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Abstract: 

Future projections from climate models and recent studies shows impact of climate change on rainfall 

indices estimation.The purpose of this study is thus to document changes in indices that are calculated in a 

consistent manner as simulated in the CMIP3 and CMIP5 model ensembles for analyzing impacts of climate 

change on cachment rainfall indices the some of subbasin Hamedan Province West of Iran. This study 

assesses the simulations of rainfall indices based on the Coupled Model Intercomparison Project CMIP5 

and CMIP3. The analysis of the rainfall indices are : simple rainfall intensity, very heavy rainfall days , 

maximum one-day rainfall and rainfall frequency has been carried out in this study to evaluating the 

impact of climate change on rainfall indices events. Relative change in three rainfall indices is 

investigated by GCMs under various greenhouse gas emission scenarious A1B and B1 and RCP8.5, 

RCP8.5 scenarios for the future periods 2020–2045 and 2045-2065. Rainfall indices of sum wet days , 

nday >1mm and maximum one-day rainfall are projected to decrease under the senariuos B1,A1B and 

sum wet days , simple daily intensity and heavy Rainfall days>10 projected to decrease under the RCP2.6 . 
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1.Introduction 

Changes in the climate and especially in rainfall characteristics are expected to have a strong impact on 

the living onditions of the population in study area. Decreasing rainfall amounts or increasing dry spells 

would negatively affect crop yields in the region. Increasing rain amounts, especially during the dry 

season, however, would have a positive effect as the cultivation period of staple crops could be extended. 

CMIP5 is the Coupled Model Intercomparison Project Phase 5, which provides a framework for 

coordinated climate change experiments for the next several years and includes simulations for assessment 

in the AR5 as well as for other assessment reports that extend beyond the AR5 (Taylor etal., 2012). 

Relative to earlier phases, CMIP5 focuses on a set of experiments that include higher spatial resolution 

models, improved model physics, and a richer set of output fields (Gulizia and Camilloni, 2015; Taylor et 

al., 2012). Additionally, the CMIP5 climate change projections are driven by new climate scenarios that 

use a time series of emissions and concentrations from the representative concentration pathways (RCPs) 

described in Moss et al (2010). Accordingly, GCMs provided by the CMIP5 have been widely used in the 

assessment of climate change (Gulizia and Camilloni, 2015; Pierce et al., 2013; Smith et al., 2013). 

 

 

 

 

 

 

 

 

 

 

Figure 1. Carbon dioxide (CO2) concentrations in ppm as used in the CMIP3 and CMIP5 
historical and scenario simulations and available for download at the PCMDI website.The vertical 
shading indicates the reference period (1981–2000) and the two 20 year periods (2046–2065 and 
2081–2100) considered in the analysis of future climate change.( J. Sillmann et all 2016). 

 

Figure 1 illustrates the evolution of carbon dioxide (CO2) concentrations as observed in the 20th century 

and prescribed in the 21st century simulations in the SRES and RCP scenarios considered in this study. 

The SRES scenarios are based on storylines assuming different socioeconomic, technological, and 

political developments leading to specified changes in emissions that in turn determine the resulting 

changes in atmospheric greenhouse gas concentrations (e.g., Figure 1) and radiative forcing. At the end of 

the 21st century, the CO2 concentrations reach about 840 ppm in the SRES A2 scenario, 700 ppm in the 

A1B scenario, and 540 ppm in the B1 scenario which assumes the most environmentally friendly 
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development pathway.In contrast to the SRES scenarios, the radiative forcing trajectories in the RCPs are 

not associated with predefined storylines and can reflect various possible combinations of economic, 

technological, demographic, and policy developments (Moss et al., 2010). The peakand- decline RCP2.6 

scenario is designed to meet the 2°C global average warming target compared to pre-industrial conditions 

(van Vuuren et al., 2011a). It has a peak in the radiative forcing at approximately 3 W/m2 (~400 ppm 

CO2) before 2100 and then declines to 2.6 W/m2 by the end of the 21st century (~330 ppm CO2). 

Radiative forcing in RCP4.5 peaks at about 4.5 W/m2 (~540 ppm CO2) in year 2100 (Thomson et al., 

2011). RCP4.5 is comparable to the SRES scenario B1 with similar CO2 concentrations and median 

temperature increases by 2100 according to Rogelj et al (2012). RCP8.5 assumes a high rate of radiative 

forcing increase, peaking at 8.5 W/m2 (~940 ppm CO2) in year 2100 Riahi et al., 2011. Climate changes 

simulated in the CMIP3 and CMIP5 ensembles are not directly comparable because of the differences in 

prescribed forcing agents (e.g., CO2 and aerosols) between the SRES and RCP scenarios as discussed in 

Rogelj et al(2012). Furthermore, the models may respond differently to a specific radiative forcing due to 

different model-specific climate sensitivities. However, based on the underlying radiative forcing (or CO2 

concentrations), one can compare projected changes in the precipitation indices and provide an estimate of 

uncertainty related to the different emission scenarios.The occurrence of extreme rainfall events  is one of 

the most major aspects of climate. The increase in frequency and intensity of extreme rainfall events may 

cause serious impacts on both natural and engineered systems in terms of increased frequency and severity 

of floods. For many regions in the world, the frequency and intensity of heavy rainfall events have 

increased over the past 50 years (Frich et al., 2002; IPCC, 2007).“Wet extremes are projected to become 

more severe in many areas where mean rainfall is expected to increase, and dry extremes are projected to 

become more severe in areas where mean rainfall is projected to decrease. (IPCC 2007). This is 

particularly important for watersheds where runoff from extreme rainfall amount events causes rising 

streamflows (Zhang et al., 2008; Kwon et al., 2011).However understanding the changes in  the extremes  

weather events is more important than the changes in mean pattern for better disaster management and 

mitigation. Therefore, there is a need to know the magnitudes of extreme rainfall events over different 

parts of the world spatially in in the some of subbasin Hamedan Province West of Iran .Future climate 

change is generally believed to lead to an increase in climate variability and in the frequency and intensity 

of extreme events in most of studies. Various studies investigated that the frequency and magnitude of 

extreme rainfall, for both global and regional scales under the enhanced greenhouse gases (GHGs) 

conditions. (e.g., Palmer and Ra isa ¨nen, 2002; Watterson and Dix, 2003; Meehl et al., 2005).Many 

General Circulation Models (GCMs) results consistently predict inreases in the frequency and  magnitudes 

of extreme climate event and variability of rainfall (IPCC, 2007).Rutger Dankers & Roland Hiederer 
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(2008) investigated that On rain days the intensity and variability of the rainfall shows a general increase, 

even in areas that are getting much drier on average .   

Guhathakurta (2011) is investigated the frequency of heavy rainfall events are decreasing in major parts of 

central and north India while they are increasing in peninsular, east and north east India. The study tries to 

bring out some of the interesting findings which are very useful for hydrological planning and disaster 

managements. Extreme rainfall and flood risk are increasing significantly in the country except some parts 

of central India. The  study in india country over Mumba found that The increase in the extreme events 

ranges  from  0% - 40% with two projections indicating that a slight decrease.Six out of nine projections 

show a positive trend of the  rainfall extremes in the period 2010–2099,including four showing a 

significant positive trend at the 0.05 level.  

Andreas Haensler et al. (2013) assessing the CMIP3 and CMIP5 databases, along with some recently 

downscaled regional CORDEX Africa projections conclued that independent of the underlying emission 

scenario, nnual total precipitation amounts over the central African region are not likely to change 

severely in the future and some robust changes in precipitation characteristics, like the intensification of 

heavy rainfall events as well as an increase in the number of dry spells during the rainy season are 

projected for the future . 

Seree Supharatid et al. (2015) studied assessment of CMIP3-CMIP5 climate models precipitation 

projection and implication of flood vulnerability of Bangkok and conclued that Use of the Multi Model 

mean shows continuously increased rainfall from the near future to the far future while the Multi Model 

Median shows increased rainfall only for the far future. 

Saeed et al. (2013) investigate the reasons for the opposite climate change signals in precipitation between 

the regional climate model REMO and its driving earth system model MPI-ESM over the greater Congo 

region. Three REMO simulations following three RCP scenarios (RCP 2.6, RCP 4.5 and RCP 8.5) are 

conducted, and it is found that the opposite signals, with REMO showing a decrease and MPI-ESM an 

increase in the future precipitation, diverge strongly from a less extreme to a more extreme scenario. 

Zhou et al. (2014) presents projected changes in temperature and precipitation extremes in China by the 

end of the twenty-first century based on the Coupled Model Intercomparison Project phase 5 (CMIP5) 

simulations. The temporal changes and their spatial patterns in the Expert Team on Climate Change 

Detection and Indices (ETCCDI) indices under the RCP4.5 and RCP8.5 emission scenarios are analyzed. 

Compared to the reference period 1986–2005, substantial changes are projected in temperature and 

precipitation extremes under both emission scenarios. These changes include a decrease in cold extremes, 

an increase in warm extremes, and an intensification of precipitation extremes. 

Anil Acharya (2013) have investigated that the  cumulative annual rainfall for each 30-year period shows 

a continuous decrease from 2011 to 2099; however, the summer convective storms, which are considered 
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as extreme storms are expected to be more intense in future. Extreme storm events show larger changes in 

streamflow under different climate scenarios and time periods. Ray et al. (2000) have done trend analysis 

of heavy rainfall events over selected stations all over India and reported a decreasing trend over most 

parts of the country.For the few studies, the extreme rainfall projections have shown the greatest increase 

in the rainfall intensity for the most intense storms (i.e., extreme short-duration storms) (Ra  isa nen and 

Joelsson, 2001; Buonomo et al., 2007). 

Pourtouiserkani et al. (2014) studied, climate change impact on the extreme rainfall using two AOGCM 

models outputs (HadCM3 and CGCM3). Outputs of the Atmospheric model rainfall data were downscaled 

(from monthly to daily) for the future period of 2020s (2011-2040) using statistical downscaling 

techniques,Change factor, LARS-WG stochastic weather generator, and SDSM, at the Chenar-Rahdar 

basin, Fars, Iran. Based on the rainfall time series generated by downscaling  methods, maximum 24-hour 

rainfalls for the two AOGCM models were extracted and a frequency analysis was performed to get future 

daily rainfalls with different return periods. Comparing the three downscaling techniques utilized in this 

study. it is concluded that using change factor and also LARS-WG downscaling methods would be 

conservative enough methods in the climate change impact assessment for the next 30 years. 

Yue-Ping Xu et al. (2012) investigate the possible impact of climate change on extreme rainfall in the 

Qiantang River Basin for three future periods 2020s (2011–2030), 2045-2065 (2046–2065) and 2090s 

(2080–2099) and to investigate the uncertainty in the evaluation by employing three GCMs model and 

three emission scenarios.Results showed that the 24-h design rainfall depth increases in most of stations 

under the three GCMs and emission scenarios and there are large uncertainties involved in the estimations 

of 24-h design rainfall depths at seven stations because of GCMs, emission scenarios and also other 

uncertainty sources. 

Massahbavani et al. (2011) evaluated climate change impact on the Aidoghmoush basin, Iran, for the 

2040-2069 period, based on the A2 emission scenario and HadCM3 atmospheric model. They found that 

rainfall 30-40 percent change in the future. 

Babaian et al. (2009) studied climate change impact in the Iran and used Echo-G output data based on the 

A1 emission scenario for 43 sinoptic stations . Results showed that decrease 9%total rainfall  but heavy 

and very heavy rainfall in turn increase 13% and  39% for the period  2010-2039 and conclude that whit 

respect to decrease rainfall and increase in heavy rainfall in Iran country cause to rainstorm and heavy 

rainfall in in future decads. Goodarzi and et al (2011) studied impact of climate change on rainfall impact 

in an arid region of Yazd, Iran. They used CGCM3 output data based on the A2 emission scenario.  Their 

results increase in rainfall in December, January, February, and April and a decrease in other months on 

the period of 2010-2039 based on the 1982- 2008 period. 
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Future climate change is generally believed to lead to an increase in climate variability and in the 

frequency and intensity of extreme events. Global Circulation Models (GCM) are used to project the 

changes in atmospheric variables under the climate change scenarios defined by the Intergovernmental 

Panel for Climat Change (IPCC). The evaluation of extreme events requires either the use of regional 

climate models, high-resolution Global Climate Models, or downscaling data to a smaller time scale to 

improve the analysis and accuracy of GCM results (Kim et al., 2002). The use of fewer climate 

projections in model simulations also restricted the full range of possible scenarios and increased the 

uncertainty related to future climate change conditions. Some studies have utilized the multimodel 

approach, the multiscenario approach, or both, along with a high-resolution model simulation to address 

uncertainties of studies related to extreme rainfall events (e.g., Fowler et al., 2005; Frei et al., 2006; 

Tebaldi et al., 2006; Fowler and Ekstro m, 2009). 

One way of the converting globally scaled CMIP3 and CMIP5 climate models to a watershed scale is 

through the use of downscaling techniques. A wide variety of methods have been employed to downscale 

AOGCM data. Two major groups of statistical downscaling tools are: 1 regression based (transfer 

function) methods and 2 stochastic weather generators (Dibike and Coulibaly, 2005; Ying et al., 2011). 

Regression-based techniques attempt to quantify relationships between local predictands (temperature and 

precipitation) and larger-scale atmospheric variables like wind speed, humidity, and pressure (Wilby et al., 

2004; Jeong et al., 2012). Stochastic weather generators technique can be classified in three main 

categories: parametric, semi-parametric, and non- parametric. An advantage of the weather generators is 

that they can be used to generate synthetic time series of any length, and thus the frequency and 

probability of extreme events can be examined. Leanna et al. (2009) found that the uncertainty originated 

from GCM structure is the largest source of uncertainty when comparing different uncertainty sources for 

climate change impacts analysis on the flood frequency in England. 

 Therefore in this study in order to estimate potential impacts of climate change and to identify rainfall 

characteristics assesing the impact of climate change on rainfall indices in the Kooshkabad watershed for 

tow future periods 2020-2045 and 2045-2065 under the three GCMs and tow emission scenarios are 

categorized as medium A1B and lower forcing B1and RCP2.5, RCP8.5 scenarios. List of CMIP3 and 

CMIP5 global climate models used in this study  presented inTable 1. 

The contents of this paper are organized as follows. The first introduces the study area and data used. 

After methodologies used in this paper that including stochastic weather generator (LARS-WG) and 

Change factor  with Change in mean and variance method for generate daily rainfall CIMP5model data 

downscale the future GCM climate. Then analyzed impacts of climate change on rainfall indices and 

frequency at three rainfall gauge stations  .  

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 May 2017                   doi:10.20944/preprints201705.0089.v1

http://dx.doi.org/10.20944/preprints201705.0089.v1


7 
 

Table 1. List of CMIP3 and CMIP5 global climate models used in this study 

Research centre Country 

Global 

climate 

model 

Model 

acronym 

Grid 

resolution 
Emissions scenarios Source 

National Institute for 

Environmental 
Japan 

MRI-

CGCM2.3.2 
MIHR 2.8 × 2.8° SRA1B, SRB1B 

K-1 Model Developers (2004) 

Studies 

Max-Planck Institute for 

Meteorology 
Germany 

ECHAM5-

OM MPEH5 
MPEH5 1.9 × 1.9° SRA1B, SRA2, SRB1B Roeckner et al. (1996) 

Goddard Institute for Space 

Studies 
USA GISS-AOM GIAOM 3 × 4° SRA1B, SRB1B 

Russell et al. 

 (1995) 

 Max Planck Institute for 

Meteorology, GermanyMPI- 
Germany ESM-LR MPI 

1/875× 

1/85° 
RCP2.5, 8.5  scenario Raddats et all . (2007) 

 

2. Materials and methods   

2.1 Study area 

The study area location is the 2400km2 kooshkabad watershed, located  in Iran-Hamedan province 34°48′ 

to 34°85′N and 48°26′ to 48°67′E) Figure 1, gives an overview of the study area location. The topography 

is rather complex, with elevation ranging from around 1750m to around 3570m. Annual rainfall shows 

strong variations within the catchment, ranging from around 250mm to 750mm, based on the period      

1983- 2010. Maximum monthly rainfall at the study area occurs during mars with an average of 56.65mm, 

whereas minimum monthly rainfall is observed in septamber ,0.38mm. Monthly minimum temperature 

occurs during Februery,−1.5◦C,whereas monthly maximum temperature is observed in July with 

+22.5C.The climate of study area semiarid with dry summer , humid and cold in winter and humid spring 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 study area location  
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2.2 methdology 

2.2.1 climate scenarios approach 

In this study we analyze climate simulations of the 20th and 21stcentury performed by models CMIP3 and 

CMIP5 on  rainfall indices estimation  in Kooshkabad watershed . The  observation data were recieved 

from the Hamedan Province Meteorological Organization (HPMO). However our analyses are limited to 3 

stations because of this three station have long and favor data. Compared with the emission scenarios in 

CMIP3 and CMIP5 the representative concentration pathways (RCP) related to the radiative forcing are 

identified as new climate scenarios in CMIP5, and they include RCP2.6, RCP4.5, RCP6.0, and RCP8.5.  

So in this study, we mainly focus on the changes in extreme rainfall events in study area at the end of the 

21st century  based on the CMIP3 , A1b , B1 emisions scenarios and CMIP5 models in the RCP2.5 

(medium radiative forcing scenario) and RCP8.5 (high radiative forcing scenario) scenarios. The daily 

rainfall outputs from one CMIP5 model for the period of 2020–2064 in the RCP2.5 and RCP8.5 scenarios 

and outputs from three CMIP3 model are used here. In the low emissions (RCP2.6) scenario, atmospheric 

CO2 concentration peaks at just over 440 ppm in 2050 and then declines to 420 ppm by the year 2100. 

Methane concentration peaks at just over 1770 ppb in 2010 and then declines rapidly, reaching around 

1250 ppb by 2100. The RCP2.6 scenario has total CO2 emissions (total5fossil fuel industry land use 

change) similar to present-day levels (;10 PgC yr21) until 2020 and then a sharp decline to zero carbon 

emissions by2075. The high emissions (RCP8.5) scenario is characterized by a progressive increase in 

atmospheric CO2 concentration over the twenty-first century, peaking at 935 ppm in 2100. Methane also 

shows a very significant rise in the atmosphere under this scenario, peaking at 3750 ppb in 2100. Total 

CO2 emissions increase from present-day values to a maximum of around 28 PgC yr21 in 2100 (at which 

point the emissions curve flattens). The CO2-equivalent concentration for greenhouse gases in the year 

2100 (i.e., the concentration of CO2 that would be present in the atmosphere is CO2 were the only 

greenhouse gas accounting for all the greenhouse forcing) is 475 ppm for the RCP2.6 scenario, and over 

1300 ppm for the RCP8.5 scenario. For each of the RCPs, tow ensemble members were run.  

In this study, some rainfall indices have been used for comparing the performances of the CMIP3 and 

CMIP5 for generating  rainfall indices amounts. Rainfall indices asesing in this study are ; sum wet days , 

simple rainfall intensity, very heavy rainfall days (count of days where RR ≥ 20 mm ), maximum one-day 

rainfall and frequency, were considered in this study. 

Data Downscaled with statistical downscale method , LARS-WG, change factor (CH) and  bias corrected 

statistical . We analyze projected changes in daily precipitation  ,  precipitation extremes and several 

precipitation indices. 

 In this reaserch the output of the three GCMs model (MPE5, GIOAM, MIHR ) was downscaled using the 

LARS-WG model to generate daily rainfall for CIMP3 .Also the Change factor  method with Change in 
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mean and variance used for generate daily rainfall CIMP5 model data. The emission scenarios are 

categorized as medium, A1B (700 ppm by 2100) and lower forcing, B1 (,550 ppm by 2100). From all 

simulations the time slices from 1983 to 2010, considered as reference period, and periods (2020–2030), 

(2046–2065), as a future scenario, were extracted. 

 

2.2.2 Downscaling approach 

2.2.2.1. LARS-WG Technique 

LARS-WG technique was developed in UK by Dr. Mikhail Semenov as a tool for agricultural impact  

ssessments (Racsko et al.,1991; Semenov and Porter, 1994;Semenov and Barrow, 1997). LARS-WG is 

used for the simulation of weather data at a single meteorological station because of its capability of 

simulating extreme weather events (Semenov et al., 1998; Semenov, 2008). The model uses time series of 

rainfall, maximum and minimum temperatures, and solar radiation as inputs. LARS-WG analyzes the 

observed rainfall series in order to determine the statistics of wet-day occurrence and mean daily rainfall. 

From this, semi empirical distributions are developed to simulate wet and dry-spell lengths with daily 

rainfall amounts conditional on the spell length (Semenov and Barrow, 2002; Khan et al., 2006; Hashmi et 

al., 2011). LARS-WG is used to generate synthetic historical climate data as well as data for each 

AOGCM and emissions scenario . So stochastic weather generator is used to generate daily rainfall 

patterns that are statistically similar to the observed patterns . 

After generate future climate change data using LARS-WG for stations, F-Test statistical was used to 

compare the distributions of observed and simulated rainfall indices during the baseline period (1983-

2010).The significance level was set to = 0.05.Results obtained from F-Test statistical , all of rainfall 

indices are significant . 

 

2.2.2.2. Change factor 

The change factor approach is a method that makes the output of GCMs useful for catchment scale 

analysis and hydrological modeling (which means that the GCM outputs are used indirectly). The method 

is based on the use of a change factor, the ratio between a mean value in the future and historical run. This 

factor is then applied to the observed time series to transform this series set into time series that is 

representative of the future climate. 

The future daily rainfall (PFut,d) is obtained by multiplying the observed daily series (PObs,d) by the 

ratio of the mean monthly rainfall value for the GCM scenario series (PSce,m) to the control series 

(PCon,m). 

P Fut d = PObs d ×PSce m /pCon m 
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In this study the method  of Change in mean and variance suggested by Leander and Buishand (2007) 

used for downscaling  outputs CMIP5 data models.  This method is based on a non-linear correction 

approach   and corrects  

the mean and variance of the observed time series using the CF of the mean and variance.  

 

3.Results  

3.1 Effects of Climate Change on Monthly Rainfall 

In this section , impact of  climate change on monthly rainfall was briefly analyzed for period 2045-2065 

(2046–2065) on basis of 3 GCMs model and emission scenarios ,A1B and B1. For 2045-2065 period  

synthetic daily rainfall data are generated by LARS-WG. Monthly rainfalls from different GCMs and 

emission scenarios are then extracted from out pout LARS-WG and calculated for different stations . 

Figure 2(a)–(c)  box polt  graphs  shows  the  relative changes of monthly rainfall compared with GCM 

projections during the baseline period (1983–2010) under the three different scenarios  in region . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 (a)–(c)  box polt  graphs  of Relative changes of monthly precipitation for the future 2045-2065 

under the three three GCMs model (MPE5, GIOAM,MIHR ) scenarioA1B (a) scenarioB1(b) and 

combined scenario A1B & B1 (c). 
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Figure2(a) showed that the relative change monthly rainfall varies under the three GCMs model (MPE5, 

GIOAM,MIHR ) scenarioA1B for the period 2045-2065. Range of relative change in January varies from 

-7% to -17.4% and relative change from January to june and November, December ranges  from 17.2% to 

-32%.It can be observs that monthly  rainfall decreases in the most  of  months . under the  three  GCMs 

scenarioB1, Figure 3(b) showed that Range of relative change in January varies from –2.5% to -13.9% and 

five months decrease in rainfall and other months increase in monthly rainfall with large uncertainity. It is 

found that in the three GCMs model, relative change rainfall varies under emission scenarios ,A1B and 

B1. In the emission scenarios ,A1B decreasing in monthly rainfall more than in scenarios B1. Using 

combination models , Figure 2(c)  and emission scenarios it can be found that rainfall  increasing slightly 

with large uncertainty in the warm period and decreasing in the cold period respectively for future period 

(2046–2065). 

Overall , results showed decreasing  in rainfall in Jan , Feb , Mars , April , November and December with 

lowest uncertainty and increase in rainfall in May, June and August with the highest uncertainty. 

 

 

 

 

 

 

 

 

 

 

Figure 3. Comparison CMIP3 and CMIP5 models  of average monthly precipitation for 2020–2045 period 

 based on reference period (1983–2010) 

The relative change monthly rainfall varies under the three GCMs model (MPE5, GIOAM,MIHR ) 

scenario A1B, B1 and  RCP2.6  RCP8.5 scenarios for  the future  period 2020-2045, Figure3. Range of 

relative change in January varies from -8.5% to -1.9%  and relative change in all month  ranges  from -

95.4%  on Sep to 59%. on Jun under under the three GCMs model (MPE5, GIOAM,MIHR ) scenario 

A1B, B1 and  RCP2.6  RCP8.5 scenarios for the future  period 2020-2045 . The hiest relative change in 

rainfall month predict to exsist on warm season under the RCP2.6  RCP8.5 scenarios.The relative change  

of  average monthly rainfall predict to decrease in the winter under  the  CIMP3 and CIMP5 models for 

2020–2045  period. Figure 3.Also it can be observ that monthly  rainfall decreases in the most  of  months 

, relative change of yearly rainfall varies from 10.92% under RCP2.6  to  -16.04%  SRES A1B Figure 4.     
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Figure 4. Comparison CMIP3 and CMIP5 models  of average monthly precipitation for 2046-2065 

period based on reference period (1983–2010)  

3.2 Rainfall Indices Analysis by Fitting a Distribution 

After evaluating that two data series following the same continuous distribution, simulated rainfall indices 

estimated and observed data sets were computed and compared. For evaluating frequency and return 

period and compare tow data series it is nessesary to select the best probability distribution function for 

evaluating frequency analysis rainfall indices. Table2 extracted and computed the best distribution 

function for all of simulated rainfall indices  and stations. On the basis of RMSE and EF methods the best 

probability distribution function was selected. Results showed that the most of the data, follow the log 

Pearson Type III. Computed of  observed and  simulated for different return periods at three stations by 

log Pearson Type III probability distribution function, Table3. It is observed that the errors are small for 

the most of return periods and indices.  

Table  2  RMSE and EF errors for rainfall indices and probability distribution function in the stations 

 

 

 

 

 

 

 

 

 

 

 

Parametrs Distributions 

solan yalfan gonbad 

RMSE EF RMSE EF RMSE EF 

Simple 

Daily 

Intensity 

Index 

Normal 0.33 0.95 0.17 0.97 0.31 0.93 

Lognorm2par 0.38 0.94 0.19 0.96 0.27 0.95 

Lognorm3par 0.38 0.94 0.19 0.96 0.25 0.95 

Pearson typ3 0.32 0.96 0.17 0.97 0.25 0.95 

Logpearson typ3 0.3 0.96 0.15 0.97 0.25 0.95 

Gambel1 0.49 0.9 0.26 0.92 0.22 0.96 
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Table. 3  rainfall indices estimated on different return period in the Yalfan station 

 

 

 

 

 

 

 

 

 

 

 

 

In this study after analizing frequency distribution, Log Pearson Type III distribution  selected  the best 

frequency distribution fitted to the data for CMIP3and CMIP5 models. 

 

3.2 Assessment of climate change impacts  on  Rainfall Indices 

Daily climate model data sets over stuty area were analized by  CMIP3 and  CMIP5 data models. For 

CMIP3, we chose the GIOAM , MIHR , CMIP3 models which provide the Rainfall Indices data for 

provide Rainfall Indices data under historical period (1983–2010).   

For evaluating  relative change in three GCMs model and scenarious , 50y return  period computed and 

compare with base period (1983-2010).The relative changes of calculated 50y return period for rainfall 

indices estimated and base period on the  log Pearson Type III probability distribution function shows in 

the  Figure 5, 6 and 7(a)–(d) box polt graphs.Here is focused on the analysis of the possible future changes 

in 50y design rainfall depths based on different GCMs and scenarios. 

 Figure 5(a) and (b) shows relative changes in 50y simple daily intensity, decreasing in Gonbad and 

increasing in Solan and Yalfan stations for the future 2020-2045 for scenario A1B and B1. But under the 

scenario A1B Figure 5 (c) increasing only Solan and decreasing in Gonbad and solan , also under scenario 

B1 (d) increase in Solan and Yalfan, decrease in Gonbad for future 2045-2065 with respect to the base 

period.Figure 6 (a) – (d) box polt graphs of Relative changes in50y maximum one-day rainfall for the 

future 2045-2065 for scenario A1B (a) shows decrease in all stations under scenario A1B (c) and increase 

in Solan and yalfan under scenario B1(d). Figure 7 (a) – (d) box polt graphs shows Relative changes in50y 

heavy rainfall days >=20. For the future 2045-2065 for scenario A1B(c) heavy rainfall days decrasing in 

Yalfan and for scenario B1(d) increasing. 

parametres R Period 100 50 25 10 5 

Simple Daily 

Intensity Index 

Observed 9.4 9.2 8.9 8.5 8 

Simulated 9.8 9.5 9.1 8.6 8.1 

Error 4.4 3.4 2.5 1.3 0.2 

Maximum one-

Day Rainfall 

Observed 69.5 62.9 56.4 47.6 40.7 

Simulated 63.4 58.5 53.5 46.4 40.4 

Error 8.9 7 5.1 2.6 0.7 

Heavy Rainfall 

Days >=20 

Observed 8.4 7.3 6.3 4.9 3.8 

Simulated 7.7 6.8 5.8 4.5 3.5 

Error 7.9 7.9 7.8 8.1 8.7 
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(a ) (b ) (d ) (c ) 

(b ) (a ) (d ) (c ) 

It could be found that three indices in Solan and Yalfan stations for both future periods  decreasing under 

scenario A1B and increasing under scenario B1.Figure 7 (a) –(b) box polt shows graphs of comparing 

relative changes of three indices and yearly rainfall in50y for the future 2045-2065  under the GCMs 

model (MPE5 , MIHR ) . 

 Fig 6 (a) shows that relative changes in all indices also yearly rainfall are decreasing for scenario A1B (a)  

under the GCMs MIHR model .But  increasing under scenario B 1(b) at this GCM model. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 (a) – (d) box polt graphs of Relative changes in50y  simple daily intensity index for the future 

2020-2045  for scenario A1B (a)  ,scenario  B 1(b) and 2045-2065 for scenario A1B (c) scenario  ,B 1(d) 

under the three GCMs model CMIP3 (MPE5 , GIOAM , MIHR ). 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 (a) – (d) box polt graphs of Relative changes in50y maximum one-day rainfall for the future 

2020-2045  for scenario A1B (a)  ,scenario  B 1(b) and 2045-2065 for scenario A1B (c) scenario  B 1(d) 

under the three GCMs model (MPE5 , GIOAM , MIHR )  . 
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(a ) (b ) (c ) (d ) 
 

 

 

 

 

 

 

 

 

Figure 7 (a) – (d) box polt graphs of Relative changes in50y heavy rainfall days >=20 for the future 2020-

2045 for scenario A1B(a)  ,scenario  B 1(b) and 2045-2065 for scenario A1B (c) scenario,B1(d) under the 

three GCMs model (MPE5 , GIOAM , MIHR )  . 

Figure7 (a) – (b) box polt graphs showes Relative changes of three indices and yearly rainfall in 50y 

decreasing in most of the  indices and yearly rainfall for the future period 2045-2065  for scenario A1B  

under the MPE5 model. But for emmision scenario B1 increasing  all of indices and yearly rainfall.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.  Relative changes rainfall indices for scenario A1B, B1and RCP2.5 

 and RCP8.5 scenarios  for the future 2020-2045 

Rainfall indices of sum wet days , nday > 1mm and maximum one-day precipitation are projected to 

decrease under the senariuos B1,A1B and sum wet days , simple daily intensity and heavy precipitation 

days>10 decrease under the RCP2.6 . While all of Rainfall indices expected to increase in RCP8.5 

scenarios  for the future 2020-2045 Figure 8. 
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Figure 9 .  Relative changes rainfall indices for scenario A1B, B1and RCP2.5 

 and RCP8.5 scenarios  for the future 2046-2065 

Rainfall indices show relatively considerable changes toward the end of the 21st century .(Figure.. ). 

Analysis of rainfall indices show that  except RCP2.6 scenarios  and SRES A1B, is predicted to decrease 

as we progress toward the end of the 21st century. This indicates significant decreases in the sum of wet 

days  , nday > 1mm , simple daily intensity  and heavy precipitation days (Figure 8a).Also rainfall indices  

for RCP8.5 scenarios  and SRES A1B is predicted to increase toward the end of the 21st century. All of 

Rainfall indices expected to decrease under the SRES A1B for the future 2046-2065, while predicted to 

increase in RCP2.6 scenarios Figure 9. 

 

4. Discussions 

It can be conclude that some uncrtainities exist in CMIP3 and CMIP5 models for the rainfall indices . 

Figure 5, 6 and 7 show various return periods for emission scenarios CMIP3 models for sum of wet days  , 

heavy rainfall, maximum one-day rainfall and simple daily intensity index . In CMIP3 models and 

emission scenarios in various return periods predict to large variation for sum of wet days (a), simple daily 

intensity index (b), maximum one-day rainfall(c) and heavy rainfall days >=20(d) on the (2045-2056) 

pdriod. Analysis of rainfall indices show that  except other rainfall indices , heavy rainfall days >=20mm 

predicted to hieghest under the CMIP3 , CMIP5 models and scenarios  except RCP2.6 . It can be observe 

that return period  of  simple daily intensity index (b), maximum one-day rainfall(c) under SRES B1 and 

RCP2.6 scenarios  based on CMIP3 , CMIP5 models predicted to increase on the (2045-2056) base on the 

observed period (1983-2010) , (Figure9 ). While return period  of  sum wet days (a), simple daily intensity 

-30

-20

-10

0

10

20

30

40

50

60

sum wet
days/mm

RX5day nday > 1mm / day simple daily
intensity index

mm/day

 maximum one-
day

precipitation/mm

heavy
precipitation
days>20 /day

heavy
precipitation
days>10 day

Re
la

tiv
e 

ch
an

ge
 %

RCP2.6   2046-2065 RCP8.5  2046-2065 SRES  B1 2046-2065 SRES  A1B 2046-2065

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 May 2017                   doi:10.20944/preprints201705.0089.v1

http://dx.doi.org/10.20944/preprints201705.0089.v1


17 
 

(a ) 
(b ) 

(c ) (d ) 

index (b) and heavy rainfall days >=20(d) under the SRES A1B and RCP8.5 scenarios based on CMIP3 , 

CMIP5 predicted to increase toward the end of the 21st century. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. (a) – (d). various return periods  under the scenarios   A1B, B1 and RCP2.5 and RCP8.5 

scenarios  for the future 2046-2065 for sum wet days (a), simple daily intensity(b),  maximum one-day 

rainfall(c) and heavy  rainfall days >  20 (d) index. 

One important assessment of the impact of climate change on rainfall indices is the uncertainty originated 

from different sources. These sources include future greenhouse gas emission, GCMs, various 

downscaling methods, impact analysis models and parameter, and so on (Yue-Ping Xu, et al., 2012) . 

In this study, CMIP3 , CMIP5 models and emission scenarios have been used. Also to investigate the 

impact of climate change on extreme rainfall, only one downscaling approach and one probability function 

(log Pearson Type III probability function), have been used. So different probability cause large 

uncertainty in extrapolation of extreme rainfalls for large return periods .Based on our current knowledge, 

this applies to projected changes in rainfall indices  over the study area.We focus in this paper on the 

projected future changes in total precipitation amounts and related indices. Nevertheless it is of utmost 
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importance to also assess the ability of the different models to simulate the observed precipitation 

characteristics in the region.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Box polt graphs of Relative changes comparing observed period (1983-2010)with GCMs 

model under emission scenarios A1B and B1 outputs future period 2045-2065.  

Figure 11. Box polt graphs of Relative changes for GCMs model under emission scenarios A1B and B1 

observes that , although yearly rainfall deareases in the study area , the indises of heavy  rainfall days 

>=20, maximum one-day rainfall and simple daily intensity index increasing for future period 2045-2065 

base on the observed period . 

5. conclusions 

We use daily precipitation output of a large set of global and downscaled climate change projections 

available for a historical period and two future periods for several emission scenarios projected changes in 

future precipitation amounts and extremes have been analyzed over kooshkabad watershed, Hamedan 

Province, west of Iran on the basis of CMIP3 , CMIP5 models ,ensemble and downscaleing climate 

change projections. This study reveals the noticeable changes due to climate changes in the rainfall indices 

events over study area. Results showed that the relative changes in monthly rainfall at study area 

decreasing  in rainfall in Jan, Feb, Mars, April , Novamber and Desember.with the lowest uncertainty and 

increase in rainfall in May, June and Agust with the highest uncertainty.In general one important result of 

this study is that, an increase of rainfall indices  under the most CMIP3 , CMIP5 models and scenarios 

B1and this inverse for emission scenarios  A1B .It could be mentioned that this changes occoure with 

respect to special and under emission scenarios  and GCMs model.This cause to difficulties for water 
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resources managers and planers with such large uncertainty in decision making under climate change. 

However it is nessesary to investigate rainfall characteristics  for future climate conditions .  

Analysis of return period  of heavy  rainfall days >=20 (a) maximum one-day rainfall (b) simple daily 

intensity index (c)  showed significant decreasing under SRES A1B, RCP8.5 scenarios  and increasing 

under SRES B1, RCP8.5 over study area for  CMIP3 , CMIP5 models and scenarios. Figure….. 

In general results showed that yearly rainfall depth in the study area, decreasing under the three GCMs 

model for scenarios  A1B 11.8% and scenarios  B1 1.44% for the future period 2045-2065 , but for  heavy  

rainfall days >=20 decreasing 8.14% under the scenarios  A1B  and increasing 13.7%  under the B1 

scenarios . Figure 8 showed that   although yearly relative changes decreasing for GCMs model under 

emission scenarios A1B and B1, but slightly increasing observes in heavy rainfall days >=20, maximum 

one-day rainfall and simple daily intensity index in the study area . 

However it is nessesary to investigate the uncertainty in climate change impact analysis in the scientific 

literature. Future work will consider the uncertainties involved in climate change impact analysis on 

rainfall characteristics  on basis of investigating downscaling methods” that uses regional climate models 

(RCMs) to simulate finer scale physical processes and “statistical downscaling change factor, Change 

factor quantile mapping, and SDSM. 
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