
Article

Implementation of Permission Management Method
for Before and After Applications the Update in
Android-based IoT Platform Environment
In-Kyu Park 1 and Jin Kwark 2,*

1 Department of Computer Engineering, Ajou University, Suwon 16499, Korea; ikpark.isaa@gmail.com
2 Department of Cyber Security, Ajou University, Suwon 16499, Korea
* Correspondence: security@ajou.ac.kr

Abstract: The Android-based IoT platform just like the existing Android provides an environment
that makes it easy to utilize Google's infrastructure services including development tools and APIs
through which it helps to control the sensors of IoT devices. Applications running on the
Android-based IoT platform are often UI free and are used without the user’s consent to registered
permissions. It is difficult to respond to the misuse of permissions as well as to check them when
they are registered indiscriminately while updating applications. This paper analyzes the versions
of before and after an application the update running on the Android-based IoT platform and the
collected permission lists. It aims to identify the same permissions before and after the update, and
deleted and newly added permissions after the update were identified, and thereby respond to
security threats that can arise from the permissions that is not needed for IoT devices to perform
certain functions.

Keywords: Android permissions; Android IoT platform; Android update; Android application

1. Introduction

The Android-based IoT platform was first unveiled to the public as the developer preview
version on December 13, 2016. The Android-based IoT platform provides the technology to develop
applications that run on IoT devices based on the Android operating system. It makes it easy to
develop applications while leveraging existing Android development tools, Android APIs and
Google infrastructure services.

Applications that run on the Android-based IoT platform have much in common with those
that run on existing Android-based Smartphone. Both applications running on the IoT device and
smartphone register permissions to provide users with certain functions. If an application is used
differently from its original purpose or asks additional permissions rather than using given
permissions to provide certain functions for the user, it can perform malicious activities such as
collecting excessive information or leaking personal information [1]. For example, if an IoT device
that provides temperature and humidity registered permissions such as location information,
camera, package installation and deletion, etc., it would perform functions different from the
original purpose through the newly registered permissions.

This paper collects permission lists for the versions of an application running on the
Android-based IoT platform before and after the update. It aims to respond to future security threats
by identifying the same, deleted, and added permission information compared to the update based
on the collected permission lists.

The structure of this paper is as follows. Section 2 discusses the Android-based IoT platform,
the AndroidManifest.xml file, and the Android permission protection level. Section 3 performs
permission analysis on the application to identify permission differences before and after the
update. Finally, section 4 concludes this study.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 May 2017 doi:10.20944/preprints201705.0075.v1

© 2017 by the author(s). Distributed under a Creative Commons CC BY license.

http://dx.doi.org/10.20944/preprints201705.0075.v1
http://creativecommons.org/licenses/by/4.0/

 2 of 8

2. Related Works

2.1. Android-based IoT platform

The Android-based IoT platform named "Android-Things" was first unveiled by Google. It is
the first platform dedicated to IoT devices. "Android-Things" is an upgraded version of the existing
Google's Internet platform, Brillo. Unlike the C/C++ language used in Brilo, it enables Android
developers to easily develop IoT products [2, 3] by using existing Android development tools such
as Android Studio, JAVA language, Android SDK in the same way. In addition, the hardware of
"Android-Things" includes Intel Edison, Pico NXP, Raspberry Pi 3, etc. Each hardware is equipped
with SOC (System On Chip), RAM, and wireless communication devices. "Android-Things"
basically supports various sample code examples such as Doorbell and Bluetooth Audio, making it
easier for developers to access.

Figure 1. Android based IoT platform

2.2. AndroidManifes.xml file

The AndroidManifest.xml file of an application used in the Android-based IoT platform
environment has a similar structure to that in the conventional Android smartphone. The
AndroidManifest.xml file contains information on the application including <activity>,
<Intent-filter>, and <uses-permission> [4-6]. This paper analyzes permissions of the versions of
before and after application the update by analyzing the AnadroidManifest.xml file. The following
Table 1 shows the structure of the AndroidManifest.xml file for a sample application provided for
the use in the Android-based IoT platform environment.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 May 2017 doi:10.20944/preprints201705.0075.v1

http://dx.doi.org/10.20944/preprints201705.0075.v1

 3 of 8

Table 1. The AndroidManifest.xml file structure of an application in the Android based IoT platform
environment

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.example.androidthings.bluetooth.audio">
<uses-permission android:name="android.permission.BLUETOOTH" /
<uses-permission android:name="android.permission.BLUETOOTH_ADMIN" />
<uses-permission android:name="android.permission.BLUETOOTH_PRIVILEGED"
/>
<application

android:allowBackup="true"
android:icon="@android:drawable/sym_def_app_icon"
android:label="@string/app_name">
<uses-library android:name="com.google.android.things"/>
<activity android:name=".A2DPSinkActivity">
<intent-filter>

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>
<intent-filter>

<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.IOT_LAUNCHER"/>
<category android:name="android.intent.category.DEFAULT"/>

</intent-filter>
</activity>

</application>
</manifest>

2.3. Android permission protection level

Android applications must register their permissions in the AndroidManifest.xml file to gain
access to the information on the Android device and obtain the user’s consent to the use of
permissions. The permission protection level for registered permissions can be specified by the
developer. It is classified into Normal, Dangerous, Signature, and SignatureOrSystem. Table 2 below
lists the four permission protection levels and its definition [4, 7, 8].

Table 2. Define type of permission protection level

Permission
Protection Level

Meaning

Normal

- a low risk permission granted to an application with
less security threats.

- granted to an application without notifying the user or
asking for the user’s consent at installation time

Dangerous

- a high risk permission granted to an appication with a
higher risk than Normal

- unlike Normal, notify the user of a requesting
permission at installation time and check the user’s
consent

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 May 2017 doi:10.20944/preprints201705.0075.v1

http://dx.doi.org/10.20944/preprints201705.0075.v1

 4 of 8

Signature
- a permission granted to an application that is signed

with the same certificate as the platform
- granted without notifying the user

SignatureOrSystem

- a permission granted to an application that are in the
Android system image or that is signed with the same
certificate as the platform

- typically used when multiple manufacturers need to
share specific features when building applications
together

- like Signature, granted without notifying the user

3. Implementation of permission management method for before and after applications the
update

3.1. Analysis flowchart for change of permissions before and after the update

The first step in the analysis sequence to compare permissions before and after the application
update is to find the AndroidManifest.xml file and then perform an analysis on the file. The
persmissions used by before and after an application the update are first identified based on the
analyzed information. After this, the same, deleted, and added permissions in the versions of before
and after application the update are checked through the identified information. Figure 2 below
shows an analysis flow chart to analyze the permission differences before and after the update.

Figure 2. Analysis flowchart for change of permissions before and after the update

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 May 2017 doi:10.20944/preprints201705.0075.v1

http://dx.doi.org/10.20944/preprints201705.0075.v1

 5 of 8

Permission analysis for before and after application the update consists of four steps. The detailed
analysis process is as follows.

1. Input of the application information before and after the update
Input two versions of the application to analyze before and after application the update.

2. Search of the AndroidManifest.xml
Search for the AndroidManifest.xml file to analyze permissions for both versions of the
application. During this process, find each AndroidManifest.xml file for before and after
application the update

3. Check the permissions used by before and after application the update
Analyze the AndroidManifest.xml file found in step 2 to check and list permissions used in
before and after application the update

4. Identify permission differences for before and after application the update
Based on the analyzed information above, the same, deleted, and added permissions during the
update process are identified. Based on the permission information identified through the
analysis, respond to security threats such as indiscriminate data collection and data leakage by
recognizing them in advance that may occur in Android-based IoT devices.

3.2. Source code for permission analysis before and after the update

Python version 3.5.3 is used to analyze the permissions of the application used in the
Android-based IoT platform environment. Search the AndroidManifest.xml file inside the
application based on both of the application input information. Analyze both AndroidManifest.xml
files to identify the same and changed permissions before and after the update. The content of the
source code is explained as follows.

• Line 01~02:
The variable pwd1 and pwd2 contain the top-level directory name for analyzing both versions
of the application.

• Line 04~12:
Find the AndroidManifest.xml file in the application using the variable pwd1 and pwd2.
Generally, the AndroidManifest.xml file is in "/app/src/main/" but sometimes it is not.
Therefore, do not always search the same path but search all paths inside the application to find
the AndroidManifest.xml file. If the AndroidManifest.xml file is found, open the
AndroidManifest.xml file in read mode using the update_before and update_after variable to
analyze the information in the AndroidManifest.xml file.

• Line 14~19:
Check the phrase "android.permission" by reading a file line by line. In case permissions are
provided by Android, the phrase basically starts with "android.permission". When this phrase
is found, include the permission before and after the update in the update_before and
update_after list respectively and identify the deleted or added permissions based on the list
information. The identified permissions are kept sorted for the ease of use later.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 May 2017 doi:10.20944/preprints201705.0075.v1

http://dx.doi.org/10.20944/preprints201705.0075.v1

 6 of 8

Table 3. Source code for analyzing the used permissions

01. pwd1 = "./" + var1
02. pwd2 = "./" + var2
03.
04. for path, dirs, files in os.walk(pwd1):
05. for file in files:
06. if (os.path.join(path, file).find("AndroidManifest.xml") > -1):
07. update_before = open(os.path.join(path, file), 'r')
08. for path, dirs, files in os.walk(pwd2):
09. for file in files:
10. if (os.path.join(path, file).find("AndroidManifest.xml") > -1):
11. update_after = open(os.path.join(path, file), 'r')
12.
13. for count in update_before:
14. if count.find("android.permission") > -1:
15. before_list.append(count[count.find("\""):count.find("/>")])
16.
17. for count in update_after:
18. if count.find("android.permission") > -1:
19. after_list.append(count[count.find("\""):count.find("/>")])
20.
21. after_list.sort()
22. before_list.sort()

3.3. Analysis results

When the analysis of two versions of the application is completed, the same permissions before
and after the update are first printed out on screen. Next, the deleted and newly added permissions
after the update are printed out in order. Figure 3 shows the results of analyzing the permissions of
before and after application the update. Permissions from [1] through [3] in Figure 3 show the same
permissions that exist in both versions of before and after application the update. [4] through [6]
indicate permissions that existed in the version of before application the update but were deleted
after the update. [7] - [14] shows newly added permissions that did not exist in the version of before
application the update but were added in the update process. The permissions that have been
deleted or added after the update can be identified through the analysis.

Figure 3. Analysis result of the permissions of the before and after application the update

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 May 2017 doi:10.20944/preprints201705.0075.v1

http://dx.doi.org/10.20944/preprints201705.0075.v1

 7 of 8

3.4. Security threats

IoT devices can carry out malicious activities such as collecting personal information
indiscriminately or leaking personal information when permissions not related to performing
certain functions are added during the update process. To prevent IoT devices from performing such
malicious activities, there is a need to analyze threats that may arise from permissions to be added
during the application update. Information on permissions that exist in many applications that
perform malicious activities has been continuously analyzed through many researches. Table 4
below shows the list of permissions that exist in the malicious applications that have been previously
studied [4, 5, 9, 10]. It is sorted in the order most used of permission in the malicious application.
Restrictions on the use of permissions in the process of analyzing security threats should be
considered since there may be restrictions on using permissions according to IoT devices. Based on
the previously researched permission information and the results analyzed in section 3.3, it is
necessary to respond to security threats in advance by analyzing them that may occur due to added
permissions while updating an application. For example, if an IoT device that provides temperature
or humidity asks permissions to control the location information or the device, it is necessary to
respond to security threats that can arise from this.

Table 4. Commonly used permission ranking in malicious applications

Ranking Permission

1 INTERNET

2 READ_PHONE_STATE

3 ACCESS_NETWORK_STATE

4 WRITE_EXTERNAL_STORAGE

5 SEND_SMS

6 ACCESS_WIFI_STATE

7 RECEIVE_BOOT_COMPLETED

8 RECEIVE_SMS

9 READ_SMS

10 WAKE_LOCK

4. Results

When an application is updated in the Android-based IoT platform environment, it does not
require the user’s consent to permissions to be added due to the nature of most IoT devices unlike
Android smartphone, which might lead to various security threats. In addition, security threats on
Android smartphone can occur in applications in the Android-based IoT platform because it, in
similar way to the existing Android, provides certain functions and accesses the device information
through permissions. This paper comparatively analyzed permissions before and after the
application update by examining the AndroidManifest.xml file in the application when it was
updated in the Android-based IoT platform environment. The analysis results show that the same
permissions before and after the update, deleted and newly added permissions after the update
were identified. We should be able to respond to security threats that may arise after the application
update through the information on permissions that are identified and exist in many malicious
applications that have previously been studied.

In the future, we will build a real-time automatic permission analysis service when an
application is updated in the Android-based IoT platform environment by carrying out research on a
real-time permission change monitoring system based on the permission management method
implemented in this paper.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 May 2017 doi:10.20944/preprints201705.0075.v1

http://dx.doi.org/10.20944/preprints201705.0075.v1

 8 of 8

Acknowledgments: This work was supported by the National Research Foundation of Korea(NRF) grant
funded by the Korea government(MSIP) (No. NRF-2014R1A2A1A11050818).

Author Contributions: InKyu Park is implemented the program and generated the results of the work. Also
InKyu Park is coordinated the writing of the manuscript, and contributed to the text. Jin Kwak is conceived
and supervised the work.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kimberly Tam, Ali Feizollah, Nor Badrul Anuar, and Rosli Salleh, Lorenzo Cavallaro. The Evolution of
Android Malware and Android Analysis Techniques. Journal of ACM Computing Surveys 2017.

2. Yonghong Wu, Jianchao Luo and Lei Luo. Porting mobile web application engine to the Android
platform. IEEE International Conference Computer and Information Technology 2010.

3. Sung Wook Moon, Young Jin Kim, Ho Jun Myeong, Chang Soo Kim, Nam Ju Cha, and Dong Hwan Kim.
Implementation of Smartphone Environment Remote Control and Monitoring System for Android
Operating System-based Robot Platform. International Conference on Ubiquitous Robots and Ambient
Intelligence 2011.

4. Xuetao Wei, Lorenzo Gomez, Lulian Neamtiu, Michalis Faloutsos. Permission Evolution in the Android
Ecosystem. Proceedings of the 28th Annual Computer Security Applications Conference 2012, ACSAC ’12,
pp. 31-40.

5. Xiang Li, Jianyi Liu, Yanyu Huo, Ru Zhang, Yuangang Yao. An Android malware detection method
based on androidmanifest file. Cloud Computing and Intelligence Systems (CCIS) 2016.

6. Jignesh Joshi, Chandresh Parekh. Android Smartphone Vulnerabilites : A Survey. Advances in
Computing, Communication, & Automation (ICACCA) (Spring) 2016.

7. Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, Phillipa Gill and David Lie.; Short Paper: A Look at
SmartPhone Permission Models. In Proceedings of the 1st ACM Workshop on Security and Privacy in
SmartPhones and Mobile Devices 2011, SPSM ’11, pp. 63-58.

8. Mengyu Qiao, Andrew H. Sung and Qingzhong Liu. Merging Permission and API Features for Android
Malware Detection. IIAI International Congress on Advanced Applied Informatics. 2016.

9. Bhaskar Sarma, Ninghui Li, Chris Gates, Rahul Potharaju, Cristina Nita-Rotaru. Android Permissions: A
Perspective Combining Risks and Benefits. Proceedings of the 17th ACM symposium on Access Control
Models and Technologies 2012, SACMAT ’12, pp. 13-22.

10. Panagiotis Andriotis, Martina Angela Sasse, Gianluca Stringhini. Permissions Snapshots: Assessing Users’
Adaptation to the Android Runtime Permission Model. IEEE International Workshop on Information
Forensics and Security. 2016.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 May 2017 doi:10.20944/preprints201705.0075.v1

http://dx.doi.org/10.20944/preprints201705.0075.v1

