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Abstract: Non-uniform grain boundary sliding can induce strain and rotation incompatibilities at
perfectly planar interfaces. Explicit analytic expressions of stress and lattice rotation jumps are thus
derived at a planar interface in the general framework of heterogeneous anisotropic thermo-elasticity
with plasticity and grain boundary sliding. Both elastic fields are directly dependent on in-plane
gradients of grain boundary sliding. It is also shown that grain boundary sliding is a mechanism that
may relax incompatibility stresses of elastic, plastic and thermal origin although the latter are not
resolved on the grain boundary plane. This relaxation may be a driving force for grain boundary
sliding in addition to the traditionally considered local shears on the grain boundary plane. Moreover,
the obtained analytic expressions are checked by different kinds of bicrystal shearing finite element
simulations allowing grain boundary sliding and where a pinned line in the interface plane aims at
representing the effect of a triple junction. A very good agreement is found between the analytic
solutions and the finite element results. The performed simulations particularly emphasize the role
of grain boundary sliding as a possible strong stress generator around the grain boundary close to
the triple line because of the presence of pronounced gradients of sliding.

Keywords: grain boundary sliding; incompatibility stresses; anisotropic elasticity; heterogeneous
elasticity; lattice rotations

1. Introduction

Grain boundary sliding (GBS) is a specific deformation mechanism of polycrystals which is
especially important during creep [1-6]. While GBS can act as a stress relaxation mechanism able to
lead to superplasticity, it may also induce cavities at triple points and causes intergranular fracture
initiation [3,6-8]. GBS generally needs relatively high homologous temperature and/or relatively
small grain sizes [1-4]. However, it is also sometimes observed with coarse grain sizes at room
temperature, particularly in metals with hexagonal close-packed (HCP) structure [5-7,9,10]. Due to
the low symmetry of the hexagonal lattice, HCP materials are known to be strongly anisotropic and
thus to exihbit significant strain incompatibilities between adjacent grains. In those materials, GBS
might hence originates as an accommodating mechanism of grains incompatibilities [6,7,9].

Some years ago, Mussot et al. [7] derived compatibility conditions at sliding smooth interfaces
which showed that GBS modifies strain compatibility conditions as soon as GBS is non-uniform. The
relevancy of this result is reinforced by the many experimental evidences indicating that sliding is
usually non-uniform along a grain boundary [6,7,9]. Hence, gradients of GBS can induce or relax
internal stresses. It must be noticed that the strain incompatibilities of which the study of Mussot
et al. [7] referred to are different from the ones generated by uniform gliding of rough interfaces
that are believed to control the rate at which GBS occurs [2] or the ones created at triple points that
require accommodating processes like migration of the triple edges, diffusion along grain boundaries
or dislocation activity in the neighboring grains [3].

The present paper follows the work of Mussot et al. [7] in order to extent strain compatibility
conditions at a sliding interface, assumed perfectly planar, to the general context of heterogeneous
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anisotropic thermo-elasticity with plastic distortions. Moreover, explicit analytic expressions of
incompatibility stresses and lattice rotations are looked for. The correctness of the obtained solutions
are checked thanks to finite elements (FE) simulations of bicrystals shearing. In the grain boundary
plane, a line is pinned in order to mimic the effect of a triple junction. Based on both the obtained
theoretical expressions and numerical results, the dual role of grain boundary sliding, as a stress
generator and as a stress relaxation mechanism, is then discussed.

Notation and reduction conventions

A vector is denoted x = x;, a second-order tensor X = X;j and a fourth-order tensor X = X;j;.
The Einstein summation convention over repeated indices is used. The symbol - represenNts tensor
multiplication, a : the contracted product between two tensors and V, div and curl the gradient,
divergence and curl operators, respectively. In rectangular Cartesian coordinates, we have in particular:

A-b = Ajjby, (1)

A: B = AjjuBu, 2
(VX)ij = X, 3)

(div X); = Xij,j, 4)

(curl X)ij =€jtm Xim1, ()
(6)

where €, is a component of the third-order alternating Levi-Civita tensor. The jump of a
mechanical or material property field f at an interface between two crystals I and II which is oriented
by e is noted [ | such as [f] = fH(xa — 07) — fI(xa — 07), whereas the average of f across the
interface is defined as f = 3 (f!(x2 — 07) + f(xa — 07)).

Finally, the contracted Voigt notation [11] (11 — 1,22 — 2,33 — 3,23 — 4,31 — 5,12 — 6)
is adopted in subsection 2.2. The contracted product between tensors A and B is then written as

(A : B), = Ap;B; where p and g take values ranging from 1 to 6. For consistency, an engineering

convention is considered for strain components, i.e. €4 = 2¢33, 5 = 2¢31, €6 = 2¢1p, and the Hooke’s
law in matrix notation is given as:

S'i 511 S12 513 S14 S15 S16 0
€5 S12 S22 S23 S24 S25 826 )
Ef% _ | S13 823 833 534 535 536 3 @)
€4 S14 S24 S34 S44 S45 S46 0y
€5 S15 S25 S35 S45 S55 Ss6 5
| & | L S16 S26 S36 S46 S56 Se6 1 L U6 |

where 0; are stresses, ¢] elastic strains and s;; components of the elastic compliances tensor that
include the multiplying factors of 2 and 4 [11].
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2. Results

2.1. Compatibility relations

Crystal 11

1I TII Rpll
% BS\ Ii L =
/ i
X3 Crystal I

sl, oTL, Be! (‘

Figure 1. Infinite planar grain boundary exhibiting GBS (see text for notations).

In a continuous medium of infinite volume V, an infinite planar grain boundary (GB) is considered
which separates two crystals I and II (Figure 1). The unit vector 1 designates the normal to the interface
and is assumed to be oriented from crystal I towards crystal I along the direction e, (Figure 1). In
what follows, superscripts I and II correspond to crystals I (x, < 0) and II (xo > 0), respectively. This
bicrystal is supposed to have been deformed under the action of homogenous macroscopic mechanical
loading applied on the external boundary 0V of V and of homogeneous temperature variation AT and
in the absence of body forces. Elasticity, plasticity and GBS are considered as deformation mechanisms
in a static small strain setting. It is assumed that the elastic compliance tensor s and the symmetric

thermal expansion tensor a”

~

are isotherm and uniform in each crystal and that the plastic distortion
tensor B? depends only on x;:

s =s' +[s]H(x2), ®)
ucNT = oczl + [[aNT]]H(xz), 9)
ph=p5=0, (10)

where H(x;) is the Heaviside unit step function. GBS is described through the distortion tensor
pS. Similarly to the expression of the plastic distortion tensor induced by the formation of a dislocation

~

loop [12,13], B° is singular on the interface and, for a GB with unit normal n = ¢,, may be expressed as:

B = 8i(x1,%3)6720(x2), (11)

where the vector g = [u]] represents the jump of displacement u at the interface due to sliding.
Moreover, considering the absence of interface decohesion implies g» = 0 [7]. The only non-zero
components of A5 are thus [sz and ,Bgz As a consequence of all the preceding assumptions, the total

distortion § may be written as follows:

Bij(x1,x2, x3) = Bij(x1,x2,x3) + ﬁz(xz) + (“51 4 [[a;f;]]H(xz)) AT +gi(x1,x3)0026(x2),  (12)
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with B¢ the elastic distortion tensor. According to the orthogonal Stokes-Helmholtz decomposition

~

[14-16], it is possible to decompose ¢ into compatible and incompatible parts:

B = B+ B (13)
such as:
curl B = 0 and div p = 0. (14)

In order to ensure the unicity of this decomposition, the following condition is considered on 0V
[14-16]:

B -m=0, (15)

~

where m is the unit normal of dV. As a consequence of this decomposition, the Nye tensor « [17]

(or dislocation density tensor), which may be defined as the curl of the elastic distortion [14], can be
written solely from the incompatible part of the elastic distortion:

o = curl B¢ = curl B . (16)

As a result of equations 14, 15 and 16, ¢ is thus given as the unique solution of the following
Poisson equation:

A = —curl a

~ 17
B -n=0o0nadV. (17)

Then, by considering the compatibility of the total distortion (curl g = 0), equations 12 and 16
lead to: R

@i = — €jom (ﬁfm,z + U“M]A”(xz)) — €j12 8i10(x2)- (18)

By making the additional hypothesis that the gradients g;; are uniform, « depends only on x,.
The same is true for B¢ since it is given as the unique solution of the Poisson equation 17. Hence, it is

possible to write the elastic distortion as:

B* = Vz+ B (x2), (19)

~

where z is a continuous vector such as Vz = T‘ [14-16]. From relation 19, we have then:

Vi #2, By = zipj = Zijo- (20)

By considering again the compatibility of the total distortion, we can write:

Vi#2,V] # 2, Bija — Pin,j = 0. (21)

Combining this relation with equations 12 and 20, we obtain:

Vi 2,5 # 2, B0 = 20— Blip — ([0]1AT — gi) 6(x2) = 0, (22)

which becomes by integration with respect to x5 :
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Vi#E2,Vj#£2, B =z — 55 - ([[%-E]]AT + gi,j) H(x2) + Kjj, (23)

where K;; are spatially uniform constants. By definition, we have [z;] = 0, thus Vj # 2, [z;;] =0
and accordingly :

vi 2% #2, [B5] = — 8] - [<f]AT +gij. (1)

These relations are in agreement with the compatibility relations derived by Mussot et al. [7]. They
show that GBS can induce strain and rotation incompatibilities as soon as the sliding is non-uniform.
The terms g; ;) are indeed directly related to the gradients of B3, and B3, according to the relations:

Vi #2, B = g1,0(x2),

' s (25)
Vi #2, B = 3,i0(x2).

2.2. Stress jumps

Using the contracted notation of Voigt [11], relations 24 make it possible to write the following
system:

[¢5] = [s1jo7] = —[€}] - [of1AT + (V5g)
[¢5] = [ssjo7] = —[€h] — [e31AT + (V¥g) (26)

[¢5] = Issjoj] = —[ek] — [o31AT + (V5g)
where V5 g is the symmetrized gradient of g. The same engineering convention as for strain
components is considered, i.e. (V°g) 5 = 81,3 + &3,1- Considering the continuity of the traction vector

at the boundary ([o - n] = 0), and using the relation [s : o] = [s] : 6+ § : [o], the system 26

becomes:

sulor] + suslloa] + $1slos] = —[s1,18; — [€]] — [+f AT + (V5g)
sialon] + 8aalos] + saslos] = —[s51; — [e5] — [ 1AT + (V5g) 7)
sis[on] + ssslloa] + 8ssos] = 5195 — [€5] — [+3]AT + (V5g) .
By introducing the notation:
[e'] = [5] : o + [/] + [+"]AT — V5, (28)

the system 27 becomes similar to the one obtained for the derivation of incompatibility stresses
without GBS and thermal expansion in bicrystals or periodic-layered composites [18-20]. Therefore,
stress jumps solutions can be directly expressed as:

o] = G [], 29)

where the non-zero components of the tensor G are given by [19,20]:

d0i:10.20944/preprints201705.0009.v1


http://dx.doi.org/10.20944/preprints201705.0009.v1
http://dx.doi.org/10.3390/cryst7070203

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 May 2017

6 of 15
G = (§33§55 - §%5) /D, Gi3 = Gz = (815835 — 813%55) /D,
G33 - (§11§55 - §%5) /D ’ G15 = G51 = (§13§35 — §15§33) /D ,
Gss = (811833 — §33) /D,  Gss = Gsz = (13515 — $35%11) /D, (30)

; —8..82 48,82 4 a._82 a8 a4 8.8, 8
with D = 511535 + 533575 + 555573 — 511533555 — 2513515535.

Equations 28, 29 and 30 show that incompatibility stresses are directly dependent on in-plane
gradients of GBS. It is seen that GBS is a mechanism capable of relaxing incompatibility stresses of
elastic, plastic and thermal origin although the latter are not resolved on the grain boundary plane.
This relaxation may be a driving force for GBS in addition to the traditionally considered local shears
on the grain boundary plane.

It is noteworthy than the expressions of the stress jumps are much simpler if ones considers
isotropic homogeneous thermo-elasticity properties [18]. With p the shear modulus and v the Poisson’s
ratio, the expressions of the non-zero stress jump components are indeed written in this case as:

o] = — 2 (4] + vIh) — (V)
los] = 25 (14 + vIeh] - (V%)
los] = — ([51 - (V°g).) -

—(v%),)

o (v%),) &

1

3

2.3. Lattice rotation jumps

From relations 24, the jumps of elastic rotation in presence of GBS may expressed as:

[wsa] = [€55] + [Bhs] + [a23] AT,
[wis] = —[wis] + % (813 —831), (32)
[w5i] = —TeSa] — [By] — [af]AT,

with [¢°] = [[s] : 6+ § : [o]. All the components of the lattice rotation tensor hence depend on

the in-plane gradients of GBS, which shows the influence of GBS on the evolution of crystallographic
textures [21]. It can be noticed that in case of homogenous isotropic elastic properties, we have

le3s] = 5] = O.
2.4. Validation by FE simulations

The correctness of the analytic formulas 28, 29, 30 and 32 are checked thanks to FE simulations.
Two rectangular grains (¢ and ) of dimensions 120 * 90 * 60 are defined as two different parts (Figure
2). The initial position of the upper face of the first grain matches exactly the position of the bottom
face of the second grain and correspond to x, = 0. The behavior is supposed to be purely elastic (no
plasticity, no thermal expansion) with a possibility of GBS. Zn which has a HCP structure is considered
as a reference material. The crystallographic orientations of the two grains are taken as:

[0001] ¢y || [010] () and [1010] ¢ || [001] g for grain a,

- _ , (33)
[0001] ¢y || [670] ) and [1010]¢) || [760] ) for grain B.

with (C) the crystal frame and (G) the global frame. Six different simulations are performed.
They have in common that the top (x, = 90) and bottom (x; = —90) faces are constrained to be planar

d0i:10.20944/preprints201705.0009.v1
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(up = 0), that the continuity of u; is enforced at the GB and that the line at x; = —60 and x; = 0 is
pinned (u; = up = uz = 0) (Figure 2). This pinned line may represent a fixed GB junction like a triple
line and aims to produce GBS gradients. In order to induce an effective contact between the two parts,
a very small compression (ey» = 107°) is applied on the bicrystal external boundary in a first time step
for all the simulations. Then, the following additional boundary and interface conditions are applied
during a second time step of 1s:

e Simulation 1: 1#; = 1073571 on the top face, 11; = —1073s~! on the bottom face, grain « at the
bottom (x; < 0) and [[u1] = Juz]] = 0 (no GBS allowed),

e Simulation 2: 711 = 1073571 on the top face, 1y = —1073s~! on the bottom face, grain & at the
bottom (x; < 0), [us] = 0and [uq]] #0 (,Bf2 allowed),

e Simulation 3: 11; = 10735~ ! on the top face, 111 = —1073s~! on the bottom face, grain « at the top
(x2 > 0), [uz] = 0and [u;] # 0 (B3, allowed),

e Simulation 4: 113 = 1073571 on the top face, i3 = —1073s~! on the bottom face, grain & at the
bottom (x, < 0) and [[u1] = [us] = 0 (no GBS allowed),

e Simulation 5: 113 = 1073571 on the top face, 113 = —1073s~! on the bottom face, grain & at the
P g

bottom (x; < 0), [u1] = 0and [uz] # 0 (B3, allowed),
e Simulation 6: 113 = 10735~ ! on the top face, 113 = —10~3s~! on the bottom face, grain « at the top
(x2 > 0), [u1] = 0and [us] # 0 (B3, allowed),

(-60, 90, -30)

grain [3

pinned line
'

'
I
4
7

.”" GB (x2=0)
X2

grain o

X1

X3

(60, -90, 30)

Figure 2. Sketch of the two rectangular grains of dimensions 120 * 90 * 60 used for the FE simulations.
The line at x; = —60 and x = 0is pinned (17 = uy = uz = 0).

In these simulations, when GBS is allowed, it is completely free to develop (no friction, no critical
stress), which corresponds to an extreme situation. Figures 3 and 4 show the profiles of g1 = [u;] and
g3 = [us] along e; at x3 = 0 for simulations 2, 3 and 5, 6, respectively.
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Figure 4. Profiles of g3 = [us] along e; at x3 = 0 for simulations 5 and 6.

Comparisons of the analytic formulas 28, 29, 30 and 32 with results of the FE simulations are
performed at three different points: A(—40,0,0), B(0,0,0) and C(40,0,0) (Tables 1 to 6). Besides,
Figures 5 to 10 display profiles of Von Mises stress along e, through points A, B and C obtained by the

different FE simulations.

Table 1. Components values of & (MPa) provided by the FE simulation 1 and comparisons of

components values of [¢]] (MPa) and [w’] (°) given by the FE simulation 1 and those computed
from the analytic formulas 28, 29, 30 and 32.

A (-40,0,0) B (0,0,0) C (40,0,0)
on 422 ~184 52

o —385 —30.5 326

033 —6.9 ~3.6 3.5

023 0.0 0.0 0.0

31 0.0 0.0 0.0

012 35.2 77.6 61.0

EF/ Analytic =~ EF/ Analytic = EF/ Analytic

lon]  116/68  —349/ 345 —663/ —685
los]  37.1/322 72.4 / 73.0 382 /375
lo1] 0.0/0.0 0/0 0.0 /0.0
[ws,]  0.00/0.00 0.00 / 0.00 0.00 / 0.00
[ew$s]  0.00/0.00 0.00 / 0.00 0.00 / 0.00
lws,]  0.00/000  —0.03/-0.05 —0.04/—0.08
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Table 2. Components values of 0 (MPa) and Vg provided by the FE simulation 2 and comparisons of

components values of o] (MPa) and [w*] (°) given by the FE simulation 2 and those computed from
the analytic formulas 28, 29, 30 and 32.

A (-40,0,0) B (0,0,0) C (40,0,0)
81,1 0.00532 0.00139 0.00021
813 0.00000 0.00000 0.00000
011 (MPa) —28.4 2.0 4.8
(ATZQ (MPa) —9.2 —-2.3 16.3
033 (MPa) 27.7 -3.6 -29
023 (MPa) 0.0 0.0 0.0
031 (MPa) 0.0 0.0 0.0
012 (MPa) 114 2.3 1.0
EF/ Analytic =~ EF/ Analytic  EF/ Analytic
[o11] MPa)  592.0 / 598.9 150.5 / 151.5 10.0 /9.4
[o33] (MPa) 679 /778 21.1/228 -18/ —24
[o31] (MPa) 0.0/0.0 0/00 0.0/0.0
[ws,] 0.00 / 0.00 0.00 / 0.00 0.00 7 0.00
[wis] 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00
[w5;] -0.05/-010 -0.02/-0.03 —0.01/-0.01

Table 3. Components values of 0 (MPa) and Vg provided by the FE simulation 3 and comparisons of

components values of [¢] (MPa) and [w®] (°) given by the FE simulation 3 and those computed from
the analytic formulas 28, 29, 30 and 32.

A (-40,0,0) B (0,0,0) C (40,0,0)
81,1 0.00485 0.00080 0.00003
813 0.00000 0.00000 0.00000
011 (MPa) 20.8 7.1 14
029 (MPa) —5.6 —22.2 —21.6
033 (MPa) —58.7 —6.8 0.7
023 (MPa) 0.0 0.0 0.0
031 (MPa) 0.0 0.0 0.0
012 (MPa) 13.3 2.2 -0.3
EF/ Analytic =~ EF/ Analytic =~ EF/ Analytic
[o11] MPa)  565.4 / 564.2 80.0 / 78.2 -10.2/ =115
[oa3] (MPa) 48.7 / 47.6 -14/-40 -9.0/-104
[o31] (MPa) 0.0/0.0 0/00 0.0/0.0
[ws,] 0.00 / 0.00 0.00 / 0.00 0.00 7 0.00
[wis] 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00
[w5;] —0.04/ -0.06 —0.01/-0.02 —0.01/-0.01
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Table 4. Components values of ¢ (MPa) provided by the FE simulation 4 and comparisons of

components values of [¢]] (MPa) and [w] (°) given by the FE simulation 4 and those computed

from the analytic formulas 28, 29, 30 and 32.

A (-40,0,0) B (0,0,0) C (40,0,0)

o1 03 0.0 0.0

oo 0.2 0.2 0.2

b33 02 0.3 0.4

23 289 29.3 421

031 7.3 —43 —6.4

o1 —0.1 0.0 0.1

EF/ Analytic =~ EF/ Analytic = EF/ Analytic

lon] —02/-01  —02/-01  —02/-01
los] —01/—-0.1 02/ -0.1 02/ -01
[os] —104/-104 —74/-76 —10.6/ —14.1
[wg,]  000/000  —001/-001 —0.01/-0.01
[w$s]  0.00 /0.00 0/0 0.00 / 0.00
[w$ ] 0.00/0.00 0/0 0.00 / 0.00

Table 5. Components values of & (MPa) and Vg provided by the FE simulation 5 and comparisons of

components values of o] (MPa) and [w®] (°) given by the FE simulation 5 and those computed from

the analytic formulas 28, 29, 30 and 32.

A (-40,0,0) B (0,0,0) C (40,0,0)
931 0.00455 0.00272 0.00151
833 0.00000 0.00000 0.00000
o1 0.0 02 -0.1
o2 02 0.1 0.1
033 0.0 0.1 0.0
23 35 1.1 1.3
031 —45 —52 -39
o1 0.0 0.0 0.0

EF/ Analytic =~ EF/ Analytic = EF/ Analytic

o] 01/ -01 0.0 /0.0 0.0 /0.0

[o3] 02/02 02/02 02/-03

los1] 2658 /2656 1619 /1602 889 /87.4

[ws,]  0.02/0.03 0.01 / 0.02 0.00 / 0.01

[w$]  013/013  —0.08/—0.08 —0.04/ —0.04

[wé]  0.00/0.00 0.00 / 0.00 0.00 / 0.00
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Table 6. Components values of 0 (MPa) and Vg provided by the FE simulation 6 and comparisons of

components values of o] (MPa) and [w®] (°) given by the FE simulation 6 and those computed from

the analytic formulas 28, 29, 30 and 32.

A (-40,0,0) B (0,0,0) C (40,0,0)
831 0.00409 0.00230 0.00110
933 —0.00002 —0.00001 —0.00002
o1 —0.2 —0.2 —0.1
o 0.2 0.1 0.1
033 0.0 0.1 0.0
023 42 15 1.2
31 ~1.1 0.0 1.6
01 0.0 0.0 0.0

EF/ Analytic =~ EF/ Analytic =~ EF/ Analytic

len] 03/ -01 0.0 /0.0 0.0/ —0.1

los] —05/-22  —03/-06  —02/-18

lon]  2399/2399  1346/1334 649 /649

[wl,] 0027003 0.01 / 0.02 0.01 / 0.01

[wfy] —011/-011 —0.07/-0.07 —0.03/ —0.03
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Figure 5. Profiles of Von Mises stress along e, through point A (-40,0,0) obtained by FE simulations 1,

2 and 3.
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Figure 6. Profiles of Von Mises stress along e, through point B (0,0,0) obtained by FE simulations 1, 2
and 3.


http://dx.doi.org/10.20944/preprints201705.0009.v1
http://dx.doi.org/10.3390/cryst7070203

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 May 2017 d0i:10.20944/preprints201705.0009.v1

12 0f 15

350 , :
— Simulation 1 |
ESOO ~ Simulation 2
=250 - - Simulation 3 1
@ 200 -
]
(]
]
2
=
c
o
>

Figure 7. Profiles of Von Mises stress along e, through point C (40,0,0) obtained by FE simulations 1, 2
and 3.
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Figure 8. Profiles of Von Mises stress along e, through point A (-40,0,0) obtained by FE simulations 4, 5
and 6.
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and 6.
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Figure 10. Profiles of Von Mises stress along e, through point C (40,0,0) obtained by FE simulations 4, 5
and 6.

3. Discussion

In the absence of plasticity and thermal expansion, source of incompatibilities arise from
heterogeneous elasticity and in-plane gradients of GBS which are zero in simulations 1 and 4. It
must be noticed that [w{,] depends only on GBS gradients (equation 32) and that incompatibility

stresses depend on two terms (equations 28 and 29): G : ([[ s]: [T) due to heterogeneous elasticity and

-G: VS g which is related to GBS gradients. Globally, a very good agreement on the jumps of elastic

fields is found between the analytic solutions and the values provided by the FE simulations (Tables 1
to 6). It seems that the agreement is much better when the contribution of GBS gradients on the elastic
field jump increases. As a matter of fact, a perfect match is obained for all the values of [w{,]. Besides,
it is noteworthy that, within the present FE configuration, even the fulfillment of the traction vector
continuity at the grain boundary is not always perfectly respected.

Figures 3 and 4 both show that, as one moves away from the pinned line, GBS increases but its
gradient decreases. Depending on the shear loading direction and the relative position of the two
grains & and B, significant differences in the GBS distribution are however observed. GBS clearly leads
to a relaxation of the applied stress : 7yp in simulations 2 and 3 to be compared with simulation 1
(Tables 1 to 3) and 0»3 in simulations 5 and 6 to be compared with simulation 4 (Tables 4 to 6). At
the same time, as expected from the term —G : Vg, incompatibility stresses get more and more

pronounced when approaching the pinned line due to growing GBS gradients. This effect is retrieved
when looking at the profiles of the Von Mises stress through the GB at different distances from the
pinned line (Figures 5 to 10). Indeed, allowing GBS can induce very strong stress concentrations
around GB compared to the case without GBS (Figures 5, 8 and 9) because, in these cases close to the
pinned line, the amount of GBS is relatively small and its gradient quite strong. These consequent
stresses should then be relaxed by other mechanisms like dislocations glide or climb [2]. On the other
hand, far enough from the pinned line, GBS may appear as a relaxation mechanism since the Von
Mises stress is much lower with than without GBS in Figures 6, 7 and 10. In these cases, the amount of
GBS is relatively high and its gradient has become almost insignificant. As a consequence, the present
simulations emphasize the dual role of GBS which can act both as a strong stress generator and as a
stress relaxation mechanism along a same GB. It is important to notice that these effects are shown in
the case of a perfectly planar interface with no GBS at the triple line, which is thus different from the
GBS accommodation processes discussed in [2,3].

When inverting the positions of grains a and f, the tensor G is not modified and the signs of

GBS gradients remain also unchanged. However, the jump of elastic compliances [[s ] changes sign.

Therefore, depending on the relative position of the two grains, the terms —G : VS gand G: ([[ s]: (7)
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may or may not oppose each other, which explains the asymmetry of the results in simulations 2 and 3
and in simulations 5 and 6.

Besides, it is noteworthy that the average stresses across GB are negligible in simulations 5 and 6
(0 ~ 0, Tables 5 and 6). It is interesting to underline that a good approximation of the Von Mises stress

at GB can then be obtained directly from the analytic terms —G : VS &

oM~ \/é ([o11]2 + [os3]? + 6[o31]2) with [o] ~ —G - Vig. (34)

For higher values of average stresses across GB, the expression 34 corresponds to a lower bound
estimate of the Von Mises stress at GB.

4. Materials and Methods

A numerical code based on the software package Matlab (R2015a) was developed to compute the
jumps of elastic fields at GB from formulas 28, 29, 30 and 32. The input parameters of this code are the
elastic properties of Zn given in Table 7, the crystallographic orientations of the two grains (equation
??) and the component values of g and Vg collected from the FE simulations (Tables 1 to 6).

Table 7. Elastic parameters for Zn at ambient temperature [22].

cla Cnn Cs3 Cy Ci2 Ci3
1.856 165GPa 61.8GPa 39.6GPa 31.1GPa 50GPa

The FE simulations were performed with the software ABAQUS/standard. Regular meshes using
173972 8-node linear brick elements (C3D8) were employed to discretize the two grains. A classical
crystal-elasticity UMAT subroutine was used to compute the displacements and the stresses (see for
e.g. [18]).
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The following abbreviations are used in this manuscript:

FE Finite Element

GB Grain Boundary

GBS  Grain Boundary Sliding
HCP Hexagonal Close-Packed
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