beetle Dendroctonus ponderosae Hopkins (Coleoptera:
Curculionidae) [36,37]. They are used either as monitoring traps or for mass trapping to reduce

the populations of pine beetles.

Fig. 4. Pine Beetle Lindgren Traps (Left): Sensor attached at the end of the funnel, (Middle)

Full deployment of the trap. (Right): Final placement. Electronics and sensors located at the
top of the bucket attached to the end of the funnels.

d0i:10.20944/preprints201705.0195.v1
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249  They come with different number of funnels that form a tree-mimicking silhouette. We have
250 used them successfully to count R. ferrugineus beetles as well. Same attractants with the

251  Picusan trap were used.

252

253 RESULTS & DISCUSSION

254

255 Results from the evaluation of the prototype traps are presented in Table 2 and Fig 5.

256  Asitis clearly concluded from our data, our system is very accurate, reaching 98-99% accuracy
257  on automatic counts compared with real detected numbers of adult beetles in each trap. The
258  accuracy of our system in detecting adult beetle catches is also shown by the very high (r >
259  0.99 in all cases) correlation between the generated signals and actual numbers of insects
260  caught in the trap.

261

262
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263  Table 2. Number of actually detected (manual inspection) and automatically counted
264  (electronic sensors) adult beetles in three trap types.

265
Trap type Species Actually Automatically Correlation
Detected Counted coefficient (r)
37 35
Picusan’ R. ferrugineus 42 42 0.9966
59 58
59 62
C. ferrugineus. 45 49 0.9912
67 74
31 34
O. surinamensis 11 12 0.9978
24 25
15 15
PitfalP’ R. dominica 23 24 0.9976
24 26
21 21
S. oryzae 32 36 0.9900
29 30
13 13
T. confusum 26 30 0.9912
34 36
14 14
Lindgren’® R. ferrugineus. 45 49 0.9999
67 74

266  Monitoring period from 2016-09-01 to 2016-12-05; ' Number of traps: 3; ? Single trap inside
267  grain mass, insect density >15 adults / Kgr grain; * Single trap hanged from a wall externally
268 toalab

269

270
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274  Fig. 5. Accuracy of the automatic counting in comparison with actual detection, of all species
275  (up) and for each species separately (down). The values of the linear regression coefficient R?
276  prove that our system is 98-99% accurate (when detected and counted values are the same then
277  R’equalsto 1)

278

279

280
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281 Only a few remote pest monitoring systems, based on wireless communication
282  technology, have been evaluated in the past, with varying accuracy. The oriental leafworm
283  moth Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) was effectively monitored by an
284  ecological monitoring system combining GSM transmission technologies with mechatronics
285  with accuracy ranging from 71 to 100 [38]. Average accuracies of 78.1% [25], 96.3% [39] and
286 94.9 % [40] were demonstrated by automatic monitoring systems counting the catches of the
287  oriental fruit fly B. dorsalis. Other automated systems with image analysis technology also
288  proved to be reliable in detecting mainly whiteflies and moths, with accuracies ranging from
289 70 to 100% [41-45]. The accuracy of our system is higher than almost all of the

290 abovementioned monitoring systems.

291

292 DATA PROCESSING and the IoT

293

294 Though one may think that the most valuable part in a service based on a network of

295  traps is the trading of the hardware or the software it is the transmitted numbers that is actually
296 the priceless product. Granting access to a cloud service visualizing and interpreting data is a
297  business of its own. Data can be used to influence decisions, can be exchanged, hired or sold
298 and become input in predictive analytics tools whose predictions can lead to new services (e.g.
299  price prediction of food products, prediction for possible pest population outbreaks and crop
300 losses).

301  The data delivered can be decomposed to three distinct subsets:

302 a)Counts delivered on a pre-scheduled basis along with the time-stamps of each insect entrance
303  to the traps.

304  b) Environmental data (mainly humidity, temperature and GPS tag).

305 c¢) Wingbeat recordings uploaded to a server (in the case of McPhail and mosquito traps).

306  Once the data are collected and delivered to the server there are different levels of data
307 processing abstractions we can apply. A data-collection interface with inference based data
308 analysis provides the basis for predictive ecological models and mining of events for
309  agricultural management. In Fig. 6 we show the visualization interface that can be used for
310 streamlining data collection and management. The following mode of engagement between
311  datarepresentations and the human expert is to set counts on maps and interpolate measurement
312 between nodes to form pest population level maps to assess the current situation and respond

313  timely with a focused localized treatment. Additionally, one can validate causal hypotheses
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314  between the timing of treatments and after treatment insect counts. Moreover, the distribution
315  of time stamps can be related to the efficacy of different attractants in the pheromone cycle of
316  insects. Regarding the wingbeat recordings, these become a permanent record in the database
317 and can be subjected to different feature extraction and classification practices to identify the
318 source of the audio data at the species level. Regarding long term data abstractions, once
319  historical data are piled up over time, they provide the basis for predictive models of

320 infestations and outbreaks of epidemics (e.g. as in the case of mosquitoes).
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323 Fig. 6. Example of insect surveillance results at the local and regional level in the case of R.
324  ferrugineus. Note that the same framework can be used for any insect counted in pheromone
325  traps.
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326  The GPRS modem of the trap, once connected to the mobile provider, is actually capable of
327  having Internet connectivity. The trap has the domain name of the backend site embedded in
328 its EPROM and, through the GPRS modem and the mobile network that supports GPRS, makes
329 a TCP/IP connection to the webserver of the backend, via an HTTP request, essentially
330 mimicking a web browser (client). At this point, the trap inserts its data as parameters for the
331  page that it wants to access. Once the HTTP request reaches the web server, the latter receives
332  the data from the request of the trap (via the appropriate code, written in PHP) and logs the
333  information in the database.

334 The web application consists of two parts: The backend that manages the information
335 and the database in the server and a frontend that visualizes the information at the browser of
336  the user and the interface with the user. The site is based on a web hosting provider running
337  Apache, with PHP 5.5 support. The database is setup using MySQL, which is open source. The
338  backend is written in Laravel 5.1 PHP 5.5 and the frontend is written in HTML 5, making use
339  of the Angularjs Javascript and JQuery javascript Framework. The data follow the JSON
340  formalisation. The maps are provided via the Google Maps API.

341 Technological advances do not always manage to penetrate the routine practice of the
342  majority of the cultivators. To succeed in altering the habits of decades, we must offer a
343  working solution to the real needs of practitioners. Moreover, the cost of altering standard traps
344  to electronic ones must be low and the cost/benefit trade off due to their use carefully
345  calculated. In order to help assessing this ratio we report that the current production cost of an
346  insect counter as in the Pitfall trap is 65 Euros for a single device falling to 40 Euros for 100
347  traps and 32 Euros for 1000. Regarding Picusan and Lindgren the corresponding costs are 40
348  Euros falling to 26 and 19 Euros respectively (as per 26/05/2017). The power sufficiency of
349  Picusan/Lindgren trap is 3.5 months with a single 3.7/3000 mAh rechargeable Lithium battery
350 and as regards pitfall 2.5 months using a 3400 mAh battery. It is an encouraging fact that, long
351 term autonomous deployment is feasible due to low-power electronics and scheduling of
352  operations to minimize power consumption and in the long run the cost of electronics can only
353  drop.

354 Agricultural entomologists master the knowledge of their field and cannot have the
355  technical expertise of disparate and interdisciplinary knowledge requiring the cooperation of
356  diverse technologies. These technologies include wireless communication networks, security
357  of data, quality control protocols, data processing and management. Therefore, the whole
358  sensor-network setup must be offered by engineers and data scientists to stakeholders as a ‘plug

359 and play’ installation. The collaboration of agricultural entomologists is mainly needed for the
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360 species identification of trapped insects, assessing the accuracy of the whole set-up and
361 translating summarized information to ecological knowledge.

362 Trained practitioners and qualified experts return high quality data but are not easily
363  available to attain field-data from traps. Even when some kind of sensing modality is available,
364  they are often unwilling to spend their time and expertise to carry out detrimental tasks as
365 inspecting endless information queues (e.g. microphone recordings or pictures from cameras).
366  Unattended remote surveillance solves the problem of collecting sparse manual data and
367  overcomes scalability limitations, but produces large quantities of data that can prove of limited
368  use if not sorted out and summarized automatically. In this section we clarify what information
369  we can obtain from a collection of distributed trap nodes and if the visualization and aggregated
370 indices of such data suffice to augment policy decisions.

371 In this work we establish a connection between sensors’ readings, pest population level
372 and predictive models to ensure timely and effective control treatments. Acceptance of
373  automated monitoring practices will raise doubts about the reliability of data collected without
374  expert’s intervention. The optoelectronics need to reduce their errors in order to reach
375 comparable analysis to that done by experts. A long-term field operation is needed in order to
376  identify the cause of possible false alarms and detection misses and sensor failures in
377 sometimes harsh conditions before applying the output of such data-collection schemes to
378  modeling and policy. To give a lucid example, we discovered a source of false alarms in the
379  Picusan trap after a rainstorm where some raindrops entered through the top entrance of the
380 trap. This was not observed during the operation of a trap from spring to fall and was observed
381  only during winter time. This problem was easily solved by modifying the top of the trap, but
382  was only solved because of the long-term deployment that indicated a problem. Our perspective
383 is that the potential for big data collected from the collaboration of nodes at large spatial scales
384  can overcome random local errors and this combined with their streaming to data visualization
385  tools is sufficient to grant an advantage over the current manual practices. We believe current
386  results are sufficient to warrant further exploration on insect surveillance. Insect surveillance
387 can provide insight into the effects of insecticide efficiency, reduce its use and shape our
388  understanding of pest problems in agriculture. Provided we continue improving the reliability
389  of devices and services and perform real-field, long-term trials we will upgrade automated
390 practices to the level of being indispensable to farmers, policy makers and stakeholders.

391
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