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Abstract: This paper presents new above-ground biomass (AGB) and biomass components
equations for seventeen forest species in the temperate forests of northwestern Mexico. A data set
corresponding to 1336 destructively sampled oak and pine trees was used to fit the models.
Generalized method of moments was used to simultaneously fit systems of equations for biomass
components and AGB, to ensure additivity. Additionally, the carbon content of each tree
component was calculated by the dry combustion method, in a TOC analyser. The fitted equations
accounted for on average 91, 83, 84 and 78% of the observed variance in stem wood and stem bark,
branch and foliage biomass, respectively, whereas the total AGB equations explained on average
93% of the total observed variance in AGB. The inclusion of & or d%1 as additional predictor in the
d-only based equations systems slightly improved estimates of stem wood, stem bark and total
above-ground biomass, and greatly improved the estimates produced by the branch and foliage
biomass equations. The fitted equations were used to estimate AGB stocks at stand level from a
database on growing stock from 429 permanent sampling plots. Three machine-learning
techniques were used to model the estimated stand level AGB and carbon contents; the selected
models were applied to map the AGB and carbon distributions in the study area, which yielded
mean values of 129.84 Mg ha' and 63.80 Mg ha, respectively.

Keywords: aboveground biomass; GMM; allometry; biomass allocation; machine learning technique

1. Introduction

Better knowledge of carbon stocks and fluxes is needed to understand the current state of the
carbon cycle and how it might evolve with changing land use and climatic conditions [1]. This has
led to an increased interest in estimating forest biomass for both practical forestry purposes and
scientific purposes. Tree biomass is an important component of the carbon pool in forests, and it can
be estimated by using biomass expansion factors [2] or by relating biomass functions to tree-level
data obtained in forest inventories [3]. In both cases, generic biomass functions are used to quantify
the carbon in forests [4] because they improve the accuracy in carbon accounting systems and thus
allow accurate planning of whole tree and residual biomass utilization for bioenergy production.
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Temperate forests occupy 32 330 508 ha in Mexico, which represents 17 per cent of the country.
These are the richest ecosystems in Mexico with some 7000 plant species [5], of which ~150 are
species of pines and 170 of oaks, and these represent over 50 per cent of all known pine and oak
species [6]. Durango is the most important forestry state in Mexico, with 10.5 million ha of forest
cover. Timber production in the state is 1.9 million m? per year, which represents 32.8% of the
national forest production [7].

Mexico is one of the largest emitters of CO2 by deforestation and contributes with 1.6 per cent of
global emissions [8], mainly from temperate and tropical forests (12.9 and 54.1 Mt C year’,
respectively) [9]. Thus, most of the states in Mexico are implementing action plans for mitigating the
effects of climate change and for accessing economic incentives favoring carbon sequestration in
forests. The role of temperate forests in Mexico is important because of their potential to accumulate
C and emit large amounts of CO: into the atmosphere; however, the lack of sets of species-level
biomass equations for oak and pine species growing in these forests, in addition to equations that
incorporate aspects of forest structure that vary significantly at regional scales is required [10], so
that species and site-specific biomass equations must therefore be developed. Initiatives such as
REDD+ (Reducing Emissions from Deforestation and Forest Degradation and enhancement of
carbon stocks) are important efforts aimed at combating climate change; however, for effective
implementation of such mechanisms accurate estimation and monitoring AGB and associated
carbon stocks in forests is first required [11].

The objectives of the present study were: (i) to develop species-specific systems of additive
equations for predicting total above-ground biomass; and (ii) to model the forest biomass and
carbon in the temperate forests in north-western Mexico by using remote sensing Landsat-5 TM
imagery, terrain parameters and data from permanent research plots.

2. Materials and Methods

2.1 Study area

The study was conducted in the temperate uneven-aged and multi-species forest of Durango
(22°2049” to 26°46'33” N; 103°46'38” to 107°11'36” W), which occupies about 23% of the Sierra
Madre Occidental ecosystem (Figure 1). The elevation above sea level varies between 363 and 3200
m (average 2264 m). Precipitation ranges from 443 to 1452 mm, with an annual average of 917 mm,
whereas the mean annual temperature varies from 8.2 to 26.2 °C, with an annual average of 13.3 °C.
The predominant forest types are pine and uneven-aged pine-oak, with one or two pine species
(usually P. cooperi and P. durangensis) dominating the overstorey and Q. sideroxyla dominating the
understorey [12].
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Figure 1. Location of the study area. Triangles indicate the location of the 429 permanent sampling
plots.

2.2 Biomass data

Biomass estimates for stem wood, stem bark, branches and foliage were obtained from 1336
destructively sampled trees of 17 tree species: Pinus cooperi, P. durangensis, P. engelmannii, P.
leiophylla, P. herrerae, P. teocote, P. lumholtzii, P. strobiformis, P. oocarpa, P. douglasiana, P. michoacana,
Juniperus depeanna, Arbutus bicolor, Quercus sideroxyla, Q. rugosa, Q. durifolia and Q. crassifolia. The P.
douglasiana and P. michoacana trees were considered together in order to improve the model fit. A
general equation for each biomass component for all pines and all oaks trees was also developed.

The fieldwork for aboveground biomass measurement included tree selection, carrying out
standing measurements, felling trees, collecting dimensional data, cutting and separating the tree
components and weighing fresh components of each biomass component on site. Trees were
sampled in 5 cm diameter classes, from 5 cm until the maximum diameter found in the area. The
number of trees sampled varied from a minimum of 30 trees in the case of P. douglasiana to a
maximum of 130 trees of P. durangensis and Q. crassifolia. Diameter at breast height (d) and total
height (1) were measured in each sample tree.

The following biomass components were considered: stem wood, stem bark, branches
(including both wood and bark) and foliage (needles/leaves). For each felled tree, stem diameter
outside bark was measured at 0.3, 0.6, 1.3 and thereafter every 2.5 m along the stem to take into
account variations in moisture content along the stem. The green weight of stem and branches was
determined by weighing the logs and branches in the field by placing them on a 1000 kg balance
(precision 100 g). Foliage was totally separated from the trunk and weighed on an analytical balance
(precision 1 g). A disk of about 5 cm thick was cut from each log, and representative samples of
branches and needles/leaves were weighed in the field (fresh weight) before being transported to the
laboratory where they were oven-dried at 70-85 °C to constant weight (dry weight, measured to the
nearest 0.1 g). On the basis of the ratio of dry biomass to fresh biomass, the biomass of each tree
component was calculated and then summed to produce the total AGB of each tree sampled. The
carbon content of each tree component was determined by the dry combustion method, in a TOC
analyzer. The number of observations used for tree biomass estimations and the basic description of
the tree biomass components data for each species are summarized in Table 1.
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Table 1. Summary statistics of the felled trees and the main aboveground biomass components used

to develop the biomass equations.

Speci Variables Biomass components

pecies (1) d h W W Wir Wy Wi
Max 523 280 15865 1010 3178 288 18338

Pins cooperi (103) Min 55 42 23 0.3 15 0.2 41
Mean 289 171 3975 306 972 125  537.8
SD 109 50 3460 237 814 74 4443
Max 445 298 10275 892 3120 384  1319.0

. Min 87 6.9 8.9 13 3.0 0.4 14.4
P. durangensis (130) Mean 259 166 2692 372 1066 118 42438
SD 8.5 44 2109 234 675 82 2945
Max 518 278 18250 443 3083 304 20247

P, engelmani @9) Min 65 3.8 6.0 0.3 0.5 0.2 6.9
Mean 277 150 5075 185 1070 118 6447
SD 9.4 5.4 217 115 589 69 4795
Max 553 292 11298 897 3920 218 16146

. Min 84 5.4 57 0.5 11 0.4 7.7
P-leiophylla (84) Mean 296 166 3295 232 1496 7.4 509.7
SD 120 54 2786 208 1113 57 402.6
Max 464 310 10569 728 1394 318 12004

Min 5.0 52 4.0 0.3 0.8 0.4 54
P herrerae (97) Mean 278 163 3543 203 494 136 4376
SD 9.2 49 2730 139 340 86 319.2
Max 450 247 7893 479 1613 348 9750

P teocote (81) Min 100 45 32 0.3 11 0.6 52
Mean 296 156 2889 166 505 122 3682
SD 9.4 40 207.6 122 383 7.9 261.7
Max 420 249 8322 376 89 370 9815

) Min 5.0 3.6 2.9 0.2 0.4 0.5 4.0
P- lumholtzii (35) Mean 224 147 2363 107 320 117  290.7
SD 8.6 43 209.7 85 271 102 2527
Max 490 266 12401 376 2113 404 15011

o Min 5.0 6.3 1.8 0.3 15 0.4 40
P strobiformis (98) Mean 271 162 2929 179 731 172 4013
SD 9.8 48 2772 9.8 562 112 3544
Max 357 187 4489 495 1731 380 6475

P oocarpa (37) Min 75 32 6.0 0.6 3.0 2.0 115
Mean 21.6 129 1534 196 534 168 2433
SD 6.3 3.6 109.6 124 420 98 167.3
Max 390 256 7184 608 1242 312 8841

. Min 89 56 27 0.5 11 0.3 46
P. douglasiana (30) Mean 250 175 2619 218 405 124 3366
SD 7.2 44 1749 152 295 92 224.9
Max 421 247 8667 562 1372 398 10735

P, michoscana (32 Min 129 135 488 40 129 42 69.9
Mean 313 203 4166 274 646 214 5300
SD 8.2 3.0 2325 135 366 9.2 285.6
Max 437 215 3570 218 563 275 4563

uniperus deppeana @y M 100 43 37 0.5 1.2 0.8 6.2
Mean 329 114 1837 114 258 137 2347
SD 7.9 31 927 48 158 69 117.7
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. Variables Biomass components
Species (n)
d h Waw Wh Wor Wf Wi
Max 448 25 2361 96 2311 145 3756
. Min 79 24 38 0.2 31 0.2 72
Arbutus bicolor (49) Mean 228 89 833 34 485 54 140.6
SD 7.8 29 539 24 468 37 97.6
Max 570 248 10180 2763 3083 296  1559.0
. Min 110 63 123 33 04 0.4 16.4
Quercus sideroxyla (123) /o 307 146 2009 873 756 85 4622
SD 9.7 37 2134 907 622 67 331.9
Max 413 202 4561 1298 1320 194 6486
0 o Min 93 33 42 16 32 15 143
- rugosa (61) Mean 225 112 1072 406 511 192 2180
SD 8.1 37 958 314 334 130 1662
Max 455 221 9309 1184 4219 639 15263
L Min 7.0 54 6.4 13 21 03 102
Q. durifolia (131) Mean 272 124 3444 325 1256 251 5276
SD 8.8 35 2266 269 1096 183 3717
Max 431 188 5339 883 2746 355 8650
Min 85 6.0 143 13 11.0 1.0 334
. crassifolia (108
Q. crassifolia (108) Mean 255 112 2185 256 933 142 3515
SD 77 26 1347 187 620 82 2125

were n=number of trees, d=diameter at breast height (cm), h= total height (m), Ww= wood biomass
of stem (kg tree!), Wi= stem bark biomass (kg tree™), Wi= wood plus bark biomass of branches (kg
tree’), W= foliage (leaves/needles) biomass (kg tree), Wi= total above-ground biomass (Ww + Ws +
Wer + Wy) (kg tree?).

2.3 Procedures for developing the species-specific biomass equations

2.3.1 Basic models

We used three basic model forms as starting points for model selection (eq. 1-3).

w = ad+e; (1)
w = ad’l +¢; 2)
w = ad*he; 3)

where a, §, and y are the equation parameters, w can be total tree AGB or any of the tree
biomass components considered in the study and ¢; is the model error.

A first regression procedure was used to select the definitive tree variables for each biomass
component equation, over the linearized version of the models taking natural logarithms. The
significance level for entering and maintaining variables in the model was restricted to 0.001 [2]. In
this first step, the best model for each tree biomass component and species was chosen. A
species-specific system of equations with cross-equation constraints on the structural parameters
and cross-equation error correlation was then defined for additive prediction of tree component and
above-ground biomass [13, 14].

The species-specific biomass equation system is formulated as follows:

; 4
Wie ozl-Xf” ve 4)

d0i:10.20944/preprints201705.0178.v1
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n )
Wt= Z WZ + & t
=1
where Wi represents the tree biomass for the i-th component, Wi is the total tree AGB (i.e. the
sum of all the tree biomass components), Xj are tree variables (j = d, h, d?h), ai, fij are parameters to be
estimated in the fitting process, and ¢, ¢: are inter-correlated error terms [14].

2.3.2 Simultaneous fitting of tree biomass components and total AGB

Total tree AGB was formulated as the sum of the equations for each tree component, and the
system of equations was fitted using the Generalized Method of Moments (GMM) in the PROC
MODEL procedure of SAS/ETS® [15]. This method produces efficient parameter estimates under
potentially heteroscedastic conditions, without specifying the nature of the heteroscedasticity [16],
and thus avoids estimating the heteroscedastic error variance. Bi et al. [14] and Castedo et al. [2] state
that the GMM procedure of SAS overcomes the above mentioned problem of the linear combination
of the error terms of the tree biomass component equations by computing a generalized inverse of
the variance covariance matrix -by setting part of the matrix for whole-tree biomass to zero- and that
estimation of parameters by simultaneously fitting the biomass component equations guarantees
that AGB will be the sum of the tree component estimates.

2.3.3 Comparison of equations

Statistical and graphical analyses were used to compare the performance of the equations. The
goodness-of-fit of each biomass fraction model was evaluated using the root mean squared error
(RMSE) and the coefficient of determination (R?) (equations 6-7).

n V. 2
RMSE= M (6)
n-p
~ \2
n(y.-Y.
R2=1-LUU) (7)

- \2
n
L (YY)
where Y and ?ij are the j-th observed and predicted values of biomass for component i, Y;; is
the mean of n observed values for the same component and p is the number of parameters in the
model.

2.4 Applying the above-ground biomass equations developed

A data set from a network of 429 permanent research sampling plots (Sitios Permanentes de
Investigacion Forestal y de Suelos (SPIFyS)), distributed across the Sierra Madre Occidental in
Durango [17] was used to relate stand biomass and carbon stocks to variables obtained from remote
sensors. The total AGB in each stand was calculated by applying the developed tree-level biomass
equations (to each tree), converted into carbon content by using the carbon proportion estimated for
each component and expressed per unit area (ha). The species or group species-specific AGB models
reported by Rojas-Garcia et al. [18] were used to estimate total AGB for the tree species present in the
permanent plots and for which no biomass equations were developed in this study.

The spectral data were derived from Landsat TM5 (Thematic Mapper) satellite images obtained
on the same dates that the SPIFyS were established (2007 to 2011) and available from the National
Landsat Archive Processing System (NLAPS). The Landsat 4-5 Thematic Mapper product, level 1 of
surface reflectance (radiometrically and atmospherically corrected) was processed using the
Standard Landsat Product Generation System (LPGS) via the Landsat Ecosystem Disturbance
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Adaptive Processing System (LEDAPS) algorithm (both available at https://espa.cr.usgs.gov).
Landsat TM5 bands 1, 2, 3, 4, 5 and 7 were used; band 6 was not used, because of its thermal
characteristics [19]. Some common Vegetation Indexes (VI) and other derived parameters were
computed from the atmospherically corrected image bands: the Normalized Difference Vegetation
Index (NDVI); the Soil Adjusted Vegetation Index (SAVI) and its modification (MSAVI); the
Enhanced Vegetation Index (EVI); the Normalized Burn Ratio using bands 4 and 7 (NBR); the
difference Normalized Burn Ratio 2 (NBR2) using bands 5 and 7; and the Normalized Difference
Moisture Index (NDMI). These indices have been widely used as comprehensive indicators of the
interaction between land cover and solar radiation in the visible and near-infrared regions of the
electromagnetic spectrum [20-23].

The direct relationship between terrain variables and forest species composition, tree height
growth and other stand variables enables these forest variables to be modelled [24, 25]. First and
second order terrain parameters were thus derived from the 5x5 low pass filtered Digital Elevation
Model (DEM) of the study area with a spatial resolution of 15 m [26]. The first order terrain
parameters selected were elevation, slope, aspect, transformed aspect, profile curvature, plan
curvature and curvature, while the second order terrain parameters were terrain shape index and
wetness index. These parameters are potentially related to key features for forest stand
development, such as overall climate characteristics, insolation, evapotranspiration, run-off,
infiltration, wind exposure and site productivity [24, 27].

The sample plots were geolocated in order to extract the average pixel value with an associated
buffer of 25 m for each potential predictor. The pixel data were extracted using R statistical software
[28] and the "raster" package. Finally, a database was constructed with the mean biomass values for
each plot; the corrected bands of the Landsat-5 TM sensor (6 bands: 1, 2, 3, 4, 5 and 7), the vegetation
indexes (7 indexes) and the terrain variables derived from the DEM (9 variables).

2.5 Machine Learning Techniques (MLTs)

We compared the performance of three machine learning techniques for estimating the ABG
and carbon at stand level: (i) the non-parametric Support Vector Machine for Regression (SVM)
technique, (ii) Regression by Discretization based on Random Forest (RD-RF), and (iii) parametric
multiple linear regression (MLR).

MLR is the technique most commonly used in this kind of study [29]; furthermore, this type of
model is easy to understand and is widely used in most scientific disciplines. To select the best set of
independent variables, the model was initially built on all descriptors, and descriptors with the
smallest standardized regression coefficients were then removed step-wise from the model until no
improvement was observed in the estimate of the average prediction error given by the Akaike
information criterion [30]. On the other hand, Support Vector Machines for Regression (SVM),
originating from statistical learning theory, have become a subject of intensive study [31], as they
enable the user to deal with highly nonlinear problems [32] such as estimating complex forest
structures. These models are developed by a set of vectors that minimize the mean error. SVM are
robust in generalization, even when the training data are noisy, and are guaranteed to have a unique
global solution that is not trapped in multiple local minima [33]. SVM have proven to be useful in
remote sensing of forest environments [34, 35]. The Shevade et al. [36] modification of the Sequential
Minimal Optimization (SMO) with a polynomial kernel and a trade-off parameter value of 1 was
used for SVM ensemble. Finally, Regression by Discretization based on Random Forest (RD-RF)
employs a classifier (random forest, in this case) on a copy of the data in which the property/activity
value is discretized with equal width. The predicted value is the expected value of the mean class
value for each discretized interval (based on the predicted probabilities for each interval). In this
study, we used the random forest classification algorithm [37]. The success of this technique is based
on the use of numerous trees developed with different independent variables that are randomly
selected from the complete original set of variables. The number of bins for discretization was fixed
at 10 and the number of trees fitted was established at 100. WEKA open source software [38] was
used to implement all three techniques used.
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Several approaches can be used to test the accuracy of supervised learning algorithms. We used
the common method of k-fold cross validation. In this process, the data set is divided into k subsets.
In each application, one of the k subsets is used as the test set and the other k-1 subsets form the
training set. Error statistics are calculated across all k trials. This provides a good indication of how
well the classifier will perform on unseen data. We used k=10 and compute several standard
performance metrics to calculate the goodness-of-fit statistics for each technique.

We compared the performance of the MLTs by using the root mean squared error (RMSE), the
coefficient of determination (R?) and a paired T-test (corrected) based on Student’s t-criterion.
Finally, we used the selected MLT to generate above-ground biomass and carbon maps for the study
area.

3. Results
3.1 Tree-level biomass equations

The parameter estimates and the goodness-of-fit statistics for the tree biomass component
equations for each species are presented in Table 2. All the parameter estimates were significant at
a=0.05. Stem wood biomass and AGB estimates were the most accurate, as indicated by the R? and
RMSE values, whereas foliage and branch biomass estimates were the least accurate. The selected
equations fitted the data well and generally explained between 70 and 98% of the observed total and
per component biomass variation for all species. Nevertheless, as mentioned above, the explained
variation was lower than 70% for two of the components: branch biomass in P. engelmannii (60%) and
foliage biomass in P. herrerae (61%).

Table 2. Estimated parameters and goodness of fit statistics for the biomass equations for temperate
forest species.

Tree biomass component Goodness of fit  Tree biomass component Goodness of fit
equation R?  RMSE equation R2 RMSE
P. cooperi P. douglasiana and P. michoacana
W,, = 0.0311264>03),0-768845 098 3647 W, =0.119974>344 090  67.17
W, = 0.0113614 676006}, 074627 0.82 991 W, =0.031264"7782" 078  6.75
W, = 0.0079654" 77044y, 1347388 090 2552 W, = 0.0149824>4% 090 11.01
W = 0.0499254 12246, 6002%3 075 369  W;=0.011684""*%! 084  4.09
We=EW, 097 6167 W=IW, 092 7428
P. durangensis Juniperus depeanna
W,, = 0.012044" 7074145047 097 39.67 W, =0.012894°h 091 2834
W, = 0.01706d" 37067110922 0.87 840 W, =0.000772d*h 061 299
W, = 0.145894"64608 041109 071  36.56 W, =0.00204d*h 0.84 536
W =0.003014" "R 115013 0.83 335  W;=0.00098d"h 071  3.69
W=LW, 097 4024 W=IW, 0.90  36.89
P. engelmannii Arbutus bicolor
Ww _ 0.09798611.67370’/11.02867 091 126.71 Ww _ 0.06438(11'66448]’10‘86489 0.94 14.45
Wb — 0‘037974‘11.11488;10‘88389 0.98 1.62 Wh _ 0.00328(11‘51833]’10'95083 0.89 0.77
W, = 1.390924" 2700519 0.60 3738 W, =0.021254" 81216081 095 681
Wi =0.0693164" 24804y 0345%3 071 374  W;=0.006984"">p" %7 081 164
W=LW, 092 13682 W=IW, 0.95 2268
P. leiophylla Q. sideroxyla
W, = 0.015582d°h 094 6723 W, =0.0334624" 7741111268 091 6524
W, = 0.001074d"h 0.90 649 W, =0.030224" 067780238 079 27.73

W, = 0.0072694°h 0.65 6553 W, =0.0051544" 92033106618 081  27.16
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Tree biomass component Goodness of fit  Tree biomass component Goodness of fit
equation Rz RMSE  equation Rz RMSE
W =0.0003434°h 0.81 251  W;=0.000924" "2 074 343
W= ZW, 0.93 10434 W= ZW, 092 9471

P. herrerae Q. rugosa
W,, = 0.067414>°%%%° 0.83 111.87 W, = 0.019884>2%5%,0>217> 091 2833
W, = 0.024684" 7% 072 735 W, =0.05621d>""% 078  14.84
W,,, = 0.050854>%%°7 072  17.88 W, =0.112764" 64,0334 0.87 12.28
W =0.05437d" *% 061 536  W;=0.0377d"*p0707 084 515
We=EW, 086 12145 W=XIW, 094 4078

P. teocote Q. durifolia
W, = 0.044284189531,0-84674 0.93 5620 W, = 0.1254,17402,0-8114 0.94 5541
Wb _ 0‘00341111.96215}10.66178 0.94 8.91 Wh _ 0.00235[12‘300731’[0'68619 0.88 948
Wbr _ 0.0051611.78757’/11.12341 0.93 2.99 Wby _ 0'00355d2.66464h0.56009 0.90 35.29
W =0.030414" ! 074 1622  W;=0.00734> "0 p04505 086 683
W= ZW, 095 403 W=IW, 095 7937

P. lumholtzii Q. crassifolia
W, = 0.0785274>"% 091 6391 W, =0.025424°h 0.83 5592
W, = 0.0228094"%%% 077 1673 W, =0.00305d%h 082 797
W, = 0.034614>'%%° 084 410 W, =0.011134°h 0.83 2548
W =0.0116424>"°" 0.83 407  W;=0.001654"h 0.66 481
W= ZW, 090 8133 W=IW, 091  63.54
P. strobiformis All pine species

W,, = 0.007164%%2>3),-30%38 090 8596 W, =0.02914"7*65p! 16614 092 7042
W, = 0.030884" 10021 ;109923 0.88 631 W, =0.020294"%)"928% 067  11.02
Wbr _ 0.01613(11'90578]’10'70112 0.93 14.99 Wby _ 0.02508d1'83773h0'54626 0.66 29.07
W =0.03886d" 211776 076 516  W;=0.052274"*%1p"47 057 568
W= ZW, 094 8867 W=IW, 093 8112

P. oocarpa All oak species
W,, = 0.017534" 826128397 094 2593 W, =0.116184"773"}068708 079  93.13
W, = 0.028984*%%7 0.89 411 W, =0.008274>>*% 066  27.19
W, = 0.009484%74% 0.88  14.84 W, =0.05024" 77638034229 058  53.03
W =0.04163d" 7! 0.84 389  W;=0.08234d" 034 1153
W= LW, 095 3593 W,=IW, 0.82  133.68

The coefficients of determination were usually highest for stem wood biomass and AGB, and
lowest for branch and foliage biomass components. The average variance explained by the biomass
equations was as follows: stem wood (91% + 5.3%), branches (84% =+ 9.4%), stem bark (83% =+ 9.2%)
and foliage (78% + 7.3%), and the variance explained by the AGB equations was 93% (+ 3.6%). The
RMSE values ranged between 14.5 kg and 126.7 kg (stem wood biomass), 0.77 kg and 27.7 kg (stem
bark biomass), 2.99 kg and 48.1 kg (branches biomass), 1.64 kg and 16.2 kg (foliage biomass) and 4.03
kg and 136.8 kg (AGB). The average RMSE values for AGB of all pine and all oak species groups
were 71.2 kg (+ 39.5 kg) and 74.1 kg (+ 23.2 kg), respectively.

The allometric equation (eq. 1) produced the best estimates of all biomass components of P.
herrerae, P. lumholtzii, P. leiophylla, P. douglasiana, P. michoacana and P. oocarpa (except stem wood
biomass), as well as for the branch and foliage biomass of P. leiophylla, foliage biomass of P. teocote,
stem bark biomass of Q. rugosa, and stem bark and foliage biomass of all of the oak species.

A strong relationship between biomass components and total height was found for the groups
of pine and oak species (Figure 2). The biomass equation including total height (k) as a predictor was
the best equation for all biomass components of P. cooperi, P. durangensis, P. engelmannii, P. teocote
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(except foliage biomass), P. strobiformis, Arbutus bicolor, Q. sideroxyla, Q. rugosa (except stem bark
biomass) and Q. durifolia, as well as for all of the pine species and for stem wood and branch biomass
of all of the oak species. AGB and all biomass components of Juniperus depeanna, P. leiophylla and Q.
crassifolia were best estimated using the combination of diameter at breast height and total height
(d?h) (eq. 3).

The biomass equation including total height (k) as a predictor was the best equation for all
biomass components of P. cooperi, P. durangensis, P. engelmannii, P. teocote (except foliage biomass), P.
strobiformis, Arbutus bicolor, Q. sideroxyla, Q. rugosa (except stem bark biomass) and Q. durifolia, as
well as for all of the pine species and for stem wood and branch biomass of all of the oak species.
AGB and all biomass components of Juniperus depeanna, P. leiophylla and Q. crassifolia were best
estimated using the combination of diameter at breast height and total height (d2h) (eq. 3).

3.2 Above-ground biomass allocation

Biomass distribution varied among tree components and between species. For all species, the
largest amount of biomass was located in the stem wood (Figure 2). Stem wood biomass of pine
ranged from 63% (P. oocarpa) to 80.9% (P. lumholtzii), while for oak species the values varied between
59.5% (Q. rugosa) and 65.3% (Q. durifolia). General equations for all pine and all oak species produced
stem wood biomass values of 75.5 and 62.9%, respectively.
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Figure 2. Scatter plots showing the relationship between tree biomass components (stem wood, stem
bark, branches and foliage) and total height (/).

The lowest values for stem bark, branches and foliage biomass were respectively 2.4% (J.
depeanna), 11.6% (P. lumholtzii), and 2.4% (P. herrerae), and the highest values of these components
were 18.7% (Q. rugosa), 30.5% (A. bicolor), and 7.1% (P. oocarpa), respectively. For all pine species
pooled together, the highest quantity of biomass was contained in stem wood (75.4%); followed by
branches (14.9%), stem bark (6.4%) and foliage (3.3%). For all oak species the biomass values for the
different components were respectively 62.9%, 22.2%, 10.9% and 4.0%.
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Figure 3. Estimated relative contributions of the biomass components to total tree above-ground
biomass (AGB).

The biomass allocation is highlighted per species group in Figure 4. The proportion of stem
biomass in pine trees increased with d (exceeding 50% of AGB for all diameters); although the
proportion of stem bark and foliage biomass decreased, it was fairly stable for branch biomass. In all
of the oak species, stem wood and branch biomass increased from 0.25 and 0.14 for d=5 cm to 0.42
and 0.23 for d>50 cm, respectively. Stem bark of oaks decreased with d from 0.16 to about 0.10, while
foliage biomass decreased from 0.13 to 0.03.
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Figure 4. Tree-level biomass allocation patterns as a function of individual tree size (d), estimated by

the proposed biomass equation systems.

3.3. Carbon fractions in different tree components

The specific carbon content (Mg of carbon per Mg of dry matter) in tree biomass components
for the species evaluated is shown in Table 3. The mean values of carbon fraction of the pine species
were in all cases close to the value provided by IPCC [39] (0.5), except for oak species, in which the
average proportion of carbon was 0.45.
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Table 3. Specific mean carbon contents of the main tree components (standard deviation is given in

brackets).
Speci Carbon proportion
pectes " Wood Bark Leaves/needles Total (s.d)
P. cooperi 27 0.485 0.511 0.471 0.489 (0.0020)
P. durangensis 27 0.489 0.531 0.487 0.505 (0.0030)
P. engelmannii 27 0.497 0.531 0.494 0.507 (0.0020)
P. leiophylla 27 0.495 0.540 0.515 0.516 (0.0023)
P. herrerae 27 0.479 0.524 0.480 0.512 (0.0025)
P. teocote 27 0.484 0.539 0.512 0.512 (0.0028)
P. lumholtzii 27 0.485 0.532 0.492 0.501 (0.0027)
P. strobiformis 27 0.494 0.533 0.492 0.506 (0.0023)
P. oocarpa 27 0.469 0.528 0.472 0.490 (0.0033)
P. douglasiana 27 0.483 0.525 0.494 0.500 (0.0021)
P. michoacana 27 0.48 0.508 0.486 0.491 (0.0015)
Q. sideroxyla 27 0.462 0.462 0.477 0.467 (0.0009)
Q. rugosa 27 0.455 0.466 0.459 0.438 (0.0034)
Q. durifolia 27 0.463 0.428 0.451 0.448 (0.0018)
Q. crassifolia 27 0.460 0.416 0.459 0.445 (0.0025)
J. depeanna 27 0.527 0.438 0.496 0.487 (0.0045)
A. bicolor 27 0.467 0.378 0.479 0.441 (0.0055)

3.4. Biomass and carbon estimates in the permanent research plots

The fitted equations were used to estimate the stand level total AGB and C contents in the 429

research plots. The total AGB ranged from 11.06 to 469.42 Mg ha' with a mean value of 129.84 Mg
ha' and C contents ranged from 5.12 to 232.94 Mg ha' with a mean value of 63.80 Mg ha. The
goodness-of-fit statistics obtained by the different machine learning methods used to model AGB
and carbon contents of the 429 sample plots are shown in Table 4.

Table 4. Summary of the goodness-of-fit statistics for each machine learning method using 10-fold
cross-validations for AGB and carbon content. The best results are highlighted in bold type.

AGB Carbon
MLR DR-DF SVM MLR RD-RF SVM
R2 0.465 0.488 0.512 0.463 0.491 0.510
RMSE 51.044 49.971 49.771 25.282 24.630 24.727

The best AGB estimates were obtained by using Support Vector Machine for Regression (SVM),
whereas the best estimates of carbon content were obtained using Regression by Discretization
based on Random Forest (RD-RF). However, the results of the paired t-test (corrected) based on
Student’s t-criterion did not indicate any significance differences in the results (a = 0.05) produced by
the three approaches considered.

The variables that provided most information in the estimation of AGB and carbon content
correspond to spectral bands 1 and 7; the vegetation indices NDMI, NBR2 and EVI; and the terrain
variables aspect and wetness index (Figure 5). However, the results differ depending on the machine
learning method used.
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Figure 5. Frequency of appearance (importance) of each attribute (Wrapper feature selection)

obtained by each machine learning technique using 10-fold cross validations for AGB (upper) and
carbon content (lower).

The results obtained in terms of the absolute error of estimates for each of the 429 samples based
on 10-fold cross validation were used for statistical comparison of the techniques. The comparison is
summarized in histograms showing the relative positions reached (rankings) for each technique
(Figure 6). In qualitative terms, the SVM technique yielded the best results.

180 ®MLR ®mRD-RF mSVM 180 ®MLR mRD-RF mSVM
160 160
140 140
120 120
100 100
80 80
60 60
40 40
20 20
0 0

Worst 2nd Best Best Worst 2nd Best Best

Figure 6. Percentage of sample plots achieved by each technique (ranking) for AGB (left) and carbon
content (right) estimates based on 10-fold cross validation.

Finally, the spatial distributions of the estimates of total AGB and C content (Mg ha) in the
study, obtained by application of the SVM model, are shown in Figure 7.
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Figure 7. Spatial distribution of total AGB (left) and carbon content (right) in the study area
estimated by the Support Vector Machine for Regression (SVM) approach.

4. Discussion

4.1 The allometric equations

The equations were mainly based on three model formulations (eq. 1-3) used in previous studies
[2, 14, 40-42]. Diameter at breast height was the main explanatory tree variable used to estimate the
tree biomass components for all species. Several authors have noted that inclusion of total height
does not usually lead to a substantial increase in predictive ability precision of diameter-based
biomass regressions, and they also assume that d is sufficient to obtain a reliable tree biomass
prediction [43-45]. However, other authors have found a significant improvement in model fits [46,
47] or an increase in the accuracy of the biomass estimates [42, 48] when & is also used as a
predictor. In this study, d by itself was a good predictor of biomass, but the addition of & as a
second variable improved the predictions for several species. A strong relationship between
biomass components and total height was found for the groups of pine and oak species, and it was
a significant predictor of all tree biomass components and AGB of 12 out of 17 species and for the
group of all pine species, as well as for stem wood and branches biomass of the oak species group.
The d and h based system of equations yielded poor fits for branch and foliage biomass of P. oocarpa
and P. teocote. Lambert et al. [49], Bi ef al. [50] and Zhao et al. [51] also found that inclusion of tree
height improved the accuracy of predicting the stem biomass but not the crown (needles and
branches) biomass components.

Feldpausch et al. [52] reported that the mean relative error in biomass estimates when h was
included was 50% less that when h was excluded. Similarly, we found that inclusion of total height
in the biomass equations increased the accuracy of the biomass estimations (measured as RMSE) by
between 10.4% (P. teocote) and 53.9% (P. durangensis) for stem wood biomass, by between 2.9% (A.
bicolor) and 28.1% (P. strobiformis) for stem bark biomass, by between 13.1% (Q. durifolia) and 20.6%
(P. strobiformis) for branch biomass, by between 1.1% (P. engelmannii) and 19.7% (Q. sideroxyla) for
foliage biomass and by between 26.7% (Q. rugosa) and 55.9% (P. cooperi) for total tree AGB. These

results are consistent with those of Antdnio et al. [40] who found that the use of height implied a
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decrease in the sum of squares of residuals by 72%, 8%, 12% and 10%, for stem wood, stem bark,
leaves and branches respectively. They are also consistent with the findings of Li and Zhao [53]
who reported that the height improved model performance of the fitted equation especially for total
above-ground biomass, stem wood biomass and stem bark biomass.

Branch and foliage biomass components are always difficult to estimate with the same accuracy
as bole or total AGB. This is illustrated by the fact that inclusion of height in the model only
improved the accuracy of branch and foliage biomass estimates by up to 21%. We assume, as
Ter-Mikaelian and Parker [54] found, that the influence on height of stand density (i.e. competition),
stand structure and site quality may account for some of this variation, and that these variables
represent a large proportion of the small contribution of I to explaining the variance in these
biomass components for some of the species evaluated. Nevertheless, this was not tested in the
present study because the data does not enable discrimination among the effects of these factors or
the different silvicultural treatments on the crown structure.

The combined variable d2h is usually used in biomass equations [55-57], and it has found that the
accuracy of biomass estimation increased significantly (measured as R?) when h or d?h was also
included, in addition to d. In fact, tree biomass is closely correlated with d%h as shown by Parresol
[58] and Carvalho and Parresol [59]. In the models developed by Parresol [58], height was a good
predictor of stem wood but not of stem bark biomass; whereas Carvalho and Parresol [59] obtained
the best estimates for stem, crown and total tree biomass of Pyrenean oak including the variable d%h
as the sole independent variable in the equation; Bi et al. [50] reached a similar conclusion, reporting
that d%h performed better for predicting stem and bark components than diameter alone but not for
branch and leaf components. In the present study, d%h yielded the best estimates of all biomass
components and AGB for P. leiophylla, |. depeanna and Q. crassifolia. The results reported here
suggest that the best equations for biomass estimation for most species are based on d and #; it is
therefore possible to use the biomass equations systems developed for a specific species across
different sites in the temperate forests of Durango, considering that total height is included in the
models and that the addition of this variable may take into account different levels of competition
induced by different stand density conditions [40].

Differences in biomass estimates between the equations developed in this study and previously
published biomass functions for the same species in northwest Mexico [60] were found. The
differences with respect to the biomass estimates reported by Navar [60] may be explained by the

fact that these equations only use d as an explanatory variable.

Finally, we fitted the equations for the four components simultaneously with the total AGB, in
order to take into account the correlation between the errors of the models and to guarantee
additivity. This restriction has not been taken into account by several authors [60] with the
consequent inconsistency in total biomass estimates.

4.2 Contribution of components to total AGB

For all species evaluated, stem wood contributed most to the total AGB, followed by branches,
stem bark and foliage. The fact that the highest proportion of the AGB is allocated in the stem has
been widely documented, with the proportions ranging from 50 to 92% for different species [4, 61,
62]. Our results are within the same range, varying between 59.5% (Q. rugosa) and 80.9% (P.
lumholtzii). The biomass allocation patterns observed are consistent with those reported by Blujdea

et al. [41] for broadleaf trees in Rumania, Wirt et al. [4] for Norway spruce in Central Europe,
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Correia et al. [63] for P. pinea L. in Portugal, and by Pajtik et al. [64] for Picea abies [L.] Karst in
Slovakia.

As expected, the proportion of biomass allocated to stem wood increased with increasing tree
size, whereas the relative contribution of stem bark and foliage to AGB decreased. This is consistent
with findings reported by Blujdea et al. [41] and Johansson [65]. The pattern was similar for pines
and oaks, except for branch biomass. In oaks, branch biomass increased with d, whereas for pines it
remained quite constant (around 15%) over the entire diameter range. The decrease in foliage
biomass with increasing d can be attributed to competition for light among the trees; small branches
and a smaller quantity of leaves occur in larger trees or those trees with a dominant position [66].

The foliage biomass of oaks decreased to below 3.5%, while for pines it decreased to about 2%.

4.3 Machine Learning Techniques (MLT)

The variables that were most important for estimating AGB and C contents by the MLT
evaluated correspond to band 1 and band 7, the vegetation indices NDMI, NBR2 and EVI], and the
terrain variables aspect and wetness index. Several studies have demonstrated that such variables
are usually good predictors for estimating AGB [23, 67, 68].

The SVM technique yielded the best fits, thus confirming that this type of technique is of great
potential for improving biomass estimation, independently of the type of sensor to which it is
applied, as demonstrated in recent studies [69]. However, no significance differences were found
between this method and the other two approaches used.

The values of goodness of fit statistics for the SVM technique obtained in the present study were
slightly lower than those reported by Guo et al. [70] who estimated AGB in Picea crassifolia forests in
China using Landsat TM data and two non-parametric methods (k-Nearest Neighbour kNN: R?>=0.54
and RMSE=26.62 Mg ha' and SVM: R>=0.51 and RMSE=27.45 Mg ha'). They were also lower than
those reported by Tian et al. [71] (kNN: R2=0.59) and those obtained by Lopez-Serrano et al. [23] for
mixed and uneven-aged forests in the Sierra Madre Occidental of Mexico (R?=0.73 and RMSE=22.59
Mg ha').

5. Conclusions

This study describes a set of simultaneous species-specific allometric equation systems for
seventeen temperate species in north-western Mexico. Breast height diameter-only based equations
proved best for predicting all biomass components of only four species. Including h or d% as
additional predictor in the equation systems only slightly improves stem wood, stem bark and
above-ground biomass estimates, but greatly improves the predictions of branch and foliage
biomass.

In all species, most of the biomass was allocated in stem wood, followed by branches, stem
bark and foliage. The biomass allocation differed between tree components and among species;
however, further study is required to clarify which factors affect the allocation patterns.

The developed biomass equations can be applied to tree-level data in forest inventories and
may also improve the quality of biomass estimates and verify carbon stocks changes in the
temperate uneven-age multi-species forests of the study area. They are also essential tools for
accurate estimation of forest residues in the development of bioenergy projects.

The results of this study regarding the use of MLT to estimate AGB and C content from remote

sensors indicate that moderate resolution sensors, such as the Landsat TM5, are sufficiently reliable
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and accurate for monitoring these important variables in real time and at a low cost, because the

spectral data are available free of charge.
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