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Abstract: Real-time strategy (RTS) game has proposed many challenges for AI research for its large 
state spaces, enormous branch factors, limited decision time and dynamic adversarial 
environment. To tackle above problems, the method called Adversarial Hierarchical Task Network 
planning (AHTN) has been proposed and achieves favorable performance. However, the HTN 
description it used cannot express complex relationships among tasks and impacts of environment 
on tasks. Moreover, the AHTN cannot handle task failures during plan execution. In this paper, 
we propose a modified AHTN planning algorithm named AHTNR. The algorithm introduces 
three elements essential task, phase and exit condition to extend the HTN description. To deal with 
possible task failures, the AHTNR first uses the extended HTN description to identify failed tasks. 
And then a novel task repair strategy is proposed based on historical information to maintain the 
validity of previous plan. Finally, empirical results are presented for the μRTS game, comparing 
AHTNR to the state-of-the-art search algorithms for RTS games. 
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1. Introduction 

As a subcategory of video games, the Real-Time Strategy (RTS) game has proposed great 
challenges for AI research for its large state space, enormous branch factors, limited decision time 
and dynamic adversarial environment [1]. Regarded as a simplification of real-life environment, RTS 
games could serve as a test bed for researches like real-time adversarial planning and decision 
making under uncertainty [2]. Meanwhile, techniques which have been tested and proved effective 
in RTS games could also be applied in real-world domains [2]. 

In RTS games, the players need to build economy and military power to defeat the opponents 
by destroying their army and bases. Compared with traditional board games, the RTS games have 
some differences as follows [2]:  
1. Players do not play in turns. Unlike turn-based games (like Chess), players in RTS games take 

their actions simultaneously in a short period of decision time.  
2. Concurrent actions are allowed. In RTS games, players control multiple units which execute 

different actions concurrently. This is much more complex than board games where only one 
action is performed at each time step. 

3. The actions are durative. For example, actions like produce need a fixed number of time steps 
before they are finished, while the actions in traditional board games have to be completed 
within only one time step. 

4. The state space and branch factors are usually enormous. For example, consider a typical 
128x128 map in StarCraft. Generally, there are about 400 units in the map. Just considering the 
location of each unit, the number of possible states will be about 101685. If we add the other 
factors in the game, we obtain even larger numbers. 

5. The environment of the RTS games is dynamic. 
Because of the differences above, the standard game tree search methods, which perform well 

in board games like alpha-beta search [3], cannot directly applied in RTS games [4]. Researches have 
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been done to improve the game tree search methods to handle the problems above [4]. Chung et al. 
study the applicability of game tree Monte Carlo simulations in RTS games in [5]. Balla and Fern 
apply UCT (Upper Confidence bound applied to Trees) algorithm in RTS game and deal with the 
problem of durative actions [6]. Reference [7] handles the problems of simultaneous and durative 
actions by extending alpha-beta search. However, the large branching factors caused by 
independently acting objects still remain a big challenge. The methods such as Combinatorial 
Multi-Armed Bandits try to tackle the problem of large branching factors [8][9]. In order to solve the 
problem of large state space and enormous branch factors, Ontañón combines the HTN planner 
with the game tree search called Adversarial Hierarchical Task Network planning (AHTN) in [10]. 
Instead of exploring the whole combination of possible actions, the HTN planning could guide the 
searching direction based on the domain knowledge. The work in [10] also extends AHTN method 
to handle the simultaneous and durative actions. 

Though AHTN has achieved good performance compared with other search algorithms [10], it 
still suffers from several weaknesses as follows: 
1. The HTN description used by AHTN cannot express complex relationships among tasks and 

impacts of environment on tasks. For example, assuming that a task has two subtasks; one must 
be successfully executed while the other doesn’t have to be finished successfully. The failure of 
the latter task only affects the performance of its parent task but would not lead to the failure. 
This kind of relation cannot be expressed by the HTN description used in AHTN. Relations in 
situations when subtasks are triggered by the environment or execution results of parent tasks 
depend on both the environment and its subtasks also cannot be expressed by the HTN 
description in AHTN. 

2. AHTN cannot handle task failures during plan execution. It runs at each frame of the game to 
generate a new plan whenever idle units exist in the game without considering failed tasks of 
old plans. Each time when a task of the old plan fails, it would simply remove the failed task 
without considering its impacts on current or future tasks. Moreover, keeping executing tasks 
related to the failed one is not only meaningless but also a waste of resource. Thus when one 
task fails and cannot been repaired, all related tasks in the plan should be terminated. And the 
AI player should try to repair the plan.  
Generally, there are two approaches in task repairs. One is to re-plan the failed task locally. The 

other approach chooses one plan from multiple ones generated before, and uses it to repair the failed 
task. Compared to the former one, the second approach takes advantage of the historical 
information, and thus will reduce the time consumed.  

In this paper, we propose a modified AHTN algorithm named AHTNR to handle the two 
problems above. An extended HTN description is introduced firstly, which enhances the model’s 
capability in handling more complex relationships among tasks and impacts of environment 
through adding three elements (essential task, phase and exit condition). We then propose a monitoring 
strategy to identify failed tasks using extended HTN description and a task repair strategy based on 
historical information. In each decision cycle, the method would try to repair the failed tasks, 
followed by a new planning process. 

The paper is organized as follows. The related work is presented in Section 2, followed by the 
introduction of the AHTNR planning algorithm in Section 3. Experimental results of the 
performance comparison between AHTNR and other algorithms could be found in Section 4. 
Finally, we conclude the paper and further present future works in Section 5. 

2. Related work  

We start with a short survey of HTN planning, and then move on to a review of its application 
in RTS games. The basic idea of HTN planning was first proposed by Sacerdoti [11] in 1975. At the 
same time, the first HTN planner NOAH (Nets of Action Hierarchies) appeared and was designed 
by Sacerdoti in [12]. After that the planner Nonlin appeared in 1977 [13], SIPE (System for interactive 
planning and execution) [14] and its successor SIPE2 [15] were introduced in 1984 and 1990 
respectively. O-Plan (Open planning architecture) [16] appeared in 1991 with its successor in 1994 
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[17]. Further, UMCP (Universal method-composition planner) was proposed as the first planner 
whose completeness had been proved in 1995 [18]. SHOP (Simple hierarchical ordered planner) [19] 
by Nau et al. was introduced in 1999 and its successor SHOP2 [20] appeared in 2003 as a successful 
modern planner. SIADEX emerged in 2005 [21]. The differences of theories, concepts, analysis and 
applications between different planners were compared in [22]. Several extensions were also 
proposed as the above planners all focus on classical planning. ND-SHOP2 (Non-deterministic 
simple hierarchical ordered planner 2) was proposed to deal with the nondeterministic effects of 
actions [23]. Kuter et al. integrated the control strategy of SHOH2 with MDP (Markov decision 
process) planning algorithms to deal with the probabilistic planning as in [24][25][26][27]. 

With its searching guided by human knowledge, the HTN planning speeds up dramatically 
and has been successfully used in many typical video games [28]. Kelly et al. used HTN planner to 
generate scripts offline for video games [28]. Menif et al. applied SHPE (Simple Hierarchical 
Planning Engine) to Steam Box, which is a kind of first person shoot game, by an alternative 
encoding of planning data [29]. Soemers and Winands studied the plan reuse by HTN planners in 
video games [30]. And there have also been some successful examples of HTN planners used in 
commercial video games [31]. But as we have known, only a few attempts have applied HTN 
planners to RTS games, which are also a kind of video games, in previous researches. In [32], a HTN 
planner was used to provide explanations for human players by querying the reasons leading to 
current states or events, and interrogating the behavior of a computer player. Laagland presented 
the design, implementation and evaluation of a HTN planner in an open source RTS game called 
Spring in 2007 [33], where the planning of the RTS game was divided into three levels with a HTN 
planner being used in the highest strategic one. Further in [34], Laagland summarized the pros and 
cons of HTN planning when used in RTS games. Naveed et al. used HTN planners to reduce the size 
of pathfinding search space in RTS games and tested their algorithm in ORTS game [35] in 2010. 
Most recently in 2015, Ontañón et al. used the HTN planning in RTS games based on improved 
game tree search algorithm [10]. In [10], Ontañón made extensions for durative and simultaneous 
actions and applied HTN planning directly into game tree search to take advantage of standard 
optimizations. 

There are also studies concerning the plan repair based on HTN in many different fields. 
Garzón et al. studied the repair strategy based on HTN planning in the therapy planning system 
[36], in which the inference process would be recorded and used in failed plan repair. Gateau et al. 
used HTN to repair failed plan as local as possible in a high-level distributed architecture for 
multi-robot cooperation [37]. Ayan et al. designed the extension of SHOP to repair failed plans by 
introducing the task-dependency graph [38]. In their work, the planner would try to find the least 
failed task by the task-dependency graph during the plan repair, and thus reduce the repair cost. 
Kuter and Miller used hierarchical planning and plan repair (HPR) to improve the automated or 
autonomous system’s self-confidence [39]. 

Our research is based on the work in [10] by Ontañón. Compared to the researches above, our 
main contributions are: 1) an extended HTN description is proposed to deal with more complex 
relations among tasks and impacts of the environment; 2) the monitoring strategy using extended 
HTN description and the repair strategy based on historical information is applied to RTS games. 

3. AHTNR Planning Algorithm 

The extended HTN description is proposed firstly to enhance the capability in expressing 
complex relationships among tasks and impacts of environment on tasks through adding three 
elements essential task, phase and exit condition. Then a monitoring strategy using extended HTN 
description is used to identify failed tasks. At last, a task repair strategy based on historical 
information is proposed to repair the failed tasks. 

3.1. Extended HTN Description 

HTN planning approach generates plans by decomposing tasks recursively into smaller ones 
[40]. There are two types of tasks in HTN: primitive tasks and compound tasks. Primitive tasks 
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correspond to actions which can be executed by an agent directly in the world, such as move. 
Compound tasks represent the goals which need to be achieved by a higher plan and decomposed 
into a Task Network. 

A HTN planning problem can be defined as a tuple ( ), , ,S TN O MΡ = , where: 

• S  is the set of current world states and consists of all the information that is relevant to the 
planning process. 

• TN  is current Task Network.  

• O  is the set of operators. Each operator o O∈  represents the execution of a primitive task. 
Given S , ( ),s oγ  defines the transition of the state when an primitive task is executed by an 

agent. If ( ),s oγ =⊥ , the operator o  is not applicable in s . 

• M  is the set of methods. Each method m M∈  represents a way to accomplish a compound 

task. ( ),m t C= , where t  is the compound task to which m  will be applied. C  is the set of 
preconditions. The method m  can be applied to compound task t  only when all preconditions 
in C  are satisfied and the tasks preceding t  in task network have been fully decomposed. 

The result of a parent task depends on the results of its sub-tasks, the relationship among 
sub-tasks and the impacts from the environment. However the description of HTN above cannot 
express such relationships and impacts. We extend the HTN description by adding three elements 
which are essential task, phase and exit condition. 

The first two modifications enhance the model’s capability in expressing the complex 
relationships which cannot be expressed by basic relationships, which are Sequential, Parallel, And 
and Or respectively, among tasks. The Parallel means the execution time of different tasks is 
overlapped. The Sequential means the execution of tasks has to be one by one. These two 
relationships could help to control the starting time of sub-tasks. The And means the failure of any 
sub-task will lead to the failure of its parent one. The Or means the success of any sub-task will lead 
to the success of its parent. However some complex relationships cannot be expressed by above four 
relationships easily. For example, assuming that a task has two subtasks; one must be successfully 
executed while the other one doesn’t have to be finished successfully. The failure of the latter task 
only affects the performance of its parent task without leading to its parent task’s failure. The 
relationship between these two sub-tasks falls into none of the four relationships above. To describe 
the above situation, an attribution named essential task is added to all sub-tasks. If a task is essential, 
the success of its parent task only depends on the task’s own success. Also, we propose a structure 
named phase to describe the temporal relationships among sub-tasks. The tasks which have Parallel 
relationship will be added to the same phase. While the tasks that have Sequential relationship will 
be separated to different phases. The execution sequence of phases is the same with the execution 
sequence of tasks. The failure of any phase will lead its parent task’s failure. If the tasks of one phase 
are all defined as essential ones, they would have the And relationship. While if all of them are not 
essential, they have the Or relationship. 

The third modification to HTN description is exit condition. It endows the models the capability in 
expressing impacts of the environment on the execution and results of tasks. The tasks could be 
terminated during their execution considering the environment dynamics. The agent could also cancel 
subsequent tasks due to insufficient conditions of the environment, such as time, position, etc. And 
some tasks are triggered by the environment. In order to depict the impacts from the environment, we 
add exit conditions to phase. The exit conditions could be divided into Sufficient Exit Conditions, 
Necessary Exit Conditions and Sufficient and Necessary Exit Conditions. The Sufficient Exit 
Conditions mean that the agent has to terminate current executing phase and determine whether the 
implementation of current phase is successful when any Sufficient Exit Condition is satisfied. The 
Necessary Exit Conditions mean that the agent cannot terminate current phase before all Necessary 
Exit Conditions are satisfied and this kind of Exit Conditions can be used to trigger the tasks 
belonging to the next phase. The results of the phase would be determined by both of its exit 
conditions and sub-tasks. There are four kinds of situations which may lead to the failure of the phase: 
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1. Any Essential Task of the phase is failed. 
2. Any Sufficient Exit Condition is satisfied, with several Essential Tasks still executing. 
3. Any Sufficient Exit Condition is satisfied and there are no Essential Tasks, however with none 

of sub-tasks being finished. 
4. All sub-tasks are failed with no Essential Tasks. 

As discussed above, we extend HTN description as follows: 
• The method of HTN is defined as ( ), ,m t C Phases= , where t  is the compound task to which 

m  will be applied. C  is the set of preconditions. And Phases  is the queue of the task 
execution phase which contains multiple parallel sub-tasks. 

• Each phase phase Phases∈  is defined as a tuple ( ),phase subtasks EC= , where subtasks  

is the set of tasks which belongs to the phase and  EC  is the set of exit conditions 

Algorithm 1 shows a standard HTN planning algorithm using the extended HTN description. 
It works as follows: Lines 2-4 check whether the current HTN is fully decomposed, and return the 
solution if this is true. Line 5 selects a compound task which has not applied a method yet and the 
task must belong to the first executable phase in the current HTN. Lines 6-18 select a method to 
decompose the task. Lines 9-11 select a method whose preconditions are satisfied. Lines 12-15 add 
the tasks belonging to each phase into the HTN in the order of the phase queue. Line 16 makes sure 
that only one method will be applied. The algorithm loops until the HTN is fully decomposed. 

Algorithm 1.  HTNPlanning( 0s ,
0N ) 

1. Loop  
2.     If ( )0 0 0( ) ,fullydecomposed N s Nγ∧ ≠⊥   then 
3.       Return 

0N  
4.     End If 
5.     pick up a compound task 

0( )t GetFirstPhaseleave N=  

6.      If 
0( , )Applied N t = ∅  

then 
7.        Backtrack 
8.     End If 
9.     Acquire all methods M  of 

0( , )Applied N t  

10.      For all methods m M∈  
11.        If all c C∈  is satisfied then  
12.           Acquire the queue Phases  from m  
13.           For all phase Phases∈  in order 

14.             
0 0( , , , )N decompose N t m phase=  

15.           End For 
16.         break 
17.        End If 
18.      End For 
19.  End Loop 

3.2. Monitoring Strategy using Extended HTN Description 

As the environment of RTS game is dynamic, the plan generated in the earlier stage may fail. 
There are two sources of the plan failures. One comes from the situation when actions executed by 
units are failed because of being destroyed, or the unit cannot find available resource. The other 
comes from the situation when Sufficient Exit Conditions, which allow tasks to be executed, are 
changed under several kinds of situations, as discussed in Section 3.1. Once some actions are failed 
or any Sufficient Exit Condition is satisfied, the whole plan needs to be checked to find out the least 
influenced task with available methods. 

Algorithm 2 shows the strategy of handling failed tasks. Line 1-4 shows that the essential task 
and un-essential task have different handling strategies. Line 5-14 shows how to handle the failed 
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compound task. Line 7-12 shows that if the failed compound task has available methods, it will be 
saved and repaired in the next decision cycle. Only when the task has no available methods to be 
applied will it be considered as the failed one. In this way the number of influenced tasks will be 
limited as small as possible and it will reduce the repairing pressure. Line 15 shows the strategy of 
handling the primitive task and compound task without available methods. 

Algorithm 2.  TaskFailed( t ) 
1. If ( )Essential t false=  then 
2.    SubTaskFailed( t ) 
3.    Return 
4. End If 
5. If t  is Compound task then  
6.   Acquire all methods M  of t  
7.   Loop  

8.      Pick a method ( ) =failedm M status m∈ ∧ !  
9.      If all c C∈  is satisfied then 
10.      Add t  into RepairTaskList 
11.      Return; 
12.      End if  
13.   End loop 
14.  End if 
15.  SubTaskFailed( t ) 

According to the extended HTN description, each task belongs to one phase except the root 
node task. The phase to which the failed task belongs needs to be checked whether it is failed or not. 
Algorithm 3 shows the strategy to handle the related phase according to the principles discussed in 
section 3.1. Line 2 shows if the failed task is the root node task, it need not be repaired. If the phase 
is failed, Algorithm 4 and Algorithm 5 will be triggered in order to cancel the influenced tasks and 
process the upper task. Algorithm 4 shows the strategy to handle the failed phase. If the task 
belonging to the failed phase is compound task, its sub-tasks will be processed. If it is primitive task, 
it will be canceled directly. Algorithm 5 shows the strategy of handling the method to which the 
failed phase belongs. Line 2-6 shows that all unfinished phases of the method would be failed 
because they are sequential. If any Sufficient Exit Condition is satisfied, a method will be triggered 
to check whether the phase to which the Sufficient Exit Condition belongs is failed or not. The 
process of the method is similar to Algorithm 3 except that its input parameter is a Sufficient Exit 
Condition not a task. 

Algorithm 3.  SubTaskFailed( t ) 
1. acquire the phase p which t  belongs to 
2. If p =⊥  then return 
3. end If 
4. If one of sufficient conditions of p is met then 
5.   If any essential tasks of p are failed then 
6.      PhaseFailed( p ); 
7.      MethodFailed( p ); 
8.   else If ( p has no essential task  
9.         ∧all tasks of p is executed or do not stat) 
10.         PhaseFailed( p ); 
11.         MethodFailed( p ); 
12.        end If 
13.     end If 
14. else If any essential tasks of p fail ∨  
15.       ( p has no essential task ∧ all tasks of p fail) 
16.       PhaseFailed( p ); 
17.       MethodFailed( p ); 
18.     end If 
19. end If 
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Algorithm 4.  FailedPhase ( p ) 

1. get all tasks subtasks  of p  

2. For all tasks t subtasks∈  
3.   If status( ) status( )t finished t failed= ∨ = then 

4.      continue; 
5.   End If 
6.   If t  is Compound task then 
7.     Get the method m applied to t  
8.     Get all phases Phases  of m  
9.     For all phase q Phases∈  

10.       PhaseFailed( q ) 

11.     End For 
12.     Else  
13.        Cancel( t ) 
14.     End If 
15. End For 

 

Algorithm 5.  MethodFailed ( p ) 

1. get the method m which p  belongs to  

2. For all phases Phases  of m  
3.   If ( )!q Phases q p status q finished∈ ∧ ≠ ∧ =  then 

4.      PhaseFailed( q ) 

5.   End If 
6. End For 
7.    Get task t  to which m is applied 
8.    TaskFailed( t ) 

3.3 Task Repair Strategy based on Historical Information 

After detecting an action failure, the least influenced task will be found out and added into the 
RepairTaskList. At each decision cycle, the AI player will try to find an alternative plan for each task 
in RepairTaskList. One kind of repair strategy is to consider the repaired task as a new top task by 
the planner. But this repair strategy doesn’t make use of the information of the previous planning. 
In this section a task repair strategy based on historical information is proposed. During each task 
planning period, the AI player will generate some alternative plans with different evaluated values. 
There are two kinds of differences between the alternative plans: different task decompositions and 
task parameters. The main purpose of task repair is to find out other decompositions or parameters 
for the failed task. Thus if all the generated plans in the previous planning could be saved, the AI 
player would try to search the repair plan from the generated plans instead of making new ones for 
the failed task directly. This will reduce the time consumed by task repair. 

In order to repair the failed task with better performance, it is necessary to try the alternative 
plans in the order of plan performance. However the plans generated by the AI player are usually 
out of order except the best one. So when recording the generated alternative plans, all the 
alternative plans need to be ordered by their evaluated values. At the same time, according to the 
AHTN algorithm, as all leaves of the game search tree are the alternative plans, the reordering of 
plans is the same as that of leaf nodes. To solve the above problem, we propose the Theorem 1 and 
further prove it as follows. 

Theorem 1: Following the below two principles, all the leaf nodes are ordered decreasingly 
from left to right if the root node is a max one; otherwise, they are ordered increasingly. 
1. If the parent node is max node, its sub-nodes are ordered decreasingly from left to right by the 

evaluated values; 
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2. If the parent node is min node, its sub-nodes are ordered increasingly from left to right by the 
evaluated values. 
Proof:  
Given a m  level min-max search tree, the ith  level has 

iN  nodes. Each node is represented 
by 

ijn ij N≤ . If 
ijn  is a max node, the sub-nodes will be ordered decreasingly. And if it is the min 

node, its sub-nodes will be ordered increasingly.  
We use the min-max search tree in Figure 1 as an instance. 

,1,1 ,1,2 ,1,, ,i i i jn n n are sub nodes of 
1,1in −

 

and 
1, , 1, ,2 1, ,, , ,i j k i j i j kn n n+ + +  are sub nodes of 

,1,i jn . We assume that 
1,1in −

 is a max node. The value of 

,1,i jn  is represented by 
,1,i jv  where

,1,1 ,1,2 ,1,i i i jv v v≥ ≥ . The value of sub nodes of 
,1,i jn  is represented by 

1, ,i j hv +
 where 

1, ,1 1, ,2 1, ,i j i j i j hv v v+ + +≤ ≤ . 

With 
1,1in −

 being a max node, we can get 
1,1 ,1,1 1,1,1i i iv v v− += =  and 

,1, ,1,2 1,1,1 1,1,2 1,1,i j i i i i hv v v v v+ + +≤ ≤ ≤ ≤  . 

When the best plan node 
1,1,1in +

 is removed, the value 
,1,1iv of 

,1,1in  will become 
1,1,2iv +

 and the values 

of other sub nodes of 
1,1in −

 will not change. So the value of 
1,1in −

 will become 
1,1,2iv +

 and the best 

plan node is 
1,1,2in +

.  If we go on removing the best plan node, the best plan node will become 

1,1,3 1,1,4 1,1,, ,i i i hn n n+ + + . When all sub nodes of 
,1,1in  have been removed, the best plan node will become 

the first sub node of 
,1,2in . For 

1,1in −
, the order of best plans is the same as the order of 

1, ,i j hn +
. If 

1,1in −
 

is min node, the conclusion will not change.           □ 
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Figure 1. The min-max search tree is used in proof as an example. The rectangle nodes are max 
nodes which are ordered increasingly from left to right by the evaluated values and the circle nodes 
are min nodes which are ordered decreasingly from left to right by the evaluated values.  

After the above process, the generated alternative plans will be provided to the AI player so as 
to repair the failed tasks. Before task repair we need to confirm the location of the failed task in the 
alternative plan and use the same part of the alternative plan instead of the failed task to carry on 
its execution. As the same task can be used as sub-tasks of different compound tasks, it is necessary 
to compare both the name and decomposition path to confirm the location of the failed task in 
alternative plans. When the failed task has been found in the alternative plan, its leaf nodes will be 
considered as the new actions to be executed. 

At the beginning of each decision cycle, the AI player will first check whether there are failed 
tasks or not. If so, the AI player will try to repair the failed tasks. When all failed tasks have been 
repaired, the AI player will start a new plan. The main steps of AHTNR method are as follows: 
• Step 1: the AI player checks whether there are failed tasks. If so, turn to Step 2, otherwise turn to 

Step 5; 
• Step 2: the AI player removes the last failed task from the RepairTaskList; 
• Step 3: the AI player tries to find out an alternative plan for the failed task based on the historical 

information. If there is a suitable alternative plan, repair the failed task and turn to Step 1, else 
turn to Step 4; 
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• Step 4: the AI player takes the failed task as a new top task to make a new plan and turns to Step 
1. 

• Step 5: AI player generates a new plan. After getting a best plan, the AI player first orders and 
saves all generated plans according to the two principles as in Theorem 1. Then the AI player 
will get the executing actions from the best plan, and use the task network information to 
identify possible task failures. At last, the exit conditions will be added to the AI player for 
checking at each decision cycle. 

4. Experiment and Result Analysis 

4.1 Experimental Environment and Setting 

We compare the performance of our AHTNR with other algorithms using the free software 
called μRTS [41]. μRTS has been used to evaluate different algorithms applied in RTS games 
[4][9][10]. The screenshot of μRTS is shown in Figure 2. There are two players (blue and red) 
competing to destroy each opponent’s units. Each player has the same types of units. The small gray 
circles are workers which can attack enemies, build bases, harvest and transport resources. The 
Green squares are limited resources which can be harvested. The middle orange circles are light 
attackers. The yellow circles are heavy attackers. The heavy and light attackers both have larger hit 
and health points than workers. But they cannot harvest or transport resources. The white squares 
are bases which can produce new units. μRTS provides six kinds of actions for units in game. They 
are: move (in any empty one of the four cardinal directions), attack (attack any enemy in range), 
harvest minerals from resource unit, return minerals to bases, produce new units (some units such 
as bases can produce new units in any idle one of the four cardinal directions) and stay idle (the unit 
will do nothing).  

 
Figure 2. A screenshot of μRTS. The green squares are resources. The white squares are bases. The 
gray circles are workers, the yellow circles are heavy attackers and the middle orange circles are 
light attackers. The edges’ color of each unit presents its side.  

Though μRTS is only a simplification of the RTS games, it is still complex enough and exhibits 
the challenges of RTS games such as players concurrent moving, durative and simultaneous actions, 
real-time limitation and large branching factors. The original μRTS is deterministic and fully 
observable. To test our AHTNR’s performance, we crafted two different HTNs for the μRTS domain 
which work as follows: 
1. Low Level: it contains 12 operators (primitive task) and 9 methods for 3 kinds of tasks. 
2. Flexible: it contains 12 operators as Low Level. It provides 49 methods and 9 kinds of tasks. It 

allows methods to have parallel execution tasks. 
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The HTNs used by AHTNR choose the extended HTN description. All tasks except 
wait-for-free-unit and wait in HTNs are defined as essential tasks. The Exit Conditions have been 
added to part of the phases to reflect the influence of environment. Figure 3 shows an example from 
the Low Level HTN. The task named destroy-player-internal can be decomposed into two sub-tasks 
by applying the method named dpi-nextunit when the condition is satisfied. As the two sub-tasks 
are parallel, they belong to the same phase named phase-dpi-nextunit-phase. Because one sub-task is 
the same as its parent task, we will focus on the sub-task named unit-order. If all conditions of its 
method named uo-attack are satisfied, this task will be decomposed into the sub-tasks named 
move-into-attack-range and attack. The sub-tasks belong to different phases as they are Sequential. 
And they both are essential tasks. The first phase named phase-uo-attack-pahse-1 has an Exit 
Condition. The task named attack in next phase would not be triggered before the Exit Condition is 
satisfied.  

 
Figure 3. An example from the Low Level definition stating the way of executing the task: 
destroy-player-internal. The phase called phase-dpi-nextunit-phase has two parallel tasks and the phase 
called phase-uo-attack-phase-1 has an Exit Condition. The next phase will not start until it is satisfied. 
All tasks except wait-for-free-unit and wait in HTNs are defined as essential tasks 

To evaluate AHTNR, we compared it against the following collection of search algorithms: 
1. AHTN: It is an algorithm combining game tree search and HTN planning. It cannot handle task 

failures during plan execution and the HTN description it used cannot describe more complex 
relationships among tasks and impacts of environment. In the experiments AHTN will use two 
kinds of HTNs (Low Level and Flexible) without extended HTN description. 

2. RandombiasedWorker: The AI player with RandombiasedWorker strategy will create actions 
randomly.  
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3. LightRush: It is a hard-coded strategy. The AI player will produce light attackers and command 
them to attack enemy immediately. 

4. HeavyRush: It is a hard-coded strategy. The AI player will produce heavy attackers and 
command them to attack enemy immediately. 

5. UCT: It is a variant of MCTS by modifying the strategy of exploring the child node. It is 
believed to adapt automatically to the effective smoothness of the tree. We use an 
implementation with extension of handling simultaneous and durative actions in experiments 
[10]. 

Before comparing against other algorithms, the parameters following have to be confirmed 
firstly. 
• CPU time: It is the limited amount of time for an AI player using CPU per game frame. In our 

experiment, we will use different CPU time settings to test the performance of the algorithms.  
• Playout policy: The playout policies of AHTNR, AHTN and UCT in our experiments are all 

RandombiasedWorker. 
• Playout time: It is the maximum running time of a playout. All playouts are limited to 100 game 

frames. 
• Pathfinding algorithm: The AI player uses the pathfinding algorithm to get the path from 

current location to destination location. In our experiment, we use A* pathfinding algorithm as 
pathfinding algorithm. 

• Evaluation function: In our experiments, an evaluation function from [10] will be used to 
compute the reward to get the best plan. The evaluation function from [10] is a variant of LTD2 
[42] which not only considers the units’ hit-points but also their costs. 

• Maximum game time: The maximum game time is limited in 3000 cycles. It means that if both 
players have living units at 3000th cycle, the game will be over as a Tie. 

• Maps: The three maps used in our experiments are: M1 (8×8 tiles), M2 (12×12 tiles) and M3 
(16×16 tiles). 

In order to evaluate different algorithms, the round-robin tournament will be used. Each 
algorithm will play 100 games against the others in three different maps with random starting 
positions. The method to compute the score of each algorithm is as follows: the reward of winner is 
set to 1 point. 0.5 point is given to both algorithms when there is a Tie. All competitions start with 
one base, the same count of resource and one worker for both players. 

4.2 Experimental Results and Analysis 

In this section, we compare the performance of AHTNR and other search algorithms from 
three aspects: average score, average decision time and average failed task repair rate on three 
maps against 8 kinds of AI players. 

4.2.1. Average Score under Different Parameters Settings on Three Maps 

We compare the average scores of each search algorithm against others in 100 games with the 
CPU time from 20 to 200 milliseconds. Figure 1Figure 4-6 show the average scores of three maps 
respectively.  

According to the results in Figure 4-6, we can see that the player of AHTNR-F (the HTN 
description used is Flexible) outperforms other players on all three maps under different CPU time. 
The performances of AHTNR-F change little with the increasing scale of the maps. Moreover, the 
average scores of AHTNR-F approximate the maximum average score. AHTNR-LL (the HTN 
description used is Low Level) has similar performance with AHTN-LL on the small map. However 
it seems to perform worse than AHTN-LL on the large map. Because the larger map has more 
complex dynamic environment and AHTNR-LL has poor domain knowledge to make suitable 
repair plan for such complex environment. The performance of AHTNR-LL and AHTN-LL 
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deteriorates as the size of map grows. Because more units are produced on larger maps and the 
domain knowledge which AHTNR-LL and AHTN-LL obtain is too simple to generate better plans 
in such complex game. The scripted methods (Heavy Rush and Light Rush) seem to perform better 
on larger maps. This is in fact caused by the AHTNR-LL and AHTN-LL under-performing on larger 
maps. The performances of all AI players change little under different CPU time settings on three 
maps. This is because all AI players only cost a few amount of time to make decisions. Moreover, 
the AI players can save several cycles to make a decision. Because the performances of all AI 
players are similar under different CPU time settings, we will use one setting of the CPU time in the 
following. 

 

Figure 4. The average score of each algorithm. The horizontal axis is the CPU time from 20 to 200 
milliseconds. And the vertical axis is the average score of 800 games. The Playout time is 100 
milliseconds. The Max playout is 1. And the map is M1 (8×8 tiles). 

 

Figure 5. The average score of each algorithm. The horizontal axis is the CPU time from 20 to 200 
milliseconds. And the vertical axis is the average score of 800 games. The Playout time is 100 
milliseconds. The Max playout is 1. And the map is M2 (12×12 tiles). 
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Figure 6. The average score of each algorithm. The horizontal axis is the CPU time from 20 to 200 
milliseconds. And the vertical axis is the average score of 800 games. The Playout time is 100 
milliseconds. The Max playout is 1. And the map is M3 (16×16 tiles). 

4.2.2. Average Decision Time on Three Maps 

In RTS games, it requires the AI players to make their decisions as quick as possible. Figure 7-9 
show the average planning time of AHTNR and AHTN for one decision process of 100 games on 
three maps respectively. 

From the results in Figure 7-9, we can find that AHTNR usually needs more decision time than 
AHTN when they have similar domain knowledge. In the decision process, AHTNR repairs failed 
tasks and sorts all generated alternative plans in search process by their evaluated values. Both of 
them cost extra planning time. But it improves the performance of AHTNR in dynamic 
environment by repairing failed plans. Moreover, as shown in Table 1-2, the time of repairing failed 
tasks and saving alternative plans is short compared with the total time in a decision process. After 
all, AHTNR costs more decision time than AHTN. But it is in an acceptable range. 

 
Figure 7. The average decision time of AHTNR and AHTN with two kinds of HTN descriptions of 
100 games where CPU time is 100 milliseconds. The Playout time is 100 milliseconds. The Max 
playout is 1. The map used is M1 (8×8 tiles). 
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Figure 8. The average decision time of AHTNR and AHTN with two kinds of HTN descriptions of 
100 games where CPU time is 100 milliseconds. The Playout time is 100 milliseconds. The Max 
playout is 1. The map used is M2 (12×12 tiles). 

 
Figure 9. The average decision time of AHTNR and AHTN with two kinds of HTN descriptions of 
100 games where CPU time is 100 milliseconds. The Playout time is 100 milliseconds. The Max 
playout is 1. The map used is M2 (12×12 tiles). 

Table 1. The percentage of extra time which consists of repairing failed task and saving alternative plans 
in total time for a decision process. The games are between AHTNR-LL and 8 kinds of AI players. 

AI player M1 M2 M3 
RandombiasedWorker 0.1682 0.0003 0.0003 

LightRush 0.0381 0.0078 0.0105 
HeavyRush 0.0355 0.0066 0.0070 

UCT 0.0498 0.0057 0.0060 
AHTNR-LL 0.0202 0.0128 0.0137 
AHTNR-F 0.034 0.0188 0.0103 
AHTN-LL 0.0221 0.0103 0.0114 
AHTN-F 0.0176 0.0174 0.0071 
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Table 2. The percentage of extra time which consists of repairing failed task and saving alternative plans 
in total time for a decision process. The games are between AHTNR-LL and 8 kinds of AI players. 

AI player M1 M2 M3 
RandombiasedWorker 0.0265 0.0290 0.0228 

LightRush 0.0226 0.0259 0.0217 
HeavyRush 0.0216 0.0275 0.0219 

UCT 0.027 0.0274 0.0275 
AHTNR-LL 0.0312 0.0348 0.0391 
AHTNR-F 0.0302 0.0353 0.0272 
AHTN-LL 0.0232 0.0279 0.0283 
AHTN-F 0.0192 0.0263 0.0141 

4.2.3. Average Failed Task Repair Rate on Three Maps 

In this section, we discuss the average repair rate of AHTNR on three maps against 8 kinds of 
AI players in 100 games. The results are shown in Table 3 and Table 4, where the domain knowledge 
is set to be Low Level and Flexible respectively. 

According to the results of Table 3 and Table 4, we can see that AHTNR-F has higher repair rate 
than AHTNR-LL against all kinds of AI players on three maps. It is caused by the difference 
between the domain knowledge used by AHTNR-LL and AHTNR-F. The main reason of repair 
failure is that there are no enough units to execute alternative plans. As AHTNR-F has richer 
domain knowledge, it can make better and more alternative plans to repair failed tasks than 
AHTNR-LL. 

Table 3. Average repair rate of AHTNR-LL on three maps against 8 kinds of AI players. M1 is 8×8 
tiles. M2 is 12×12 tiles. And M3 is 16×16 tiles. The symbol “-” means there are no failed tasks. 

AI player M1 M2 M3 
RandombiasedWorker 0.262 0.278 0.227 

LightRush - 0.324 0.037 
HeavyRush - 0.929 0 

UCT 0.618 0.591 0.553 
AHTNR-LL 0 0 0 
AHTNR-F 0.005 0 0 
AHTN-LL 0.355 0.343 0.373 
AHTN-F 0.236 0.233 0.213 

Table 4. Average repair rate of AHTNR-F on three maps against different AI players. M1 is 8×8 tiles. 
M2 is 12×12 tiles. And M3 is 16×16 tiles. The symbol “-” means there are no failed tasks. 

AI player M1 M2 M3 
RandombiasedWorker 0.904 0.886 0.852 

LightRush - 0.753 0.449 
HeavyRush 1 1 0.767 

UCT 0.945 0.907 0.906 
AHTNR-LL 0.008 0.044 0 
AHTNR-F 0.016 0.01 0.018 
AHTN-LL 0.401 0.618 0.697 
AHTN-F 0.407 0.373 0.452 

5. Conclusions and future works 

AHTN algorithm has addressed the problem of large state spaces and enormous branch factors 
in RTS games. However, the HTN description it used cannot describe complex relationships among 
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tasks and impacts of environment. Moreover it cannot handle task failures caused by dynamic 
environment during plan execution. The AHTNR algorithm we introduce in this paper addresses 
the above problems by using extended HTN description and incorporating a task repair strategy 
based on historical information. Compared with state-of-the-art algorithms in μRTS game, the 
AHTNR shows its capability in repairing task failures using the knowledge of the extended HTN 
description to handle more complex decision problems. 

There are multiple future research directions that can be extended to AHTNR. For instance, 
refined HTNs could be automatically extracted from thousands of RTS game replays. The more 
perfect HTN could give great help to improve the performance of AHTNR as shown in experiments. 
And both AHTN and AHTNR algorithm don’t consider indetermination and partial observation, 
which is frequently appeared in RTS games. This would lead the evolving game states to be 
different from the forecast during the HTN planning, and affect the validity of the plan solution. 
Therefore, improved AHTNR algorithm using the techniques of HTN planning under uncertainty 
will enhance its performance in RTS games which are non-deterministic and partially observable. 
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