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ABSTRACT 16 

 17 

Τhe concept of remote insect surveillance at large spatial scales for a number of serious insect 18 

pests of agricultural and medical importance is introduced in a series of our papers. We 19 

augment typical, low-cost plastic traps for many insect pests with the necessary optoelectronic 20 

sensors to guard the entrance of the trap in order to detect, time-stamp, GPS tag, and –in 21 

relevant cases- identify the species of the incoming insect from their wingbeat. For every 22 

important crop pest there are monitoring protocols to be followed in order to decide when to 23 

initiate a treatment procedure before a serious infestation occurs. Monitoring protocols are 24 

mainly based on specifically designed insect traps. Traditional insect monitoring suffers in that 25 

the scope of such monitoring: is curtailed by its cost, requires intensive labor, is time 26 

consuming, an expert is often needed for sufficient accuracy and can sometimes raise safety 27 

issues for humans. These disadvantages reduce the extent to which manual insect monitoring 28 

is applied and therefore its accuracy, which finally results in significant crop loss due to damage 29 

caused by pests. With the term ‘surveillance’ we intend to push the monitoring idea to 30 

unprecedented levels of information extraction regarding the presence, time-stamping 31 

detection events, species identification and population density of targeted insect pests. Insect 32 

counts as well as environmental parameters that correlate with insect’s population development 33 
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are wirelessly transmitted to the central monitoring agency in real time, are visualized and 34 

streamed to statistical methods to assist enforcement of security control to insect pests. In this 35 

work we emphasize on how the traps can be self-organized in networks that collectively report 36 

data at local, regional, country, continental, and global scales using the emerging technology 37 

of the Internet of Things (IoT). 38 

This research is necessarily interdisciplinary and falls at the intersection of entomology, 39 

optoelectronic engineering, data-science and crop science and encompasses the design and 40 

implementation of low-cost, low-power technology to help reduce the extent of quantitative 41 

and qualitative crop losses by many the most significant agricultural pests. 42 

We argue that smart traps communicating through IoT to report in real-time the level of the 43 

pest population from the field straight to a human controlled agency can, in the very near future, 44 

have a profound impact on the decision making process in crop protection and will be 45 

disruptive of existing manual practices. In the present study, three cases are investigated : 46 

monitoring Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) using a) Picusan 47 

and b) Lindgren trap, and c) monitoring various stored grain beetle pests using the pitfall trap. 48 

  49 
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INTRODUCTION 50 

 51 

Given the urgency to increase world food production to satisfy the needs of an 52 

increasing population, it is vital that we assist farmers to make decisions to mitigate high rates 53 

of crop loss due to insect pests and thus implicitly increase food production. Crop losses due 54 

to insect pests can be substantial and may be prevented, or reduced, by crop protection 55 

measures [1-2]. Farmers rarely have the quality of information needed to make timely decisions 56 

about insecticidal treatments. We attribute this case to the fact that their knowledge on when 57 

and where the infestation initially occurs, what is the state of the current situation and what 58 

was the effect of an applied treatment, is based on manual inspection of monitoring traps 59 

deployed on a limited spatial and temporal scale. Inspectors performing visual identification 60 

and counting are not always experts, confident to make reliable identification and the protocols 61 

they need to follow result into compromises. Manual inspection of traps shows considerable 62 

heterogeneity in geographic, and temporal coverage. Since inspection of insect traps, is 63 

concentrated in a few sites, this highly aggregated distribution of information, limits our ability 64 

to understand the large-scale dynamic of the phenomenon and to benefit from its knowledge.  65 

From both a conceptual and management perspective, there is an urgent need to 66 

increase the information flow from the field-traps straight to a central monitoring agency over 67 

large areas and through time as well as to visualize and summarize this flow in a statistically 68 

reliable sense. To this end, we develop technologies to improve, expand and automate global 69 

monitoring of insects of economic importance to thousands of nodes around the world. 70 

Innovative uses of sensors and networks targeting animals are starting to be translated 71 

into new ecological knowledge [3-4]. Automatic monitoring of biodiversity [5-6] mainly in the 72 

form of automated species identification of vocalizations of birds [7], bats [8], insects [9-10], 73 

whales [11], amphibians [12], is a developing trend in ecology. This knowledge, however, is 74 

still fragmented and isolated to small scale paradigms that neither communicate nor are 75 

integrated to a universal view of biodiversity. 76 

In our vision, a trap is a ‘thing’ in the IoT, i.e. a typical plastic trap augmented with a 77 

sensor that records the insect’s presence upon its entrance in the trap and with wireless 78 

communication capability to broadcast the sensed data. These individual entities are single 79 

nodes that can possibly interact with other nodes to establish their own network or they can 80 

report straight to the conventional internet highway through the ubiquitous mobile phone 81 

coverage (i.e. through the GPRS functionality). We are currently investigating a multitude of 82 
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sensors to detect the insect’s presence in a distributed fashion and in a cost- and power-effective 83 

way. Several ways have already been identified to deal with insects’ presence:  84 

a) photo-interruption of either entering or falling insects in several types of traps (e.g. 85 

Red-palm weevil traps, pitfall traps, funnel traps, beehives). A low power emitter of infrared 86 

light and a coupled photodiode form a sheet of light covering the entrance of the trap. The flow 87 

of light is interrupted from an entering insect and thus it is counted,  88 

b) Analysis of the wingbeat of entering flying insects in traps (as in McPhail type and 89 

mosquito traps). The flow of light is modulated by the wingbeat of the insect flying-in. The 90 

wingbeat is recorded and constitutes a biometric signature of a specific species [9, 13],  91 

c) Picking up their vibrations due to locomotion and feeding (chewing) in grains (only 92 

for stored grain pests [10,14,15]). 93 

Traps equipped with a detection sensor and wireless communication abilities have some 94 

distinct advantages against manual monitoring. They can monitor insect populations 24 h a 95 

day, upon their entrance to the trap, every day of the year, in dispersed nodes across a variety 96 

of fields, simultaneously, and all counts and recordings can be permanently stored in a cloud 97 

service. Another distinct advantage is the determination of the precise onset of an infestation. 98 

The time-schedule of trips in the field for trap inspection may not coincide with the initiation 99 

of a pest population increase, whereas automatic monitoring and reporting can be set in real-100 

time. Real-time reporting, to our point of view, opens new grounds in agricultural research and 101 

mainly in crop protection as -besides a timely control action in response to a pest infestation-, 102 

it can help in the evaluation of the impact of a control treatment (e.g. chemical spraying, release 103 

of beneficial entomophagous insects etc), and therefore reschedule future actions if necessary.  104 

The electronic traps can naturally include a time stamp of each insect incident and 105 

formulate new services: to carry out studies that cannot be practically performed manually as 106 

explained hereinafter: There have been numerous studies demonstrating the periodicity of trap 107 

captures [16-21]. Some insect species appear to respond to pheromone during the daylight, 108 

while others are active during night as a result of complicated mechanisms of insect physiology 109 

and reproduction [22, 23]. A record including the trap location, time-date, 110 

temperature/humidity each time an insect enters the trap, would provide a significant amount 111 

of data that would help us understand better the chemical ecology of a pest. It is very difficult 112 

to run these studies with direct observation and they are not replicated through time or across 113 

sites to any great extent because of the manpower requirement.  114 

Another advantage of automated insect surveillance is that long-term population and 115 

distribution data for insect species of interest can be universally kept. The logging of adequate 116 
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historical data may help us to understand the population dynamics of the pest and use predictive 117 

models to estimate statistically meaningful risks of an infestation, its evolution and the 118 

possibility of future outbreaks. Finally, communication on a global scale can bring researchers 119 

to work together across large distances on the same pest by navigating themselves through the 120 

IoT to distant traps or receiving data summaries across all sensors in the network. Infestation 121 

data at global scales can be exploited by commercial and colonial interests to forecast prices in 122 

crop production. 123 

The reported literature on electronic insect traps that employ optical sensors is sparse 124 

[45-49]. In [20,24] Hendricks reported the first integrated synergy of a trap with electronic 125 

elements with a view of transferring recorded data to a computer. The approach is interesting 126 

given the means of that time. In [25,26], the authors presented a stand-alone device that would 127 

count and transmit counts of a very destructive fruit pest, the oriental fruit fly, Bactrocera 128 

dorsalis (Hendel)(Diptera: Tephritidae), from the field and is in-line with our research efforts.  129 

Our approach aims at reducing the necessity of human-in-the loop in any intermediate 130 

processing stage of the workflow and reserve the need of expert entomologists only for the 131 

highest abstraction layer: the interpretation of the data received (trap catches) normally 132 

presented in the form of georeferenced maps and the corresponding decision making and action 133 

planning based on pest Economic Injury Levels (EIL) population thresholds that are applied in 134 

the frames of Integrated Pest Management (IPM). Our work focuses on leveraging the quality 135 

of service of remote surveillance of pest populations to a better and cost-effective status than 136 

sparsely applied human inspection. 137 

 138 

  139 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 May 2017                   doi:10.20944/preprints201705.0195.v1

Peer-reviewed version available at Robotics 2017, 6, 19; doi:10.3390/robotics6030019

http://dx.doi.org/10.20944/preprints201705.0195.v1
http://dx.doi.org/10.3390/robotics6030019


MATERIALS & METHODS 140 

 141 

 We have embedded our electronics in traps monitoring population of insect pests of 142 

olive, cotton, grapes, fruit trees, stored cereals and pulses, pine trees and palm plantations. 143 

Mosquitoes and beehives are a category of their own that have also been integrated with our 144 

framework. Our approach is not constrained to a specific brand or type of traps. However, we 145 

need types of traps that protect to a certain extent the exposure of the electronics and have a 146 

shape that allows the insects to pass through a funnel entrance so that they constrain their 147 

movement pattern in order to be counted and/or recorded. In this work, we provide field results 148 

for three traps: The Picusan (SANSAN Prodecing SL, Valencia, Spain), the Pitfall (EDIALUX, 149 

Bornem, Belgium) and the Lindgren (Forestry Distributing, Inc., Boulder, CO) type, as the 150 

evaluation of traps in the field is a laborious process. In time, results of all common trap types 151 

will be presented in detail.  152 

The philosophy in all trap types is common: There is always an emitter of light opposite to a 153 

receiver of light and the path of the incoming insect stands in between. The interruption of the 154 

path of light effects a voltage drop that exceeds a threshold and constitutes a count. The 155 

technology that does not analyse wingbeat (e.g. as in the case of fruit flies and mosquitoes) is 156 

simpler than the one that senses only the presence of insects. All three traps presented in this 157 

study sense the presence of an incoming insect. Both receiving and emitting elements are 158 

deployed as 1D linear arrays that are long enough to cover the entrance to the trap. There are 159 

small variations among these three different traps mainly due to the size of the insects and the 160 

peculiarities of the trap (see Table 1). Picusan is custom made for R. ferrugineus that is a 161 

relatively large insect whereas the pitfall trap needs to count insects possibly smaller that 1mm. 162 

In the Picusan and Lindgren traps the light field is composed of 5 parallel light-beams (5 LEDs 163 

with a small emitting angle of ±10 degrees) opposite to 5 photodiodes connected in row. 164 

Therefore, if there is an interruption of light in any of the 5 beams no light passes through the 165 

photodiodes and the insect is detected by comparing the voltage to a threshold. The distance of 166 

one beam from the consecutive one is 7 mm. Therefore, it detects insects larger than 6 mm. In 167 

the pitfall case, an insect can enter from any hole of the lid. In order to avoid blind spots in the 168 

field of view we need to have a uniform field sensing insect sizes ≤ 0.5 mm. We used 16 LEDs 169 

and the same number of photodiodes and both emitter and receiver have a light diffuser. All 170 

sensors are operated in pulse mode i.e. there is no constant flow of light from emitter to receiver 171 

but a pulse train is emitted. This is the key element to long-lasting operation and this is analysed 172 

in detail in [9]. 173 
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 174 
Table 1. Optical elements of the sensor embedded in the insect traps. 175 
 176 

Trap Type # LEDs/ 
photodiodes 

Diffuser 

Picusan 5 NO 

Pitfall 16 YES 

Lindgren 5 NO 

 177 
 178 

 179 
Fig. 1. Traps reporting recordings and counts from the regional level to a central agency. 180 

Central agencies report to a global level at continental and/or global level.  181 
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In Fig. 1 we envisage how insect surveillance can be applied at local, regional, country, 182 

continental, and global scales using the emerging technology of IoT. Local networks become 183 

themselves nodes in larger networks until reaching global coverage. 184 

 The detected events due to photo-interruption need to be combined with the use of 185 

species specific pheromone attractants. This is due to the fact that photo-interruption senses the 186 

presence of the insect during its entrance to the trap but is blind to species identity. Therefore, 187 

we must ensure that in the vast majority of cases the insect is attracted by a species specific 188 

pheromone. The actual power sufficiency of these traps is 3 months expandable to 12 months 189 

with additional batteries. Although the human presence is again vital in order to replace 190 

pheromone lures it is possible to greatly reduce the visiting frequency at least to a bimonthly 191 

basis and simplify the attendance work during trap check. On the other hand, devices equipped 192 

with sensors that can analyse the wingbeat, besides sex-pheromones, can use food baits as well, 193 

as the wingbeat is a biometric information that can be used as evidence to identify species in 194 

an automated fashion.  195 

 196 

Trap type #1 : The Picusan trap 197 

The red palm weevil, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) is the 198 

most dangerous and devastating pest of the date palm as it can weaken and eventually kill the 199 

tree [27]. Given the importance of the red palm weevil, efforts are being made to develop new 200 

monitoring tools, such as the deployment of a new black pyramidal trap design (Picusan trap 201 

Fig. 2) [28]. Traps of this type, containing aggregation pheromones of R. ferrugineus are 202 

modified to include an optical sensor that senses adult pests falling into the trap. Counts, as 203 

well as other environmental parameters are transmitted straight to internet through GPRS. The 204 

aggregation pheromone 4-methyl-5-nonanol or ferrugineol with ethyl acetate, was mixed with 205 

a combination of food lures and is specialized to attract R. ferrugineus, capturing adults of both 206 

sexes [28]. Though it did not occur in our experiments, it is known that another species very 207 

similar to R. ferrugineus, the sisal weevil Scyphophorus acupunctatus (Gyllenhal) (Coleoptera: 208 

Curculionidae) may be attracted to the specific pheromone and enter into the trap [29]. This 209 

insect is an important pest of agave, yucca, and various other plants of the families Agavaceae 210 

and Dracenaceae [30]. In such a case, the trap would not discern the entrance of S. 211 

acupunctatus against R. ferrugineus. In case of palms absence in the monitored area, the same 212 

smart trap configuration can be used for S. acupunctatus. 213 
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Fig. 2. (Left) Picusan trap, (Right): Embedding the sensor at the end of the inverted funnel.  214 

 215 

Trap type #2 : The Pitfall trap 216 

Pitfall traps are typically used for monitoring several species of stored-grain beetles 217 

(Coleoptera) in silos, warehouses and processing plants [31]. They are placed inside the bulk 218 

grain near the external surface (Fig. 3). The cone-shaped device is made of clear plastic and 219 

has a removable perforated lid, which allows insects to enter, but not escaping. As in the case 220 

of the funnel trap, various pheromone lures targeting different species may be used. 221 

 222 

 
Fig. 3. Various pictures of the pitfall trap inside grain. A sheet of light covers the lid entrance. 223 

Photo interruption due to a falling insect produces a voltage variation that is turned to a count. 224 

Counts as well as environmental parameters and a time stamp are transmitted wirelessly and 225 

uploaded to server. 226 

 227 

Many destructive beetle pests of stored grain may be monitored by this type of trap: the flour 228 

beetles Tribolium spp. (Tenebrionidae), the grain weevils Sitophilus sp. (Curculionidae), the 229 
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lesser grain borer Rhyzopertha dominica (F.) (Bostrichidae), the cigarette beetle Lasioderma 230 

serricorne (F.) (Anobiidae) and the khapra beetle Trogoderma granarium Everts 231 

(Dermestidae) [32-35]. 232 

For the purposes of our study, a prototype equipped with a linear array of five Light Emitting 233 

Diodes (LED) opposite to 5 receiving photodiodes was evaluated. The prototype trap was put 234 

in a large plastic barrel (120lt) with 80 Kgr maize. Adult beetles of various species were 235 

collected from laboratory rearings and transferred to the experimental barrel. In order to ensure 236 

trap catches a large number of adult beetles was used resulting in an infestation level of more 237 

than 15 adults per Kgr maize. Caught beetle adults were checked and counted after 24h and 238 

were compared with the counts from the electronic system.  239 

 240 

Trap type #3 : The Lindgren trap 241 

Pine Beetle Lindgren Trap (Fig. 4) is a form of a funnel trap. Lindgren pheromone traps are 242 

widely used to attract the pine beetle Dendroctonus ponderosae Hopkins (Coleoptera: 243 

Curculionidae) [36,37]. They are used either as monitoring traps or for mass trapping to reduce 244 

the populations of pine beetles.  245 

Fig. 4. Pine Beetle Lindgren Traps (Left): Sensor attached at the end of the funnel, (Middle) 246 

Full deployment of the trap. (Right): Final placement. Electronics and sensors located at the 247 

top of the bucket attached to the end of the funnels. 248 
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They come with different number of funnels that form a tree-mimicking silhouette. We have 249 

used them successfully to count R. ferrugineus beetles as well. Same attractants with the 250 

Picusan trap were used.  251 

 252 

RESULTS & DISCUSSION 253 

 254 

Results from the evaluation of the prototype traps are presented in Table 2 and Fig 5. 255 

As it is clearly concluded from our data, our system is very accurate, reaching 98-99% accuracy 256 

on automatic counts compared with real detected numbers of adult beetles in each trap. The 257 

accuracy of our system in detecting adult beetle catches is also shown by the very high (r > 258 

0.99 in all cases) correlation between the generated signals and actual numbers of insects 259 

caught in the trap. 260 

 261 

  262 
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Table 2. Number of actually detected (manual inspection) and automatically counted 263 
(electronic sensors) adult beetles in three trap types. 264 
 265 

Trap type Species Actually 
Detected 

Automatically 
Counted 

Correlation 
coefficient (r)

Picusan1 R. ferrugineus 
37 35 

0.9966 42 42 
59 58 

Pitfall2 

C. ferrugineus. 
59 62 

0.9912 45 49 
67 74 

O. surinamensis 
31 34 

0.9978 11 12 
24 25 

R. dominica 
15 15 

0.9976 23 24 
24 26 

S. oryzae 
21 21 

0.9900 32 36 
29 30 

T. confusum 
13 13 

0.9912 26 30 
34 36 

Lindgren3 R. ferrugineus. 
14 14 

0.9999 45 49 
67 74 

Monitoring period from 2016-09-01 to 2016-12-05; 1 Number of traps: 3; 2 Single trap inside 266 

grain mass, insect density >15 adults / Kgr grain; 3 Single trap hanged from a wall externally 267 

to a lab  268 

 269 

 270 
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 271 
 272 

 273 
Fig. 5. Accuracy of the automatic counting in comparison with actual detection, of all species 274 

(up) and for each species separately (down). The values of the linear regression coefficient R2 275 

prove that our system is 98-99% accurate (when detected and counted values are the same then 276 

R2 equals to 1) 277 

 278 

 279 

 280 
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Only a few remote pest monitoring systems, based on wireless communication 281 

technology, have been evaluated in the past, with varying accuracy. The oriental leafworm 282 

moth Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) was effectively monitored by an 283 

ecological monitoring system combining GSM transmission technologies with mechatronics 284 

with accuracy ranging from 71 to 100 [38]. Average accuracies of 78.1% [25], 96.3% [39] and 285 

94.9 % [40] were demonstrated by automatic monitoring systems counting the catches of the 286 

oriental fruit fly B. dorsalis. Other automated systems with image analysis technology also 287 

proved to be reliable in detecting mainly whiteflies and moths, with accuracies ranging from 288 

70 to 100% [41-45]. The accuracy of our system is higher than almost all of the 289 

abovementioned monitoring systems. 290 

 291 

DATA PROCESSING and the IoT 292 

 293 

Though one may think that the most valuable part in a service based on a network of 294 

traps is the trading of the hardware or the software it is the transmitted numbers that is actually 295 

the priceless product. Granting access to a cloud service visualizing and interpreting data is a 296 

business of its own. Data can be used to influence decisions, can be exchanged, hired or sold 297 

and become input in predictive analytics tools whose predictions can lead to new services (e.g. 298 

price prediction of food products, prediction for possible pest population outbreaks and crop 299 

losses). 300 

The data delivered can be decomposed to three distinct subsets: 301 

a) Counts delivered on a pre-scheduled basis along with the time-stamps of each insect entrance 302 

to the traps.  303 

b) Environmental data (mainly humidity, temperature and GPS tag).  304 

c) Wingbeat recordings uploaded to a server (in the case of McPhail and mosquito traps).  305 

Once the data are collected and delivered to the server there are different levels of data 306 

processing abstractions we can apply. A data-collection interface with inference based data 307 

analysis provides the basis for predictive ecological models and mining of events for 308 

agricultural management. In Fig. 6 we show the visualization interface that can be used for 309 

streamlining data collection and management. The following mode of engagement between 310 

data representations and the human expert is to set counts on maps and interpolate measurement 311 

between nodes to form pest population level maps to assess the current situation and respond 312 

timely with a focused localized treatment. Additionally, one can validate causal hypotheses 313 
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between the timing of treatments and after treatment insect counts. Moreover, the distribution 314 

of time stamps can be related to the efficacy of different attractants in the pheromone cycle of 315 

insects. Regarding the wingbeat recordings, these become a permanent record in the database 316 

and can be subjected to different feature extraction and classification practices to identify the 317 

source of the audio data at the species level. Regarding long term data abstractions, once 318 

historical data are piled up over time, they provide the basis for predictive models of 319 

infestations and outbreaks of epidemics (e.g. as in the case of mosquitoes).  320 

 321 

 322 
Fig. 6. Example of insect surveillance results at the local and regional level in the case of R. 323 
ferrugineus. Note that the same framework can be used for any insect counted in pheromone 324 
traps. 325 
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The GPRS modem of the trap, once connected to the mobile provider, is actually capable of 326 

having Internet connectivity. The trap has the domain name of the backend site embedded in 327 

its EPROM and, through the GPRS modem and the mobile network that supports GPRS, makes 328 

a TCP/IP connection to the webserver of the backend, via an HTTP request, essentially 329 

mimicking a web browser (client). At this point, the trap inserts its data as parameters for the 330 

page that it wants to access. Once the HTTP request reaches the web server, the latter receives 331 

the data from the request of the trap (via the appropriate code, written in PHP) and logs the 332 

information in the database.  333 

 The web application consists of two parts: The backend that manages the information 334 

and the database in the server and a frontend that visualizes the information at the browser of 335 

the user and the interface with the user. The site is based on a web hosting provider running 336 

Apache, with PHP 5.5 support. The database is setup using MySQL, which is open source. The 337 

backend is written in Laravel 5.1 PHP 5.5 and the frontend is written in HTML 5, making use 338 

of the Angularjs Javascript and JQuery javascript Framework. The data follow the JSON 339 

formalisation. The maps are provided via the Google Maps API. 340 

 Technological advances do not always manage to penetrate the routine practice of the 341 

majority of the cultivators. To succeed in altering the habits of decades, we must offer a 342 

working solution to the real needs of practitioners. Moreover, the cost of altering standard traps 343 

to electronic ones must be low and the cost/benefit trade off due to their use carefully 344 

calculated. In order to help assessing this ratio we report that the current production cost of an 345 

insect counter as in the Pitfall trap is 65 Euros for a single device falling to 40 Euros for 100 346 

traps and 32 Euros for 1000. Regarding Picusan and Lindgren the corresponding costs are 40 347 

Euros falling to 26 and 19 Euros respectively (as per 26/05/2017). The power sufficiency of 348 

Picusan/Lindgren trap is 3.5 months with a single 3.7/3000 mAh rechargeable Lithium battery 349 

and as regards pitfall 2.5 months using a 3400 mAh battery. It is an encouraging fact that, long 350 

term autonomous deployment is feasible due to low-power electronics and scheduling of 351 

operations to minimize power consumption and in the long run the cost of electronics can only 352 

drop.  353 

 Agricultural entomologists master the knowledge of their field and cannot have the 354 

technical expertise of disparate and interdisciplinary knowledge requiring the cooperation of 355 

diverse technologies. These technologies include wireless communication networks, security 356 

of data, quality control protocols, data processing and management. Therefore, the whole 357 

sensor-network setup must be offered by engineers and data scientists to stakeholders as a ‘plug 358 

and play’ installation. The collaboration of agricultural entomologists is mainly needed for the 359 
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species identification of trapped insects, assessing the accuracy of the whole set-up and 360 

translating summarized information to ecological knowledge.  361 

 Trained practitioners and qualified experts return high quality data but are not easily 362 

available to attain field-data from traps. Even when some kind of sensing modality is available, 363 

they are often unwilling to spend their time and expertise to carry out detrimental tasks as 364 

inspecting endless information queues (e.g. microphone recordings or pictures from cameras). 365 

Unattended remote surveillance solves the problem of collecting sparse manual data and 366 

overcomes scalability limitations, but produces large quantities of data that can prove of limited 367 

use if not sorted out and summarized automatically. In this section we clarify what information 368 

we can obtain from a collection of distributed trap nodes and if the visualization and aggregated 369 

indices of such data suffice to augment policy decisions. 370 

 In this work we establish a connection between sensors’ readings, pest population level 371 

and predictive models to ensure timely and effective control treatments. Acceptance of 372 

automated monitoring practices will raise doubts about the reliability of data collected without 373 

expert’s intervention. The optoelectronics need to reduce their errors in order to reach 374 

comparable analysis to that done by experts. A long-term field operation is needed in order to 375 

identify the cause of possible false alarms and detection misses and sensor failures in 376 

sometimes harsh conditions before applying the output of such data-collection schemes to 377 

modeling and policy. To give a lucid example, we discovered a source of false alarms in the 378 

Picusan trap after a rainstorm where some raindrops entered through the top entrance of the 379 

trap. This was not observed during the operation of a trap from spring to fall and was observed 380 

only during winter time. This problem was easily solved by modifying the top of the trap, but 381 

was only solved because of the long-term deployment that indicated a problem. Our perspective 382 

is that the potential for big data collected from the collaboration of nodes at large spatial scales 383 

can overcome random local errors and this combined with their streaming to data visualization 384 

tools is sufficient to grant an advantage over the current manual practices. We believe current 385 

results are sufficient to warrant further exploration on insect surveillance. Insect surveillance 386 

can provide insight into the effects of insecticide efficiency, reduce its use and shape our 387 

understanding of pest problems in agriculture. Provided we continue improving the reliability 388 

of devices and services and perform real-field, long-term trials we will upgrade automated 389 

practices to the level of being indispensable to farmers, policy makers and stakeholders. 390 

  391 
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