

1 Automated Remote Insect surveillance at a Global Scale
2 and the Internet of Things

3

4 Ilyas Potamitis¹, Panagiotis Eliopoulos², Iraklis Rigakis³

5 ¹ Dept. of Music Technology & Acoustics, Technological Educational Institute of
6 Crete, E. Daskalaki Perivolia, 74100, Rethymno Crete, Greece;
7 potamitis@staff.teicrete.gr

8 ² Dept. of Agricultural Technologists, Technological Educational Institute of
9 Thessaly, Larissa 41110, Greece; eliopoulos@teilar.gr

10 ³ Dept. of Electronics, Technological Educational Institute of Crete, Romanou 3 –
11 Chalepa, Chania, 73133, Greece; rigakis@chania.teicrete.gr

12

13 * Author to whom correspondence should be addressed

14 Tel.: +30 28310 21900; Fax: +30 28310 21914.

15

16 ABSTRACT

17

18 The concept of remote insect surveillance at large spatial scales for a number of serious insect
19 pests of agricultural and medical importance is introduced in a series of our papers. We
20 augment typical, low-cost plastic traps for many insect pests with the necessary optoelectronic
21 sensors to guard the entrance of the trap in order to detect, time-stamp, GPS tag, and –in
22 relevant cases- identify the species of the incoming insect from their wingbeat. For every
23 important crop pest there are monitoring protocols to be followed in order to decide when to
24 initiate a treatment procedure before a serious infestation occurs. Monitoring protocols are
25 mainly based on specifically designed insect traps. Traditional insect monitoring suffers in that
26 the scope of such monitoring: is curtailed by its cost, requires intensive labor, is time
27 consuming, an expert is often needed for sufficient accuracy and can sometimes raise safety
28 issues for humans. These disadvantages reduce the extent to which manual insect monitoring
29 is applied and therefore its accuracy, which finally results in significant crop loss due to damage
30 caused by pests. With the term ‘surveillance’ we intend to push the monitoring idea to
31 unprecedented levels of information extraction regarding the presence, time-stamping
32 detection events, species identification and population density of targeted insect pests. Insect
33 counts as well as environmental parameters that correlate with insect’s population development

34 are wirelessly transmitted to the central monitoring agency in real time, are visualized and
35 streamed to statistical methods to assist enforcement of security control to insect pests. In this
36 work we emphasize on how the traps can be self-organized in networks that collectively report
37 data at local, regional, country, continental, and global scales using the emerging technology
38 of the Internet of Things (IoT).

39 This research is necessarily interdisciplinary and falls at the intersection of entomology,
40 optoelectronic engineering, data-science and crop science and encompasses the design and
41 implementation of low-cost, low-power technology to help reduce the extent of quantitative
42 and qualitative crop losses by many the most significant agricultural pests.

43 We argue that smart traps communicating through IoT to report in real-time the level of the
44 pest population from the field straight to a human controlled agency can, in the very near future,
45 have a profound impact on the decision making process in crop protection and will be
46 disruptive of existing manual practices. In the present study, three cases are investigated :
47 monitoring *Rhynchophorus ferrugineus* (Olivier) (Coleoptera: Curculionidae) using a) Picusan
48 and b) Lindgren trap, and c) monitoring various stored grain beetle pests using the pitfall trap.

49

50 INTRODUCTION

51

52 Given the urgency to increase world food production to satisfy the needs of an
53 increasing population, it is vital that we assist farmers to make decisions to mitigate high rates
54 of crop loss due to insect pests and thus implicitly increase food production. Crop losses due
55 to insect pests can be substantial and may be prevented, or reduced, by crop protection
56 measures [1-2]. Farmers rarely have the quality of information needed to make timely decisions
57 about insecticidal treatments. We attribute this case to the fact that their knowledge on when
58 and where the infestation initially occurs, what is the state of the current situation and what
59 was the effect of an applied treatment, is based on manual inspection of monitoring traps
60 deployed on a limited spatial and temporal scale. Inspectors performing visual identification
61 and counting are not always experts, confident to make reliable identification and the protocols
62 they need to follow result into compromises. Manual inspection of traps shows considerable
63 heterogeneity in geographic, and temporal coverage. Since inspection of insect traps, is
64 concentrated in a few sites, this highly aggregated distribution of information, limits our ability
65 to understand the large-scale dynamic of the phenomenon and to benefit from its knowledge.

66 From both a conceptual and management perspective, there is an urgent need to
67 increase the information flow from the field-traps straight to a central monitoring agency over
68 large areas and through time as well as to visualize and summarize this flow in a statistically
69 reliable sense. To this end, we develop technologies to improve, expand and automate global
70 monitoring of insects of economic importance to thousands of nodes around the world.

71 Innovative uses of sensors and networks targeting animals are starting to be translated
72 into new ecological knowledge [3-4]. Automatic monitoring of biodiversity [5-6] mainly in the
73 form of automated species identification of vocalizations of birds [7], bats [8], insects [9-10],
74 whales [11], amphibians [12], is a developing trend in ecology. This knowledge, however, is
75 still fragmented and isolated to small scale paradigms that neither communicate nor are
76 integrated to a universal view of biodiversity.

77 In our vision, a trap is a ‘thing’ in the IoT, i.e. a typical plastic trap augmented with a
78 sensor that records the insect’s presence upon its entrance in the trap and with wireless
79 communication capability to broadcast the sensed data. These individual entities are single
80 nodes that can possibly interact with other nodes to establish their own network or they can
81 report straight to the conventional internet highway through the ubiquitous mobile phone
82 coverage (i.e. through the GPRS functionality). We are currently investigating a multitude of

83 sensors to detect the insect's presence in a distributed fashion and in a cost- and power-effective
84 way. Several ways have already been identified to deal with insects' presence:

85 a) photo-interruption of either entering or falling insects in several types of traps (e.g.
86 Red-palm weevil traps, pitfall traps, funnel traps, beehives). A low power emitter of infrared
87 light and a coupled photodiode form a sheet of light covering the entrance of the trap. The flow
88 of light is interrupted from an entering insect and thus it is counted,

89 b) Analysis of the wingbeat of entering flying insects in traps (as in McPhail type and
90 mosquito traps). The flow of light is modulated by the wingbeat of the insect flying-in. The
91 wingbeat is recorded and constitutes a biometric signature of a specific species [9, 13],

92 c) Picking up their vibrations due to locomotion and feeding (chewing) in grains (only
93 for stored grain pests [10,14,15]).

94 Traps equipped with a detection sensor and wireless communication abilities have some
95 distinct advantages against manual monitoring. They can monitor insect populations 24 h a
96 day, upon their entrance to the trap, every day of the year, in dispersed nodes across a variety
97 of fields, simultaneously, and all counts and recordings can be permanently stored in a cloud
98 service. Another distinct advantage is the determination of the precise onset of an infestation.
99 The time-schedule of trips in the field for trap inspection may not coincide with the initiation
100 of a pest population increase, whereas automatic monitoring and reporting can be set in real-
101 time. Real-time reporting, to our point of view, opens new grounds in agricultural research and
102 mainly in crop protection as -besides a timely control action in response to a pest infestation-,
103 it can help in the evaluation of the impact of a control treatment (e.g. chemical spraying, release
104 of beneficial entomophagous insects etc), and therefore reschedule future actions if necessary.

105 The electronic traps can naturally include a time stamp of each insect incident and
106 formulate new services: to carry out studies that cannot be practically performed manually as
107 explained hereinafter: There have been numerous studies demonstrating the periodicity of trap
108 captures [16-21]. Some insect species appear to respond to pheromone during the daylight,
109 while others are active during night as a result of complicated mechanisms of insect physiology
110 and reproduction [22, 23]. A record including the trap location, time-date,
111 temperature/humidity each time an insect enters the trap, would provide a significant amount
112 of data that would help us understand better the chemical ecology of a pest. It is very difficult
113 to run these studies with direct observation and they are not replicated through time or across
114 sites to any great extent because of the manpower requirement.

115 Another advantage of automated insect surveillance is that long-term population and
116 distribution data for insect species of interest can be universally kept. The logging of adequate

117 historical data may help us to understand the population dynamics of the pest and use predictive
118 models to estimate statistically meaningful risks of an infestation, its evolution and the
119 possibility of future outbreaks. Finally, communication on a global scale can bring researchers
120 to work together across large distances on the same pest by navigating themselves through the
121 IoT to distant traps or receiving data summaries across all sensors in the network. Infestation
122 data at global scales can be exploited by commercial and colonial interests to forecast prices in
123 crop production.

124 The reported literature on electronic insect traps that employ optical sensors is sparse
125 [45-49]. In [20,24] Hendricks reported the first integrated synergy of a trap with electronic
126 elements with a view of transferring recorded data to a computer. The approach is interesting
127 given the means of that time. In [25,26], the authors presented a stand-alone device that would
128 count and transmit counts of a very destructive fruit pest, the oriental fruit fly, *Bactrocera*
129 *dorsalis* (Hendel)(Diptera: Tephritidae), from the field and is in-line with our research efforts.

130 Our approach aims at reducing the necessity of human-in-the loop in any intermediate
131 processing stage of the workflow and reserve the need of expert entomologists only for the
132 highest abstraction layer: the interpretation of the data received (trap catches) normally
133 presented in the form of georeferenced maps and the corresponding decision making and action
134 planning based on pest Economic Injury Levels (EIL) population thresholds that are applied in
135 the frames of Integrated Pest Management (IPM). Our work focuses on leveraging the quality
136 of service of remote surveillance of pest populations to a better and cost-effective status than
137 sparsely applied human inspection.

138

139

140 MATERIALS & METHODS

141

142 We have embedded our electronics in traps monitoring population of insect pests of
143 olive, cotton, grapes, fruit trees, stored cereals and pulses, pine trees and palm plantations.
144 Mosquitoes and beehives are a category of their own that have also been integrated with our
145 framework. Our approach is not constrained to a specific brand or type of traps. However, we
146 need types of traps that protect to a certain extent the exposure of the electronics and have a
147 shape that allows the insects to pass through a funnel entrance so that they constrain their
148 movement pattern in order to be counted and/or recorded. In this work, we provide field results
149 for three traps: The Picusan (SANSAN Prodecing SL, Valencia, Spain), the Pitfall (EDIALUX,
150 Bornem, Belgium) and the Lindgren (Forestry Distributing, Inc., Boulder, CO) type, as the
151 evaluation of traps in the field is a laborious process. In time, results of all common trap types
152 will be presented in detail.

153 The philosophy in all trap types is common: There is always an emitter of light opposite to a
154 receiver of light and the path of the incoming insect stands in between. The interruption of the
155 path of light effects a voltage drop that exceeds a threshold and constitutes a count. The
156 technology that does not analyse wingbeat (e.g. as in the case of fruit flies and mosquitoes) is
157 simpler than the one that senses only the presence of insects. All three traps presented in this
158 study sense the presence of an incoming insect. Both receiving and emitting elements are
159 deployed as 1D linear arrays that are long enough to cover the entrance to the trap. There are
160 small variations among these three different traps mainly due to the size of the insects and the
161 peculiarities of the trap (see Table 1). Picusan is custom made for *R. ferrugineus* that is a
162 relatively large insect whereas the pitfall trap needs to count insects possibly smaller than 1mm.
163 In the Picusan and Lindgren traps the light field is composed of 5 parallel light-beams (5 LEDs
164 with a small emitting angle of ± 10 degrees) opposite to 5 photodiodes connected in row.
165 Therefore, if there is an interruption of light in any of the 5 beams no light passes through the
166 photodiodes and the insect is detected by comparing the voltage to a threshold. The distance of
167 one beam from the consecutive one is 7 mm. Therefore, it detects insects larger than 6 mm. In
168 the pitfall case, an insect can enter from any hole of the lid. In order to avoid blind spots in the
169 field of view we need to have a uniform field sensing insect sizes ≤ 0.5 mm. We used 16 LEDs
170 and the same number of photodiodes and both emitter and receiver have a light diffuser. All
171 sensors are operated in pulse mode i.e. there is no constant flow of light from emitter to receiver
172 but a pulse train is emitted. This is the key element to long-lasting operation and this is analysed
173 in detail in [9].

174

175 Table 1. Optical elements of the sensor embedded in the insect traps.

176

Trap Type	# LEDs/ photodiodes	Diffuser
Picusan	5	NO
Pitfall	16	YES
Lindgren	5	NO

177

178

179

180 Fig. 1. Traps reporting recordings and counts from the regional level to a central agency.

181 Central agencies report to a global level at continental and/or global level.

182 In Fig. 1 we envisage how insect surveillance can be applied at local, regional, country,
183 continental, and global scales using the emerging technology of IoT. Local networks become
184 themselves nodes in larger networks until reaching global coverage.

185 The detected events due to photo-interruption need to be combined with the use of
186 species specific pheromone attractants. This is due to the fact that photo-interruption senses the
187 presence of the insect during its entrance to the trap but is blind to species identity. Therefore,
188 we must ensure that in the vast majority of cases the insect is attracted by a species specific
189 pheromone. The actual power sufficiency of these traps is 3 months expandable to 12 months
190 with additional batteries. Although the human presence is again vital in order to replace
191 pheromone lures it is possible to greatly reduce the visiting frequency at least to a bimonthly
192 basis and simplify the attendance work during trap check. On the other hand, devices equipped
193 with sensors that can analyse the wingbeat, besides sex-pheromones, can use food baits as well,
194 as the wingbeat is a biometric information that can be used as evidence to identify species in
195 an automated fashion.

196

197 Trap type #1 : The Picusan trap

198 The red palm weevil, *Rhynchophorus ferrugineus* (Olivier) (Coleoptera: Curculionidae) is the
199 most dangerous and devastating pest of the date palm as it can weaken and eventually kill the
200 tree [27]. Given the importance of the red palm weevil, efforts are being made to develop new
201 monitoring tools, such as the deployment of a new black pyramidal trap design (Picusan trap
202 Fig. 2) [28]. Traps of this type, containing aggregation pheromones of *R. ferrugineus* are
203 modified to include an optical sensor that senses adult pests falling into the trap. Counts, as
204 well as other environmental parameters are transmitted straight to internet through GPRS. The
205 aggregation pheromone 4-methyl-5-nonanol or ferrugineol with ethyl acetate, was mixed with
206 a combination of food lures and is specialized to attract *R. ferrugineus*, capturing adults of both
207 sexes [28]. Though it did not occur in our experiments, it is known that another species very
208 similar to *R. ferrugineus*, the sisal weevil *Scyphophorus acupunctatus* (Gyllenhal) (Coleoptera:
209 Curculionidae) may be attracted to the specific pheromone and enter into the trap [29]. This
210 insect is an important pest of agave, yucca, and various other plants of the families *Agavaceae*
211 and *Dracennaceae* [30]. In such a case, the trap would not discern the entrance of *S.
212 acupunctatus* against *R. ferrugineus*. In case of palms absence in the monitored area, the same
213 smart trap configuration can be used for *S. acupunctatus*.

214 Fig. 2. (Left) Picusan trap, (Right): Embedding the sensor at the end of the inverted funnel.

215

216 Trap type #2 : The Pitfall trap

217 Pitfall traps are typically used for monitoring several species of stored-grain beetles
 218 (Coleoptera) in silos, warehouses and processing plants [31]. They are placed inside the bulk
 219 grain near the external surface (Fig. 3). The cone-shaped device is made of clear plastic and
 220 has a removable perforated lid, which allows insects to enter, but not escaping. As in the case
 221 of the funnel trap, various pheromone lures targeting different species may be used.

222

223 Fig. 3. Various pictures of the pitfall trap inside grain. A sheet of light covers the lid entrance.
 224 Photo interruption due to a falling insect produces a voltage variation that is turned to a count.
 225 Counts as well as environmental parameters and a time stamp are transmitted wirelessly and
 226 uploaded to server.

227

228 Many destructive beetle pests of stored grain may be monitored by this type of trap: the flour
 229 beetles *Tribolium* spp. (Tenebrionidae), the grain weevils *Sitophilus* sp. (Curculionidae), the

230 lesser grain borer *Rhyzopertha dominica* (F.) (Bostrichidae), the cigarette beetle *Lasioderma*
231 *serricorne* (F.) (Anobiidae) and the khapra beetle *Trogoderma granarium* Everts
232 (Dermestidae) [32-35].

233 For the purposes of our study, a prototype equipped with a linear array of five Light Emitting
234 Diodes (LED) opposite to 5 receiving photodiodes was evaluated. The prototype trap was put
235 in a large plastic barrel (120lt) with 80 Kgr maize. Adult beetles of various species were
236 collected from laboratory rearings and transferred to the experimental barrel. In order to ensure
237 trap catches a large number of adult beetles was used resulting in an infestation level of more
238 than 15 adults per Kgr maize. Caught beetle adults were checked and counted after 24h and
239 were compared with the counts from the electronic system.

240

241 Trap type #3 : The Lindgren trap

242 Pine Beetle Lindgren Trap (Fig. 4) is a form of a funnel trap. Lindgren pheromone traps are
243 widely used to attract the pine beetle *Dendroctonus ponderosae* Hopkins (Coleoptera:
244 Curculionidae) [36,37]. They are used either as monitoring traps or for mass trapping to reduce
245 the populations of pine beetles.

246 Fig. 4. Pine Beetle Lindgren Traps (Left): Sensor attached at the end of the funnel, (Middle)
247 Full deployment of the trap. (Right): Final placement. Electronics and sensors located at the
248 top of the bucket attached to the end of the funnels.

249 They come with different number of funnels that form a tree-mimicking silhouette. We have
250 used them successfully to count *R. ferrugineus* beetles as well. Same attractants with the
251 Picusan trap were used.

252

253 RESULTS & DISCUSSION

254

255 Results from the evaluation of the prototype traps are presented in Table 2 and Fig 5.
256 As it is clearly concluded from our data, our system is very accurate, reaching 98-99% accuracy
257 on automatic counts compared with real detected numbers of adult beetles in each trap. The
258 accuracy of our system in detecting adult beetle catches is also shown by the very high ($r >$
259 0.99 in all cases) correlation between the generated signals and actual numbers of insects
260 caught in the trap.

261

262

263 Table 2. Number of actually detected (manual inspection) and automatically counted
 264 (electronic sensors) adult beetles in three trap types.
 265

Trap type	Species	Actually Detected	Automatically Counted	Correlation coefficient (r)
<i>Picus</i> ¹	<i>R. ferrugineus</i>	37	35	
		42	42	0.9966
		59	58	
	<i>C. ferrugineus</i>	59	62	
		45	49	0.9912
		67	74	
<i>Pitfall</i> ²	<i>O. surinamensis</i>	31	34	
		11	12	0.9978
		24	25	
	<i>R. dominica</i>	15	15	
		23	24	0.9976
		24	26	
<i>Lindgren</i> ³	<i>S. oryzae</i>	21	21	
		32	36	0.9900
		29	30	
	<i>T. confusum</i>	13	13	
		26	30	0.9912
		34	36	
	<i>R. ferrugineus</i>	14	14	
		45	49	0.9999
		67	74	

266 Monitoring period from 2016-09-01 to 2016-12-05; ¹ Number of traps: 3; ² Single trap inside
 267 grain mass, insect density >15 adults / Kgr grain; ³ Single trap hanged from a wall externally
 268 to a lab

269

270

271

272

273

274 Fig. 5. Accuracy of the automatic counting in comparison with actual detection, of all species
 275 (up) and for each species separately (down). The values of the linear regression coefficient R^2
 276 prove that our system is 98-99% accurate (when detected and counted values are the same then
 277 R^2 equals to 1)

278

279

280

281 Only a few remote pest monitoring systems, based on wireless communication
282 technology, have been evaluated in the past, with varying accuracy. The oriental leafworm
283 moth *Spodoptera litura* (Fabricius) (Lepidoptera: Noctuidae) was effectively monitored by an
284 ecological monitoring system combining GSM transmission technologies with mechatronics
285 with accuracy ranging from 71 to 100 [38]. Average accuracies of 78.1% [25], 96.3% [39] and
286 94.9 % [40] were demonstrated by automatic monitoring systems counting the catches of the
287 oriental fruit fly *B. dorsalis*. Other automated systems with image analysis technology also
288 proved to be reliable in detecting mainly whiteflies and moths, with accuracies ranging from
289 70 to 100% [41-45]. The accuracy of our system is higher than almost all of the
290 abovementioned monitoring systems.

291

292 DATA PROCESSING and the IoT

293

294 Though one may think that the most valuable part in a service based on a network of
295 traps is the trading of the hardware or the software it is the transmitted numbers that is actually
296 the priceless product. Granting access to a cloud service visualizing and interpreting data is a
297 business of its own. Data can be used to influence decisions, can be exchanged, hired or sold
298 and become input in predictive analytics tools whose predictions can lead to new services (e.g.
299 price prediction of food products, prediction for possible pest population outbreaks and crop
300 losses).

301 The data delivered can be decomposed to three distinct subsets:

302 a) Counts delivered on a pre-scheduled basis along with the time-stamps of each insect entrance
303 to the traps.

304 b) Environmental data (mainly humidity, temperature and GPS tag).

305 c) Wingbeat recordings uploaded to a server (in the case of McPhail and mosquito traps).

306 Once the data are collected and delivered to the server there are different levels of data
307 processing abstractions we can apply. A data-collection interface with inference based data
308 analysis provides the basis for predictive ecological models and mining of events for
309 agricultural management. In Fig. 6 we show the visualization interface that can be used for
310 streamlining data collection and management. The following mode of engagement between
311 data representations and the human expert is to set counts on maps and interpolate measurement
312 between nodes to form pest population level maps to assess the current situation and respond
313 timely with a focused localized treatment. Additionally, one can validate causal hypotheses

314 between the timing of treatments and after treatment insect counts. Moreover, the distribution
 315 of time stamps can be related to the efficacy of different attractants in the pheromone cycle of
 316 insects. Regarding the wingbeat recordings, these become a permanent record in the database
 317 and can be subjected to different feature extraction and classification practices to identify the
 318 source of the audio data at the species level. Regarding long term data abstractions, once
 319 historical data are piled up over time, they provide the basis for predictive models of
 320 infestations and outbreaks of epidemics (e.g. as in the case of mosquitoes).

Traps: Timezone Europe / Athens

321

322

323 Fig. 6. Example of insect surveillance results at the local and regional level in the case of *R.*
 324 *ferrugineus*. Note that the same framework can be used for any insect counted in pheromone
 325 traps.

326 The GPRS modem of the trap, once connected to the mobile provider, is actually capable of
327 having Internet connectivity. The trap has the domain name of the backend site embedded in
328 its EPROM and, through the GPRS modem and the mobile network that supports GPRS, makes
329 a TCP/IP connection to the webserver of the backend, via an HTTP request, essentially
330 mimicking a web browser (client). At this point, the trap inserts its data as parameters for the
331 page that it wants to access. Once the HTTP request reaches the web server, the latter receives
332 the data from the request of the trap (via the appropriate code, written in PHP) and logs the
333 information in the database.

334 The web application consists of two parts: The backend that manages the information
335 and the database in the server and a frontend that visualizes the information at the browser of
336 the user and the interface with the user. The site is based on a web hosting provider running
337 Apache, with PHP 5.5 support. The database is setup using MySQL, which is open source. The
338 backend is written in Laravel 5.1 PHP 5.5 and the frontend is written in HTML 5, making use
339 of the Angularjs Javascript and JQuery javascript Framework. The data follow the JSON
340 formalisation. The maps are provided via the Google Maps API.

341 Technological advances do not always manage to penetrate the routine practice of the
342 majority of the cultivators. To succeed in altering the habits of decades, we must offer a
343 working solution to the real needs of practitioners. Moreover, the cost of altering standard traps
344 to electronic ones must be low and the cost/benefit trade off due to their use carefully
345 calculated. In order to help assessing this ratio we report that the current production cost of an
346 insect counter as in the Pitfall trap is 65 Euros for a single device falling to 40 Euros for 100
347 traps and 32 Euros for 1000. Regarding Picusan and Lindgren the corresponding costs are 40
348 Euros falling to 26 and 19 Euros respectively (as per 26/05/2017). The power sufficiency of
349 Picusan/Lindgren trap is 3.5 months with a single 3.7/3000 mAh rechargeable Lithium battery
350 and as regards pitfall 2.5 months using a 3400 mAh battery. It is an encouraging fact that, long
351 term autonomous deployment is feasible due to low-power electronics and scheduling of
352 operations to minimize power consumption and in the long run the cost of electronics can only
353 drop.

354 Agricultural entomologists master the knowledge of their field and cannot have the
355 technical expertise of disparate and interdisciplinary knowledge requiring the cooperation of
356 diverse technologies. These technologies include wireless communication networks, security
357 of data, quality control protocols, data processing and management. Therefore, the whole
358 sensor-network setup must be offered by engineers and data scientists to stakeholders as a 'plug
359 and play' installation. The collaboration of agricultural entomologists is mainly needed for the

360 species identification of trapped insects, assessing the accuracy of the whole set-up and
361 translating summarized information to ecological knowledge.

362 Trained practitioners and qualified experts return high quality data but are not easily
363 available to attain field-data from traps. Even when some kind of sensing modality is available,
364 they are often unwilling to spend their time and expertise to carry out detrimental tasks as
365 inspecting endless information queues (e.g. microphone recordings or pictures from cameras).
366 Unattended remote surveillance solves the problem of collecting sparse manual data and
367 overcomes scalability limitations, but produces large quantities of data that can prove of limited
368 use if not sorted out and summarized automatically. In this section we clarify what information
369 we can obtain from a collection of distributed trap nodes and if the visualization and aggregated
370 indices of such data suffice to augment policy decisions.

371 In this work we establish a connection between sensors' readings, pest population level
372 and predictive models to ensure timely and effective control treatments. Acceptance of
373 automated monitoring practices will raise doubts about the reliability of data collected without
374 expert's intervention. The optoelectronics need to reduce their errors in order to reach
375 comparable analysis to that done by experts. A long-term field operation is needed in order to
376 identify the cause of possible false alarms and detection misses and sensor failures in
377 sometimes harsh conditions before applying the output of such data-collection schemes to
378 modeling and policy. To give a lucid example, we discovered a source of false alarms in the
379 Picusan trap after a rainstorm where some raindrops entered through the top entrance of the
380 trap. This was not observed during the operation of a trap from spring to fall and was observed
381 only during winter time. This problem was easily solved by modifying the top of the trap, but
382 was only solved because of the long-term deployment that indicated a problem. Our perspective
383 is that the potential for big data collected from the collaboration of nodes at large spatial scales
384 can overcome random local errors and this combined with their streaming to data visualization
385 tools is sufficient to grant an advantage over the current manual practices. We believe current
386 results are sufficient to warrant further exploration on insect surveillance. Insect surveillance
387 can provide insight into the effects of insecticide efficiency, reduce its use and shape our
388 understanding of pest problems in agriculture. Provided we continue improving the reliability
389 of devices and services and perform real-field, long-term trials we will upgrade automated
390 practices to the level of being indispensable to farmers, policy makers and stakeholders.

391

392 ACKNOWLEDGEMENT

393

394 We used Picusan traps from Sansan ®, pitfall traps from EDIALUX Belgium and Lindgren
395 from Forestry Distributing, Inc. This research has been partially funded from the European
396 Union's FP7 Program managed by REA—Research Executive Agency
397 (<http://ec.europa.eu/research/rea>) under grant agreement n°605073 project ENTOMATIC.

398

399

400 REFERENCES

401

- 402 1. Oerke, E.-C. 2006. Crop losses to pests. *Journal of Agricultural Science* 144, 31–43.
- 403 2. Oerke, E. C., Dehne, H. W., Schönbeck, F., & Weber, A. (2012). Crop production and
404 crop protection: estimated losses in major food and cash crops. Elsevier.
- 405 3. Porter JH, Nagy E, Kratz TK, Hanson P. (2009). New eyes on the world: advanced
406 sensors for ecology. *BioScience* 59:385-397.
- 407 4. Chen, Chia-Pang, Chuang, Cheng-Long, Jiang, Joe-Air. Ecological Monitoring Using
408 Wireless Sensor Networks—Overview, Challenges, and Opportunities,
409 http://dx.doi.org/10.1007/978-3-642-32180-1_1, Book Section in *Advancement in
410 Sensing Technology*, V. 1, Smart Sensors, Measurement and Instrumentation, eds
411 Mukhopadhyay, Subhas Chandra, Jayasundera, Krishanthi P, Springer Berlin
412 Heidelberg, 2013, pp. 1-21.
- 413 5. Aide TM, Corrada-Bravo C, Campos-Cerqueira M, Milan C, Vega G, Alvarez R.
414 (2013). Real-time bioacoustics monitoring and automated species identification. *PeerJ*
415 1:e103 <https://dx.doi.org/10.7717/peerj.103>
- 416 6. Chesmore D. (2004). Automated bioacoustic identification of species. *Anais da
417 Academia Brasileira de Ciências* 76:436-440
- 418 7. Potamitis I (2014). Automatic Classification of a Taxon-Rich Community Recorded in
419 the Wild. *PLoS ONE* 9(5): e96936. doi:10.1371/journal.pone.0096936
- 420 8. Walters CL, et al. (2012). A continental-scale tool for acoustic identification of
421 European bats. *Journal of Applied Ecology* 49:1064-1074
- 422 9. Potamitis, I.; Rigakis, I.; Tatlas, N.-A. Automated Surveillance of Fruit
423 Flies. *Sensors* 2017, 17, 110.
- 424 10. Potamitis I., Ganchev T., Kontodimas D., On Automatic Bioacoustic Detection of
425 Pests: The Cases of *Rhynchophorus ferrugineus* and *Sitophilus oryzae*, *Journal of
426 Economic Entomology*, Aug 2009, 102 (4) 1681-1690; DOI:10.1603/029.102.0436
- 427 11. Mellinger, David K. and Clark, Christopher W., Recognizing transient low-frequency
428 whale sounds by spectrogram correlation. *The Journal of the Acoustical Society of
429 America*, 107, 3518-3529 (2000), doi:<http://dx.doi.org/10.1121/1.429434>
- 430 12. Oscar E. Ospina, Luis J. Villanueva-Rivera, Carlos J. Corrada-Bravo, and T. Mitchell
431 Aide (2013). Variable response of anuran calling activity to daily precipitation and
432 temperature: implications for climate change. *Ecosphere*. <http://dx.doi.org/10.1890/ES12-00258.1>

434 13. Chen, Y., Why, A., Batista, G., Mafra-Neto, A., & Keogh, E. (2014). Flying insect
435 classification with inexpensive sensors. *Journal of insect behavior*, 27(5), 657-677.

436 14. Eliopoulos, P. A., Potamitis, I., Kontodimas, D. C., & Givropoulou, E. G. (2015).
437 Detection of Adult Beetles Inside the Stored Wheat Mass Based on Their Acoustic
438 Emissions. *Journal of economic entomology*, 108(6), 2808-2814.

439 15. Eliopoulos, P.A., I. Potamitis & D.Ch. Kontodimas (2016). Estimation of population
440 density of stored grain pests via bioacoustic detection. *Crop Protection* 85 : 71-78

441 16. Aldryhim, Y. N., & Ayedh, H. Y. A. (2015). Diel flight activity patterns of the red palm
442 weevil (Coleoptera: Curculionidae) as monitored by smart traps. *Florida Entomologist*,
443 98(4), 1019-1024.

444 17. Fanini, L., Longo, S., Cervo, R., Roversi, P. F., & Mazza, G. (2014). Daily activity and
445 non-random occurrence of captures in the Asian palm weevils. *Ethology Ecology &*
446 *Evolution*, 26(2-3), 195-203.

447 18. Murchie, A. K., Burn, D. J., Kirk, W. D. J., & Williams, I. H. (2001). A novel
448 mechanism for time-sorting insect catches, and its use to derive the diel flight
449 periodicity of brassica pod midge *Dasineura brassicae* (Diptera: Cecidomyiidae).
450 *Bulletin of entomological research*, 91(3), 199-204.

451 19. Batiste, W. C., Olson, W. H., & Berlowitz, A. (1973). Codling moth: influence of
452 temperature and daylight intensity on periodicity of daily flight in the field. *Journal of*
453 *Economic Entomology*, 66(4), 883-892.

454 20. Hendricks, D. E. (1985). Portable electronic detector system used with inverted-cone
455 sex pheromone traps to determine periodicity and moth captures. *Environmental*
456 *Entomology*, 14(3), 199-204.

457 21. Kondo, A., Sano,T., Tanaka, F. (1994). Automatic record using camera of diel
458 periodicity of pheromone trap catches. *Jap. J. Appl. Entomol. Zool.*, 38:197–199

459 22. Engelmann, F. (1970). The physiology of insect reproduction. *Int. Ser. Monogr. pure*
460 *appl. Biol.*, 44.

461 23. Saunders, D. S. (2002). *Insect clocks*. Elsevier.

462 24. Hendricks D. E. Electronic system for detecting trapped boll weevils in the field and
463 transferring incident information to a computer. *Southwestern Entomologist* 1990 Vol.
464 15 No. 1 pp. 39-48.

465 25. Joe-Air Jiang, Chwan-Lu Tseng, Fu-Ming Lu, En-Cheng Yang, Zong-Siou Wu, Chia-
466 Pang Chen, Shih-Hsiang Lin, Kuang-Chang Lin, Chih-Sheng Liao, A GSM-based
467 remote wireless automatic monitoring system for field information: A case study for

468 ecological monitoring of the oriental fruit fly, *Bactrocera dorsalis* (Hendel), Computers
469 and Electronics in Agriculture, Volume 62, Issue 2, July 2008, Pages 243-259, ISSN
470 0168-1699, <http://dx.doi.org/10.1016/j.compag.2008.01.005>.

471 26. Toshinori Okuyama, En-Cheng Yang, Chia-Pang Chen, Tzu-Shiang Lin, Cheng-Long
472 Chuang, Joe-Air Jiang, Using automated monitoring systems to uncover pest population
473 dynamics in agricultural fields, Agricultural Systems, Volume 104, Issue 9, 2011, Pages
474 666-670, ISSN 0308-521X, <http://dx.doi.org/10.1016/j.agsy.2011.06.008>.

475 27. Faleiro, J. R. (2006). A review of the issues and management of the red palm weevil
476 *Rhynchophorus ferrugineus* (Coleoptera: Rhynchophoridae) in coconut and date palm
477 during the last one hundred years. International journal of tropical Insect Science,
478 26(03), 135-154.

479 28. Vacas, S., Primo, J., & Navarro-Llopis, V. (2013). Advances in the use of trapping
480 systems for *Rhynchophorus ferrugineus* (Coleoptera: Curculionidae): traps and
481 attractants. *Journal of economic entomology*, 106(4), 1739-1746.

482 29. Ruiz-Montiel, C., García-Coapio, G., Rojas, J. C., Malo, E. A., Cruz-López, L., Del
483 Real, I., & González-Hernández, H. (2008). Aggregation pheromone of the agave
484 weevil, *Scyphophorus acupunctatus*. *Entomologia experimentalis et applicata*, 127(3),
485 207-217.

486 30. Aguilar, J. F. S., Hernández, H. G., Vázquez, J. L. L., Martínez, A. E., Mendoza, F. J.
487 F., & Garza, Á. M. (2001). *Scyphophorus acupunctatus* Gyllenhal, plaga del agave
488 tequilero en Jalisco, México.

489 31. Reed, C. R., Wright, V. F., Mize, T. W., Pedersen, J. R., & Evans, B. J. (1991). Pitfall
490 traps and grain samples as indicators of insects in farm-stored wheat. *Journal of*
491 *Economic Entomology*, 84(4), 1381-1387.

492 32. Toews, M. D., & Nansen, C. (2012). 21 Trapping and Interpreting Captures of Stored
493 Grain Insects. *Stored Product Protection*, 243.

494 33. White, N. D. G., Arbogast, R. T., Fields, P. G., Hillmann, R. C., Loschiavo, S. R.,
495 Subramanyam, B., Throne, J.E. & Wright, V. F. (1990). The development and use of
496 pitfall and probe traps for capturing insects in stored grain. *Journal of the Kansas*
497 *Entomological Society*, 506-525.

498 34. Neethirajan, S., Karunakaran, C., Jayas, D. S., & White, N. D. G. (2007). Detection
499 techniques for stored-product insects in grain. *Food Control*, 18(2), 157-162.

500 35. Aulicky, R., Stejskal, V., Kucerova, Z., & Trematerra, P. (2016). Trapping of internal
501 and external feeding stored grain beetle pests with two types of pitfall traps: a two-year
502 field study. *Plant Protection Science*, 52(1), 45-53.

503 36. Lindgren, B. S. (1983). A multiple funnel trap for scolytid beetles (Coleoptera). *The
504 Canadian Entomologist*, 115(03), 299-302.

505 37. Bentz, B. J. (2006). Mountain pine beetle population sampling: inferences from
506 Lindgren pheromone traps and tree emergence cages. *Canadian Journal of Forest
507 Research*, 36(2), 351-360.

508 38. Shieh, J. C., Wang, J. Y., Lin, T. S., Lin, C. H., Yang, E. C., Tsai, Y. J., & Jiang, J. A.
509 (2011). A GSM-based field monitoring system for *Spodoptera litura* (Fabricius).
510 *Engineering in agriculture, environment and food*, 4(3), 77-82.

511 39. Liao, M. S., Chuang, C. L., Lin, T. S., Chen, C. P., Zheng, X. Y., Chen, P. T., ... &
512 Jiang, J. A. (2012). Development of an autonomous early warning system for
513 *Bactrocera dorsalis* (Hendel) outbreaks in remote fruit orchards. *Computers and
514 electronics in agriculture*, 88, 1-12.

515 40. Deqin, X., Qiumei, Y., Junqian, F., Xiaohui, D., Jianzhao, F., Yaowen, Y., & Yongyue,
516 L. (2016). A multi-target trapping and tracking algorithm for *Bactrocera Dorsalis* based
517 on cost model. *Computers and Electronics in Agriculture*, 123, 224-231.

518 41. Xia, C., Lee, J. M., Li, Y., Chung, B. K., & Chon, T. S. (2012). In situ detection of
519 small-size insect pests sampled on traps using multifractal analysis. *Optical
520 Engineering*, 51(2), 027001-1.

521 42. Boissard, P., Martin, V., & Moisan, S. (2008). A cognitive vision approach to early pest
522 detection in greenhouse crops. *computers and electronics in agriculture*, 62(2), 81-93.

523 43. Ding, W., & Taylor, G. (2016). Automatic moth detection from trap images for pest
524 management. *Computers and Electronics in Agriculture*, 123, 17-28.

525 44. López, O., Rach, M. M., Migallon, H., Malumbres, M. P., Bonastre, A., & Serrano, J.
526 J. (2012). Monitoring pest insect traps by means of low-power image sensor
527 technologies. *Sensors*, 12(11), 15801-15819.

528 45. Guarnieri, A., Maini, S., Molari, G., & Rondelli, V. (2011). Automatic trap for moth
529 detection in integrated pest management. *Bulletin of Insectology*, 64(2), 247-251.

530 46. Douglas E. Norris (2016) The PREMONITION Trap: First Field Trials of a Robotic
531 Smart Trap for Mosquitoes with Species Recognition. 47th ANNUAL CONFERENCE
532 OF SOCIETY FOR VECTOR ECOLOGY ANCHORAGE, ALASKA, SEPTEMBER
533 11 – 15, 2016

534 47. Ma, J., Zhou, X., Li, S., Li, Z. (2011) Connecting Agriculture to the Internet of Things
535 through Sensor Networks. u: 2011 International Conference on Internet of Things and
536 4th International Conference on Cyber, Physical and Social Computing, 184 – 187

537 48. Yun Shi, Zhen Wang, Xianfeng Wang, Shanwen Zhang XiJing University, Xi'an
538 Shanxi, Internet of Things Application to Monitoring Plant Disease and Insect Pests
539 China International Conference on Applied Science and Engineering Innovation (ASEI
540 2015)

541 49. Raheela Shahzadi, International Journal of Advanced Computer Science and
542 Applications, Vol. 7, No. 9, 2016. Internet of Things based Expert System for Smart
543 Agriculture, (IJACSA).

544