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Abstract: In this paper, we relate Poisson’s summation formula to Heisenberg’s uncertainty
principle. They both express Fourier dualities within the space of tempered distributions and
these dualities are furthermore the inverses of one another. While Poisson’s summation
formula expresses a duality between discretization and periodization, Heisenberg’s
uncertainty principle expresses a duality between regularization and localization. We define
regularization and localization on generalized functions and show that the Fourier transform
of regular functions are local functions and, vice versa, the Fourier transform of local
functions are regular functions.
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1. Introduction

Regularization is a popular trick in applied mathematics, 4éddr example. It is the technique
"to approximate functions by more differentiable onegJ. [Its terminology coincides moreover with
the terminology used in generalized function spaces. They contain two kinds of functions, "regular
functions” and "generalized functions”. While regular functions are being functions in the ordinary
functions sense which are infinitely differentiable in the ordinary functions sense, all other functions
become "infinitely differentiable” in the "generalized functions sense” [3]. In this way, all functions
are being infinitely differentiable. Localization, in contrast to that, is another popular technique. It
allows for example to integrate functions which could not be integrated otherwise, if we think of "locally
integrable” functions or if we think of the Short-Time Fourier Transform (STFT), capable to analyze
infinitely extended signals. Although, regularization and localization appear to be quite different, a
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connection between these operations is no surprise. It guitbus in the literature. The theorem
below, however, appears in wider sense. It holds within the space of tempered distributions and is
directly related to Heisenberg’s uncertainty principle. It is moreover the inverse of an already known
discretization-periodization duality.

Section2 provides an introduction to the notations used and previesslis. Sectior8 presents a
justification for Sectiod where regularization and localization within the space wigered distributions
are defined. Sectiob provides symbolic calculation rules based on these defnstioeeded to prove
the theorem in Sectiof. Section7 connects these results to results in a previous study antB8&ct
finally, concludes this study and provides an outlook.

2. Preliminaries

Let 5,1 be the Dirac impulse shifted bye Z" unitsof ' e R} = {t c R": 0 < ¢, <00, 1 <v <
n}, kT being componentwise multiplication, within the spate= S’(R™) of tempered distributions
(generalized functions that do not grow faster than polynomials) and let

My = )" Gr
keZm

be the Dirac comb. Theb,r € S’ and lll; € &' for anyT € R’ are tempered distributiong{6].
We shortly writed instead of§,r if & = 0. The Fourier transfornF in S’ is defined as usual and such
that F1 = § and 7§ = 1 wherel is the function being constantly one,437—-13. The Dirac comb
is moreover known for its excellent discretization (sampling) and periodization propéeffids-13].
While multiplication Il - f in S’ samples a functiorf € &’, the corresponding convolution product
Il 7 % f periodizesf in S'.

The following two lemmas summarize the demands that must be pyt enS’ such thatf can
be sampled or periodized . Recall that smoothness, i.e., infinite differentiability, is not a demand.
It is a given fact for all functions in generalized function spaces. Also recall@jats the space of
multiplication operators is” and O/’ is the space of convolution operators§haccording to Laurent
Schwartz’ theory of distributiong4[5,14-20Q.

Lemma 1 (Discretization). Generalized functiong € S’ can be sampled i¢’ if and only if f € O,,.
Proof. Any uniform discretization (sampling) i’ corresponds to forming the product
My f in &

where lll; € &’ is the Dirac comb. Furthermore, Hlis no regular function, i.e., IH € &’ \ Oy;. On
the other hand, for any multiplication product$t it is required that at least one of the two factors is in
Oy Hence,f € Oy, C §'. Otherwise the product does not exist. Vice versd, & O,, then lll; - f
existsduetas’ - Oy, C §'. O

An equivalent statement is the following lemma.

Lemma 2 (Periodization).Generalized functiong € S’ can be periodized i85’ if and only if f € O'.
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Proof. Any periodization inS’ corresponds to forming the convolution product
Mz*f in &

where lll; € &' is the Dirac comb. Furthermore, Hlis of no rapid descent, i.e., file &'\ O;'. On
the other hand, for any convolution productdh it is required that at least one of the two factors is in
Oc'. Hence,f € O ¢ &'. Otherwise the convolution product does not exist. Vice versa,df O’
then Il = f exists due ta&8’ * O/ c §&'. [

In a previous study [19], we used these insights in order to define operations efidatoon 111, and
periodizationa,- in §’. While discretization is an operation., : Oy — S, f— wirf = - f,
periodization is an operationsa,. : Oc' — S’ g — anrg = ¢ * g, respectively. Starting from
these two definitions we proved that

F(urf) = an(Ff)  and 1)
F(oong) = wi(Fg) (2)
hold in &', both being expressions of Poisson’s Summation Formula. We shortly writand s

instead of L, and an . if T, =1forall1 <v < n.
Recall moreover that these rules are a consequence of the Fourier duality

Fla-f)=FaxFf and (3)
Flg=f)=Fg-Ff in &' (4)

foranya € Oy, g € O andf € 8" which is, according to Laurent Schwartz’ theory of generalized
functions, thewidestpossible comprehension of both, multiplication and convolution within the space of
tempered distributions [4,148]. It lies at the very heart &’. Many calculation rules i5’, including
Equations 1), (2), (7), (8), (11), (12) and Lemmag, 2, 3, 4 rely on it.

3. Feasibilities

The following two lemmas provide justifications for the way we will define regularizations and
localizations inS’ below. They will allow us to invert discretizations and periodizationS§’in

Lemma 3 (Regularization).Letp € S. Then for anyf € ', ¢ * f can be sampled.

Proof. This is a consequence of the fact tbat S’ C O, [4,10,1418] and Lemmad.. [

An equivalent statement is the following lemma.
Lemma 4 (Localization). Lety € S. Then for anyf € S’, ¢ - f can be periodized.

Proof. It follows from the fact thatS - S’ € O’ [4,18], which is the Fourier duak (S « S') = F(Oy)
of S xS € Oy, and Lemma. [
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It is interesting to observe that « and ¢ - stretch and compregse S, respectively. This property
is moreover independent of the actual choiceoaf S. It can therefore be attributed to the operations of
convolution and multiplication themselves.

4. Definitions

"One of the main applications of convolution is the regularization of a distributidd] pr the
regularization of ordinary functions which are not being infinitely differentiable in the conventional
functions sense. Its actual importance lies furthermore in the fact that it is the reversal of discretization.

Regularization is usually understood as the approximation of generalized functions via approximate
identities R,8-1Q14,2123]. In this paper, however, we extend this idea by allonang o € S
and by allowing everordinary functions f € S’ to be used for regularizations #. This approach
naturally includes the special case of choosing approximate identities without unnecessarily restricting
our theorem below. Lemmasand4 above justify the following two definitions.

Definition 5 (Regularization).Letp € S. Then for any tempered distributighe S’ we define another
tempered distribution by

nef = pxf (5)

which is a regular, slowly growing function i&,, C S’. The operationn., is called regularization,
approximation, interpolation or smoothing gf by means ofp. It is a linear continuous operation
ne : 8" — Oy, f = n.f. The result ofn, is called regular function of in S'.

/ nef

ATTITTITTTTHL. == - AAMMAMAMMMA.

Figure 1. The regularization of generalized functigryields regular functiom., f.

Regular functions are functions in the ordinary functions sense which are infinitely differentiable
in the ordinary functions sense, a function property that is of immense value in many branches of
mathematics. Regular functions belong?g, because « S’ C O,,, see e.g. [4.0,18]. They maintain
the being 'tempered’ property, i.e., they do not grow faster than polynomials, which is common to all
tempered distributions but add the regularityofo f. It follows that regularized functions can always
be sampled according to Lemra

Regularizations are treated in many mathematical textbdaks1214,1521] and scientific papers
[1,24-27]. They are also known in terms of "regularizers;Z8—-27, "smooth cutoff functions” [2,2B
and "mollifiers” [16,29—-33, a term that goes back (see [16], p.63) to K.O. Friedrich$.[R&gularized
rect functions (characteristic functions of an interval) are known as "mesa function”, "tapered&x” [
or "tapered characteristic function” and "taper functio®4] or as "C*> bell” or "smoothed top hat”
function in [35. Mostly, regularizations are required "to obtain regutad interpolating kernels” such
asin [27.
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Away from the generalized functions literature, we furtherenencounter regularizations in terms of
"smoothings”, “interpolations”, "zero-paddings” or "approximations” because they are not only applied
to generalized functions, they are also applied to ordinary functions, usually to obtain better "regularity”
properties for functions, i.e. better differentiability. Regularity is also a topic discusse&bfinfdr

example. Itis closely related to localization.

Definition 6 (Localization). Letp € S. Then for any tempered distributigh€ S’ we define another
tempered distribution by

‘_'wf =@ f (6)
which is a generalized function of rapid descentip’ C S’. The operationn,, is called localization

or restriction of f by means ofo. It is a linear continuous operation, : &' — O¢', f — n.f. If
p € D C S, itis also called finitization. The result of, is called local function off in S'.

/ nef

AT = o,

Figure 2. The localization of generalized functigiyields local functionn,, f.

Local functions belong t@.’ becauseS’ - S C O/ [4,14). They add the 'rapid descent’ property
of Schwartz functionsp € Sto f € §'. It follows that localized functions can always be periodized
according to Lemma.

The term "local” and the treatment of localizations have a long history in mathematics. It culminated,
however, in the term "localization operator”. It appears 1988 for the first time (sde 333 in
[38]) in Daubechies’ article [39%nd later in Daubechies’ 1992 standard textbook [36]. Meanwhile,
"localizations” occur in many textbooks2[36,38-47], amongst others as “localized trigonometric
functions” or "localized sine basis'3p,4148], as "localized frames” [49”local trigonometric bases”,
as "local representations9] or simply in terms of "locally integrable” functions.

5. Calculation Rules

"One of the basic principles in classical Fourier analysis is the impossibility to find a funtbemg
arbitrarily well localized together with its Fourier transforRy™” [50]. This, in particular, can easily be
seen if one tries to localize the function that is constantly

Lemma 7 (Localization Balance)Lety € S and lety := Fp. Then

F(nyd) = n,l € Os and (7)
F(rngl)=n,d €Oy inS. (8)
In (8) we see that by localizing, we delocalize), i.e., 1 and its Fourier transformi cannot be both

arbitrarily well localized. This phenomenon is known as Heisenberg’s uncertainty princjh@ 19
50-53. Vice versa, in {) we see that by regularizingwe increasingly deregularizZe The entityn.J


http://dx.doi.org/10.20944/preprints201705.0175.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 May 2017 d0i:10.20944/preprints201705.0175.v1

124

125

126

127

128

129

130

131

132

134

135

136

137

138

139

140

141

6of 12

is also known as an "approximate identity” @fusually denoted a& wheree is a parameter describing
the proximity tod (see e.g.14] p.316, p.401 or [2lp.5). Convolving anyf € S’ with 4., it creates an
approximate identityf. of f which is a function in the ordinary sense being infinitely differentiable.

Proof. According to @), 6 € O’ can be convolved withh € S C S’ and, equivalently] € O,, can be
multiplied withy) € S C &', hence

F(n.0) = Flp#d) = Fp-Fo=¢-1=n,1

holds inS’. The second formula is shown in an analogous manrier.

It is moreover interesting to observe that in analogy to the Dirac comb identity [19
o =1 = 1l

the following identity, let's say a "localization balance”

holds a balance i8’ if ¢ = ¢ is satisfied forp € S, which obviously is the best achievable compromise
in localizing1 and thereby delocalizing It is true for the Gaussiaf(t) = e~ and herewith expresses
Hardy’s uncertainty principle [53]. But it is also true for the Hyperbolic se€Hint = 2/(e' + e7*), see
e.g. [L2], and for every fourth Hermite functidi, i.e., all H satisfyingFH = H. A connection between
Gaussians and Hyperbolic Secants is that both belong to a clasélgéfPequency functions™§4,55].
Gaussians, Hyperbolic Secants and Hermite functions are treaté6,5v] for example. Hyperbolic
Secants may also replace Gaussians in Gabor systems, see e.g. Janssen and S8bhrAeink
between Gaussians and Hyperbolic Secants is furthermore known in soliton physics where the "initial
Gaussian beam reshapes to a squared hyperbolic secant profjle3{@8ying fixpoints? of the Fourier
transform inS is therefore worthwhile goal.

Another calculation rule we need to prove the theorem below is the following. It holds in analogy to
already shown properties of discretizations and periodizatit®is [

Lemma8. Letp € S,a € Oy, g € O andf € §’. Thenaf andgx f exist inS’ and

a-(n.f)=n.af)=(na)-f €0 and )
g*(nof)=n.lgxf)=(n.g9)xf €Oy iInS. (10)
Proof. We may allow that at most one of the operandging = f is no element irO.’. This is indeed
trueasp € S C O, g € O andf is an arbitrary element i§’. It follows thaty x g * f exists inS’
and, hence, operands may be interchanged arbitrarily. W3irig S’ C S’ twice and b), we obtain

g (nof)=g*x(pxf)=pxgx*f=n.(g9*f)

in §’. The other half of this equation results from the fact that the rolgsansfdg can be exchanged due
to commutativity. The second formula is then shown in an analogous mariner.
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6. A Regularization-Localization Duality

The interaction between regularizations and localizations is ubiquitous in the literature today, for
example as "regularization” and multiplication with smooth "cutoff functions” iaridander [2, as
"two components of the approximation procedure’Sh see Strichartzf], or as "approximation by
cutting and regularizing” in Taves [L5], p.302, or in terms of "cutting out” one period ¢f and
applying "(quasi-)interpolation”’47]. Detailed studies of the interaction of both, regularizas and
localizations, can be found for example i84[3738,6Q and in engineering literature, we encounter
these interactions in terms of the interplay between "windowing” on one hand and "interpolation” on the
other. Another equivalent is the so-called "zero-padding” technique found in engineering textbooks as a
way to implement interpolations. It corresponds to the regularization of a discrete function by embedding
it into a higher-dimensional space where it is smooth.

However, we may summarize this regularization-localization duality in the following way.

Theorem 9(Regularizatiorvs. Localization). Letp € S, f € S’ and letp := Fp. Then
F(nof) = ns(Ff) € Os and (11)
F(naf) = nu(Ff) cOy inS. (12)

So, this duality asserts that regularizing a function means to localize its Fourier transform and, vice
versa, localizing a function means to regularize its Fourier transform. It is the one-to-one counterpart of
a discretization-periodization duality &1, given in @) and (2.

Proof. Formally, according to the calculation rules shown above the following equalities hold
f(mqif):fnw((s*f):f(ﬂwé * f) :f(mw5> - Ff
=n,l - Ff = ny(L-Ff) = n,(Ff)

in §’. We start usingf = § x f whered € O’ C &’ is the identity element with respect to convolution
in §’. Then we apply Equationd.(), (4), (7) and (9), in this order. Finally, wittFf = g € S’ we use

g =1-gwherel € O, C §'is the identity element with respect to multiplication§h The second
formula is now shown in an analogous manner]

}'oﬂ:]“-reg:‘_m]:\
JF of regular functions A f T T # A
]-'ol_l:]'-loc:mo}-\
T I ( I T F of local functions ’ /\/\/\/\/\/\/\/\/\/W\MM/\
N ta

Figure 3. The Regularization-Localization Theorem.

An immediate consequence of the theorem is thaind its Fourier transforniF f cannot be both
arbitrarily well localized, a fact that is known as Heisenberg’s uncertainty principle. Also not&that
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see figure above, is the Short-Time Fourier Transform (STHRE) window functiony € S and it is the
Gabor transform ifp is a Gaussian. Consequently, the result of Gabor transforms will be smooth, i.e.,
they cannot be discrete for example. Its Fourier dual, the Fourier transform of regular fungétipms
contrast to that, see figure above, corresponds to first regularizing functions before Fourier transforming
them. Consequently, the result of such transforms will be local, i.e., they cannot be periodic for example.
Obviously, by looking at these interactions, one may think of discrete functions as the 'opposite’
of regular functions and, equivalently, one may think of periodic functions as the 'opposite’ of local
functions. This is examined more closely in the next section.

7. Four Subspaces

Let C Oy, be the complement of regular functiod®,; in S’. It is the space of all ordinary or
generalized functions i8’ which are not infinitely differentiable in the ordinary functions sense. Let,
furthermore,C O’ be the complement of local functior@.’ in S’. It consists of all ordinary or
generalized functions i’ which do either not fade to zero &8 increases (periodic functions for
example) or they fall to zero but too slowly (with polynomial decay rather than with exponential decay).

Then, the following diagram holds i

DN
OounNoOs — Oy NCO
Mo
2 i
Il
CON NO ‘:,w CoynCo
JAAYAN

Figure 4. Four subspaces i/, linked via operationsiit, s, n,, n,.

local global
functions functions
88 N
1 —
=3 . Mo ., periodic
= . @ .
5
— 4y O E—
) 1 + ot
-
[CRY) B N
Ng g - -
o= e P
@ 2 “M\Hhh el T ”M\Hhh “M\Hhh “M\Hhh e
% 2 discrete discrete

—
JAAYAN periodic

Figure 5. Same as above, drawn in another fashion.
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Apparently, the Schwartz spade= O,; N O¢’, the "smooth world”, in some sense, is the 'opposite’
of CO, NC O, the "discrete world”. One may also note that no additional information is used yet
beside pure operator definitions. There is also no statement yet on the reversibility of our operations
and s and n, andn, in §’. Such inversions will be treated in a follow-on study.

8. Conclusions and Outlook

It is shown that in analogy to a discretization-periodization duality Sh there is also a
regularization-localization duality i&’. Proving these dualities even follows the same pattern. In
addition, the two dualities are inverses of each other in the sense that the first one maps towards
discreteness and the latter one maps towards smoothness. A more detailed statement on the reversibilit
of discreteness i’ will be given in a next study.
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