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Abstract: In this paper, we relate Poisson’s summation formula to Heisenberg’s uncertainty1

principle. They both express Fourier dualities within the space of tempered distributions and2

these dualities are furthermore the inverses of one another. While Poisson’s summation3

formula expresses a duality between discretization and periodization, Heisenberg’s4

uncertainty principle expresses a duality between regularization and localization. We define5

regularization and localization on generalized functions and show that the Fourier transform6

of regular functions are local functions and, vice versa, the Fourier transform of local7

functions are regular functions.8
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1. Introduction12

Regularization is a popular trick in applied mathematics, see [1] for example. It is the technique13

”to approximate functions by more differentiable ones” [2]. Its terminology coincides moreover with14

the terminology used in generalized function spaces. They contain two kinds of functions, ”regular15

functions” and ”generalized functions”. While regular functions are being functions in the ordinary16

functions sense which are smooth (infinitely differentiable) in the ordinary functions sense, all other17

functions become smooth (infinitely differentiable) in the ”generalized functions sense” [3]. In this18

way, all functions are being smooth. Localization, in contrast to that, is another popular technique. It19

allows for example to integrate functions which could not be integrated otherwise, if we think of ”locally20

integrable” functions or if we think of the Short-Time Fourier Transform (STFT), capable to analyze21

infinitely extended signals. Although, regularization and localization appear to be quite different, a22
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connection between these operations is no surprise. It is rather ubiquitous in the literature. The theorem23

below, however, appears in a wider sense. It even holds within the space of tempered distributions and24

is directly related to Heisenberg’s uncertainty principle. It is moreover the inverse of an already known25

discretization-periodization duality (Poisson’s Summation Formula).26

While discretization and periodization map functions from smoothness towards discreteness in both27

time and frequency domain, the operations investigated in this study, regularization and localization, map28

functions from discreteness towards smoothness in both time and frequency domain. In this way, we have29

a full range of tools (discretization, periodization, regularization, localization) in order to describe any30

transition from smoothness towards discreteness and also back from discreteness towards smoothness in31

a mathematically rigorous and formally correct way.32

This paper is organized as follows. Section 2 describes the overall motivation for this study and33

Section 3 explains the rough proof idea. Section 4 provides an introduction to the notations used and34

previous results. Section 5 presents a justification for Section 6 where regularization and localization35

within the space of tempered distributions are defined. Section 7 provides symbolic calculation rules36

based on these definitions, needed to prove the theorem in Section 8. Section 9 connects these results to37

results in a previous study and Section 10, finally, concludes this study and provides an outlook.38

2. Motivation39

In contrast to more practically applications of regularizations and localizations, the actual intention of40

this study is to provide universally valid calculation rules for regularizations and localizations together41

with the scope of their validity within a preferably most general setting. In this way, regularizations42

can be expressed in terms localizations and, vice versa, localizations can be expressed in terms of43

regularizations, i.e., poorly converging formulas can be replaced by better converging ones. Another44

important application of our rules is knowing the scope of their validity. Knowing not only a formula but45

also its validity scope is especially important in applied mathematics. It is simply not very reasonable to46

implement a formula that will never converge.47

2.1. Generalized Functions48

The setting of generalized functions, also called distributions, is today a most modern, very general49

setting in Fourier analysis [3–11]. It meets the requirements of Fourier analysis in both, theory and50

practice. It allows, for example, to Fourier transform functions which are not even Lebesgue integrable51

such as the Dirac impulse δ or even constants such as the function that is constantly 1.52

In this study, we prove simple symbolic calculation rules within S ′, the space of tempered53

distributions, for handling both, regularizations and localizations, and their interactions. The space54

of tempered distributions S ′ is known to be an ideal setting in Fourier analysis mainly due to three55

facts. First, the Fourier transform is understood in a much wider sense than usually (on Lebesgue56

square-integrable functions), secondly, the Fourier transform still is an automorphism in S ′ (as on57

Lebesgue square-integrable functions), i.e., the Fourier transform of any element in S ′ is again an58

element in S ′ and, thirdly, all functions are smooth, i.e., all functions can be derived infinitely often.59

Smoothness is especially required to treat Fourier series (and the Fourier transform as their limit).60
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They consist of complex exponentials which are functions that can be derived infinitely often. Recall61

furthermore that Lebesgue square-integrable functions (and their Fourier transforms accordingly) must62

decrease to zero as their arguments increase, otherwise they would not be Lebesgue integrable. This63

very strong restriction has in fact never been accepted by those who are working with Fourier transforms64

practically. It actually led to the acceptance of S ′ as a standard space in Fourier analysis throughout65

many scientific communities, beside mathematics and engineering also in physics, especially in quantum66

theory [12–14]. In S ′, in contrast to traditional approaches, we may even allow functions to grow up67

to the order of polynomials as their arguments increase and they still can be sampled and/or Fourier68

transformed.69

2.2. Symbolic Calculation70

The overall goal in this and in our previous study [15] is to compile a number of rules including their71

validity scope and therewith to fill a toolbox that will enable us to symbolically calculate with operations72

of discretization (sampling), periodization (replicating), regularization (smoothing) and localization73

(windowing). Performing such calculations on a symbolic level has several advantages. We are now74

able to rigorously prove higher-level theorems in S ′, we may replace more complicated formulas by75

simpler ones (or by better converging ones) prior implementing them in software and, lastly, we may76

even implement these rules in symbolic calculation environments such as in Wolfram Mathematica [16]77

or in Python SymPy [17] in order to exclude human errors in formula derivations.78

Some applications of our rules [18] are, for example, extending the scope of validity of Poisson’s79

Summation Formula to a validity on tempered distributions [15], proving that four differently defined80

Fourier transforms (two integral Fourier transforms, DFT and DTFT) coincide in the distributional81

sense [19–21] or deriving a digital radar image from the continuous case (the landscape being imaged)82

via operations of localization (windowing), discretization (sampling), convolution (defocusing) and83

deconvolution (focusing) [22].84

3. Idea85

The proof technique in generalized function spaces may appear a bit unusual to those who are86

practically oriented. For any equality f = g in generalized function spaces X ′ where f, g ∈ X ′, it87

must be shown that both, f and g, yield the same result if applied to arbitrarily chosen test functions88

ϕ ∈ X taken from their test function space X . A very short introduction to this technique is given in89

section Distribution Theory in our previous paper [15].90

However, the argumentation in this paper is much simpler. We do not need to prove any results on91

test functions because it has already been done by other authors [23–26]. Instead, we simply argue92

with subspaces of S ′. We implicitly use the fact that functions in subspaces in S ′ inherit all function93

properties from the spaces where they are embedded. This idea is one of the fundamental tricks in94

distribution theory. A full range of distribution space embeddings can be found in [23], p.170. But only95

a few of these spaces are needed here (see section Notation and Figure 4 in [15]). We need the space96

of slowly growing regular functions OM ⊂ S ′ (where ”regular” means smooth functions in the ordinary97

functions sense), the space of rapidly decreasing generalized functions OC
′ ⊂ S ′ (where ”generalized”98
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means that they are smooth but not necessarily ”regular”) and the Schwartz space S ⊂ S ′ which is the99

space of regular, rapidly decreasing functions, i.e., functions in OM ∩OC
′ = S are ”regular” and ”local”100

(rapidly decreasing). They inherit ”regular” from OM and ”local” from OC
′. Another important fact is101

that S contains the space D ⊂ S which is the space of compactly supported smooth functions. So, in102

the special case of having some ϕ ∈ D the property of ϕ being ”local” turns into ϕ being ”finite”, i.e.,103

ϕ is zero outside some given interval. Accordingly, ϕ · f for some f ∈ S ′ will be zero outside the given104

interval. In this case, we talk about ”finitization” as a special form of ”localization”. A concatenation of105

discretization and finitization is of particular importance, especially for turning integrals into finite sums.106

We moreover make intensive use of the following dualities of the Fourier transform: F(S) = S107

and hence F(S ′) = S ′ as well as F(OM) = OC
′ and F(OC

′) = OM . The first duality means that108

the Fourier transform maintains the function property of being ”regular and local”, the second duality109

means that ”tempered” functions (slowly growing functions, i.e. functions that do not grow faster than110

polynomials) are again ”tempered” after Fourier transforming them and the latter duality (Thm.3, p.424111

in [25]) means that the Fourier transform of slowly growing (”regular”) functions are rapidly decreasing112

(”local”) functions and, vice versa, the Fourier transform of rapidly decreasing (”local”) functions are113

slowly growing (”regular”) functions. This simple circumstance resulted in a validity statement for114

the Poisson Summation Formula in S ′, see Thm.1 in [15], the widest comprehension of the Poisson115

Summation Formula today to the best of this author’s knowledge.116

Another issue in generalized function spaces, hence also in S ′, is the fact that arbitrary generalized117

functions cannot be multiplied with each other. Accordingly, arbitrary generalized functions cannot be118

convolved with each other. We evade this problem in S ′ by using Laurent Schwartz’ [23] subspace of119

multiplication operators OM and his space of convolution operators OC
′ as introduced above 1. These120

spaces provide a secure footing for multiplications and convolutions in S ′, see Thm.3, p.424 in [25].121

4. Preliminaries122

Let δkT be the Dirac impulse shifted by k ∈ Z
n units of T ∈ R

n
+ = {t ∈ R

n : 0 < tν <∞, 1 � ν �
n}, kT being componentwise multiplication, within the space S ′ ≡ S ′(Rn) of tempered distributions

(generalized functions that do not grow faster than polynomials) and let

IIIT :=
∑

k∈Zn

δkT

be the Dirac comb. Then δkT ∈ S ′ and IIIT ∈ S ′ for any T ∈ R
n
+ are tempered distributions [8,23,24].123

We shortly write δ instead of δkT if k = 0. The Fourier transform F in S ′ is defined as usual and such124

that F1 = δ and Fδ = 1 where 1 is the function being constantly one [3–7,9,11,23]. The Dirac comb125

is moreover known for its excellent discretization (sampling) and periodization properties [4,9,11,27].126

While multiplication IIIT · f in S ′ samples a function f ∈ S ′, the corresponding convolution product127

IIIT ∗ f periodizes f in S ′.128

1 M stands for Multiplication, C stands for Convolution, an apostrophe as X ′ indicates spaces of ”generalized” functions,

no apostrophe as X indicates spaces of ”regular” functions. Elements from X ′ can always be applied to elements of X .
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The following two lemmas summarize the demands that must be put on f ∈ S ′ such that f can129

be sampled or periodized in S ′. Recall that smoothness, i.e., infinite differentiability, is not a demand.130

It is a given fact for all functions in generalized function spaces. Also recall that OM is the space of131

multiplication operators in S ′ and OC
′ is the space of convolution operators in S ′ according to Laurent132

Schwartz’ theory of distributions [13,15,23–26,28–30].133

Lemma 1 (Discretization). Generalized functions f ∈ S ′ can be sampled in S ′ if f ∈ OM .134

Proof. Any uniform discretization (sampling) in S ′ corresponds to forming the product

IIIT · f in S ′

where IIIT ∈ S ′ is the Dirac comb. Furthermore, IIIT is no regular function, i.e., IIIT ∈ S ′ \ OM . But135

for any multiplication product in S ′, it is required that at least one of the two factors is in OM . Otherwise136

the existence of this product cannot be secured. Hence, f ∈ OM ⊂ S ′ or another reasonable definition137

of this multiplication product would be required. Vice versa, if f ∈ OM then IIIT · f exists due to138

S ′ · OM ⊂ S ′ (Thm.3, p.424 in [25]).139

An equivalent statement is the following lemma.140

Lemma 2 (Periodization). Generalized functions f ∈ S ′ can be periodized in S ′ if f ∈ OC
′.141

Proof. Any periodization in S ′ corresponds to forming the convolution product

IIIT ∗ f in S ′

where IIIT ∈ S ′ is the Dirac comb. Furthermore, IIIT is of no rapid descent, i.e., IIIT ∈ S ′ \ OC
′. But142

for any convolution product in S ′, it is required that at least one of the two factors is in OC
′. Otherwise143

the existence of this product cannot be secured. Hence, f ∈ OC
′ ⊂ S ′ or another reasonable definition144

of this convolution product would be required. Vice versa, if f ∈ OC
′ then IIIT ∗ f exists due to145

S ′ ∗ OC
′ ⊂ S ′ (Thm.3, p.424 in [25]).146

In a previous study [15], we used these insights in order to define operations of discretization ⊥⊥⊥T and

periodization ���T in S ′. While discretization is an operation ⊥⊥⊥T : OM → S ′, f 	→ ⊥⊥⊥Tf := IIIT ·f ,

periodization is an operation ���T : OC
′ → S ′, g 	→ ���Tg := IIIT ∗ g, respectively. Starting from

these two definitions we proved that

F( ⊥⊥⊥f) = ���(Ff) and (1)

F(���g) = ⊥⊥⊥(Fg) (2)

hold in S ′, both being expressions of Poisson’s Summation Formula. We shortly write ⊥⊥⊥ and ���147

instead of ⊥⊥⊥T and ���T if Tν = 1 for all 1 � ν � n.148

Recall moreover that these rules are a consequence of the Fourier duality

F(α · f) = Fα ∗ Ff and (3)

F(g ∗ f) = Fg · Ff in S ′ (4)
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for any α ∈ OM , g ∈ OC
′ and f ∈ S ′ which is, according to Laurent Schwartz’ theory of generalized149

functions, the widest possible comprehension of both, multiplication and convolution within the space of150

tempered distributions [23,25,29]. It lies at the very heart of S ′. Many calculation rules in S ′, including151

Equations (1), (2), (7), (8), (11), (12) and Lemmas 1, 2, 3, 4 rely on it.152

5. Feasibilities153

The following two lemmas provide justifications for the way we will define regularizations and154

localizations in S ′ below. They will allow us to invert discretizations and periodizations in S ′.155

Lemma 3 (Regularization). Let ϕ ∈ S. Then for any f ∈ S ′, ϕ ∗ f can be sampled.156

Proof. This is a consequence of the fact that S ∗ S ′ ⊂ OM [7,23,25,29] and Lemma 1.157

An equivalent statement is the following lemma.158

Lemma 4 (Localization). Let ϕ ∈ S. Then for any f ∈ S ′, ϕ · f can be periodized.159

Proof. It follows from the fact that S ·S ′ ⊂ OC
′ [23,29], which is the Fourier dual F(S ∗S ′) = F(OM)160

of S ∗ S ′ ⊂ OM , and Lemma 2.161

It is interesting to observe that ϕ ∗ and ϕ · stretch and compress f ∈ S ′, respectively. This property162

is moreover independent of the actual choice of ϕ ∈ S. It can therefore be attributed to the operations of163

convolution and multiplication themselves.164

6. Definitions165

”One of the main applications of convolution is the regularization of a distribution” [25] or the166

regularization of ordinary functions which are not being infinitely differentiable in the conventional167

functions sense. Its actual importance lies furthermore in the fact that it is the reversal of discretization.168

Regularization is usually understood as the approximation of generalized functions via approximate169

identities [2,5–7,25,31–33]. In this paper, however, we extend this idea by allowing any ϕ ∈ S and170

also any f ∈ S ′ , i.e., even ordinary functions (either being smooth or not being smooth) can be171

regularized. This approach naturally includes the special case of choosing approximate identities without172

unnecessarily restricting our theorem below. Lemmas 3 and 4 above justify the following two definitions.173

Definition 5 (Regularization). Let ϕ ∈ S. Then for any tempered distribution f ∈ S ′ we define another

tempered distribution by

∩ϕf := ϕ ∗ f (5)

which is a regular, slowly growing function in OM ⊂ S ′. The operation ∩ ϕ is called regularization,174

approximation, interpolation or smoothing of f by means of ϕ. It is a linear continuous operation175

∩ϕ : S ′ → OM , f 	→ ∩ϕf . The result of ∩ ϕ is called regular function of f in S ′.176
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f

∩ϕ−−→

∩ϕf

. . .

�����������������
. . . . . . . . .

177

Figure 1. The regularization of generalized function f yields regular function ∩ ϕf .

Regular functions (according to this definition) are functions in the ordinary functions sense which are178

smooth (infinitely differentiable) in the ordinary functions sense, a function property that is of immense179

value in many branches of mathematics. Regular functions belong to OM because S ∗S ′ ⊂ OM , see e.g.180

[7,23,29]. They maintain the being ’tempered’ property, i.e., they do not grow faster than polynomials,181

which is common to all tempered distributions but add the regularity of ϕ to f . It follows that regularized182

functions can always be sampled according to Lemma 1.183

Regularizations of type (5), where f as a member in some distribution space X ′ is singular (i.e., there184

is no locally integrable function representing f ) and ϕ as a member in its corresponding space of test185

functions X is used for its regularization, are usually called ”singular convolution” [34,35] and with f186

replaced by a sequence fε converging towards f they become so-called ”discrete singular convolutions187

(DSCs)”, a standard technique today for the regularization of singular distributions.188

Regularizations are treated in many mathematical textbooks [2,11,24–26,31] and scientific papers189

[1,34–42]. They are also known in terms of ”smooth cutoff functions” [2,8], ”regularizers” [1,34,35,37],190

”distributed approximating functionals (DAFs)” [38–42] and ”mollifiers” [28,43–47], a term that goes191

back (see [28], p.63) to K.O. Friedrichs [43]. Regularized rect functions (characteristic functions of192

an interval) are known as ”mesa function”, ”tapered box” [11] or ”tapered characteristic function” and193

”taper function” [48] or as ”C∞ bell” or ”smoothed top hat” function in [49]. Mostly, regularizations194

are required ”to obtain regularized interpolating kernels” such as in [37]. They are closely linked to the195

”regularity theorem for tempered distributions” [12].196

Away from the generalized functions literature, we furthermore encounter regularizations in terms of197

”smoothings”, ”interpolations”, ”zero-paddings” or ”approximations” because they are not only applied198

to generalized functions, they are also applied to ordinary functions, usually to obtain better ”regularity”199

properties for functions, i.e. better differentiability. Regularity is also a topic discussed in [50], for200

example. It is closely related to localization.201

Definition 6 (Localization). Let ϕ ∈ S. Then for any tempered distribution f ∈ S ′ we define another

tempered distribution by

�ϕf := ϕ · f (6)

which is a generalized function of rapid descent in OC
′ ⊂ S ′. The operation � ϕ is called localization202

or restriction of f by means of ϕ. It is a linear continuous operation � ϕ : S ′ → OC
′, f 	→ �ϕf . If203

ϕ ∈ D ⊂ S, it is also called finitization. The result of � ϕ is called local function of f in S ′.204
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f

�ϕ−−→

�ϕf
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�����������������
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�
���

�
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205

Figure 2. The localization of generalized function f yields local function � ϕf .

Local functions (according to this definition) belong to OC
′ because S ′ · S ⊂ OC

′ [23,25]. They add206

the ’rapid descent’ property of Schwartz functions ϕ ∈ S to f ∈ S ′. It follows that localized functions207

can always be periodized according to Lemma 2.208

The term ”local” and the treatment of localizations have a long history in mathematics. It culminated,209

however, in the term ”localization operator”. It appears 1988 for the first time (see [51], p.133 in210

[52]) in Daubechies’ article [53] and later in Daubechies’ 1992 standard textbook [50]. Meanwhile,211

”localizations” occur in many textbooks [2,50,52–61], amongst others as ”localized trigonometric212

functions” or ”localized sine basis” [50,55,62], as ”localized frames” [63], ”local trigonometric bases”,213

as ”local representations” [6] or simply in terms of ”locally integrable” functions.214

7. Calculation Rules215

”One of the basic principles in classical Fourier analysis is the impossibility to find a function f being216

arbitrarily well localized together with its Fourier transform Ff” [64]. This, in particular, can easily be217

seen if one tries to localize the function that is constantly 1.218

Lemma 7 (Localization Balance). Let ϕ ∈ S and let ϕ̂ := Fϕ. Then

F( ∩ϕδ) = � ϕ̂1 ∈ OC
′ and (7)

F( � ϕ̂1) = ∩ϕδ ∈ OM in S ′. (8)

In (8) we see that by localizing 1, we delocalize δ, i.e., 1 and its Fourier transform δ cannot be both219

arbitrarily well localized. This phenomenon is known as Heisenberg’s uncertainty principle [6,7,11,64–220

66]. Vice versa, in (7) we see that by regularizing δ we increasingly deregularize 1. The entity ∩ ϕδ is221

also known as an ”approximate identity” of δ, usually denoted as δε where ε is a parameter describing222

the proximity to δ (see e.g. [25] p.316, p.401 or [31] p.5). Convolving any f ∈ S ′ with δε, it creates an223

approximate identity fε of f which is a function in the ordinary sense being infinitely differentiable.224

Proof. According to (4), δ ∈ OC
′ can be convolved with ϕ ∈ S ⊂ S ′ and, equivalently, 1 ∈ OM can be

multiplied with ψ ∈ S ⊂ S ′, hence

F( ∩ϕδ) = F(ϕ ∗ δ) = Fϕ · Fδ = ϕ̂ · 1 = � ϕ̂1

holds in S ′. The second formula is shown in an analogous manner.225

It is moreover interesting to observe that in analogy to the Dirac comb identity [15]

���δ ≡ III ≡ ⊥⊥⊥1
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the following identity, let’s say a ”localization balance”

∩ϕδ ≡ Ω ≡ �ϕ1

holds a balance in S ′ if ϕ ≡ ϕ̂ is satisfied for ϕ ∈ S, which obviously is the best achievable compromise226

in localizing 1 and thereby delocalizing δ. It is true for the Gaussian Ω(t) ≡ e−πt2 and herewith expresses227

Hardy’s uncertainty principle [67]. But it is also true for the Hyperbolic secant Ω(t) ≡ 2/(et + e−t),228

see e.g. [11], and for every fourth Hermite function H , i.e., all H satisfying FH ≡ H . A connection229

between Gaussians and Hyperbolic Secants is that both belong to a class of ”Pólya frequency functions”230

[68,69]. Gaussians, Hyperbolic Secants and Hermite functions are treated in [70,71] for example.231

Hermite polynomials are moreover known for its very important role in distribution theory [12,34,35,42].232

Hyperbolic Secants may also replace Gaussians in Gabor systems, see e.g. Janssen and Strohmer [72].233

A link between Gaussians and Hyperbolic Secants is furthermore known in soliton physics where the234

”initial Gaussian beam reshapes to a squared hyperbolic secant profile” [73]. Studying fixpoints Ω of the235

Fourier transform in S is therefore a worthwhile goal.236

Another calculation rule we need to prove the theorem below is the following. It holds in analogy to237

already shown properties of discretizations and periodizations [15].238

Lemma 8. Let ϕ ∈ S, α ∈ OM , g ∈ OC
′ and f ∈ S ′. Then αf and g∗f exist in S ′ and

α · ( �ϕf) = �ϕ(αf) = ( �ϕα) · f ∈ OC
′ and (9)

g ∗ ( ∩ϕf) = ∩ϕ(g∗f) = ( ∩ϕg) ∗ f ∈ OM in S ′. (10)

Proof. We may allow that at most one of the operands in ϕ ∗ g ∗ f is no element in OC
′. This is indeed

true as ϕ ∈ S ⊂ OC
′, g ∈ OC

′ and f is an arbitrary element in S ′. It follows that ϕ ∗ g ∗ f exists in S ′

and, hence, operands may be interchanged arbitrarily. Using OC
′ ∗ S ′ ⊂ S ′ twice and (5), we obtain

g ∗ ( ∩ϕf) = g ∗ (ϕ ∗ f) = ϕ ∗ g ∗ f = ∩ϕ(g ∗ f)
in S ′. The other half of this equation results from the fact that the roles of f and g can be exchanged due239

to commutativity. The second formula is then shown in an analogous manner.240

8. A Regularization-Localization Duality241

The interaction between regularizations and localizations is ubiquitous in the literature today, for242

example as ”regularization” and multiplication with smooth ”cutoff functions” in Hörmander [2], as243

”two components of the approximation procedure” in S ′, see Strichartz [8], or as ”approximation by244

cutting and regularizing” in Trèves [26], p.302, or in terms of ”cutting out” one period of f and245

applying ”(quasi-)interpolation” [61]. Detailed studies of the interaction of both, regularizations and246

localizations, can be found for example in [48,51,52,74] and in engineering literature, we encounter247

these interactions in terms of the interplay between ”windowing” on one hand and ”interpolation” on the248

other. Another equivalent is the so-called ”zero-padding” technique found in engineering textbooks as a249

way to implement interpolations. It corresponds to the regularization of a discrete function by embedding250

it into a higher-dimensional space where it is smooth.251

However, we may summarize this regularization-localization duality in the following way.252
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Theorem 9 (Regularization vs. Localization). Let ϕ ∈ S, f ∈ S ′ and let ϕ̂ := Fϕ. Then

F( ∩ϕf) = � ϕ̂(Ff) ∈ OC
′ and (11)

F( � ϕ̂f) = ∩ϕ(Ff) ∈ OM in S ′. (12)

So, this duality asserts that regularizing a function means to localize its Fourier transform and, vice253

versa, localizing a function means to regularize its Fourier transform. It is the one-to-one counterpart of254

a discretization-periodization duality in S ′, given in (1) and (2).255

Proof. Formally, according to the calculation rules shown above the following equalities hold

F( ∩ϕf) = F ∩ϕ(δ∗f) = F( ∩ϕδ ∗ f) = F( ∩ϕδ) · Ff
= � ϕ̂1 · Ff = � ϕ̂(1·Ff) = � ϕ̂(Ff)

in S ′. We start using f = δ ∗ f where δ ∈ OC
′ ⊂ S ′ is the identity element with respect to convolution256

in S ′. Then we apply Equations (10), (4), (7) and (9), in this order. Finally, with Ff = g ∈ S ′ we use257

g = 1 · g where 1 ∈ OM ⊂ S ′ is the identity element with respect to multiplication in S ′. The second258

formula is now shown in an analogous manner.259

F◦∩ = F reg = �◦F−−−−−−−−−−−−−→
F of regular functions

F◦� = Floc = ∩◦F−−−−−−−−−−−−→
F of local functions

. . . . . .

��
�
���

�
��

��
�
���

�
��

. . . . . .

260

Figure 3. The Regularization-Localization Theorem.

An immediate consequence of the theorem is that f and its Fourier transform Ff cannot be both261

arbitrarily well localized, a fact that is known as Heisenberg’s uncertainty principle. Also note that F loc ,262

see figure above, is the Short-Time Fourier Transform (STFT) with window function ϕ ∈ S and it is the263

Gabor transform if ϕ is a Gaussian. Consequently, the result of Gabor transforms will be smooth, i.e.,264

they cannot be discrete for example. Its Fourier dual, the Fourier transform of regular functions F reg in265

contrast to that, see figure above, corresponds to first regularizing functions before Fourier transforming266

them. Consequently, the result of such transforms will be local, i.e., they cannot be periodic for example.267

Obviously, by looking at these interactions, one may think of discrete functions as the ’opposite’268

of regular functions and, equivalently, one may think of periodic functions as the ’opposite’ of local269

functions. This is examined more closely in the next section.270

9. Four Subspaces271

Let �OM be the complement of regular functions OM in S ′. It is the space of all ordinary or272

generalized functions in S ′ which are not infinitely differentiable in the ordinary functions sense. Let,273
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furthermore, �OC
′ be the complement of local functions OC

′ in S ′. It consists of all ordinary or274

generalized functions in S ′ which do either not fade to zero as |t| increases (periodic functions for275

example) or they fall to zero but too slowly (with polynomial decay rather than with exponential decay).276

Then, the following diagram holds in S ′.277

OM ∩ OC
′ OM ∩ �OC

′

�OM ∩ OC
′ �OM ∩ �OC

′

�

∩
ϕ �∩

ϕ
�

⊥⊥
⊥

�
⊥⊥⊥

�� ϕ̂

�

���
�

� ϕ̂

����

Figure 4. Four subspaces in S ′, linked via operations ⊥⊥⊥, ���, ∩ ϕ, � ϕ̂.

This diagram can moreover be expressed a little bit more ”human readable” by recalling that OM are278

”regular functions” and �OM are ”generalized functions” (in the sense that they are not ”regular”) and279

OC
′ are ”local functions” and �OC

′ are ”global functions” (in the sense that they are not ”local”).280

����

�
���

�

⊥⊥⊥�⊥⊥
⊥

�
� ϕ̂

�� ϕ̂

�

∩
ϕ�∩

ϕ

local global
functions functions

ge
ne

ra
liz

ed
re

gu
la

r
fu

nc
tio

ns
fu

nc
tio

ns

discrete

periodic

discrete
periodic

Figure 5. The same diagram as above, drawn in another fashion.

Apparently, the Schwartz space S ≡ OM ∩OC
′, the ”smooth world”, in some sense, is the ’opposite’281

of �OM ∩ �OC
′, the ”discrete world”. One may also note that no additional information is used yet282

beside pure operator definitions. There is also no statement yet on the reversibility of our operations ⊥⊥⊥283

and ��� and ∩ϕ and �ϕ in S ′. Such inversions will be treated from a more quantitative point of view in284

a follow-on study.285

10. Conclusions and Outlook286

It is shown that in analogy to a discretization-periodization duality in S ′ there is also a287

regularization-localization duality in S ′. Proving these dualities even follows the same pattern. In288

addition, the two dualities are inverses of each other in the sense that the first one maps towards289
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discreteness and the latter one maps towards smoothness. In total, we derived several calculation290

rules suitable to symbolically calculate with operations of discretization, periodization, regularization291

and localization in order to describe transitions from smoothness towards discreteness, even finite292

discreteness, and back from discreteness towards smoothness in a mathematically rigorous and formally293

correct way. We may replace for example discretizations by periodizations or regularizations by294

localizations whenever that is an advantage. Our rules can for example be used to derive higher-level295

theorems in S ′. They can also be implemented in symbolic calculation environments such as Wolfram296

Mathematica or Python SymPy and thereby become a very useful toolbox for algorithm design.297
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67. Gröchenig, K.; Zimmermann, G. Hardy’s theorem and the short-time Fourier transform of429

Schwartz functions. Journal of the London Mathematical Society 2001, 63, 205–214.430

68. Schoenberg, I.J. On totally positive functions, Laplace integrals and entire functions of the431
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