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Summary 
By solving the weak field limit of Einstein’s Field Equation including the Cosmological Constant, under the 
constraint of spherical isotropy, it is shown that, at large cosmological distance, the gravitational force exceeds 
the one that is predicted by Newton’s gravity law, such that it corresponds with Milgrom’s MOND hypothesis.  
However, the resulting prediction that, at extremely large distances, gravity with some spatial periodicity turns 
on-and-off into antigravity marks a decisive difference. 
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Introduction 
It is well known that the weak field limit of Einstein’s Field Equation corresponds with 
Newton’s gravitation law. As I wish to discuss in this article, this is true as long as Einstein’s 
Cosmological Constant is considered to be zero. This implies that a non-zero value of this 
constant modifies Newton’ s law. Presently, a non-zero value of this constant is considered 
to be feasible, because it would explain the phenomenon that the Universe is expanding in 
acceleration rather than with a constant velocity such as presumed prior to 1998 [1,2]. It 
means that the Cosmological Constant embodies the “dark energy”, which is seen as the 
true cause of this phenomenon [3]. If the associated modification of Newton’s gravitation 
law would also be responsible for the excessive orbital velocity of stars at the far end of 
galaxies, it would be fair to state that the Cosmological Constant would embody “dark 
matter”  as well. This raises the question in how far the modification of Newton’s gravitation 
law due to the Cosmological Constant corresponds with the empirical modification of this 
law as proposed by Milgrom [4], known as MOND (Modified Newtonian Dynamics), as a 
substitute for the dark matter hypothesis for explaining the flat rotation curves of stars in 
galaxies. It is my aim to show that the gauge freedom in Einstein’s Field Equation allows 
developing a theoretical basis for heuristic MOND, thereby revealing some unexpected 
properties and predictions. To do so, first an outline will be given of the line of thought, the 
details of which being addressed in an appendix. After that, a comparison will be given 
between the developed theoretical model for modified gravity and the view as usually 
presented in MOND.  
 
The gravitational wave equation 
Let us start by considering the gravitational wave equation as a consequence of the weak 
field limit of the Einsteinean Field Equation. The equation reads as, 
 

μνμνμν
π
T

c

G
gG 4

8=Λ+      with  μνμνμν RgRG
2
1−= .                                                                    (1) 

 
where μνT is the stress-energy tensor, which describes the energy and the momenta of the 
source(s) and where μνR and R  are respectively the so-called Ricci tensor and the Ricci 
scalar, which can be calculated if the metric tensor components μνg are known [5,6,7]. The 
quantity Λ  is known as Einstein’s Cosmological Constant. In the case that a particle under 
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consideration is subject to a central force only, the time-space condition shows a spherical 
symmetric isotropy. This allows to read the metric elements ijg from a simple line element 
that can be written as  
 

2222222
0

2 ddsind),(d),(d ϑϕϑ rrrtrgqtrgs rrtt +++= ,                                                                (2) 
 
where ctq i0 =  and 1i −= . 
 
It means that the number of metric elements ijg reduce to a few, and only two of them are 
time and radial dependent. A generalization of Schwarzschild’s solution of Einstein’s 
equation for empty space and 0=Λ , shown in the appendix of this paper, relates the metric 
components as, 
 

1=ttrr gg .                                                                                                                                               (3) 
 
Solving Einstein’s equation under the weak field limit 
 

),(1),( trhtrg tt ϕ+= , where 1),( <<trhϕ ,                                                                                     (4) 

 
under adoption of a massive source with pointlike distribution )(32

00 rMcT δ= , results in a 
wave equation with the format (see Appendix), 
 

)(8)(1)(1 3
22

2

22

2

r
c

GM
rh

rr
rh

tcr
δπ

ϕϕ −=
∂
∂+

∂
∂− ,                                                                             (5) 

 
Its stationary solution [8] is the well-known Newtonian potential, 
 

r

MG−=Φ , where 2

2
c

h
Φ=ϕ .                                                                                                             (6)             

where 2

2
c

h
Φ=ϕ .  

 
Eq. (5) is the equation of a wave that propagates in the direction of rwith a velocity c . This 
equation is identical in format as Maxwell’s wave equation for electromagnetism. It proves  
the causality of gravity.  
 
Let us now memorize that Einstein derived his Field Equation by defining a covariant 
derivative after proper time ττ ci=′ , such that that both the covariant derivatives of the 
Einstein tensor μνG and the energy-stress tensor μνT are zero, i.e.,  
 

0== μν
μ

μν
μ

T
dq

D
G

dq

D
.                                                                                                                      (8) 

 
Actually, this is a sum of covariant derivatives in Einstein notation, i.e. 
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3
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0 μ
μν

μμ
μν

μ

T
dq

D
G

dq

D
0  for =ν  0,1,2,3,                                                                                 (9)     

 
From (8) it is concluded that 
 

μνμνμν ATBG =+ ,   for =μ  0,1,2,3.                                                                                              (10) 
 
where A is a scalar constant and where μνB is a tensor with the particular property that its 
covariant derivative is zero. Furthermore, because of 
 

0=μν
μ

g
dq

D
.                                                                                                                                       (11) 

 
i.e., because of the property the covariant derivatives of the metric tensor μνg  are zero, we 
have, 
 

μνμν gB Λ=  ,                                                                                                                                        (12) 
 
where Λ is a scalar constant. As is well known and shown in the appendix once more, 
inclusion of this constant implies that under absence of massive sources, Einstein’s equation 
can be satisfied if empty space is given up and is replaced by a space that behaves as a 
perfect liquid in thermodynamic equilibrium. In this condition the stress-energy tensor of 
space-time (described in Hawking-metric) without massive sources  changes from 

Λ−=→= pTT μμμμ 0 , where Ggp πμν 8/= , [9,10,11]. If in this fluid a massive pointlike 
source is inserted, the resulting wave equation under the weak field constraint is a 
modification of (5), such that 
 

)(8)()()( 3
2

2
2

2

22

2

r
c

GM
rrr

r
r

tc
δπλ −=Φ+Φ

∂
∂+Φ

∂
∂− ,                                                                 (13)   

 
where  Λ= 22λ . 
 
This is shown in the appendix as well. From the perspective of classic field theory, a wave 
equation can be conceived as the result of an equation of motion derived under application 
of the action principle from a Lagrangian density Lof a scalar field with the generic format  
 

Φ+Φ+Φ∂Φ∂−= ρμ
μ )(

2
1L U ,                                                                                                       (15) 

 
where )(ΦU is the potential energy of the field and where Φρ is the source term. Comparing 
various fields of energy, we have, 
 

0)( =ΦU                  for electromagnetism. 
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2/)( 22Φ−=Φ λU       for this case,                                                                                                            

2/)( 22Φ=Φ λU          for the nuclear forces [12].                                                                        (16) 

The non-trivial solutions of (14) in homogeneous format are, for the first case and the third 
case, respectively, 

rλ
0Φ

=Φ  and 
r

r

λ
λ )exp(

0
−Φ=Φ .                                                                                                     (17) 

The first case applies to electromagnetism (for 00 4/ πελQ=Φ ) and Newtonian gravity (for 

λMG−=Φ0 ). The third case applies to Proca’s generalization of the Maxwellian field [13]. It 

reduces to the first case if 0→λ , while keeping λ/0Φ  constant. Generically, it represents a 

field with a format that corresponds with the potential as in the case of a shielded electric 
field (Debije [14]), as well with Yukawa’s proposal [15] to explain the short range of the 
nuclear force.               

Let us now consider the (unusual) second case. It can be readily verified from (14), and 
elaborated once more in the Appendix,  that a non-trivial solution for this case is, 
 

r

rr

λ
λλ sincos

0
+Φ=Φ .                                                                                                                     (18) 

 
In accordance with the concepts of classical field theory, the field strength can be 
established as the spatial derivative of the potential Φ . Identifying λ/0Φ as MG−  and λ  
as a range parameter, we may identify this field strength as a cosmological gravitational 
acceleration g . Let us compare this acceleration with the Newtonian one Ng . To do so 

more explicitly, we compare 2rg N  with 2gr . The comparison is shown in figure 1.  
 

 
 
Figure 1: The cosmological gravity force compared with the Newtionian force  
 
This figure shows that, for relative small values of r , the cosmological acceleration behaves 
similarly as the Newtonian one, but that its relative strength over the Newtonian one 
increases significantly for large values of r . This is a similar behavior as heuristically 
implemented in MOND. The effective range is determined by the parameter λ . It might 
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therefore well be that the cosmological gravity force manifests itself only at cosmological 
scale. Let us consider its consequence. 
 
Newtonian laws prescribe that the transverse velocity )(rvϕ of a cosmic object revolving in a 
circular orbit with radius r  in a gravity field  is determined by 
 

r

GrM
rv

)()(2 =ϕ .                                                                                                                                 (19) 

 
where )(rM is the amount of enclosed mass and where G is the gravitational constant. This 
relationship is often denoted as Kepler’s third law. Curiously, like first announced by Vera 
Rubin [16] in 1975, the velocity curve of cosmic objects in a galaxy, such as, for instance, the 
Milky Way, appears being almost flat. It is tempting to believe that this can be due to a 
particular spectral distribution of the spectral density to compose )(rM . This, however, 
cannot be true, because )(rM builds up to a constant value of the overall mass. And Kepler’s 
law states in fact that a flat mass curve )(rM is not compatible with a flat velocity curve. 
Figure 2 illustrates the problem. 

 
Figure 2. Incompatibility of a flat enclosed mass curve with a flat rotation curve.  
 
It is one of the two: either the gravitational acceleration is, at cosmological distances, larger 
than the Newtonian one, or dark matter, affecting the mass distribution is responsible. 
Cosmological gravity as expressed by (18) may give the clue. Its effective range is determined 
by the parameter λ . It might therefore well be that the cosmological gravity force manifests 
itself only at cosmological scale. Figure 3 shows that under influence of this force, the 
rotation curves in the galaxy may assume a flat behavior indeed. 

 
 
Figure 3: boost of the rotation curve under influence of cosmological gravity. 
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This hypothetical cosmological gravity shows an intriguing phenomenon. Like shown in 
figure 4, at very far cosmological distance, the attraction of gravity is inversed into repulsion. 
There is some speculation reported in literature that such antigravity is required to explain 
the phenomenon of dark energy, responsible for the accelerated expansion of the universe 
[17]. Exploration of this phenomenon is a subject outside the scope of this article. It has to 
be noted that the solution (18) is not unique. There are more solutions possible by modifying 
the magnitude of rλsin  over rλcos . I have simply chosen here for the symmetrical 
solution. Cosmological observations would be required to obtain more insight in this. Such 
observations are required as well for establishing meaningful values for λ .  
 

 
Figure 4: Inversion of the gravity force to antigravity at large cosmological distances. Black: Newtonian. Blue: 
Cosmological Gravity.  
 
 
Comparison with MOND 
It is instructive to compare this view on cosmological gravity with MOND. MOND is a 
heuristic approach based on a modification of the gravitational acceleration g such that 
 

)(x
g

g N

μ
= , with 0/ agx =                                                                                                                  (20) 

 
where )(xμ is an interpolation function, )/( 2rMGgN = the Newtonian gravitational 
acceleration and where 0a  is an empirical constant acceleration. The format of the 
interpolation function is not known, but the objectives of MOND are met by a simple 
function like [4,18] 
 

21
)(

x

x
x

+
=μ .                                                                                                                                 (21) 

 
If 1/ 0 <<ag , such as happens for large r , (20) reduces to 
 

Ngag 0= .                                                                                                                                         (22) 
 
Under this condition, the gravitational acceleration decreases as 1−r instead of 2−r . As a 
result, the orbital velocity curves as a function of r show up as flat curves.  
Algebraic evaluation of (20) and (21) results into, 
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2
)(411 42 rk

g

g

N

λ++
=     with 2

0

λMG

a
k =  .                                                                            (23) 

 
This expression allows a comparison with the hypothesis as developed in this article. From 
(18), under consideration of λMG=Φ0 , 
 

}sin)1(cos)1{(sincos
20 rrrr
r

MG
g

r

rr λλλλ
λ

λλ ++−=Φ−∇=→+Φ=Φ  ,                        

(24) 
 
hence 
 

 rrrr
g

g

N

λλλλ sin)1(cos)1( ++−= .                                                                                            (25) 

 
As illustrated in figure 5, a pretty good fit between (23) and (25) is obtained if 
 

2
02

0 5.25.2 λ
λ

MGa
MG

a
k =→==  .                                                                                               (26) 

 
Observations on various galaxies have shown that 0a can be regarded as a galaxy-
independent constant with a value about ≈0a 1x10-10 m/s2.  
 
The implication of (28) is, that ≈0a 1x10-10 m/s2 is a second gravitational constant next to G
. The two constants determine the range λ of the gravitational force in solar systems and 
galaxy systems as MGa 5/2 0

2 ≈λ , where M is the enclosed mass in those systems. Where 
this second gravitational quantity 0a is a constant, this is apparently not true for the 
Einsteinean parameter Λ .  
 
 

 
 
Figure 5: MOND’s interpolation function compared with the theory as developed. 
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Discussion 
In the description given in this article, gravity shows up as the disturbance of the equilibrium 
state of some fluid in space by a massive source. The fluid executes a negative pressure on 
the energetic flux from the source. It is the consequence of the adoption of a positive valued 
cosmological constant in Einstein’s Field Equation. How to interpret the physical nature of 
this fluid is an open question. Empty space could be a dance of virtual particles that exist 
within Heisenberg’s uncertainty interval. That view comes close to the challenging proposal 
as has been put forward by Verlinde [20], who regards space as a sea of such virtual particles 
and who relates the gravitational process with the disturbance of their entropy, from which 
Einstein’s equation comes forward as an emergent result. Answering the fluid question, 
however, will still leave the question how to interpret the origin of mass (of the massive 
source). The gravitational process as described in this article is akin to the Debye process of 
an electrically charged particle in a plasma. The difference, though, is in the sign of the 
pressure. In the Debye process the resulting Coulomb field is suppressed (“screened”), while 
in the gravitational process the field is enhanced. These processes are characterized by a 
range parameter λ . In the gravitational case, λ is closely related with the cosmological 
constant as Λ= 22λ . The cosmological constant is not necessarily a constant of nature. In 
Einstein’s theory it is a scalar constant that therefore does not show a dependence on space-
time coordinates, but may depend on physical attributes. The gravitational model adopted in 
this article is isotropic and spherically symmetric. It therefore applies to solar and galaxy 
systems. The concept may apply to the universe as whole. In that case a somewhat different 
description is required, because, according to Friedman’s view, the universe has to be 
conceived as an equi-temporal plane without a center. The gravitational model as developed 
in this article can be harmonized with the heuristic Milgrom’s MOND hypothesis for galaxies, 
which is supported by overwhelming experimental evidence from observations. This 
harmonization requires to equate MGa 5/2)2( 0

2 ≈Λ=λ , whereM is the enclosed mass in 
those systems and where Milgrom’s acceleration constant ≈0a 1x10-10 m/s2 shows up as a 
true second gravitational constant next to G .   
 
Conclusion 
It has been shown that the weak field limit solution of Einstein’s Field Equation with 
inclusion of the Cosmological Constant, under the constraint of spherical isotropy, produces 
a gravitational wave equation with an underlying Lagrangian density in a format that 
resembles the scalar part of Proca’s generalization of the Maxwellian one. For 
electromagnetism, Proca’s “mass term” is zero, for nuclear (Yukawa) forces the “mass term” 
is positive, for gravity the “mass term” is negative. As a consequence, the electromagnetic 
field potential decays as r/1 , the nuclear potential decays more aggressively as rr /)exp( λ−  
and the gravity potential decays less aggressively as rrr /)sin(cos λλ + . Effectively, the 
gravity potential remains the Newton one in our common world, but is different at 
cosmological scale. This property explains the cosmological phenomenon that is usually 
assigned to dark matter. Because of the match in results, the developed model can be 
regarded as an underlying theory for the heuristic MOND approach, albeit that the prognosis 
that, at very large cosmological distances, gravity periodically turns on-and-off into 
antigravity marks a decisive difference. It is shown in this article that the range determining 
parameter λ is related with a second gravitational constant ≈0a 1x10-10 m/s2 next to G . The 
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two constants determine the range λ of the gravitational force in solar systems and galaxy 
systems as MGa 5/2 0

2 ≈λ , where M is the enclosed mass in those systems. So, where this 
second gravitational quantity 0a seems to be a constant of nature, this is not true for the 
Einsteinean parameter Λ , which appears being just a scalar constant, i.e., being 
independent of space-time coordinates. The theory as developed in this article gives an 
adequate explanation for the galaxian phenomenon of flat rotation curves and for the 
cosmological phenomenon that our universe is expanding in acceleration, such as predicted 
by Friedmann’s law, under influence of a positive value of Einstein’s cosmological parameter.  
 
 
APPENDIX : THE  GRAVITATIONAL WAVE EQUATION 
 
The objective in this appendix is to derive the weak field limit of the gravitational wave 
equation with inclusion of the Cosmological Constant. This objective implies that we have to 
solve Einstein’s Field Equation for a spherically symmetric space-time metric that is given by 
the line element (2), 
 

2222222
0

2 ddsind),(d),(d ϑϕϑ rrrtrgqtrgs rrtt +++= ,                                                            (A-1) 
 
where ctq i0 = .  
 
Note: The space-time (ict, r, ϕϑ, ) is described on the basis of the “Hawking” metric (+,+,+,+).  
The components μμg compose the metric tensor μνg , which determine the Ricci tensor μνR

and the Ricci scalar R . These quantities play a decisive role in Einstein’s Field Equation, 
which reads as 
 

μνμνμν
π
T

c

G
gG 4

8=Λ+     with  μνμνμν RgRG
2
1−= .                                                             (A-2) 

 
In a space without massive sources, the Einstein Field Equation under this symmetric 
spherical isotropy, reduces to a simple set of equations for the elements μμR  of the Ricci 
tensor,  
 

0
2
1 =Λ+− tttttt gRgR ;           0

2
1 =Λ+− rrrrrr gRgR ;                                                 (A-3a,b,c,d) 

 0
2
1 =Λ+− ϑϑϑϑϑϑ gRgR ;    .0

2
1 =Λ+− ϕϕϕϕϕϕ gRgR               

 
Let us proceed by considering the Ricci scalar. It is defined generically as 
  

μν
μ ν

μν RgR 
= =

=
3

0

3

0
.                                                                                                                            (A-4) 

 
In spherical symmetry the matrices contain diagonal elements only, so that (A-4) reduces to 
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μμ
μ

μμRgR 
=

=
3

0

.                                                                                                                                (A-5) 

 
This result can be applied to (A-3). Multiplying the first one with )(00 ttgg = , the second one 
with 11g , etc., and subsequent addition results of the terms =μ 1,2,3 gives,  (A-6), 
 

03
2
13

2
33

2
3 3

0

3

1
=Λ+−−=Λ+−+−=Λ+− 

==

RRgRRgRgRRg tt
tt

tt
tt

μ
μμ

μμ

μ
μμ

μμ      

so that  Λ+−= 3
2
1
RRg tt

tt .                                                                                                           (A-7) 

 
Repeating this recipe for )( μμ

μμ gg = , we have for reasons of symmetry 
  

Λ+−= 3
2
1
RRg μμ

μμ .                                                                                                                       (A-8) 

 
Note that the subscripts and superscripts 00, 11 ,22, and 33 are, respectively, identical to 

ϑϑ,, rrtt  and ϕϕ . Applying this result to Einstein’s equation set gives, 
 

4

8
22

c

gGT
Rg

μμ
μμ

μμ
μμ π

=Λ− ,                                                                                                         (A-9) 

 
such that after multiplication by ttg , we have  
 

4

8
22

c

GT
gR t

μμ
μμμμ

π
=Λ− ,                                                                                                             (A-10) 

 
Let us proceed under the condition of the absence of massive sources ( 0=μμT ) and let us 

consider the Ricci tensor component ttR under use of the results shown in Table A-1, 
obtained by a calculation shown later in this Appendix. Note: g ′ and g ′′ means 
differentiation, respectively double differentiation of g into r ; g and g  means 
differentiation, respectively double differentiation of g  into t . Multiplying (A-3a) by ttg/1  
and  (A-3b) by rrg/1  gives, 
 

0
2
1 =Λ+− R

g

R

tt

tt   and  0
2
1 =Λ+− R

g

R

rr

rr ,                                                                               (A-11) 

 
which, after subtraction and under use of the expressions in Table A-1 results into. 
 

0)(11 =
′

+
′

−
tt

tt

rr

rr

rr g

g

g

g

gr
,                                                                                                               (A-12) 

 
hence 
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0=
′

+
′

tt

tt

rr

rr

g

g

g

g
,                                                                                                                                              (A-13) 

 
which can be integrated to (the Schwarzschild condition), 
 

1=ttrr gg .                                                                                                                                         (A-14) 
 
This, in turn, gives 
 

0=+
tt

tt

rr

rr

g

g

g

g 
,                                                                                                                                               (A-15) 

 
Using (A-13), (A-15) and the Table A-1 values on ttR  gives 
 

)
2
1)(

2
1(1)

2
1

2
1(1 2

2

22

2

2 t

g

cr

rg

rgc

g
g
r

g
g

R tttt

rr

rr
tttt

rr
tt ∂

∂
+

∂
∂

−=−′−′′−=


.                                      (A-16) 

 
Hence, from (A-10) and (A-16) , 
 

42

2

22

2 8
2)

2
1)(

2
1(2

c

GT
g

t

g

cr

rg

rg
tt

tt
tttt

rr

π
=Λ−

∂
∂

+
∂

∂
− ,                                                                  (A-17) 

 
or, equivalently,  
 

rr
tttttt g

c

GT

t

g

cr

rg

r 42

2

22

2 8
21)(1 π

=Λ−
∂

∂
+

∂
∂

− ,                                                                               (A-18)   

 
Applying the well-known conditions, 
 

=Λ  0                                                                  (no cosmological constant), 
 

),(1),( trhtrg tt ϕ+= , where 1),( <<trhϕ         (the weak field limit) 

 
 )(32 rMcTtt δ= ,                                                       (pointlike massive source)               (A-19a,b,c)     
 
 yields the proper wave equation 
 

)(81)( 3
22

2

22

2

rr
c

GM

t

rh

cr

rh
δπϕϕ −=

∂
∂

−
∂

∂
,                                                                                     (A-20) 

 
which results in the static regime to  
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)(8)(1 3
22

2

r
c

GM

r

rh

r
δπϕ −=

∂
∂

.                                                                                                         (A-21) 

 
This is similar to Poisson’s equation, 
 

)(44)(1 3
2

2
2 rGMG

r

r

r
δπρπ −=−=

∂
Φ∂=Φ∇ ,                                                                             (A-22) 

 
the solution of which is the Newtonian potential, 
 

r

GM−=Φ [m2s-2].                                                                                                                          (A-23) 

 
Comparing (A-20) with (A-22) gives the equivalence 
 

2

2
c

h
Φ=ϕ .                                                                                                                                          (A-

24) 
  
Let us now consider the case ≠Λ 0 under absence of a massive source. Obviously, (A-18) is 
only satisfied if the influence of the cosmological constant is counter balanced by the 
hypothetical source 
 

Λ−= pTtt ,  where 
G

c
p

π4

4

=  and 1=rrg .                                                                                 (A-25) 

 
Because all four members of the Einstein set (A-10) have to be satisfied, we have, under 
consideration of (A-10) and Table A=1, 
 

Λ−= pTμμ  and  1=μνg .                                                                                                              (A-26) 
 
This particular stress-energy tensor with equal diagonal elements corresponds with the one 
for a perfect fluid in thermodynamic equilibrium [21]. So, where empty space corresponds 
with virtual sources =μμT 0, the fluidal space corresponds with virtual sources Λ−= pTμμ . 
Insertion of a massive pointlike source in this fluid and modifying (A-17) by adding the virtual 
sources, gives   
 

 Λ−=Λ−
∂

∂
+

∂
∂

− 2
8

2)
2
1)(

2
1(2 42

2

22

2

c

GT
g

t

g

cr

rg

rg
tt

tt
tttt

rr

π
.                                                        (A-27) 

 
Under the weak field limit condition, this equation evaluates to    
 

)(821)( 3
22

2

22

2

rr
c

GM
rh

t

rh

cr

rh
δπ

ϕ
ϕϕ −=Λ+

∂
∂

−
∂

∂
.                                                                      (A-28)                          
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Obviously, this is a proper wave function. After redefining the scalar constant Λ as 

2

2λ=Λ ,                                                                                                                                            (A-29) 

 
It is written as 
 

)(81)( 3
2

2
2

2

22

2

rr
c

GM
rh

t

rh

cr

rh
δπλ ϕ

ϕϕ −=+
∂

∂
−

∂
∂

.                                                                      (A-30) 

 
If <Λ 0, we have under static conditions, a similarity with Helmholtz’ equation with the 
screened Poisson’s equation, the solution of which is Yukawa’s potential, 
 

)exp( r
r

GM λ−=Φ ,                                                                                                                        (A-31) 

 
which reduces to  Poisson’s one for →λ 0.  
 
If >Λ 0, we have under static conditions, a similarity with Helmhotz’ equation [19] with a 
characteristic solution, 
 

}sin{cos rr
r

GM λλ +=Φ .                                                                                                            (A-32) 

 
This solution reduces to  Poisson’s one for →λ 0 as well. 
 
This is the weak field limit solution of Einstein’s Equation if one does not take the validity of 
Poisson’s equation of gravity for granted, but adopts Helmholtz equation instead under an 
appropriate choice of the Cosmological Constant.  
 
Table A1: metric tensor and Ricci tensor 
 
metric tensor Ricci tensor 
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Calculation of the Ricci tensor 
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The Ricci tensor is described in expanded form by 
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.                                                                          (A-33) 

 
The Christoffel  symbols k

ijΓ represent functions of the metric elements, such that 
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1 3
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.                                                                                          (A-34) 

 
Under symmetric spherical isotropy, only diagonal terms remain, so that the expression 
reduces to 
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,                                                                          (A-35) 

 
and the Christoffel symbols reduce to 
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such that only three different forms remain,  
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Table A2: Christoffel elements and affine connections of the isotropic non-rotating metric 
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Table A2 shows the Christoffel elements different from zero, where 
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Application of (A-38) on (A-33) gives the Ricci tensor as listed in Table A1.  
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