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1 Abstract: Inthispaper, we relate Poisson’s summation formulato Heisenberg’s uncertainty
2 principle. They both express Fourier dualitieswithin the space of tempered distributionsand
3 these dualities are furthermore the inverses of one another. While Poisson’s summation
4 formula expresses a duality between discretization and periodization, Heisenberg's
5 uncertainty principle expresses a duality between regularization and localization. We define
6 regularization and localization on generalized functions and show that the Fourier transform
7 of regular functions are local functions and, vice versa, the Fourier transform of local
8 functions are regular functions.
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> 1. Introduction

-

13 Regularization is a popular trick in applied mathematics, see [1] for example. It is the technique
12 "to approximate functions by more differentiable ones’ [2]. Its terminology coincides moreover with
15 the terminology used in generalized function spaces. They contain two kinds of functions, ”regular
15 functions’ and "generalized functions’. While regular functions are being functions in the ordinary
17 functions sense which are smooth (infinitely differentiable) in the ordinary functions sense, all other
18 functions become smooth (infinitely differentiable) in the "generalized functions sense” [3]. In this
19 way, all functions are being smooth. Localization, in contrast to that, is another popular technique. It
2 alowsfor exampleto integrate functions which could not be integrated otherwise, if wethink of ”locally
21 integrable” functions or if we think of the Short-Time Fourier Transform (STFT), capable to analyze
2> infinitely extended signals. Although, regularization and localization appear to be quite different, a
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connection between these operationsis no surprise. It israther ubiquitousin the literature. The theorem
below, however, appears in awider sense. It even holds within the space of tempered distributions and
isdirectly related to Heisenberg's uncertainty principle. It is moreover the inverse of an already known
discretization-periodization duality (Poisson’s Summation Formula).

While discretization and periodization map functions from smoothness towards discreteness in both
time and frequency domain, the operationsinvestigated in this study, regul arization and localization, map
functions from discreteness towards smoothnessin both time and frequency domain. Inthisway, we have
a full range of tools (discretization, periodization, regularization, localization) in order to describe any
transition from smoothness towards discreteness and al so back from discreteness towards smoothnessin
amathematically rigorous and formally correct way.

This paper is organized as follows. Section 2 describes the overall motivation for this study and
Section 3 explains the rough proof idea. Section 4 provides an introduction to the notations used and
previous results. Section 5 presents a justification for Section 6 where regularization and localization
within the space of tempered distributions are defined. Section 7 provides symbolic calculation rules
based on these definitions, needed to prove the theorem in Section 8. Section 9 connects these results to
resultsin a previous study and Section 10, finally, concludes this study and provides an outlook.

2. Motivation

In contrast to more practically applications of regularizations and localizations, the actual intention of
this study is to provide universally valid calculation rules for regularizations and localizations together
with the scope of their validity within a preferably most general setting. In this way, regularizations
can be expressed in terms localizations and, vice versa, localizations can be expressed in terms of
regularizations, i.e., poorly converging formulas can be replaced by better converging ones. Another
important application of our rulesis knowing the scope of their validity. Knowing not only aformulabut
asoitsvalidity scopeis especially important in applied mathematics. It is simply not very reasonable to
implement aformula that will never converge.

2.1. Generalized Functions

The setting of generalized functions, also called distributions, is today a most modern, very general
setting in Fourier analysis [3—11]. It meets the requirements of Fourier analysis in both, theory and
practice. It alows, for example, to Fourier transform functions which are not even Lebesgue integrable
such as the Dirac impulse ¢ or even constants such as the function that is constantly 1.

In this study, we prove simple symbolic calculation rules within S’, the space of tempered
distributions, for handling both, regularizations and localizations, and their interactions. The space
of tempered distributions S’ is known to be an ideal setting in Fourier analysis mainly due to three
facts. First, the Fourier transform is understood in a much wider sense than usually (on Lebesgue
square-integrable functions), secondly, the Fourier transform still is an automorphism in S’ (as on
Lebesgue square-integrable functions), i.e., the Fourier transform of any element in S’ is again an
element in S’ and, thirdly, al functions are smooth, i.e., al functions can be derived infinitely often.
Smoothness is especially required to treat Fourier series (and the Fourier transform as their limit).
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s1  They consist of complex exponentials which are functions that can be derived infinitely often. Recall
&2 furthermore that Lebesgue square-integrable functions (and their Fourier transforms accordingly) must
s decrease to zero as their arguments increase, otherwise they would not be Lebesgue integrable. This
s« Very strong restriction hasin fact never been accepted by those who are working with Fourier transforms
es practicaly. It actually led to the acceptance of S’ as a standard space in Fourier analysis throughout
ss Many scientific communities, beside mathematics and engineering also in physics, especially in quantum
&7 theory [12-14]. In &', in contrast to traditional approaches, we may even alow functions to grow up
s to the order of polynomials as their arguments increase and they still can be sampled and/or Fourier
o transformed.

7 2.2. Symbolic Calculation

7 The overall goal inthisand in our previous study [ 15] isto compile anumber of rules including their
72 validity scope and therewith to fill atoolbox that will enable usto symbolically calculate with operations
7z Of discretization (sampling), periodization (replicating), regularization (smoothing) and localization
72 (windowing). Performing such calculations on a symbolic level has several advantages. We are now
75 able to rigorously prove higher-level theorems in S’, we may replace more complicated formulas by
7 Simpler ones (or by better converging ones) prior implementing them in software and, lastly, we may
77 even implement these rulesin symbolic calculation environments such as in Wolfram Mathematica[ 16]
76 Or in Python SymPy [17] in order to exclude human errorsin formula derivations.

79 Some applications of our rules [18] are, for example, extending the scope of validity of Poisson’s
g0 Summation Formula to a validity on tempered distributions [ 15], proving that four differently defined
s1  Fourier transforms (two integral Fourier transforms, DFT and DTFT) coincide in the distributional
sz Sense [19-21] or deriving adigital radar image from the continuous case (the landscape being imaged)
es Vvia operations of localization (windowing), discretization (sampling), convolution (defocusing) and
s« deconvolution (focusing) [22].

ss 3. ldea

86 The proof technique in generalized function spaces may appear a bit unusual to those who are
e7 practically oriented. For any equality f = g in generalized function spaces X’ where f,g € X', it
ss Must be shown that both, f and g, yield the same result if applied to arbitrarily chosen test functions
s p € X taken from their test function space X. A very short introduction to this technique is given in
o0 Section Distribution Theory in our previous paper [15].

o1 However, the argumentation in this paper is much ssimpler. We do not need to prove any results on
o2 test functions because it has already been done by other authors [23-26]. Instead, we simply argue
s With subspaces of S’. We implicitly use the fact that functions in subspaces in S’ inherit all function
o properties from the spaces where they are embedded. This idea is one of the fundamental tricks in
s distribution theory. A full range of distribution space embeddings can be found in [23], p.170. But only
o afew of these spaces are needed here (see section Notation and Figure 4 in [15]). We need the space
o7 Of dlowly growing regular functions O,, C S’ (where "regular” means smooth functionsin the ordinary
e functions sense), the space of rapidly decreasing generalized functions O' ¢ S’ (where " generalized”
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eo Mmeans that they are smooth but not necessarily "regular”) and the Schwartz space S C S’ which isthe
w0 Space of regular, rapidly decreasing functions, i.e., functionsin O, NOs’ = S are”regular” and "local”
w1 (rapidly decreasing). They inherit "regular” from O,, and "loca” from O.'. Another important fact is
102 that S contains the space D C S which is the space of compactly supported smooth functions. So, in
103 the special case of having some ¢ € D the property of © being "local” turnsinto ¢ being "finite”, i.e.,
104 (IS ZEro outside some given interval. Accordingly, ¢ - f for some f € S’ will be zero outside the given
10s interval. Inthis case, we talk about "finitization” as a special form of ”localization”. A concatenation of
s discretization and finitization is of particular importance, especially for turning integralsinto finite sums.
107 We moreover make intensive use of the following dualities of the Fourier transform: F(S) = S
s and hence F(§') = & aswell as F(Oy) = O’ and F(O') = Oy The first duality means that
100 the Fourier transform maintains the function property of being "regular and local”, the second duality
10 Means that ”tempered” functions (slowly growing functions, i.e. functions that do not grow faster than
1 polynomials) are again "tempered” after Fourier transforming them and the latter duality (Thm.3, p.424
112 iN[25]) means that the Fourier transform of slowly growing ("regular”) functions are rapidly decreasing
s ("local”) functions and, vice versa, the Fourier transform of rapidly decreasing ("local”) functions are
s Slowly growing ("regular”) functions. This simple circumstance resulted in a validity statement for
us the Poisson Summation Formula in S’, see Thm.1 in [15], the widest comprehension of the Poisson
s Summation Formulatoday to the best of this author’s knowledge.

17 Another issue in generalized function spaces, hence also in &', is the fact that arbitrary generalized
us functions cannot be multiplied with each other. Accordingly, arbitrary generalized functions cannot be
119 convolved with each other. We evade this problem in S’ by using Laurent Schwartz' [23] subspace of
120 Multiplication operators O, and his space of convolution operators O’ as introduced above . These
121 Spaces provide a secure footing for multiplications and convolutionsin S’, see Thm.3, p.424in[25].

122 4. Preliminaries

Let 5,1 bethe Dirac impulse shifted by & € Z" unitsof T e R} = {t e R" : 0 < t, <00, 1 <v <
n}, kT being componentwise multiplication, within the space S’ = S’(R") of tempered distributions
(generalized functions that do not grow faster than polynomials) and let

My == ) Gur
keZm
s bethe Dirac comb. Then 6, € S’ and Il € S’ forany 7' € R” are tempered distributions [8,23,24].
122 \We shortly write ¢ instead of 6,1 if £ = 0. The Fourier transform F in S’ is defined as usual and such
125 that 1 = 6 and 79 = 1 where 1 is the function being constantly one [3-7,9,11,23]. The Dirac comb
126 1S moreover known for its excellent discretization (sampling) and periodization properties [4,9,11,27].
12z While multiplication Il - f in &’ samples a function f € S’, the corresponding convolution product
128 |l * f periodizes finS'.

1 M stands for Multiplication, C stands for Convolution, an apostrophe as X ’ indicates spaces of " generalized” functions,
no apostrophe as X indicates spaces of "regular” functions. Elementsfrom X ’ can always be applied to elements of X.
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129 The following two lemmas summarize the demands that must be put on f € S’ such that f can
130 be sampled or periodized in S’. Recall that smoothness, i.e., infinite differentiability, is not a demand.
It isagiven fact for all functions in generalized function spaces. Also recall that O, is the space of
12 multiplication operatorsin S’ and O’ is the space of convolution operatorsin S’ according to Laurent
13 Schwartz' theory of distributions[13,15,23-26,28-30].

132 Lemma 1 (Discretization). Generalized functions f € S’ canbesampled in S’ if f € O,,.
Proof. Any uniform discretization (sampling) in S’ corresponds to forming the product
- f in S

s Wherelll;y € 8 isthe Dirac comb. Furthermore, 1117 is no regular function, i.e, Il € §"\ O,,. But
16 for any multiplication product in S’ itisrequired that at |east one of the two factorsisin O,,. Otherwise
137 the existence of this product cannot be secured. Hence, f € O, C S’ or another reasonable definition
13s  Of this multiplication product would be required. Vice versa, if f € O, then lll; - f exists due to
1w S -0y C 8 (Thm.3,p.424in[25]). O

140 An equivalent statement is the following lemma.
w1 Lemma 2 (Periodization). Generalized functions f € S’ can be periodizedin S’ if f € Of'.
Proof. Any periodizationin S’ corresponds to forming the convolution product
Myxf in &

12 Wherellly € S isthe Dirac comb. Furthermore, 111 is of no rapid descent, i.e., Il € 8"\ O¢'. But
1z for any convolution product in S’, it is required that at least one of the two factorsisin O.'. Otherwise
s the existence of this product cannot be secured. Hence, f € O’ C S’ or another reasonable definition
s Of this convolution product would be required. Vice versa, if f € O¢' then Il x f exists due to
uw S'x O S (Thm.3,p.424in[25]). O

Inapreviousstudy [15], we used these insightsin order to define operations of discretization 1.1, and
periodization s inS’. Whilediscretizationisan operation i, : Oy — S, f = wief = llp- f,
periodization is an operation s, : O’ — &', g — snarg = lllp * g, respectively. Starting from
these two definitions we proved that

F(urf) = con(Ff)  and D
F(ang) = 11(Fg) (2)
w7 hold in &', both being expressions of Poisson’s Summation Formula. We shortly write 111 and 2
us Instead of 1, and 2, if T, =1foral 1 <v < n.
Recall moreover that these rules are a consequence of the Fourier duality
Fla-f)y=FaxFf and (3)
Flgxf)= Fg-Ff in & (4)
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e forany a € Oy, g € O and f € 8’ which is, according to Laurent Schwartz' theory of generalized
150 functions, the widest possible comprehension of both, multiplication and convol ution within the space of
11 tempered distributions [ 23,25,29]. It lies at the very heart of S’. Many calculation rulesin S, including
12 Equations (1), (2), (7), (8), (11), (12) and Lemmas 1, 2, 3, 4 rely oniit.

153 5. Feasibilities

154 The following two lemmas provide justifications for the way we will define regularizations and
155 localizationsin S’ below. They will alow usto invert discretizations and periodizationsin S’.

15 Lemma 3 (Regularization). Let o € S. Thenfor any f € &', ¢ x f can be sampled.

157 Proof. Thisisaconsequence of thefactthat S « S’ € Oy, [7,23,25,29] and Lemmal. [

158 An equivalent statement is the following lemma.
159 Lemma4 (Localization). Let p € S. Thenfor any f € S’, ¢ - f can be periodized.

1o Proof. It followsfromthefactthat S-S’ C O [23,29], whichisthe Fourier dual F(S*S') = F(Oy)
w1 Of S8 C Oy, andLemma2. O

162 It isinteresting to observethat ¢ x and ¢ - stretch and compress f € S’, respectively. This property
13 1SmMoreover independent of the actual choice of ¢ € S. It can therefore be attributed to the operations of
16 convolution and multiplication themselves.

165 6. Definitions

166 "One of the main applications of convolution is the regularization of a distribution” [25] or the
167 regularization of ordinary functions which are not being infinitely differentiable in the conventional
s functions sense. Its actual importance lies furthermore in the fact that it is the reversal of discretization.
169 Regularization is usually understood as the approximation of generalized functions via approximate
1o identities [2,5-7,25,31-33]. In this paper, however, we extend this idea by allowing any ¢ € S and
o asoany f € &', i.e, even ordinary functions (either being smooth or not being smooth) can be
1722 regularized. Thisapproach naturally includesthe special case of choosing approximate identitieswithout
173 unnecessarily restricting our theorem below. Lemmas 3 and 4 abovejustify the following two definitions.

Definition 5 (Regularization). Let ¢ € S. Then for any tempered distribution f € S’ we define another
tempered distribution by

nef = pxf (5)
172 which is a regular, slowly growing function in O,, C &’. The operation n., is called regularization,

175 approximation, interpolation or smoothing of f by means of . It is a linear continuous operation
1w ne: S — O, [ n.f. Theresult of n, iscalled regular function of f inS’.
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Figure 1. The regularization of generalized function f yieldsregular function n . f.

177

178 Regular functions (according to thisdefinition) are functionsin the ordinary functions sense which are
179 Smooth (infinitely differentiable) in the ordinary functions sense, a function property that is of immense
10 vValuein many branches of mathematics. Regular functionsbelongto O, because S xS’ C O, seeeg.
w1 [7,23,29]. They maintain the being 'tempered’ property, i.e., they do not grow faster than polynomials,
1.2 Whichiscommon to all tempered distributions but add the regularity of ¢ to f. It followsthat regularized
13 functions can aways be sampled according to Lemma 1.

184 Regularizations of type (5), where f asamember in some distribution space X’ issingular (i.e., there
15 1S N0 locally integrable function representing f) and ¢ as a member in its corresponding space of test
186 functions X is used for its regularization, are usualy called ”"singular convolution” [ 34,35] and with f
187 replaced by a sequence f, converging towards f they become so-called " discrete singular convolutions
18s  (DSCs)”, astandard technique today for the regularization of singular distributions.

189 Regularizations are treated in many mathematical textbooks [2,11,24-26,31] and scientific papers
1o [1,34-42]. They are also known in terms of " smooth cutoff functions” [2,8], "regularizers’ [1,34,35,37],
101 distributed approximating functionals (DAFs)” [38-42] and "moallifiers’ [28,43-47], aterm that goes
192 back (see [28], p.63) to K.O. Friedrichs [43]. Regularized rect functions (characteristic functions of
193 an interval) are known as "mesa function”, "tapered box” [11] or "tapered characteristic function” and
10a "taper function” [48] or as”C> bell” or "smoothed top hat” function in [49]. Mostly, regularizations
105 arerequired "to obtain regularized interpolating kernels’ such asin [37]. They are closely linked to the
16 regularity theorem for tempered distributions’ [12].

197 Away from the generalized functions literature, we furthermore encounter regularizations in terms of
198 ”Smoothings’, "interpolations’, ” zero-paddings’ or " approximations” because they are not only applied
190 t0 generalized functions, they are also applied to ordinary functions, usually to obtain better " regularity”
200 properties for functions, i.e. better differentiability. Regularity is aso a topic discussed in [50], for
201 example. Itisclosely related to localization.

Definition 6 (Localization). Let ¢ € S. Then for any tempered distribution / € S’ we define another
tempered distribution by

nef =@ f (6)
202 Which is a generalized function of rapid descent in O’ C S'. The operation r,, is called localization

203 OF restriction of f by means of . Itisa linear continuous operation n, : &' — O, f — n.f. If
204a @ €D CS,itisalsocalled finitization. Theresult of n, iscalled local function of f inS’.
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Figure 2. Thelocalization of generalized function f yieldslocal function n, f.

205

206 Local functions (according to this definition) belong to O because S’ - S € O’ [23,25]. They add
207 the 'rapid descent’ property of Schwartz functionsy € Sto f € S'. It follows that localized functions
208 Can aways be periodized according to Lemma 2.

209 Theterm ”local” and the treatment of localizations have along history in mathematics. It culminated,
210 however, in the term "localization operator”. It appears 1988 for the first time (see [51], p.133 in
a1 [52]) in Daubechies article [53] and later in Daubechies 1992 standard textbook [50]. Meanwhile,
212 "localizations’ occur in many textbooks [2,50,52-61], amongst others as "localized trigonometric
213 functions” or "localized sine basis’ [50,55,62], as ”localized frames’ [63], "local trigonometric bases’,
214 as”local representations’ [6] or simply in terms of ”locally integrable” functions.

25 7. Calculation Rules

216 ”One of the basic principlesin classical Fourier analysisistheimpossibility to find afunction f being
217 arbitrarily well localized together with its Fourier transform F f” [64]. This, in particular, can easily be
218 Seen if onetriesto localize the function that is constantly 1.

Lemma 7 (Localization Balance). Let o € S andlet ¢ := Fp. Then

F(ny,d) = n,l € Os' and (7)
F(ngl)=n,d €Oy inS. (8)
219 In (8) we see that by localizing 1, we delocalize 6, i.e., 1 and its Fourier transform ¢ cannot be both

220 arbitrarily well localized. This phenomenon is known as Heisenberg's uncertainty principle [6,7,11,64—
a1 66]. Viceversa, in (7) we see that by regularizing 6 we increasingly deregularize 1. The entity n,¢d is
222 also known as an ” approximate identity” of §, usually denoted as §. where ¢ is a parameter describing
223 the proximity to § (see e.g. [25] p.316, p.401 or [31] p.5). Convolving any f € S’ with ¢, it creates an
220 @pproximate identity f. of f whichisafunction inthe ordinary sense being infinitely differentiable.

Proof. Accordingto (4), 6 € O’ can be convolved with o € S € &’ and, equivalently, 1 € O, can be
multiplied with¢ € S C §’, hence

F(nyd)=F(pxd)=Fp-Fo=¢ -1=n,l

2»s holdsin S’. The second formulais shown in an analogous manner. [

It is moreover interesting to observe that in analogy to the Dirac comb identity [ 15]

o =1 = il
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the following identity, let’s say a”localization balance”
nd =0 = n,l

26 holdsabaancein S’ if ¢ = pissatisfied for ¢ € S, which obviously is the best achievable compromise
227 inlocalizing 1 and thereby delocalizing §. Itistruefor the Gaussian Q)(t) = e~ and herewith expresses
»s Hardy’s uncertainty principle [67]. But it is also true for the Hyperbolic secant Q(t) = 2/(e! + e™),
29  Seeeg. [11], and for every fourth Hermite function H, i.e., all H satisfying FH = H. A connection
220 between Gaussians and Hyperbolic Secantsis that both belong to a class of ” Polya frequency functions’
21 [68,69]. Gaussians, Hyperbolic Secants and Hermite functions are treated in [70,71] for example.
222 Hermite polynomialsare moreover known for itsvery important rolein distribution theory [ 12,34,35,42].
233 Hyperbolic Secants may also replace Gaussians in Gabor systems, see e.g. Janssen and Strohmer [72].
22 A link between Gaussians and Hyperbolic Secants is furthermore known in soliton physics where the
255 initial Gaussian beam reshapes to a squared hyperbolic secant profile” [73]. Studying fixpoints € of the
26 Fourier transformin S is therefore aworthwhile goal.

237 Another calculation rule we need to prove the theorem below is the following. It holdsin analogy to
238 already shown properties of discretizations and periodizations [15].

Lemma8. Letp € S,a € Oy, g€ O/ and f € §'. Thenaf and g f existin S’ and

a-(ngf)=n.(af) = (ne.a)-f € O and 9)
g*(nef) = nelg*f) = (n.g) = f €Oy inS'. (10)

Proof. We may allow that at most one of the operandsin ¢ * g * f isno elementin O.'. Thisisindeed
trueasp € S C O/, g € O and f isan arbitrary element in S’. It followsthat ¢ * g * f existsin S’
and, hence, operands may be interchanged arbitrarily. Using Os' * &’ ¢ S’ twice and (5), we obtain

g*x(nof)=g*x(pxf)=pxgxf=n.(g9*f)

20 INS’. The other half of this equation results from the fact that the roles of f and g can be exchanged due
200 10 commutativity. The second formulais then shown in an analogous manner. [

2 8. A Regularization-L ocalization Duality

242 The interaction between regularizations and localizations is ubiquitous in the literature today, for
23 example as "regularization” and multiplication with smooth ”cutoff functions” in Hormander [2], as
24 "tWO components of the approximation procedure” in S’, see Strichartz [8], or as ”approximation by
25 CUtting and regularizing” in Treves [26], p.302, or in terms of "cutting out” one period of f and
26 @pplying ”(quasi-)interpolation” [61]. Detailed studies of the interaction of both, regularizations and
27 localizations, can be found for example in [48,51,52,74] and in engineering literature, we encounter
28 theseinteractionsin terms of the interplay between "windowing” on one hand and " interpolation” on the
220 Other. Another equivalent isthe so-called ” zero-padding” technique found in engineering textbooks as a
50 way toimplement interpolations. It correspondsto the regularization of adiscrete function by embedding
21 it into a higher-dimensional space where it is smooth.

252 However, we may summarize this regularization-localization duality in the following way.
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Theorem 9 (Regularization vs. Localization). Let p € S, f € S’ and let p := Fp. Then
F(nef) = no(Ff) € Oc¢' and (11)
F(rsf) = no(Ff) € Oy inS. (12)

253 So, this duality asserts that regularizing a function means to localize its Fourier transform and, vice
s VeErsa, localizing afunction meansto regularize its Fourier transform. It is the one-to-one counterpart of
255 adiscretization-periodization duality in &', givenin (1) and (2).

Proof. Formally, according to the calculation rules shown above the following equalities hold

F(rnof)=Fn (0xf)=F(n,0 x f)=F(n,0) - Ff
=nl - Ff = ”@(1‘}7): ”@(}—f)

2z INS. Westartusing f = ¢ * f whered € O’ C S’ istheidentity element with respect to convolution
27 INS’. Then we apply Equations (10), (4), (7) and (9), in thisorder. Finaly, with Ff = g € S’ we use
s g=1-gwherel € O, C &' istheidentity element with respect to multiplication in S’. The second
250 formulais now shown in an analogous manner. [

Fon = Frg = HO}-\
F of regular functions B T T ta
Fol = Fioe = NoF
T [ ‘ I T F of locd functions ’ /\/\/\/\/\/\/\/\/\/W\/WW\
Af ta

Figure 3. The Regularization-Localization Theorem.

260

261 An immediate consequence of the theorem is that f and its Fourier transform F f cannot be both
%2 arbitrarily well localized, afact that is known as Heisenberg's uncertainty principle. Also note that 7,
263 Seefigure above, isthe Short-Time Fourier Transform (STFT) with window function ¢ € S and it isthe
s  Gabor transform if ¢ isa Gaussian. Consequently, the result of Gabor transforms will be smooth, i.e.,
26s  they cannot be discrete for example. Its Fourier dual, the Fourier transform of regular functions F ., in
266 CONtrast to that, see figure above, corresponds to first regularizing functions before Fourier transforming
27 them. Consequently, the result of such transformswill belocal, i.e., they cannot be periodic for example.
268 Obvioudly, by looking at these interactions, one may think of discrete functions as the 'opposite’
20 Of regular functions and, equivalently, one may think of periodic functions as the *opposite’ of local
270 functions. Thisis examined more closely in the next section.

n 9. Four Subspaces

212 Let C Oy, be the complement of regular functions ©,; in S’. It is the space of al ordinary or
a1z generaized functions in 8’ which are not infinitely differentiable in the ordinary functions sense. Let,


http://dx.doi.org/10.20944/preprints201705.0175.v2
http://dx.doi.org/10.3390/math5030041

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2017 d0i:10.20944/preprints201705.0175.v2

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

11 of 15

furthermore, C O’ be the complement of local functions O.' in &'. It consists of all ordinary or

generalized functions in &’ which do either not fade to zero as |t| increases (periodic functions for

example) or they fall to zero but too slowly (with polynomial decay rather than with exponential decay).
Then, the following diagram holdsin S’.

OunOs —— ounlos

Sk i
COynOs’ — CoyunCo

Figure 4. Four subspacesin &', linked via operations 111, s, ny, M.

This diagram can moreover be expressed alittle bit more ” human readable” by recalling that O, are
"regular functions” and C O, are ”generalized functions’ (in the sense that they are not "regular”) and
O’ are”local functions” and C O’ are " global functions” (in the sense that they are not ”local”).

local global
functions functions
58 N
= E m R periodic
; @
.-": 5
—_ H ot —_
e —— ot
Bo
% E . Mg e
o] g “\\Hh\h el T “\\H\hh “\\Hh\h “\‘HMM e
§) 2 discrete discrete

—
JAAAN periodic

Figure 5. The same diagram as above, drawn in another fashion.

Apparently, the Schwartz space S = O, N O/, the " smooth world”, in some sensg, isthe’ opposite’
of COy NC O, the "discrete world”. One may also note that no additional information is used yet
beside pure operator definitions. Thereis aso no statement yet on the reversibility of our operations L.t
and s and n, and n, inS’. Such inversionswill be treated from a more quantitative point of view in
afollow-on study.

10. Conclusions and Outlook

It is shown that in analogy to a discretization-periodization duality in S’ there is also a
regularization-localization duality in S’. Proving these dualities even follows the same pattern. In
addition, the two dualities are inverses of each other in the sense that the first one maps towards
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200 discreteness and the latter one maps towards smoothness. In total, we derived several calculation
201 rules suitable to symbolically calculate with operations of discretization, periodization, regularization
22 and localization in order to describe transitions from smoothness towards discreteness, even finite
203 discreteness, and back from discreteness towards smoothness in a mathematically rigorous and formally
200 COrrect way. We may replace for example discretizations by periodizations or regularizations by
205 lOcalizations whenever that is an advantage. Our rules can for example be used to derive higher-level
206 theoremsin S’. They can also be implemented in symbolic calculation environments such as Wolfram
207 Mathematica or Python SymPy and thereby become a very useful toolbox for algorithm design.

208 Acknowledgements

299 This paper is primarily based on studies conducted in the years 1995-1997 at the Institute of
a0  Mathematics, Ludwig Maximilians University (LMU), Munich. The author isin particular very grateful
a1 to Professor Otto Forster. The author would also like to thank his colleagues at the Microwaves and
a2 Radar Institute, German Aerospace Center (DLR), for deep insightsinto practised signal processing and
s03  agreat cooperation for many years.

s« Conflicts of Interest
305 The author declares no conflicts of interest.
06 References

307 1. We, G.W,, Gu, Y. Conjugate filter approach for solving Burgers equation.  Journal of

308 Computational and Applied mathematics 2002, 149, 439-456.

309 2. Hormander, L. The analysis of linear partial differential operators I; Die Grundlehren der
310 mathematischen Wissenschaften, Springer, 1983.

a1l 3. Lignhthill, M.J. An Introduction to Fourier Analysis and Generalised Functions, Cambridge
312 University Press, 1958.

313 4. Woodward, PM. Probability and Information Theory, with Applications to Radar; Pergamon
314 Press, 1953.

a1 5. Benedetto, J.J. Harmonic Analysis and Applications; Vol. 23, CRC Press, 1996.
316 6. Feichtinger, H.G.; Stronmer, T. Gabor Analysis and Algorithms. Theory and Applications;

317 Springer, 1998.
318 7. Gasguet, C.; Witomski, P. Fourier Analysisand Applications: Filtering, Numerical Computation,
319 Wavelets; Vol. 30, Springer Science & Business Media, 1999.

320 8. Strichartz, R.S. A Guideto Distribution Theorie and Fourier Transforms; World Scientific, 2003.
321 9. Brandwood, D. Fourier Transformsin Radar and Sgnal Processing; Artech House, 2003.

322 10. Rahman, M. Applications of Fourier Transformsto Generalized Functions, WIT Press, 2011.
323 11. Kammler, D.W. Afirst coursein Fourier analysis, Cambridge University Press, 2007.

324 12. Simon, B. Distributions and their Hermite expansions. Journal of Mathematical Physics 1971,
325 12, 140-148.


http://dx.doi.org/10.20944/preprints201705.0175.v2
http://dx.doi.org/10.3390/math5030041

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2017 d0i:10.20944/preprints201705.0175.v2

13 of 15

326 13. Gracia-Bondia, JM.; Varilly, J.C. Algebras of Distributions Suitable for Phase-Space Quantum

327 Mechanics. |. Journal of Mathematical Physics 1988, 29, 869-879.
2 14. Becnel, J; Sengupta, A. The Schwartz Space: Tools for Quantum Mechanics and Infinite
329 Dimensional Analysis. Mathematics 2015, 3, 527-562.

330 15. Fischer, J.V. On the duality of discrete and periodic functions. Mathematics 2015, 3, 299-318.

31 16. Wolfram Mathematica. http://reference.wolfram.convlanguage/tutorial/SymbolicCalcul ations.html.
332 17. Python SymPy. https://en.wikipedia.org/wiki/SymPy.

s 18, Fischer, J. Calculation Rules for Discrete Functions, Periodic Functions and Discrete Periodic

334 Functions. ResearchGate, doi 10.13140/rg.2.2.21779.07201 2017.

ass 19. Fischer, J. Thereisonly one Fourier Transform. ResearchGate, doi 10.13140/rg.2.2.30950.83521
336 2017.

337 20. Fischer, J. A Formula Connecting Fourier Series and Fourier Transform. ResearchGate, doi
338 10.13140/rg.2.2.24295.65445 2017.

s 21. Fischer, J. Fourier Transforms and Fourier Series and Their Interrelations. ResearchGate, doi
340 10.13140/rg.2.2.32053.47840 2017.

s 22. Fischer, J; Molkenthin, T.; Chandra, M. SAR Image Formation as Wavelet Transform.
302 Proceedings of EUSAR 2006.

343 23. Schwartz, L. Théorie des Distributions, Tome I1; Hermann Paris, France, 1959.
aa 24, Zemanian, A. Distribution Theory And Transform Analysis - An Introduction To Generalized

345 Functions, With Applications; McGraw-Hill, 1965.

a6 25. Horvath, J. Topological vector spaces and distributions; Addison-Wesley Publishing Company,
a7 1966.

348 26. Treves, F. Topological Veector Spaces, Distributionsand Kernels: Pure and Applied Mathematics,
349 Vol. 25, Dover Publications Inc, Mineola, New York, 1967.

350 27. Bracewell, R.N. Fourier Transformand its Applications; McGraw-Hill Education, 1986.
351 28. Grubb, G. Distributions and Operators, Vol. 252, Springer Science & Business Media, 2008.
352 29. Dubois-Violette, M.; Kriegl, A.; Maeda, Y.; Michor, PW. Smooth*-Algebras. arXiv preprint

353 math/0106150 2001.

354 30. Nguyen, H.Q.; Unser, M.; Ward, J.P. Generalized Poisson Summation Formulas for Continuous
ass Functions of Polynomial Growth. Journal of Fourier Analysis and Applications 2016, pp. 1-20.
36 31. Walter, W. Einflhrung in die Theorie der Distributionen; BIl-Wissenschaftsverlag,
357 Bibliographisches Institut & FA Brockhaus, 1994.

358 32. Hunter, JK.; Nachtergaele, B. Applied Analysis; World Scientific, 2001.
359 33. Beds, R. Advanced mathematical analysis. periodic functions and distributions, complex

360 analysis, Laplace transform and applications; Vol. 12, Springer Science & Business Media,
361 2013,

362 34. Wei, G. Wavelets generated by using discrete singular convolution kernels. Journal of Physics
363 A: Mathematical and General 2000, 33, 8577.

364 35. Wei, G. Discrete singular convolution for the solution of the Fokker—Planck equation. The
35 Journal of chemical physics 1999, 110, 8930-8942.


http://dx.doi.org/10.20944/preprints201705.0175.v2
http://dx.doi.org/10.3390/math5030041

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2017 d0i:10.20944/preprints201705.0175.v2

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

36.

37.

38.

39.

40.

41.

42.

45.
46.

47.

48.

49,

50.
51.

52.

53.

14 of 15

Estrada, R.; Kanwal, R.P. Regularization, pseudofunction, and Hadamard finite part. Journal of
mathematical analysis and applications 1989, 141, 195-207.

Wei, G. Quas wavelets and quasi interpolating wavelets. Chemical Physics Letters 1998,
296, 215-222.

Wei, G.; Wang, H.; Kouri, D.J.; Papadakis, M.; Kakadiaris, I.A.; Hoffman, D.K. On the
mathematical properties of distributed approximating functionals.  Journal of mathematical
chemistry 2001, 30, 83-107.

Hoffman, D.K.; Kouri, D.J. Distributed approximating function theory for an arbitrary number
of particlesin a coordinate system-independent formalism. The Journal of Physical Chemistry
1993, 97, 4984-4988.

Hoffman, D.K.; Kouri, D.J. Distributed approximating functionals. A new approach to
approximating functions and their derivatives. Proc. Third Int. Conf. on Math. and Num.
Aspects of Wave Propagation (SIAM), 1995, p. 56.

Hoffman, D.; Wel, G.; Zhang, D.; Kouri, D. Shannon-Gabor wavel et distributed approximating
functional. Chemical Physics Letters 1998, 287, 119-124.

Bodmann, B.G.; Hoffman, D.K.; Kouri, D.J.; Papadakis, M. Hermite distributed approximating
functionals as amost-ideal low-pass filters. Sampling Theory in Sgnal and Image Processing
2008, 7, 15.

Friedrichs, K.O. On the differentiability of the solutions of linear elliptic differential equations.
Communications on Pure and Applied Mathematics 1953, 6, 299-326.

Schechter, M. Modern Methods in Partial Differential Equations, An Introduction, 1977.
Yosida, K. Functional analysis. 123, 1980.

Gaffney, M.P. A specia Stokes's theorem for complete Riemannian manifolds.  Annals of
Mathematics 1954, pp. 140-145.

Ni, L.; Markenscoff, X. The self-force and effective mass of a generally accelerating dislocation
I: Screw dislocation. Journal of the Mechanics and Physics of Solids 2008, 56, 13483-1379.
Ashino, R.; Degardins, J.S.; Heil, C.; Nagase, M.; Vaillancourt, R. Pseudo-differential operators,
microlocal analysis and image restoration. In Advances in Pseudo-Differential Operators;
Springer, 2004; pp. 187—202.

Boyd, JP. Asymptotic Fourier Coefficients for a C> Bell (Smoothed-Top-Hat) & the Fourier
Extension Problem. Journal of Scientific Computing 2006, 29, 1-24.

Daubechies, I. Ten Lectures on Wavelets; Vol. 61, SIAM, 1992.

Cordero, E.; Tabacco, A. Localization operators via time-frequency analysis. In Advances in
Pseudo-Differential Operators; Springer, 2004; pp. 131-147.

Ashino, R.; Boggiatto, P; Wong, M.W. Advances in pseudo-differential operators; Vol. 155,
Birkhauser, 2012.

Daubechies, I. Time-frequency localization operators: a geometric phase space approach. |[EEE
Transactions on Information Theory 1988, 34, 605-612.

Oberguggenberger, M.B. Multiplication of distributions and applications to partial differential
equations; Vol. 259, Longman Scientific & Technical, Harlow, Essex, U.K., 1992.


http://dx.doi.org/10.20944/preprints201705.0175.v2
http://dx.doi.org/10.3390/math5030041

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2017 d0i:10.20944/preprints201705.0175.v2

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

95.

56.

S7.

58.

59.

60.

61.

62.

63.

64.

65.
66.

67.

68.

69.

70.

71.
72.

73.

74,

150f 15

Coifman, R.R.; Wickerhauser, M.V. Entropy-based algorithms for best basis selection. 1EEE
Transactions on information theory 1992, 38, 713-718.

Triebel, H. A localization property for B°,, and F*°,, spaces. Sudia Mathematica 1994,
109, 183-195.

Feichtinger, H.G.; Grochenig, K. Gabor frames and time-frequency analysis of distributions.
journal of functional analysis 1997, 146, 464-495.

Skrzypczak, L. Heat and Harmonic Extensions for Function Spaces of Hardy—Sobolev—Besov
Type on Symmetric Spaces and Lie Groups. Journal of approximation theory 1999, 96, 149-170.
Feichtinger, H.G. Modulation spaces: looking back and ahead. Sampling Theory in Sgnal and
Image Processing 2006, 5, 109.

Nguyen, H.Q.; Unser, M. A sampling theory for non-decaying signals. Applied and
Computational Harmonic Analysis 2015.

Feichtinger, H.G. Thoughts on Numerical and Conceptual Harmonic Analysis. In New Trendsin
Applied Harmonic Analysis; Springer, 2016; pp. 301-329.

Daubechies, 1. The Wavelet Transform, Time-Frequency Localization and Signa Analysis.
Information Theory, |EEE Transactions on 1990, 36, 961-1005.

Grochenig, K. Localization of frames, Banach frames, and the invertibility of the frame operator.
Journal of Fourier Analysis and Applications 2004, 10, 105-132.

Wilczok, E. New uncertainty principles for the continuous Gabor transform and the continuous
wavelet transform. Documenta Mathematica 2000, 5, 201-226.

Mallat, S. AWavelet Tour of Sgnal Processing; Academic press, 1999.

Higgins, J.R. Sampling theory in Fourier and signal analysis: foundations; Oxford University
Press on Demand, 1996.

Grochenig, K.; Zimmermann, G. Hardy’s theorem and the short-time Fourier transform of
Schwartz functions. Journal of the London Mathematical Society 2001, 63, 205-214.
Schoenberg, 1.J. On totally positive functions, Laplace integrals and entire functions of the
Laguerre-Polya-Schur type. Proceedings of the National Academy of Sciences 1947, 33, 11-17.
Schoenberg, I. On variation-diminishing integral operators of the convolution type. Proceedings
of the National Academy of Sciences 1948, 34, 164-169.

Boyd, J.P. Asymptotic coefficients of Hermite function series. Journal of Computational Physics
1984, 54, 382-410.

Boyd, J.P. Chebyshev and Fourier spectral methods; Courier Corporation, 2001.

Janssen, A.; Strohmer, T. Hyperbolic secants yield Gabor frames. Applied and Computational
Harmonic Analysis 2002, 12, 259-267.

Fazio, E.; Renzi, F.; Rinaldi, R.; Bertolotti, M.; Chauvet, M.; Ramadan, W.; Petris, A.; Vlad, V.
Screening-photovoltaic bright solitonsin lithium niobate and associ ated single-mode waveguides.
Applied physics letters 2004, 85, 2193-2195.

Boggiatto, P. Localization operators with L p symbols on modulation spaces. In Advances in
Pseudo-differential Operators; Springer, 2004; pp. 149-163.


http://dx.doi.org/10.20944/preprints201705.0175.v2
http://dx.doi.org/10.3390/math5030041

	Introduction
	Motivation
	Generalized Functions
	Symbolic Calculation

	Idea
	Preliminaries
	Feasibilities
	Definitions
	Calculation Rules
	A Regularization-Localization Duality
	Four Subspaces
	Conclusions and Outlook



