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Abstract: Autonomous aerial refueling technology is an effective solution to extend flight duration 
of unmanned aerial vehicles, and also a great challenge due to its high risk. For autonomous probe-
and-drogue refueling tasks, relative navigation to provide relative position between the receiver 
aircraft and the refueling drogue is the first and essential step, and vision-based method is the most 
frequently used. A new monocular vision navigation sensor with image processing strategy 
consisting of the drogue detection method and the tracking method is developed for autonomous 
aerial refueling in this paper. In the drogue detection method, thresholding and mathematical 
morphology method are adopted to eliminate image interference, and contours extraction method 
is applied to obtain all contours, which are then subsequently checked to achieve target contour of 
drogue. In the tracking method, a rectangle of interest (ROI) of current frame image is determined 
by positioning results of last frame, and then processed by the previous drogue detection method. 
Finally, the proposed image processing strategy in monocular vision navigation sensor is validated 
using real flight images, which are captured from an autonomous aerial refueling testbed using a 
micro six-rotor aircraft as receiver aircraft. 

Keywords: autonomous aerial refueling; computer vision; probe and drogue; target detection and 
tracking; ellipse fitting 

 

1. Introduction 

Aerial refueling, defined as the operation of in-flight fuel transmission from the tanker aircraft 
to the receiver aircraft, provides an effective solution to expand the limited flying distance of the 
aircraft, and is widely used in military area [1-3]. For unmanned aerial vehicles (UAV), autonomous 
aerial refueling (AAR) can greatly improve the UAV’s performance through extending the UAV’s 
flight duration [4]. Two major hardware configurations used for aerial refueling are the boom-and-
receptacle refueling system and the probe-and-drogue refueling system [5,6]. In the boom-and-
receptacle refueling system, a retractable boom with two attached aerodynamic control surfaces is 
extended from the tanker, and then the tanker steers the boom to a coupling on the receiver. In the 
probe-and-drogue refueling system shown as Figure 1(a), the tanker drags a refueling drogue with 
flexible hose, and then the receiver is maneuvered to bring the attached refueling probe into contact 
with the drogue [7]. The major advantage of probe-and-drogue refueling system is that two or more 
aircrafts are allowed to refuel simultaneously. 

Autonomous probe-and-drogue refueling relies on two key technologies: drogue detection and 
vision-based measurement. The first one is to robustly obtain drogue position in image, and the latter 
is to determine the relative position between the probe and the drogue. The attempt of this paper is 
to present a practical vision navigation sensor with a new image processing strategy to detect drogue 
image position for autonomous probe-and-drogue refueling system. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 May 2017                   doi:10.20944/preprints201705.0117.v1

©  2017 by the author(s). Distributed under a Creative Commons CC BY license.

http://dx.doi.org/10.20944/preprints201705.0117.v1
http://creativecommons.org/licenses/by/4.0/


 2 of 13 
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(b) 

Figure 1. Aerial refueling system. (a) Description of the probe-and-drogue refueling system; (b) Basic 
structure of a real aerial refueling drogue. 

Vision-based navigation method is considered the most feasible solution to the problem of 
autonomous navigation in deep-space missions, and becomes increasingly popular in autonomous 
aerial refueling tasks [8-12]. The measurement precision is increased with proximity to the target in 
vision systems [13,14]. Research on vision systems for probe-and-drogue refueling tasks can be 
divided into two categories: the active vision system and the passive vision system [15]. Active vision 
systems employ obvious features, such as painted markers or LED beacons, to locate the drogue. 
VisNav is a commonly used active vision system, and has been used in several AAR studies. A set of 
LED beacons are mounted on the drogue, and the line of sight of beacon is detected by sensing diodes 
mounted on the receiver aircraft. Sequenced illumination of beacons and a communication link are 
employed to ensure the order of detected LED beacons. The employment of beacons is then 
advocated by Pollini, who used an inexpensive CCD webcam with an infra-red filter to detect LEDs 
placed on the drogue [16,17]. In active vision systems, drogue target can be captured with relatively 
meager processing time and high reliability. The main disadvantage is that non-trivial modifications 
to the tanker are required to provide electrical power for beacons. 

The passive vision system does not require additional hardware installed on the tanker aircraft. 
Martinez proposed a vision-based strategy only depending on the features of drogue itself for 
autonomous aerial refueling tasks [18]. Direct methods [19] and hierarchical image registration [20] 
techniques are used for drogue tracking. And the drogue detection method is composed of two 
algorithms: the edge-image template matching algorithm using normalized cross correlation (NCC), 
and the image threshold segment algorithm. Yin developed drogue detection and tracking strategy 
based on the nearly circular and dark inner part of the drogue, and edge images are applied to extract 
image features [21]. Gao proposed a drogue detection algorithm based on low rank and sparse 
decomposition with local multiple features, and the drogue image sequences are decomposed into 
the low rank background and sparse moving object [22]. The challenge of passive vision systems is 
to improve the real-time performance and reliability. Therefore, simple and effective image 
processing algorithms with a high degree of robustness are indispensable for the success of 
autonomous aerial refueling navigation [23]. 

This paper focuses specifically on the proposal and evaluation of a practical monocular 
navigation sensor with a new image processing strategy for probe-and-drogue refueling system 
based on monocular vision in conjunction with real, full-scale drogue hardware. Direct methods are 
adopted and installation of specialized hardware (such as beacons) is not required. As shown in 
Figure 1(b), the inner refueling port is imaged as a nearly circular black block, and this is the main 
extraction feature used to detect and locate the drogue in the image. And image features are extracted 
from the binary image instead of edge image in [21], and less processing time is required. A high 
fidelity testbed based on a micro six-rotor aircraft for autonomous aerial refueling tasks is then 
developed to evaluate the positioning accuracy, real-time performance, and reliability of proposed 
image processing strategy. 

This paper is organized as follows. Section 2 describes the image processing strategy for 
autonomous aerial refueling navigation, including the drogue tracking method and the drogue 
detection method. In Section 3, experiments based on the autonomous aerial refueling testbed are 
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deducted and results are discussed in detail. Finally, Section 4 presents our conclusions and future 
work. 

2. Image processing strategy for monocular vision navigation sensor 

2.1 Strategy overview 

The objective of vision navigation system for autonomous aerial refueling tasks is to determine 
the relative 3D position of the drogue with respect to the receiver aircraft. The first thing is to detect 
the drogue target in images, which are captured by the camera mounted on the receiver aircraft. Fast, 
reliable and accurate extracted image features of the drogue are required in order to achieve an 
accurate relative position between the drogue and the receiver aircraft. 

The proposed strategy adopts the state machine with four states to manage image processing 
operation, and these four states include initial state, capture state, lock state and exit state, as shown 
in Figure 2(a). The state machine starts with initial state, in which a counter C is initialized as zero 
and added by one when the target in current frame image cannot be detected using the proposed 
drogue detection method. When the counter C equals Cmax, which means target cannot be found in 
continuous Cmax frames, then the initial state is transferred to the exit state, and refueling tasks will be 
abandoned. Once the target is detected, initial state will be transferred to the capture state. The 
drogue tracking method can be adopted in the capture state, and the drogue detection method will 
be used if failed to catch target in tracking procedure. If the target is detected or tracked successfully, 
the state will be transferred to lock state, and image positioning results can be output to solve vision-
based relative position. If target cannot be found through detection and tracking methods, the capture 
state is then transferred to initial state, waiting for a new frame image to execute detection. 

 

(a) 
 

(b) 

Figure 2. (a) State machine in the proposed strategy; (b) Schematic diagram of ellipse parameters. 

As we can see in Figure 2(a), only the lock state can output reliable image position of drogue. 
The image position is then used to solve relative position between drogue and camera assuming that 
the camera is calibrated and that the dimension of the drogue is known. The drogue tracking method 
(see Section 2.2) is adopted in the capture state and the lock state. And the drogue detection method 
(see Section 2.3) is used only when the tracking method failed or the state machine worked at the 
initial state. 

2.2 Drogue tracking method 

As the receiver aircraft keeps stable flight state in aerial refueling procedure, it can be assumed 
that the refueling drogue in video frame streams shows slow change, and that drogue positions in 
current frame image and last frame image are very close. A priori information can be used to deduce 
image processing time and assure reliability in current frame image if the drogue is found in last 
frame image. 

Drogue tracking is based on the image positioning result in last frame image. A rectangle of 
interest (ROI) is chosen and the drogue detection method developed in Section 2.3 is then applied to 
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obtain target position. As shown in Figure 2(b), (ܽ, ܾ, ,ߠ ,௖ݔ  ௖) represent ellipse shape parameters ofݕ
inner refueling port in last frame image, and the ROI in current frame image can be solved by ݀௫ = ඥ(ܽܿߠݏ݋)ଶ + ,ଶ(ߠ݊݅ݏܾ) ݀௬ = ඥ(ܾܿߠݏ݋)ଶ + ,ଶ(ߠ݊݅ݏܽ) ݁௫ = ݀௫2 , ݁௬ = ݀௬2  (1)

where (݁௫, ݁௬) are sizes of extended region in Figure 2(b). 

2.3 Drogue detection method 

Figure 1(b) shows the basic structure of drogue. It can be seen that the most obvious image 
feature is the inner refueling port imaged as a circular black block. When the receiver aircraft carries 
out close docking and locate in the rear side of a few meters with the tanker, the inner refueling port 
in the captured drogue image shows a nearly circular black block. In this paper, we will use the nearly 
circular black block as the main image feature to detect and locate drogue in the image. 

 

Figure 3. Sketch of the drogue detection procedure. 

The proposed drogue detection method in this paper is composed of five steps, as shown in 
Figure 3. Firstly, we use binary images through thresholding origin image to reduce detection time. 
And mathematical morphology method is then applied to eliminate image interference, especially 
the umbrella skeleton of drogue as shown in Figure 1(b). After that, contours extraction method is 
used to obtain all the contours and judge them with four conditions including range condition, area 
condition, circularity condition and ellipse fitting condition. At last, target contour candidate with 
maximum logarithmic circular degree is determined as the target contour of drogue. Figure 3 depicts 
a sketch of the drogue detection procedure, and details of these five steps are provided in the 
following subsections. 

2.3.1 Thresholding 

Thresholding the image can split the image into a number of regions each having a high level of 
uniformity in color and brightness. As the inner refueling port in the captured drogue image shows 
a nearly circular black block, pixel points in the inner refueling port have low grayscale values, and 
can be easily extracted as a foreground region when using the inverse thresholding method. 

Read the drogue grayscale image ܩ଴, and threshold it to a binary image ܤ଴ by the following 
transformation： ܤ଴(ݔ, (ݕ = ൜0, ,ݔ)଴ܩ (ݕ > ,௕1ݐ ,ݔ)଴ܩ (ݕ ≤ ௕ (2)ݐ

where ݐ௕ is the thresholding grayscale value, (ݔ, ,ݔ)଴ܩ ,represents the image pixel coordinate (ݕ  (ݕ
and ܤ଴(ݔ, ,ݔ) are grayscale values of (ݕ  .଴ respectivelyܤ ଴ andܩ pixel in (ݕ

Figure 4(a) and Figure 4(b), respectively, show the origin gray image of drogue and the binary 
image with the thresholding grayscale value ݐ௕ = 120 . It can be seen that partial background 
interferences are eliminated, and the structure of inner refueling port is still reserved. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4. Results for each step in drogue detection method: (a) Origin gray image; (b) Image after 
thresholding; (c) Image after opening operation; (d) Contours extraction results; (e) Target contours 
candidates; (f) Target determination results. 

2.3.2 Mathematical morphology operation 

As shown in Figure 4(b), the umbrella skeleton holds together with the inner refueling port, and 
extraction of the inner refueling port from the whole image is difficult. Morphological operation is 
able to eliminate pepper noise, fine hairs, and small protrusions. The nearby interference caused by 
the umbrella skeleton can be eliminated through morphological opening operation. 

In mathematical morphology, a structuring element is always applied to a binary image, and the 
image is processed by treating as sets of points. A circular disk ܤௗ is adopted as the structuring 
element to do opening operation with ܤ଴ as follows: ܤଵ = ଴ܤ ∘ ௗܤ = ଴ܤ) ⊖ ⊕(ௗܤ ௗ (3)ܤ

where ܤଵ is the result binary image, ∘ is the opening operation symbol, ⊖ is an erosion operation, 
and ⊕ is a dilation operation. Figure 4(c) shows the binary image after opening operation with a 
circular disk whose size is 5, and it can be seen that the nearby interference of the inner refueling port 
is disappeared and that the whole structure of inner refueling port remains. 
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2.3.3 Contour extraction 

The target region (inner refueling port) is separated from other regions in the binary image after 
mathematical morphology operation. Contours extraction method is always to obtain edges of all the 
separated regions, and then each extracted contour represents the target region. The operation of 
contours extraction is consisted of two steps: (1) Hollow out inner points of the region to preserve 
boundary points. (2) Track contour lines by means of the connectivity rules which describe the 
neighboring relationships between pixels. There are two common ways of defining connectivity: 
four-neighborhood where only immediate neighbors are analyzed for connectivity; or eight-
neighborhood where all the eight pixels surrounding a chosen pixel are analyzed for connectivity. 
Details of the contours extraction method can be found in [24]. 

Do contours extraction with ܤଵ to obtain sets of edge points of contours, denoted as ۱ = ݇|௞ܥ} = 1,2, … , ଵܰ} with ܥ௞ = ,௞௠ݔ)} ݉|(௞௠ݕ = 1,2, … , ݊௞} (4)

where ଵܰ is the number of extracted contours, ܥ௞ represents the set of edge points for k-th contour, ݊௞ is the number of edge points, and (ݔ௞௠,  ௞. Results ofܥ ௞௠) represents the m-th edge point ofݕ
contours extraction using eight-neighborhood connectivity are shown in Figure 4(d). Red lines 
represent edges of extracted contours, and the target region is extracted as a contour. 

2.3.4 Judgments of target contour candidates 

The primary task after contours extraction is to judge the contour representing the target region. 
Four conditions are applied to find target contour candidates, which are the range condition, the area 
condition, the circularity condition and the ellipse fitting condition. 

For each contour ܥ௞, following judgments are done to find contours satisfying all conditions, 
and these contours are denoted as ۱࢚ࢉ = ൛ܥ௞ห݇ = ݀ଵ, ݀ଶ, … , ݀௤ൟ  where ݀ଵ~݀௤  represent sequence 
numbers of contour candidates. 
1. Range condition 

Range condition eliminates the contour that has very little range or width and height are not 
roughly equal. The target contour candidate must satisfy the following constraint relationship ݔௗ > ,௥௫ݐ ௗݕ > ,௥௬ݐ ௗݕ > ,ௗݔ௥௦ݐ ௗݔ > ௗݔௗ with ൜ݕ௥௦ݐ = max{ݔ௞௠} − min{ݔ௞௠}ݕௗ = max{ݕ௞௠} − min{ݕ௞௠} (5)

where (ݐ௥௫, (௥௬ݐ  is range thresholding values of x-axis and y-axis, ݐ௥௦  is the range proportion 
thresholding value, and (ݔௗ,  .௞ܥ ௗ) refs to the pixel coordinate range of contourݕ
2. Area condition 

Area condition eliminates the contour that has very small area. If the area of contour ܥ௞  is 
denoted as ܵ௞, then the target contour must have area of larger than ݐ௔, which means ܵ௞ >  ௔ whereݐ
ta is the area thresholding value. 
3. Circularity condition 

As the target region is nearly circular, the target circularity must satisfy ܿ௞ = ସగ௦ೖ௟ೖమ >  ௖ is the circularity thresholding value, and ݈௞ is the perimeterݐ ,௞ܥ ௖ where ܿ௞ is the circularity of contourݐ
of contour ܥ௞.  
4. Ellipse fitting condition 

The perspective projection of a circle forms an ellipse on the image plane. Once candidate edge 
points are found, an ellipse must be fitted to these data points. Apply least square ellipse fitting 
method to edge points of contour ܥ௞, and denote the result shape parameter as (ݔ௞௖, ,௞௖ݕ ܽ௞, ܾ௞,  ,(௞ߠ
where(ݔ௞௖, ,௞௖) is the center of ellipse, and (ܽ௞ݕ ܾ௞) the major semi-axis and minor semi-axis, and ߠ௞ the rotation angle. 

The fitting quadratic function can be described by [25] as ݔ)ܨ, ,ݕ ܵ) = ଶݔ + ݕݔଵݏ + ଶݕଶݏ + ݔଷݏ + ݕସݏ + ହݏ = 0 (8)

where S represents the parameters ܵ = ,ଵݏ) ,ଶݏ ,ଷݏ ,ସݏ  ହ). Then the ellipse fitting problem becomes anݏ
optimization problem with the objective function to be minimized as follows: 
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ܵ = minௌ ෍ ,ݔ)ܨ ,ݕ ܵ)ଶ௡ೖ
௠ୀଵ  (9)

Least square [26] can be applied to solve equation (9), and it should be pointed out that these 
fitting parameters must be checked according to the ellipse inequality constraint 4ݏଶ > ଵଶݏ . The 
standard ellipse parameters (ݔ௞௖, ,௞௖ݕ ܽ௞, ܾ௞, (௞ߠ  can be obtained from the implicit coefficients ܵ , 
which is a well-known result from classical geometry. Then according to equation (6), the fitting 
result must satisfy ܽ௞ > ௥௫2ݐ , ܾ௞ > ௥௬2ݐ , ܽ௞ > ,௥௦ܾ௞ݐ ܾ௞ > ௥௦ܽ௞ (10)ݐ

Also a small fitting error is required, that means the fitting distance error must satisfy ݁ <  ௘ݐ
and ߪ < ,݁) ఙ whereݐ  are the mean value and STD (standard deviation) value of fitting distance (ߪ
errors {݁௠|݉ = 1,2, … , ݊௞}, and (ݐ௘,  ఙ) are corresponding thresholding values. The fitting distanceݐ
error can be calculated as follows ݁௠ = ඥܽ௞ܾ௞(ඥ݁௫௠ଶ + ݁௬௠ଶ − 1) with ൜݁௫௠ = ௞௠ݔ) − ௞/ܽ௞ߠ௞௖)cosݔ + ௞௠ݕ) − ௞/ܾ௞݁௬௠ߠ௞௖)sinݕ = ௞௠ݕ) − ௞/ܾ௞ߠ௞௖)cosݕ − ௞௠ݔ) − ௞/ܽ௞ߠ௞௖)sinݔ (11)

where (݁௫௠, ݁௬௠) is the normalized coordinate of ellipse point (ݔ௞௠,  .(௞௠ݕ
2.3.5 Target Determination 

If the final number of target contour candidates is 0, then the target is not found in the current 
image. If it is equal to 1, the result is the final contour ellipse. If it is greater than 1, then choose the 
target contour candidate with maximum logarithmic circular degree as the target contour, and use 
its ellipse fitting result as the target feature location results. The logarithmic circular degree is defined 
as ݂(ܽ௞, ܾ௞) = |(݈݊ܽ௞ − ݈ܾ݊௞)/(݈݊ܽ௞ + ݈ܾ݊௞)|, where (ܽ௞, ܾ௞) are the major semi-axis and minor semi-
axis of fitting ellipse result for contour candidate Ck. 

Target contour candidates are shown in Figure 4(e) when using ݐ௥௫ = ௥௬ݐ = 8, ௥௦ݐ = 0.65, ௔ݐ =100, ௖ݐ = 0.65, ௘ݐ = 1.0, ఙݐ = 0.6. It can be seen that only one target contour candidate is preserved, 
and then Figure 4(f) shows the final result of target detection. 

3. Results and Discussion 

3.1. Autonomous aerial refueling testbed 

The drogue detection method presented in this paper was tested experimentally on an 
autonomous aerial refueling testbed (AART). As shown in Figure 5, AART consists of three parts: 
tanker, receiver and ground station. The tanker is a 2D mobile platform, on which the refueling 
drogue was mounted. To achieve a high fidelity, we use a full-scale drogue hardware which has the 
same size and color with the real drogue. The receiver is a micro quad-rotor aircraft (called Kopter-
NRC), on which a camera was mounted to capture drogue images in vision system. The ground 
station is used to monitor and control system operation, thus experiments are operated in controllable 
and safe condition. 

A Logitech C270 camera is mounted on Kopter-NRC as shown in Figure 5. This camera is 
capable of capturing images at 30Hz, and the image resolution is 1280×720. To reduce image 
processing time, we deal with images at resolution 640×480, and capture images at 25fps. The camera 
is connected to ODROID XU3 computer with Exynos 4412 ARM Cortex-A9 Quad Core 1.7GHz CPU, 
and the visual system run LUbuntu 14.04 as the operation system. The proposed image processing 
strategy is developed in C++, and the OpenCV [27] libraries are used for managing image data. 
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Figure 5. Autonomous aerial refueling testbed (AART). 

To test the performance of proposed image processing strategy, four videos are captured with 
640×480 resolution at 25fps. When capturing drogue images, the receiver aircraft gradually moves 
close to the drogue from a distance, and then backed away. Each video contains 800 images with 
different movements of the drogue, and the performance of proposed image processing strategy is 
analyzed using these four videos. In the first test, the precision and reliability of the proposed drogue 
detection method are evaluated. A second test is conducted in order to provide the time consuming 
of the drogue detection method. Finally, the real-time performance of developed image processing 
strategy containing drogue detection and drogue tracking methods is analyzed in the third test. 

3.2. Test 1: Precision and Reliability of the Drogue Detection Method 

In this test, all the images are processed with the drogue detection method in order to test the 
precision and reliability. Some results of drogue detection are shown in Figure 6, and red ellipses 
indicate the finally determined edges of inner refueling port. It shows that the red ellipse and the real 
drogue refueling port are basically coincident, which means the drogue detection method proposed 
in this paper can accurately extract the image features of drogue. 

Drogue detection results for all images are checked, and eye observation is applied to judge if 
the drogue detection result correctly locates the real inner refueling port. Table 1 shows the success 
rate of drogue detection method for all 3200 images. We can see that targets in 4 frames are not found 
in video #1, and video #4 has 2 frames not found, and target is accurately located in all the frames of 
video #2 and #3. It is worth pointing out that the method proposed in this paper does not take the 
wrong target as a result. In conclusion, the method has high reliability and the overall detection 
success rate is 99.81%. 

Distributions of positioning results are given to illustrate the effectiveness of the proposed 
drogue detection method. Figure 7 shows the image position trajectory of the center of inner refueling 
port which is successfully detected in each video. One can see that the imaged center of the inner 
refueling port is relatively concentrated in a small region and that any deviation point is not 
appeared. This is gentle consistent with the real flight maneuver. And it’s obvious in video #4 that 
targets in the horizontal direction changes in a large scope, and the variation law is consistent with 
the real flight trajectory that the receiver aircraft has a large horizontal maneuver. 

Figure 8 shows the imaged radius changes of drogue inner refueling port with the frame flow of 
videos. Radius of 0 in Figure 8 indicates the failure of target detection. We can see that several frames 
in video #4 and #1 has not been detected successfully, including video #1 has 4 consecutive frames 
(frame 545-548) not detected, and video #4 has 2 frames (frame 61 and 77) not detected. Eliminating 
the frames which are failed to detect, we can see that the imaged radius changes of refueling port 
increased firstly, and then decreased in a smooth level, which is consistent with the real flight 
maneuver. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. Drogue detection results for several frames: (a) Result for frame 70; (b) Result for frame 225; 
(c) Result for frame 318; (d) Result for frame 525. 

Table 1. Success rate for drogue detection 

Video Index 
Frame 

Number 
Failed 
Frames

Frames with 
wrong targets

Success Rate 

1 800 4 0 99.50% 
2 800 0 0 100.0% 
3 800 0 0 100.0% 
4 800 2 0 99.50% 

TOTAL 3200 6 0 99.81% 

3.3 Test 2: Time-Consuming of the Drogue Detection Method 

Time-consuming of drogue detection for all the images are pictured in Figure 9. As the time-
consuming of contour extraction occupies a larger proportion in the drogue detection method, and it 
only depends on the image to be processed, some frames show a large time-consuming, and 
mutations are appeared in the change curve of time-consuming. Without consideration of mutations 
in Figure 9, we can see that the method takes the basic trend consistent with the drogue detection 
radius in Figure 8, that the time-consuming becomes shorter when radius gets smaller. 

Statistical results of time-consuming in all frames (a total of 3200 frames) are as follows. Most 
frames are processed in about 20ms when using the drogue detection method, and the time-
consuming has an average of 34.3ms, a standard deviation of 32.2ms, a minimum of 14.4ms and a 
maximum of 328.1ms. 2741 frames have time-consuming of less than 40ms, which mean the proposed 
drogue detection method can meet the real-time performance requirement in 84.81% case when 
image is captured at 25fps. As the target detection method is only applied when the system is in the 
initial state or failed in target tracking procedure, the time-consuming requirements of the drogue 
detection method can be appropriately relaxed, and 3053 frames (95.41% of the total) can satisfy the 
time-consuming requirement when 100ms is used as the boundary value of time-consuming. 
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Figure 7. Center of inner refueling port in imaged plane. 

 
Figure 8. Variation curve of radius of inner refueling port in imaged plane. 

3.4 Test 3: Real-time performance of proposed image processing strategy 

As the detection time is relatively long, the tracking method is applied to reduce the image 
processing time-consuming. The detection and tracking methods are combined to achieve a high 
reliability and real-time performance. Using the proposed strategy to process previous four videos, 
the reliability and accuracy are almost the same with results only using the detection method, due to 
the detection method is always applied to determine the positioning result in the proposed strategy. 
The following is the analysis of the real-time performance of this strategy. 

Processing time of four videos is shown in Figure 10, and one can see that a small number of 
frames spend a relatively long time when using detection method. And the tracking time is less than 
40ms for all frames using tracking method, which shows that the use of tracking method can 
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significantly improve the real-time performance. The statistical result of 3200 frames are as follows. 
The average time-consuming is 13.6ms, the standard derivation is 8.4ms, the minimum tracking time 
is 10.5ms, and the maximum tracking time is 38.1ms. In conclusion, the image processing strategy 
developed in this paper can meet the requirements of precision, reliability and real-time performance. 

 
Figure 9. Time consuming for drogue detection. 

 
Figure 10. Time consuming for drogue detection and tracking. 

4. Conclusions 

Relative navigation technology is essential for autonomous probe-and-drogue refueling tasks, 
in which vision-based drogue detection and tracking method is the mostly used. In this paper, a new 
monocular vision navigation with image processing strategy consisting of the drogue detection 
method and the tracking method is developed for autonomous aerial refueling system. Experiments 
are deducted under an autonomous aerial refueling testbed which employs a micro six-rotor aircraft 
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as receiver aircraft. And a full-scale drogue hardware is applied to provide high-fidelity images. 
Results show that the proposed strategy is able to meet requirements of the positioning accuracy, 
real-time performance, and reliability in the autonomous aerial refueling procedure. 

Future work will focus on an end-to-end assessment of the performance of a complete vision 
navigation system for autonomous aerial refueling tasks, which will systematically incorporate the 
image processing method developed in this paper with vision-based pose estimation method and 
navigation filter algorithm. 
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