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Abstract: Dynamical subseasonal-to-seasonal (S2S) weather forecasting has made strides in 
recent years, thanks partly to better initialization and representation of physical variables in 
models. For instance, realistic initializations of snow and soil moisture in models yield enhanced 
temperature predictability on S2S time scales. Snow depth and soil moisture also mediate month-
to-month persistence of near-surface air temperature. Here the role of snow depth as predictor of 
temperature one month ahead in the Northern Hemisphere is examined via two causal pathways. 
Through the first pathway, snow depth anomalies in month 1 persist into month 2 and are then 
linked to temperature anomalies through snow–temperature feedback mechanisms. The first 
pathway is active from fall to summer, and its effect peaks before the melting season: in winter in 
the low latitudes, in spring in the midlatitudes and in early summer in the high latitudes. The second 
pathway, where snow depth anomalies in month 1 lead to soil moisture anomalies in month 2 
(through melting), which are then linked to temperature anomalies in month 2 through soil 
moisture–temperature feedbacks, is most active in spring and summer. The effect of the second 
pathway peaks during the melting season, namely later in the year than the first pathway. The 
latitudes of the highest mediated effect through both pathways follow a seasonal cycle, shifting 
northwards along with the seasonal insolation cycle. In keeping with this seasonal cycle, the 
highest snow depth mediation occurs to the north, and the highest soil moisture mediation to the 
south, of the latitudes with the highest overall temperature predictability from snow depth. 

Keywords: snow depth; snow cover; soil moisture; snowmelt; seasonal prediction; land-
atmosphere feedbacks 

1. Introduction 
Over the last few years, the skill of dynamical subseasonal-to-seasonal (S2S) forecast 

model systems has improved (Saha et al., 2013; Domeisen et al., 2014; Scaife et al., 2014; 
Dunstone et al., 2016; Weisheimer et al., 2017). The reasons include better representations of 
initial states, as well as improved parameterization of physical processes. For instance, realistic 
initialization of snow enhances the forecast skill of temperature on S2S time scales (Schlosser and 
Mocko, 2003; Peings et al., 2011; Jeong et al., 2012; Orsolini et al., 2013; Lin et al., 2016). Similar 
results have been obtained by initializing soil moisture (Dirmeyer, 2000; Douville, 2003; Conil et 
al., 2009; Koster et al., 2010; Koster et al., 2011; van den Hurk et al., 2012; Kumar et al., 2014), 
as well as both snow and soil moisture (Douville, 2010; Prodhomme et al., 2016; Thomas et al., 
2016). 

Idealized model experiments also show that snow depth and snow cover can influence 
temperature on S2S time scales. For instance, Dutra et al. (2011) performed model simulations 
with prescribed and interactive snow, and found that the interannual variability of the near-surface 
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temperature was much reduced in snow-covered regions in the prescribed experiments. Both on 
regional scales and over large geographical distances, dynamical feedbacks between snow and the 
atmospheric circulation have also been identified (e.g., Foster et al., 1983; Cohen and Entekhabi, 
1999; Yang et al., 2001; Cohen et al., 2007; Fletcher et al., 2009; Orsolini and Kvamstø, 2009; 
Sobolowski et al., 2010). 

A number of physical feedback mechanisms exist between snow on the ground and the 
near-surface air temperature. The snow–albedo feedback (Thackeray and Fletcher, 2016) arises 
because snow has high albedo and reflects most of the incoming solar radiation, which leads to 
lower maximum air temperatures (Dewey, 1977). This impedes melting and therefore maintains 
the high surface albedo. A related feedback is associated with the low thermal conductivity of 
snow (Zhang, 2005). In winter, the air temperature can be considerable lower than the ground 
surface temperature, and then the deep snow prevents the air from being heated by from below. 
The feedback to the snow is that cold air inhibits melting. Furthermore, the high emissivity and 
large heat loss of snow leads to lower minimum temperatures (Dewey, 1977). Many empirical 
studies (Wagner, 1973; Walsh et al., 1982; Namias, 1985; Leathers and Robinson, 1993; Bednorz, 
2004; Mote, 2008) and dynamical model experiments (e.g. Cohen and Rind, 1991; Yasunari et al., 
1991; Vavrus, 2007; Alexander and Gong, 2011) have demonstrated the local cooling effect of 
snow.  

Delayed effects of snow on air temperature have also been demonstrated. In spring, positive 
snow depth anomalies in one month can lead to positive soil moisture anomalies in subsequent 
months if the snow melts, as suggested by Walsh et al. (1985). According to Robock et al. (2000), 
soil moisture is, along with snow cover, ‘the most important component of meteorological memory 
for the climate system over the land’. Wet soils are conducive to cold temperature anomalies due 
to soil moisture–temperature feedback mechanisms (Dai et al., 1999; Fischer et al., 2007; 
Seneviratne et al., 2010). Conversely, negative snow depth anomalies can lead to future dry soil 
anomalies (due to lack of meltwater), which again can lead to warm temperature anomalies. These 
relationships between snow depth anomalies and subsequent soil moisture anomalies have been 
explored in numerous studies (e.g., Shinoda, 2001; Matsumura and Yamazaki, 2012; Potopová et 
al., 2016). 

Here, the objective is to investigate the role of snow depth as an empirical predictor of 
near-surface air temperature (hereafter just ‘temperature’) anomalies one month ahead. This can 
be quantified with simple lagged correlations, but the focus here is on understanding how the 
predictability is carried forward from one month to the next. In other words, what are the physical 
mechanisms that act as mediators of the lagged influence of snow cover on temperature? Using 
methods from statistical mediation analysis (Baron and Kenny, 1986; MacKinnon et al., 2007), 
two causal pathways are investigated here to identify these mechanisms. A similar framework was 
recently used by Kolstad et al. (2017) to quantify the roles of snow depth, soil moisture and soil 
temperature in mediating month-to-month temperature persistence.  

The first pathway describes persistence of snow depth anomalies from one month, which 
we will refer to as ‘month 1’, to the next (‘month 2’). In this pathway, a snow depth anomaly in 
month 1 predicts a temperature anomaly in month 2, with snow depth in month 2 acting as 
mediator. The second pathway describes the lagged effect of snow depth on temperature through 
melting. As in the first pathway, the predictor in month 1 is a snow depth anomaly and the 
predictand in month 2 is a temperature anomaly, but in the second pathway a soil moisture anomaly 
is the mediator in month 2. 
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The physical mechanisms that form the components of the causal pathways—persistence 
of snow from one month to the next, the presence of snow and subsequent melting and soil 
moisture anomalies, and direct feedbacks between snow, soil moisture and temperature—are well-
known. What is new here is that the roles of these mechanisms in mediating temperature 
predictability from month to month are quantified for each month of the year and for different 
latitudes. The results of the analysis are presented on large spatial scales and coarse temporal 
scales, but the methodology can be used as a template for more regionally detailed studies.  

The paper is structured as follows. In Section 2, the theoretical foundation of the mediation 
analysis is described, and the data sources are introduced in Section 3. The results of the mediation 
analysis are presented in Section 4, and a summary and discussion of the results follow in Section 
5. 

2. Mediation analysis 
The indirect or mediated effects of the two causal pathways introduced earlier can be 

quantified using statistical mediation analysis. The predictor in month 1 is a snow depth anomaly, 
and is denoted as . The predictand in month 2 is a temperature anomaly, written as . The 
indirect effect of  on  is mediated by a mediator (snow depth or soil moisture) in month 2, 
denoted as , where the superscript j refers to the pathway. When j = A, the mediator is snow 
depth, and when j = B, soil moisture is the mediator. The pathways can be written as a causal chain 
(Pearl et al., 2016): 

 → → .      (1) 
A causal chain illustrates a scenario where there is a direct effect of  on , meaning that 

the two variables are significantly correlated. However,  also has a direct effect on , and  
directly affects . If the causal chain describes full mediation (Baron and Kenny, 1986),  
becomes conditionally independent of  given . This means that the entire effect of  on  
is mediated by . If just some of the effect of  on  is mediated by , the causal chain 
describes partial mediation. 

To formally check the validity of the mediation, three regressions, corresponding to Eqs. 
(1)-(3) in Fritz and MacKinnon (2007), are defined: =  + ,      (2) = + + ,      (3) = + ,      (4) 

The carets on the left-hand sides symbolize that the values are estimated.  in Eq. (2) is 
the predicted temperature in month 2, and the predictor in month 1 ( ). The total effect of  on 

 is the regression coefficient , and  is the intercept. In Eq. (3), the mediator in month 2 ( ) 
is a regressor in addition to , and the predicted temperature  has a superscript because it is 
predicted through Pathway j. The regression coefficients are  and , and  is the intercept.  
is also known as the effect of  on  adjusted for . In Eq. (4),  is predicted by . The 
regression coefficient  is the total effect of  on , and  is the intercept. 

Using the coefficients from Eqs. (2–4), the pathways from a snow depth anomaly in month 
1 to a temperature anomaly is month 2 are illustrated in Fig. 1. The oval on the left represents 
month 1. An unknown cause has led to a standardized snow depth anomaly , as symbolized by 
the arrow marked a. The total effect of snow depth in month 1 on temperature in month 2 (  in Eq. 
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2) is shown with the arrow marked b, which leads from month 1 to the right oval, which represents 
month 2. To illustrate the first step of the mediation, the arrow marked c denotes the total effect of 
snow depth in month 1 on the mediator  in month 2 (  in Eq. 4). The arrow marked d links 

 and  through the regression coefficient  in Eq. (3), and the arrow marked e symbolizes the 
effect of  on  adjusted for  (  in Eq. 4). 

As mentioned, the causal framework allows both full and partial mediation. Four ‘steps’ 
must be satisfied for full mediation (Fritz and MacKinnon, 2007):  

1. The total effect of  on , i.e.  in Eq. (2) and arrow b in Fig. 1, must be significant. 
2. The total effect of  on , i.e.  in Eq. (4) and arrow c in Fig. 1, must be significant.  
3. The effect of  on  controlled for , i.e.  in Eq. (3) and arrow d in Fig. 1, must 

be significant.  
4. The effect of  on  adjusted for , i.e.  in Eq. (3) and arrow e in Fig. 1, must be 

non-significant. 
A significance level of 5 percent was used throughout. For partial mediation, Step 4 is less 

strict and is only that < | |. This means that  does not necessarily become conditionally 
independent of  if  is included in the regression, but the effect of  on  adjusted for  is 
less than the total effect of  on . Below, the criteria for partial mediation are used. 

The definition of the mediated effect of  on  through Pathway j is the product ≝
. The mediated effects are calculated separately for the two mediators. If standardized anomalies 

are used,  represents the partially mediated standardized temperature anomaly in month 2 for a 
+1 standard deviation snow depth anomaly in month 1 ( = 1), through mediation by snow depth 
or soil moisture anomalies in month 2. When = −1, the partially mediated standardized 
temperature anomaly in month 2 is − . Note that when partial mediation is considered, nonzero 
values of  in Eq. (3) are allowed. This means that we cannot expect the (partially) mediated 
effect  to be equal to the total effect .  

Fig. 1. A schematic diagram illustrating the pathways for temperature predictability from snow 
depth. Please refer to the text for details. 
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3. Data 

3.1. Data sources 
The analysis is based on interannual time series of monthly mean 2-meter temperature, 

snow depth, and (volumetric) soil moisture in the surface layer (0–10 cm). To account for enhanced 
interannual autocorrelations due to long-term trends, each time series was detrended by subtracting 
the best linear least squares fit (with negligible impact on the results). 

The two main data sources are the NOAA-CIRES Twentieth Century Reanalysis (Compo 
et al., 2011), version 2c (20CR henceforth), and the ECMWF’s ERA-20C reanalysis (Poli et al., 
2016). The 20CR covers the period 1850–2014, but only the period 1900–2010 was used, because 
it overlaps with the ERA-20C period. The 20CR assimilates sea surface temperatures, sea ice and 
surface pressure, while the ERA-20C ingests surface winds as well. This means that their 
temperature, snow, and soil moisture fields are model-derived and may differ from observations.  

The representation of snow varies across reanalysis products. Comparing eight modern-era 
reanalyses, Mudryk et al. (2015) concluded that the spread in snow mass climatology were due to 
differences in the land surface models, but that the day-to-day correlations of snow anomalies were 
controlled by the atmospheric forcing. Such findings have inspired to production of offline land-
surface models, forced by atmospheric fields from other reanalyses. One of these is ERA-
Interim/Land reanalysis (Balsamo et al., 2015), an offline land-surface model run with atmospheric 
forcing from ERA-Interim (Dee et al., 2011), with precipitation adjustments based on 
observations. ERA-Interim/Land is used here as a reference data set. Another offline product is 
MERRA-Land (Reichle et al., 2011), which was forced with atmospheric fields from MERRA 
(Rienecker et al., 2011). But as the main improvements of MERRA-Land relative to MERRA were 
carried into the higher-resolution MERRA-2 (Gelaro et al., 2017), and “MERRA-2 land hydrology 
estimates are better than those of MERRA-Land” (Reichle et al., 2017), MERRA-2 is used here 
rather than MERRA-Land. Both ERA-Interim and MERRA-2 are satellite-era reanalyses and 
assimilate a multitude of observations and remotely sensed data.  

How do the two twentieth century reanalyses perform? Zampieri et al. (2016) found that 
20CR and ERA-20C reproduced a heat wave index reasonably well compared to satellite-era 
reanalyses. The variability of daily soil moisture in 20CR was contrasted with other reanalyses and 
observational networks by Dirmeyer et al. (2016), and was found to have a consistent negative 
bias. ERA-Interim/Land had an average positive bias of similar magnitude. ERA-20C was not 
evaluated. As for snow, the onset of autumnal snowfall in Eurasia in 20CR was found by Peings 
et al. (2013) to correspond well with observations. The snow depth in both reanalyses was 
evaluated by Wegmann et al. (2016), using in-situ observations from Russian stations as reference. 
They found that ERA-20C had lower snow depths than 20CR at the start of the 20th century, 
yielding a positive trend over the century in ERA-20C. No such trend was found in 20CR. In the 
satellite era, the geographical pattern of snow depths was found to correspond reasonably well 
with observations, except that 20CR was overestimated the snow depth somewhat, while ERA-
20C had lower snow depths in Northern Siberia.  

3.2. Comparison of the reanalyses 
It is beyond the scope of this paper to perform an extensive evaluation of the reanalyses, 

but in Fig. 2 the interannual standard deviation of snow depth and soil moisture are shown for the 
four products, area-averaged in three latitude belts. The rationale for showing standard deviations 
instead of mean values is that in the context of this study the variability is more important than the 
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mean, as standardized anomalies are used in Eqs. (2–4). Noting the narrow ranges of the y-axes 
for the low latitudes in Fig. 2a, the differences between the reanalyses are practically negligible. 
In the midlatitudes (Fig. 2b), the most notable difference is that 20CR has the strongest variability 
in winter and spring. The average standard deviation in the high latitudes (Fig. 2c) is comparable 
across the reanalyses except for the high values in ERA-Interim/Land in December. The area-
averaged standard deviation of soil moisture in the low latitudes is comparable in all the data sets 
(Fig. 2d). In the midlatitudes, the interannual variability (Fig. 2e) is substantially higher in 20CR 
than in the other products from fall to spring. In summer, the variability is somewhat higher in 
ERA-Interim/Land and ERA-20C. This pattern is repeated in the high latitudes (Fig. 2f), with even 
larger differences between the variability in ERA-Interim/Land and ERA-20C compared to 
MERRA-2 and 20CR in summer. In summary, it is difficult to judge whether any of the data sets 
is ‘better’ than the others. The strategy used in the remaining analysis is to use both 20CR and 
ERA-20C, as these reanalyses, while both are imperfect, provide the longest time series (1900–
2010) and therefore yield more statistical robustness than the modern-era reanalyses (1980 to 
present). To assess the validity of the results, the first and second halves of the period 1900–2010 
are also analyzed separately. 

Fig. 2. Standard deviation of snow depth in meters (a, c, and e) and dimensionless volumetric 
soil moisture (b, d, and f) during the period 1980–2010, according to ERA-Interim/Land, 
MERRA-2, ERA-20C, and 20CR, as indicated. The values are area-averaged in three latitude 
belts: (a–b) the low latitudes (30N–45N), (c–d) the midlatitudes (45N–60N), and (e–f) the 
high latitudes (60N–75N). 

3.3. Some technical notes 
The field named ‘snow depth’ in ERA-20C and ERA-Interim/Land is really the snow water 

equivalent (SWE). It must therefore be divided by the snow density to obtain a variable that is 
comparable to the snow depth (in meters) provided by 20CR and MERRA-2. Ideally this should 
be done for each time step and not on monthly mean data. However, a comparison of monthly 
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means of 6-hourly calculated snow depth with monthly mean SWE divided by monthly mean snow 
density in ERA-Interim/Land gave practically identical results. Another technical note is that in 
all the data sets, grid points for which the long-term mean August snow depth exceeds 1 meter are 
excluded from the analysis. This was done to focus on locations with seasonal snow cover and to 
mask out glaciers. In addition, when analyzing interannual time series for specific months, grid 
points for which the interannual maximum snow depth was less than 10 cm were also excluded (to 
mask out locations where snow fluctuations are unimportant). 

4. Results 

4.1. Temperature predictability and its pathways in March/April 
In this section, the focus is on one particular month pair to illustrate the geographical 

distributions of the total and mediated effects of snow depth on temperature. Later in the text, zonal 
means and area-averaged values of the total effect  (which is independent of the pathways) and 
the mediated effects through pathways A and B (i.e.,  and ) are analyzed for different parts 
of the year.  

Figs. 3a–b show the total lagged effect for each land grid point (except for the masked grid 
points and where the correlation is non-significant) north of 27N for March/April. Note that the 
variable shown is –  because  is negative everywhere. The reanalyses agree quite well on the 
geographical patterns. Both have local maxima of −  north in Eastern Europe, in Kazakhstan, 
around the Tibetan Plateau, and in a belt in North America stretching from New England to 
Alberta. Broadly speaking, high −  values occur in the humid continental climate zones of both 
continents. The mediated effect through Pathway A is shown as −  in Figs. 3c–d wherever the 
pathway is valid. Note that  is significant in many locations where Pathway A is not valid, such 
as in parts of the Rocky Mountains and Eastern Europe. This means that snow depth in month 1 
has an effect on temperature in month 2, but this effect is not mediated through Pathway A. The 
highest −  values tend to occur slightly north of the highest −  values, while the highest 
mediated effect through Pathway B (shown as −  in Figs. 3e–f) occurs slightly south of the 
highest −  values. A zonal mean analysis below shows that this is a generally valid feature from 
late winter to early summer. 

Now the geographical distributions and signs of the individual factors of the mediated 
effects through both causal pathways (i.e. , , , and ) are investigated to obtain an 
empirical basis for understanding the physical mechanisms behind the mediation. The mechanisms 
are interpreted in Section 5. Figures 4a–b show  in Eq. (4) for Pathway A— the lag-1 
autocorrelation of snow depth—in March/April wherever the pathway is valid. Note that the range 
of the colors is different to the one used in Fig. 3. The positive values of  demonstrate that snow 
depth anomalies are generally persistent from March to April. Figures 4c–d show  in Eq. (3); 
the effect of snow depth anomalies in April on temperature anomalies in April, adjusted for snow 
depth anomalies in March.  and  have opposite signs practically everywhere. The following 
two outcomes are possible, derived under ceteris paribus (‘other things being equal’) clauses, as 
all the outcomes derived below. First, if the snow depth is anomalously high in March ( > 0 in 
Eq. 3), it will be anomalously high in April as well (since > 0), and then the partially mediated 
air temperature in April will be anomalously cold (since < 0 and < 0). Second, if the snow 
depth in March is anomalously low ( < 0), it will continue to be anomalously low in April, and 
then the partially mediated air temperature in April will be anomalously warm. 
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For Pathway B, for which  and  are shown in Fig. 5, we note first that  and  
generally have opposite signs ( < 0). In contrast to , which is positive nearly everywhere, 

 (the lag-1 correlation coefficient between snow depth in March and soil moisture in April) has 
both positive and negative values (Figs. 5a–b). The physical mechanisms that lead to negative  
values vary with the sign of . Where > 0 and < 0, positive snow depth anomalies in 
March ( > 0) are associated with positive soil moisture anomalies and cold temperature 
anomalies in April. Negative snow depth anomalies in March ( < 0) yield negative soil moisture 
anomalies and warm temperature anomalies in April. In the regions where < 0 and > 0, 
positive snow depth anomalies in March ( > 0) are linked to negative soil moisture anomalies 
and negative temperature anomalies in April, and negative snow depth anomalies in March ( <0) lead to positive anomalies in both soil moisture and temperature in April. There are some 
geographical differences between the reanalyses. In some northern and high-altitude locations in 
ERA-20C,  is negative (Fig. 5a) and  is positive (Fig. 5c). In 20CR,  is mainly positive 
(Fig. 5b) and  negative (Fig. 5c), and the northernmost extent of positive values is located farther 
farther north than in ERA-20C. 

The geographical distributions of , ,  and  are only shown for the March/April 
month pair, but these months were chosen because they are representative for the period from late 
winter to early summer. As will be shown below, these are the times of the year when Pathway B 
is most active. In fall and early winter, the mediation is carried out through Pathway A. In late 
summer, there is little seasonal snow cover even in the high latitudes and hence little predictability 
from snow. 

Fig. 3. (a–b) Maps of −  for ERA-20C and 20CR, both for March/April in the period 1900–2010. 
Nonsignificant values are masked. The remaining panels show −  (c–d) and −  (e–f) only 
where the pathways are valid. The colors in all the panels correspond to the legend at the bottom. 
The unit is standard deviations. 
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Fig. 4. (a–b) Maps of  and (c–d)  for March/April in the period 1900–2010 wherever Pathway 
Pathway A is valid. The colors in all the panels correspond to the legend at the bottom. The unit is 
standard deviations. 

Fig. 5. (a–b) Maps of  and (c–d)  for March/April in the period 1900–2010 wherever Pathway 
Pathway B is valid. The colors in all the panels correspond to the legend at the bottom. The unit is 
standard deviations. 

4.2. Zonally averaged total and mediated effects  

Following up on the apparent result that the highest values of  occur to the north (and 
 to the south) of the highest  values, zonal means of the direct and mediated effects are now 

calculated. A moving average spanning five latitude degrees is applied to smooth the sometimes 
noisy ‘raw’ zonal mean values. Figure 6 shows − ̅, − , and −  for the two data sets in 
March/April. The minus signs are added because the zonal mean values are mainly negative, and 
the overbars symbolize the zonal averaging. The latitudes  of the maximum values of the zonal 
means − ̅, − , and −  are defined as , , and , respectively. The blue solid curve shows 
shows that  is 50N, and that both and  are 48N in ERA-20C. In 20CR , , and  
are 50N, 52N, and 54N, respectively. 

The latitudes , , and  are listed in  
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Table 1 for month pairs from winter to summer for both reanalyses. The following 
inequalities are always satisfied for these months: ≥ ≥ . This means that for zonal 
means, mediation by soil moisture is systematically most active at or to the south, and snow depth 
mediation at or to the north, of the latitudes with the highest temperature predictability from snow 
depth. 

 

Fig. 6. Zonal means of −  (orange), −  (blue) and −  (red) for ERA-20C (solid curves) and 
20CR (dashed curves) for March/April in the period 1900–2010. The unit is standard deviations. 

Table 1. Latitudes of maximum zonal mean values of − , − , and − , all in degrees north. 

Data set ERA-20C 20CR 

Month pair       
Jan/Feb 35 36 36 39 39 41 

Feb/Mar 44 47 47 45 47 47 

Mar/Apr 48 48 50 49 50 54 

Apr/May 58 61 62 56 56 60 

May/Jun 64 66 68 66 66 70 

Jun/Jul 71 71 74 71 71 73 

4.3. Area-averaged total and mediated effects 

Now the total effect  and the mediated effects  and  of snow depth on temperature 
are investigated for the whole year, area-averaged for three latitude bands. The orange bars in 
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Figure 7 show −[ ], where the brackets indicate area-averaging and the minus sign is used because 
all the [ ] values are negative. When calculating the area-averaged values, grid points for which  
is not significant at the 5 percent level are given zero weight, but the areas of the grid points still 
count towards the total areas used for averaging. The relative roles of the two pathways can be 
assessed through the area-averaged values of the mediated effects, i.e. −[ ] and −[ ], shown 
in Fig. 7 as blue and red bars, respectively. For these metrics, the values in grid points where the 
respective pathway is invalid are given zero weight. Although not shown here, the equivalents of 
Fig. 7 for the two halves of the 1900–2010 period, i.e. 1900–1955 and 1956–2010, have been 
calculated separately, with the time series of all the variables detrended over the individual periods. 
The results for those two periods are sufficiently similar to each other and to the one in Fig. 7 that 
it can be concluded that the results are robust with respect to time period. 

In the low latitudes (Figs. 7a–b), −[ ] follows a seasonal cycle with non-zero values first 
appearing in October/November, a peak in January/February, and then gradually declining values 
towards summer. There is good agreement between the reanalyses on the seasonal cycle. The 
nonzero values in fall and summer mainly stem from isolated high-altitude locations. The blue 
bars show that −[ ] has nonzero values from fall to spring. In winter, −[ ] closely agrees with −[ ], but after winter the ratio [ ]/[ ] gradually decreases. The red bars show that −[ ] has a 
more contracted seasonal cycle than −[ ]. Nonzero −[ ] values occur from early winter to 
early summer. The peak of −[ ] in spring occurs three months after the peak of −[ ] in ERA-
20C and one month after in 20CR. 

In the midlatitudes, the values of all the three metrics are generally higher in 20CR (Fig. 
7d) than in ERA-20C (Fig. 7c). As in the low latitudes, the seasonal cycle of nonzero −[ ] values 
starts in fall and ends in summer, but the peak occurs in spring, not in winter. The values of −[ ] 
around the peak are also higher than in the low latitudes. The values of −[ ] peak in March/April 
in both data sets, and after this the ratio [ ]/[ ] gradually decreases, as in the low latitudes. The 
seasonal cycle of −[ ] starts about one month later than in the low latitudes, and the timing of 
the peak is also shifted closer to summer (one month in ERA-20C and two months in 20CR). 

In the high latitudes (Fig. 7e–f), both reanalyses briefly have nonzero −[ ] values in fall, 
followed by zero values in winter, and then nonzero values again in spring and early summer. The 
peak of −[ ] occurs in May/June in both reanalyses, and the values at the peaks are higher than 
the peak values in the midlatitudes. In both reanalyses, the peaks of both −[ ] and −[ ] also 
occur in May/June. 
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Fig. 7. In each panel, area-averaged values of −  (orange bars), −  (blue bars) and −  (red 
bars) in 1900–2010 are shown for the whole year for three latitude belts: (a–b) the low latitudes 
(30N–45N), (c–d) the midlatitudes (45N–60N), and (e–f) the high latitudes (60N–75N). The 
left column (a, c, and e) shows results for ERA-20C, and the right column (b, d, and f) for 20CR. 
The unit is standard deviations. 

5. Discussion 
It is already well-known from previous studies that snow anomalies impart temperature 

predictability on S2S time scales. What is new in this study is that physical mechanisms for this 
predictability have been quantified systematically in the extratropical Northern Hemisphere. Two 
causal pathways have been investigated, one based on month-to-month persistence of snow depth 
anomalies and another that describes the delayed effect of snow depth anomalies mediated by soil 
moisture anomalies in the subsequent month.  

In Section 4a, the two pathways and their outcomes were investigated by means of maps 
of , ,  and  for the March/April month pair. As mentioned, the mechanisms that drive the 
mediated temperature predictability during those months are representative for the whole period 
from late winter to early summer. The total effect of snow depth anomalies in March on 
temperature anomalies in April ( ) is negative in many locations, nonsignificant in other locations, 
and positive practically nowhere (see Figs. 3a–b). The mediated effects through both pathways are 
also negative (Figs. 3c–f). In Table 2, different outcomes in April based on different initial states 
in March are summarized. These outcomes are now discussed with a focus on explaining the 
physical mechanisms behind the mediation. (The discussions are contingent on ceteris paribus, as 
the pathways build on linear regressions. For instance, the statement ‘anomalously deep snow in 
March is followed by anomalously deep snow in April’ would not be true for a certain year if an 
unusual heat wave occurred in April and all the snow melted. What the statement really means is 
that in an average year, anomalously deep snow in March is followed by anomalously deep snow 
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in April—provided that the lag-1 autocorrelation of snow depth is positive. Note also that the 
specification anomalous is sometimes omitted for readability.) 

Table 2. A summary of the proposed physical mechanisms for temperature predictability from 
snow depth for both pathways in March/April. The first two rows describe Pathway A and the 
last four rows Pathway B. The last two proposed mechanisms are in italics because they are open 
to question. 

Pathway Coefficients Location 
March April 

Mechanism 
Predictor Mediator Temperature 

A > 0 < 0 Everywhere 

Deep snow Deep snow Cold Persistent high snow 
cover 

Shallow or no 
snow 

Shallow or no 
snow Warm 

Persistent low snow 
cover (including bare 

ground) 

B 

> 0 < 0 
Low- and 

midlatitudes 

Deep snow Wet soil Cold Meltwater wets soil 
Shallow or no 

snow Dry soil Warm Lack of meltwater 
gives dry soil < 0 > 0 

High 
latitudes and 

altitudes 

Deep snow Dry soil Cold Persistent high snow 
cover 

Shallow or no 
snow Wet soil Warm Bare ground where 

usually snow covered 

Pathway A describes persistence of snow depth anomalies from one month to the next. This 
is clear from the maps in Figs. 4a–b, which show that  is positive where Pathway A is valid. As 
indicated in the first row of Table 2, this implies that when there is anomalously deep snow in 
March, the snow in April will also be anomalously deep. Such conditions are associated with 
anomalous cooling of the air near the surface through the physical mechanisms described in the 
Introduction (albedo feedback, insulation, and high emissivity and heat loss). The cooling of the 
air is part of a positive feedback mechanism, as the cooling will impede melting and thereby help 
to preserve the above-normal snow depth. The second row in Table 2 states that when there is 
anomalously little snow in March, either because there is just a shallow snow layer or there is no 
snow, the snow depth will continue to be anomalously low in April (as > 0). Unusually shallow 
shallow (or absent) snow is associated with warmer-than-normal air temperatures, due to the 
absence of cooling mechanisms. The warming of the air from below is also part of a positive 
feedback mechanism, as the anomalously warm air promotes further reductions of the snow depth 
through melting.  

Pathway B, which describes the delayed effect of snow depth anomalies on temperature 
anomalies mediated by soil moisture anomalies, is more complex than Pathway A. One reason is 
that the sign of the coefficient  varies between climate zones. In March/April,  is mostly 
positive in humid continental climate zones (Peel et al., 2007) in the midlatitudes (see Fig. 5). In 
these regions,  (the effect of soil moisture anomalies on air temperature anomalies in April, 
adjusted for snow depth in March) is mainly negative, so that < 0. Because > 0, 
anomalously deep snow in March are associated with anomalously high soil moisture in April in 
these regions, probably because of more meltwater than normal. As < 0, the anomalously wet 
soil is linked to anomalously cold temperatures in April. These mechanisms are listed in the third 
row of Table 2. The fourth row describes the following mechanism. When the snow depth in March 
is anomalously low in these regions, the soil is anomalously dry in April (as > 0). Because 
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< 0, the dry soil in April is associated with to anomalously warm temperatures, also due to soil 
moisture–temperature feedbacks. It seems reasonable to infer that the regions where > 0 and < 0 consist of locations where snow usually melts from March to April. When there is more 
snow than usual in March, the soil becomes wetter-than-normal in April, and this leads to warm 
temperature anomalies through well-known soil moisture–temperature feedbacks (Seneviratne et 
al., 2010). The same feedbacks come into play when there is less snow than normal in March. This 
gives a deficit of meltwater and hence the soil becomes drier-than-normal in April, leading to warm 
temperature anomalies through the same feedback mechanisms. 

When > 0 and < 0, the mechanisms outlined above and in the first four rows of 
Table 2 are straightforward. Figure 5 shows that negative  values are also possible. In some 
regions, < 0 and > 0 in March/April. The mediated effect  is still negative, but when 
anomalously deep snow in March is the predictor, anomalously dry soil and cold temperature 
anomalies follow in April. And conversely, an anomalously shallow snow cover in March is 
followed by anomalously wet soil and warm temperatures in April. Both temperature outcomes 
are contrary to what would be expected from soil moisture–temperature feedbacks. The 
mechanisms for the cases where < 0 and > 0 are therefore not obvious. 

As shown in Fig. 5, < 0 and > 0 mainly in ERA-20 and only in the high altitudes 
(e.g. in the Rocky Mountains) and in subarctic climate zones (Peel et al., 2007), where the 
climatological temperatures are probably colder than where > 0 and < 0. Although not 
shown, in support of this notion the few regions where < 0 and > 0 are found even farther 
north in April/May than in March/April. It is therefore likely that the regions where < 0 and > 0 form the boundary between regions where snow usually melts from March to April (i.e. 
where > 0 and < 0; see Fig. 5) and the regions where snow practically never melts between 
between those two months (i.e. in even higher latitudes or altitudes, where Pathway B is not valid; 
see white areas in Fig. 5). This suggests that the following mechanisms take place, although it must 
be emphasized that the proposed mechanisms are open to quesion.  

Let us first consider the case when the snow depth is unusually high in March. This could 
occur because the previous fall was colder-than-normal, with unusually early snow onset and 
anomalously dry soils due to below-normal rainfall. The soils will stay anomalously dry due to 
persistence beneath the snow cover. Since the climatological temperatures in March/April are cold, 
the deeper-than-usual snow cover in March is unlikely to melt by April. If the snow is still present 
in April, the temperature is anomalously low due to the same snow–temperature feedback 
mechanisms described earlier. The second case is that there is unusually shallow snow in March. 
This makes it more likely that the snow cover melts by April. If the snow does melt, the soil will 
become anomalously wet. (The below-normal snow depth in March could also be due to later-
than-normal snow onset during the previous fall, and then the soil would already be wetter-than-
normal beneath the snow throughout winter.) The ground is then bare, and the lack of cooling 
snow–temperature feedbacks yields higher-than-normal temperatures.  

If the proposed mechanisms where < 0 and > 0 outlined here are correct, the soil 
moisture anomalies in April are not the real causes of the anomalous temperatures in April, 
although Pathway B satisfies all the four steps required for mediation in both cases. These cases 
are useful reminders that statistical causality analysis must always be paired with physical 
considerations. The two proposed mechanisms are listed in the last two rows of Table 2 (in italics 
because they are somewhat speculative). 

The results in Fig. 6 and Table 1 show that, in a zonal mean context, soil moisture mediation 
is most active at or to the south of where the highest total effect of snow depth on temperature is 
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found. The latitudes of the highest zonal mean values in Table increase steadily with each month 
for all the variables. This suggests that the annual cycles of predictability and mediation through 
both pathways are driven by the annual cycle of insolation, and by implication, the annual cycle 
of melting. 

Area-averaged values of the total effect of snow depth on temperature ([ ]) and the 
mediated effect through Pathways A ([ ]) and B ([ ]) were investigated in Section 4c (see Fig. 
7). As in March/April, [ ] is either zero or negative. This means that, on average, positive snow 
depth anomalies in month 1 are associated with negative temperature anomalies in month 2. This 
occurs from fall to summer in the low- and midlatitudes, and in fall and from spring to summer in 
the high latitudes. In all the latitude belts, the annual cycle of the mediated effect through Pathway 
A starts earlier and peaks earlier than the mediated effect through Pathway B. In other words, 
persistence of snow depth anomalies from one month to the next is the main mediator of 
temperature persistence early in the seasonal cycle of the persistence. Towards the end of the 
season, when the seasonal snow cover starts to melt, the relative role of the delayed effect of snow 
depth anomalies on soil moisture anomalies becomes greater. 

The analysis presented here is aggregated for large regions. Local variations and 
particularities are omitted. For example, melting snow in one location (e.g. from glaciers) could 
add moisture to the soil in neighboring locations through transportation in rivers. Such interactions 
on local scales are not studied here, where a grid point by grid point approach has been used. 
However, the methodology illustrates how simple linear regressions can be powerful tools when 
applied in the framework of statistical mediation analysis. It is hoped that, together with other 
climate-related studies that have made use of causality analysis (e.g. Ebert-Uphoff and Deng, 
2012; Runge et al., 2013; Kretschmer et al., 2016; Kretschmer et al., 2017), this provides stimulus 
for future studies of complex, multivariate and regional climatic interactions. 
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