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Abstract: In this paper, we relate Poisson’s summation formula to Heisenberg’s uncertainty1

principle. They both express Fourier dualities within the space of tempered distributions and2

these dualities are furthermore the inverses of one another. While Poisson’s summation3

formula expresses a duality between discretization and periodization, Heisenberg’s4

uncertainty principle expresses a duality between regularization and localization. We define5

regularization and localization on generalized functions and show that the Fourier transform6

of regular functions are local functions and, vice versa, the Fourier transform of local7

functions are regular functions.8
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1. Introduction12

Regularization is a popular trick in applied mathematics, see [1] for example. It is the technique13

”to approximate functions by more differentiable ones” [2]. Its terminology coincides moreover with14

the terminology used in generalized function spaces. They contain two kinds of functions, ”regular15

functions” and ”generalized functions”. While regular functions are being functions in the ordinary16

functions sense which are infinitely differentiable in the ordinary functions sense, all other functions17

become ”infinitely differentiable” in the ”generalized functions sense” [3]. In this way, all functions18

are being infinitely differentiable. Localization, in contrast to that, is another popular technique. It19

allows for example to integrate functions which could not be integrated otherwise, if we think of ”locally20

integrable” functions or if we think of the Short-Time Fourier Transform (STFT), capable to analyze21

infinitely extended signals. Although, regularization and localization appear to be quite different, a22
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connection between these operations is no surprise. It is ubiquitous in the literature. The theorem23

below, however, appears in wider sense. It holds within the space of tempered distributions and is24

directly related to Heisenberg’s uncertainty principle. It is moreover the inverse of an already known25

discretization-periodization duality.26

Section2 provides an introduction to the notations used and previous results. Section3 presents a27

justification for Section4where regularization and localization within the space of tempered distributions28

are defined. Section5 provides symbolic calculation rules based on these definitions, needed to prove29

the theorem in Section6. Section7 connects these results to results in a previous study and Section 8,30

finally, concludes this study and provides an outlook.31

2. Preliminaries32

Let δkT be the Dirac impulse shifted byk ∈ Z
n units ofT ∈ R

n
+
= {t ∈ R

n : 0 < tν <∞, 1 6 ν 6

n}, kT being componentwise multiplication, within the spaceS ′ ≡ S ′(Rn) of tempered distributions

(generalized functions that do not grow faster than polynomials) and let

III T :=
∑

k∈Zn

δkT

be the Dirac comb. ThenδkT ∈ S ′ and IIIT ∈ S ′ for anyT ∈ R
n
+

are tempered distributions [4–6].33

We shortly writeδ instead ofδkT if k = 0. The Fourier transformF in S ′ is defined as usual and such34

thatF1 = δ andFδ = 1 where1 is the function being constantly one [3,4,7–12]. The Dirac comb35

is moreover known for its excellent discretization (sampling) and periodization properties [7,11–13].36

While multiplication IIIT · f in S ′ samples a functionf ∈ S ′, the corresponding convolution product37

III T ∗ f periodizesf in S ′.38

The following two lemmas summarize the demands that must be put onf ∈ S ′ such thatf can39

be sampled or periodized inS ′. Recall that smoothness, i.e., infinite differentiability, is not a demand.40

It is a given fact for all functions in generalized function spaces. Also recall thatOM is the space of41

multiplication operators inS ′ andOC
′ is the space of convolution operators inS ′ according to Laurent42

Schwartz’ theory of distributions [4,5,14–20].43

Lemma 1 (Discretization).Generalized functionsf ∈ S ′ can be sampled inS ′ if and only iff ∈ OM .44

Proof. Any uniform discretization (sampling) inS ′ corresponds to forming the product

III T · f in S ′

where IIIT ∈ S ′ is the Dirac comb. Furthermore, IIIT is no regular function, i.e., IIIT ∈ S ′ \ OM . On45

the other hand, for any multiplication product inS ′, it is required that at least one of the two factors is in46

OM . Hence,f ∈ OM ⊂ S ′. Otherwise the product does not exist. Vice versa, iff ∈ OM then IIIT · f47

exists due toS ′ · OM ⊂ S ′.48

An equivalent statement is the following lemma.49

Lemma 2 (Periodization).Generalized functionsf ∈ S ′ can be periodized inS ′ if and only iff ∈ OC
′.50
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Proof. Any periodization inS ′ corresponds to forming the convolution product

III T ∗ f in S ′

where IIIT ∈ S ′ is the Dirac comb. Furthermore, IIIT is of no rapid descent, i.e., IIIT ∈ S ′ \ OC
′. On51

the other hand, for any convolution product inS ′, it is required that at least one of the two factors is in52

OC
′. Hence,f ∈ OC

′ ⊂ S ′. Otherwise the convolution product does not exist. Vice versa, iff ∈ OC
′

53

then IIIT ∗ f exists due toS ′ ∗ OC
′ ⊂ S ′.54

In a previous study [19], we used these insights in order to define operations of discretization⊥⊥⊥T and

periodization△△△T in S ′. While discretization is an operation⊥⊥⊥T : OM → S ′, f 7→ ⊥⊥⊥Tf := III T ·f ,

periodization is an operation△△△T : OC
′ → S ′, g 7→ △△△Tg := III T ∗ g, respectively. Starting from

these two definitions we proved that

F( ⊥⊥⊥f) = △△△(Ff) and (1)

F(△△△g) = ⊥⊥⊥(Fg) (2)

hold in S ′, both being expressions of Poisson’s Summation Formula. We shortly write⊥⊥⊥ and △△△55

instead of⊥⊥⊥T and △△△T if Tν = 1 for all 1 6 ν 6 n.56

Recall moreover that these rules are a consequence of the Fourier duality

F(α · f) = Fα ∗ Ff and (3)

F(g ∗ f) = Fg · Ff in S ′ (4)

for anyα ∈ OM , g ∈ OC
′ andf ∈ S ′ which is, according to Laurent Schwartz’ theory of generalized57

functions, thewidestpossible comprehension of both, multiplication and convolution within the space of58

tempered distributions [4,14,18]. It lies at the very heart ofS ′. Many calculation rules inS ′, including59

Equations (1), (2), (7), (8), (11), (12) and Lemmas1, 2, 3, 4 rely on it.60

3. Feasibilities61

The following two lemmas provide justifications for the way we will define regularizations and62

localizations inS ′ below. They will allow us to invert discretizations and periodizations inS ′.63

Lemma 3 (Regularization).Letϕ ∈ S. Then for anyf ∈ S ′, ϕ ∗ f can be sampled.64

Proof. This is a consequence of the fact thatS ∗ S ′ ⊂ OM [4,10,14,18] and Lemma1.65

An equivalent statement is the following lemma.66

Lemma 4 (Localization). Letϕ ∈ S. Then for anyf ∈ S ′, ϕ · f can be periodized.67

Proof. It follows from the fact thatS · S ′ ⊂ OC
′ [4,18], which is the Fourier dualF(S ∗ S ′) = F(OM)68

of S ∗ S ′ ⊂ OM , and Lemma2.69
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It is interesting to observe thatϕ ∗ and ϕ · stretch and compressf ∈ S ′, respectively. This property70

is moreover independent of the actual choice ofϕ ∈ S. It can therefore be attributed to the operations of71

convolution and multiplication themselves.72

4. Definitions73

”One of the main applications of convolution is the regularization of a distribution” [14] or the74

regularization of ordinary functions which are not being infinitely differentiable in the conventional75

functions sense. Its actual importance lies furthermore in the fact that it is the reversal of discretization.76

Regularization is usually understood as the approximation of generalized functions via approximate77

identities [2,8–10,14,21–23]. In this paper, however, we extend this idea by allowingany ϕ ∈ S78

and by allowing evenordinary functionsf ∈ S ′ to be used for regularizations inS ′. This approach79

naturally includes the special case of choosing approximate identities without unnecessarily restricting80

our theorem below. Lemmas3 and4 above justify the following two definitions.81

Definition 5 (Regularization).Letϕ ∈ S. Then for any tempered distributionf ∈ S ′ we define another

tempered distribution by

∩ϕf := ϕ ∗ f (5)

which is a regular, slowly growing function inOM ⊂ S ′. The operation∩ϕ is called regularization,82

approximation, interpolation or smoothing off by means ofϕ. It is a linear continuous operation83

∩ϕ : S ′ → OM , f 7→ ∩ϕf . The result of∩ϕ is called regular function off in S ′.84

f

∩ϕ

−−→

∩ϕf

. . .

✻✻✻✻✻✻✻✻✻✻✻✻✻✻✻✻✻
. . . . . . . . .

85

Figure 1. The regularization of generalized functionf yields regular function∩ϕf .

Regular functions are functions in the ordinary functions sense which are infinitely differentiable86

in the ordinary functions sense, a function property that is of immense value in many branches of87

mathematics. Regular functions belong toOM becauseS ∗ S ′ ⊂ OM , see e.g. [4,10,18]. They maintain88

the being ’tempered’ property, i.e., they do not grow faster than polynomials, which is common to all89

tempered distributions but add the regularity ofϕ to f . It follows that regularized functions can always90

be sampled according to Lemma1.91

Regularizations are treated in many mathematical textbooks [2,5,12,14,15,21] and scientific papers92

[1,24–27]. They are also known in terms of ”regularizers” [1,25–27], ”smooth cutoff functions” [2,28]93

and ”mollifiers” [16,29–33], a term that goes back (see [16], p.63) to K.O. Friedrichs [29]. Regularized94

rect functions (characteristic functions of an interval) are known as ”mesa function”, ”tapered box” [12]95

or ”tapered characteristic function” and ”taper function” [34] or as ”C∞ bell” or ”smoothed top hat”96

function in [35]. Mostly, regularizations are required ”to obtain regularized interpolating kernels” such97

as in [27].98
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Away from the generalized functions literature, we furthermore encounter regularizations in terms of99

”smoothings”, ”interpolations”, ”zero-paddings” or ”approximations” because they are not only applied100

to generalized functions, they are also applied to ordinary functions, usually to obtain better ”regularity”101

properties for functions, i.e. better differentiability. Regularity is also a topic discussed in [36], for102

example. It is closely related to localization.103

Definition 6 (Localization). Letϕ ∈ S. Then for any tempered distributionf ∈ S ′ we define another

tempered distribution by

⊓ϕf := ϕ · f (6)

which is a generalized function of rapid descent inOC
′ ⊂ S ′. The operation⊓ϕ is called localization104

or restriction off by means ofϕ. It is a linear continuous operation⊓ϕ : S ′ → OC
′, f 7→ ⊓ϕf . If105

ϕ ∈ D ⊂ S, it is also called finitization. The result of⊓ϕ is called local function off in S ′.106

f

⊓ϕ

−−→

⊓ϕf

. . .

✻✻✻✻✻✻✻✻✻✻✻✻✻✻✻✻✻
. . .

✻✻
✻
✻✻✻

✻
✻✻

107

Figure 2. The localization of generalized functionf yields local function⊓ϕf .

Local functions belong toOC
′ becauseS ′ · S ⊂ OC

′ [4,14]. They add the ’rapid descent’ property108

of Schwartz functionsϕ ∈ S to f ∈ S ′. It follows that localized functions can always be periodized109

according to Lemma2.110

The term ”local” and the treatment of localizations have a long history in mathematics. It culminated,111

however, in the term ”localization operator”. It appears 1988 for the first time (see [37], p.133 in112

[38]) in Daubechies’ article [39] and later in Daubechies’ 1992 standard textbook [36]. Meanwhile,113

”localizations” occur in many textbooks [2,36,38–47], amongst others as ”localized trigonometric114

functions” or ”localized sine basis” [36,41,48], as ”localized frames” [49], ”local trigonometric bases”,115

as ”local representations” [9] or simply in terms of ”locally integrable” functions.116

5. Calculation Rules117

”One of the basic principles in classical Fourier analysis is the impossibility to find a functionf being118

arbitrarily well localized together with its Fourier transformFf ” [50]. This, in particular, can easily be119

seen if one tries to localize the function that is constantly1.120

Lemma 7 (Localization Balance).Letϕ ∈ S and letϕ̂ := Fϕ. Then

F( ∩ϕδ) = ⊓ ϕ̂1 ∈ OC
′ and (7)

F( ⊓ ϕ̂1) = ∩ϕδ ∈ OM in S ′. (8)

In (8) we see that by localizing1, we delocalizeδ, i.e.,1 and its Fourier transformδ cannot be both121

arbitrarily well localized. This phenomenon is known as Heisenberg’s uncertainty principle [9,10,12,122

50–52]. Vice versa, in (7) we see that by regularizingδ we increasingly deregularize1. The entity∩ϕδ123
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is also known as an ”approximate identity” ofδ, usually denoted asδǫ whereǫ is a parameter describing124

the proximity toδ (see e.g. [14] p.316, p.401 or [21] p.5). Convolving anyf ∈ S ′ with δǫ, it creates an125

approximate identityfǫ of f which is a function in the ordinary sense being infinitely differentiable.126

Proof. According to (4), δ ∈ OC
′ can be convolved withϕ ∈ S ⊂ S ′ and, equivalently,1 ∈ OM can be

multiplied withψ ∈ S ⊂ S ′, hence

F( ∩ϕδ) = F(ϕ ∗ δ) = Fϕ · Fδ = ϕ̂ · 1 = ⊓ ϕ̂1

holds inS ′. The second formula is shown in an analogous manner.127

It is moreover interesting to observe that in analogy to the Dirac comb identity [19]

△△△δ ≡ III ≡ ⊥⊥⊥1

the following identity, let’s say a ”localization balance”

∩ϕδ ≡ Ω ≡ ⊓ϕ1

holds a balance inS ′ if ϕ ≡ ϕ̂ is satisfied forϕ ∈ S, which obviously is the best achievable compromise128

in localizing1 and thereby delocalizingδ. It is true for the GaussianΩ(t) ≡ e−πt2 and herewith expresses129

Hardy’s uncertainty principle [53]. But it is also true for the Hyperbolic secantΩ(t) ≡ 2/(et + e−t), see130

e.g. [12], and for every fourth Hermite functionH, i.e., allH satisfyingFH ≡ H. A connection between131

Gaussians and Hyperbolic Secants is that both belong to a class of ”Pólya frequency functions” [54,55].132

Gaussians, Hyperbolic Secants and Hermite functions are treated in [56,57] for example. Hyperbolic133

Secants may also replace Gaussians in Gabor systems, see e.g. Janssen and Strohmer [58]. A link134

between Gaussians and Hyperbolic Secants is furthermore known in soliton physics where the ”initial135

Gaussian beam reshapes to a squared hyperbolic secant profile” [59]. Studying fixpointsΩ of the Fourier136

transform inS is therefore worthwhile goal.137

Another calculation rule we need to prove the theorem below is the following. It holds in analogy to138

already shown properties of discretizations and periodizations [19].139

Lemma 8. Letϕ ∈ S, α ∈ OM , g ∈ OC
′ andf ∈ S ′. Thenαf andg∗f exist inS ′ and

α · ( ⊓ϕf) = ⊓ϕ(αf) = ( ⊓ϕα) · f ∈ OC
′ and (9)

g ∗ ( ∩ϕf) = ∩ϕ(g∗f) = ( ∩ϕg) ∗ f ∈ OM in S ′. (10)

Proof. We may allow that at most one of the operands inϕ ∗ g ∗ f is no element inOC
′. This is indeed

true asϕ ∈ S ⊂ OC
′, g ∈ OC

′ andf is an arbitrary element inS ′. It follows thatϕ ∗ g ∗ f exists inS ′

and, hence, operands may be interchanged arbitrarily. UsingOC
′ ∗ S ′ ⊂ S ′ twice and (5), we obtain

g ∗ ( ∩ϕf) = g ∗ (ϕ ∗ f) = ϕ ∗ g ∗ f = ∩ϕ(g ∗ f)

in S ′. The other half of this equation results from the fact that the roles off andg can be exchanged due140

to commutativity. The second formula is then shown in an analogous manner.141
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6. A Regularization-Localization Duality142

The interaction between regularizations and localizations is ubiquitous in the literature today, for143

example as ”regularization” and multiplication with smooth ”cutoff functions” in Hörmander [2], as144

”two components of the approximation procedure” inS ′, see Strichartz [6], or as ”approximation by145

cutting and regularizing” in Tr̀eves [15], p.302, or in terms of ”cutting out” one period off and146

applying ”(quasi-)interpolation” [47]. Detailed studies of the interaction of both, regularizations and147

localizations, can be found for example in [34,37,38,60] and in engineering literature, we encounter148

these interactions in terms of the interplay between ”windowing” on one hand and ”interpolation” on the149

other. Another equivalent is the so-called ”zero-padding” technique found in engineering textbooks as a150

way to implement interpolations. It corresponds to the regularization of a discrete function by embedding151

it into a higher-dimensional space where it is smooth.152

However, we may summarize this regularization-localization duality in the following way.153

Theorem 9(Regularizationvs.Localization). Letϕ ∈ S, f ∈ S ′ and letϕ̂ := Fϕ. Then

F( ∩ϕf) = ⊓ ϕ̂(Ff) ∈ OC
′ and (11)

F( ⊓ ϕ̂f) = ∩ϕ(Ff) ∈ OM in S ′. (12)

So, this duality asserts that regularizing a function means to localize its Fourier transform and, vice154

versa, localizing a function means to regularize its Fourier transform. It is the one-to-one counterpart of155

a discretization-periodization duality inS ′, given in (1) and (2).156

Proof. Formally, according to the calculation rules shown above the following equalities hold

F( ∩ϕf) = F ∩ϕ(δ∗f) = F( ∩ϕδ ∗ f) = F( ∩ϕδ) · Ff

= ⊓ ϕ̂1 · Ff = ⊓ ϕ̂(1·Ff) = ⊓ ϕ̂(Ff)

in S ′. We start usingf = δ ∗ f whereδ ∈ OC
′ ⊂ S ′ is the identity element with respect to convolution157

in S ′. Then we apply Equations (10), (4), (7) and (9), in this order. Finally, withFf = g ∈ S ′ we use158

g = 1 · g where1 ∈ OM ⊂ S ′ is the identity element with respect to multiplication inS ′. The second159

formula is now shown in an analogous manner.160

F◦∩ = F reg = ⊓◦F

−−−−−−−−−−−−−→
F of regular functions

F◦⊓ = Floc = ∩◦F
−−−−−−−−−−−−→

F of local functions

. . . . . .

✻✻
✻
✻✻✻

✻
✻✻

✻✻
✻
✻✻✻

✻
✻✻

. . . . . .

161

Figure 3. The Regularization-Localization Theorem.

An immediate consequence of the theorem is thatf and its Fourier transformFf cannot be both162

arbitrarily well localized, a fact that is known as Heisenberg’s uncertainty principle. Also note thatFloc ,163
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see figure above, is the Short-Time Fourier Transform (STFT) with window functionϕ ∈ S and it is the164

Gabor transform ifϕ is a Gaussian. Consequently, the result of Gabor transforms will be smooth, i.e.,165

they cannot be discrete for example. Its Fourier dual, the Fourier transform of regular functionsF reg in166

contrast to that, see figure above, corresponds to first regularizing functions before Fourier transforming167

them. Consequently, the result of such transforms will be local, i.e., they cannot be periodic for example.168

Obviously, by looking at these interactions, one may think of discrete functions as the ’opposite’169

of regular functions and, equivalently, one may think of periodic functions as the ’opposite’ of local170

functions. This is examined more closely in the next section.171

7. Four Subspaces172

Let ∁OM be the complement of regular functionsOM in S ′. It is the space of all ordinary or173

generalized functions inS ′ which are not infinitely differentiable in the ordinary functions sense. Let,174

furthermore,∁OC
′ be the complement of local functionsOC

′ in S ′. It consists of all ordinary or175

generalized functions inS ′ which do either not fade to zero as|t| increases (periodic functions for176

example) or they fall to zero but too slowly (with polynomial decay rather than with exponential decay).177

Then, the following diagram holds inS ′.178

OM ∩ OC
′ OM ∩ ∁OC

′

∁OM ∩ OC
′ ∁OM ∩ ∁OC

′

✻

∩
ϕ ✻∩

ϕ

❄

⊥
⊥
⊥

❄

⊥
⊥
⊥

✻⊓ϕ

❄

△△△

✻

⊓ϕ

❄△△△

Figure 4. Four subspaces inS ′, linked via operations⊥⊥⊥, △△△, ∩ϕ, ⊓ ϕ̂.

✲△△△

✲
△△△

❄

⊥
⊥
⊥❄⊥⊥

⊥

✛
⊓ ϕ̂

✛⊓ ϕ̂

✻

∩
ϕ✻∩

ϕ

local global
functions functions

ge
ne

ra
liz

ed
re

gu
la

r
fu

nc
tio

ns
fu

nc
tio

ns

discrete

periodic

discrete
periodic

Figure 5. Same as above, drawn in another fashion.
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Apparently, the Schwartz spaceS ≡ OM ∩OC
′, the ”smooth world”, in some sense, is the ’opposite’179

of ∁OM ∩ ∁OC
′, the ”discrete world”. One may also note that no additional information is used yet180

beside pure operator definitions. There is also no statement yet on the reversibility of our operations⊥⊥⊥181

and △△△ and ∩ϕ and ⊓ϕ in S ′. Such inversions will be treated in a follow-on study.182

8. Conclusions and Outlook183

It is shown that in analogy to a discretization-periodization duality inS ′ there is also a184

regularization-localization duality inS ′. Proving these dualities even follows the same pattern. In185

addition, the two dualities are inverses of each other in the sense that the first one maps towards186

discreteness and the latter one maps towards smoothness. A more detailed statement on the reversibility187

of discreteness inS ′ will be given in a next study.188
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