Preprint Article Version 1 This version is not peer-reviewed

Fast Preparation of Porous MnO/C Microspheres as Anode Materials for Lithium-Ion Batteries

Version 1 : Received: 10 May 2017 / Approved: 11 May 2017 / Online: 11 May 2017 (07:49:10 CEST)

A peer-reviewed article of this Preprint also exists.

Su, J.; Liang, H.; Gong, X.-N.; Lv, X.-Y.; Long, Y.-F.; Wen, Y.-X. Fast Preparation of Porous MnO/C Microspheres as Anode Materials for Lithium-Ion Batteries. Nanomaterials 2017, 7, 121. Su, J.; Liang, H.; Gong, X.-N.; Lv, X.-Y.; Long, Y.-F.; Wen, Y.-X. Fast Preparation of Porous MnO/C Microspheres as Anode Materials for Lithium-Ion Batteries. Nanomaterials 2017, 7, 121.

Journal reference: Nanomaterials 2017, 7, 121
DOI: 10.3390/nano7060121

Abstract

Porous MnO/C microspheres have been successfully fabricated by a fast co-precipitation method in a T-shaped microchannel reactor. The structures, compositions and electrochemical performances of the obtained MnO/C microspheres are characterized by X-ray diffraction, emission scanning electron microscopy, transmission electron microscopy (HRTEM), Brunauer–Emmett–Teller analysis, charge-discharge testing, cyclic voltammograms, and electrochemical impedance spectra. Experimental results reveal that the as-prepared MnO/C, with a specific surface area of 96.66 m2·g–1 and average pore size of 24.37 nm, exhibits excellent electrochemical performance, with a discharge capacity of 655.4 mAh·g–1 after cycling 50 times at 1 C and capacities of 808.3, 743.7, 642.6, 450.1, and 803.1 mAh·g–1 at 0.2, 0.5, 1, 2, and 0.2 C, respectively. Moreover, the controlled method of using a micro-channel reactor, which can produce larger specific surface area porous MnO/C with improved cycling performance by shortening lithium-ion diffusion distances, can be easily applied in real production on a large-scale.

Subject Areas

lithium-ion batteries; anode materials; MnO; co-precipitation; T-shaped microchannel reactor

Readers' Comments and Ratings (0)

Leave a public comment
Send a private comment to the author(s)
Rate this article
Views 0
Downloads 0
Comments 0
Metrics 0
Leave a public comment

×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.