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Abstract: The understanding of various health-oriented vital sign data generated from body sensor 

networks (BSNs) and discovery of the associations between the generated parameters is an important 

task that may assist and promote important decision making in healthcare. For example, in a smart 

home scenario where occupants’ health status is continuously monitored remotely, it is essential to 

provide the required assistance when an unusual or critical situation is detected in their vital sign 

data. In this paper, we present an efficient approach to mine the periodic patterns obtained from BSN 

data. In addition, we employ a correlation test on the generated patterns and introduce productive-

associated periodic-frequent patterns as the set of correlated periodic-frequent items. The 

combination of these measures has the advantage of empowering healthcare providers and patients 

to raise the quality of diagnosis as well as improve treatment and smart care, especially for elderly 

people in a smart home. We develop an efficient algorithm named PPFP-growth (Productive 

Periodic-Frequent Pattern-growth) to discover all productive-associated periodic frequent patterns 

using these measures. PPFP-growth is efficient and the productiveness measure removes 

uncorrelated periodic items. An experimental evaluation on synthetic and real datasets shows the 

efficiency of the proposed PPFP-growth algorithm, which can filter a huge number of periodic 

patterns to reveal only the correlated ones. 

Keywords: Body sensor network; Smart home, knowledge discovery in BSN data; frequent patterns; 
periodic patterns and productive pattern. 

 

1. Introduction 

In recent years, the use of body sensor networks (BSNs) to remotely monitor and collect the vital sign 
data of patients to extract knowledge on their health condition has become an effective solution in a 
smart home environment to enable the growing number of elderly as well as physically impaired 
people to stay alone in their homes with full care and support [1, 2, 3, 4]. With several ambient sensors, 
wearable sensors, and biomedical devices implemented throughout the home as well as wearable 
health trackers, the resident’s health conditions are continuously monitored and any urgent 
assistance is triggered when an abnormal situation is detected. Depending on the situation, 
healthcare caregivers can receive warnings or help alerts from healthcare service providers. A smart 
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home goal is to help the elderly and people with disabilities feel comfortable and practice their daily 
activities on their own, while monitoring their safety and well-being. This improves the elderly’s 
feeling and reduces the costs imposed on society and the healthcare system. 

With the improvement in health consciousness and advances in BSNs that are used to collect the 
vital signs of a patient in their smart home environment, there is a need for new approaches and 
systems to address healthcare monitoring and decision making [5, 6, 7, 8, 9, 10]. BSNs can be used to 
extract knowledge about the health condition of the patient and these have enabled the development 
of many real-time activity recognition approaches [11, 12, 13, 14]. Recently, most research has focused 
on human activity recognition through wearable devices and BSN-generated data to monitor and 
follow up patient health. The analysis of BSN-generated data can enable the early detection of 
unusual activities or abnormal health conditions by monitoring the daily living activities of users 
(e.g., elderly, cognitively impaired people, patients). Moreover, the behavior profile parameters 
sensed by the body sensors provide knowledge for doctors to treat a particular patient. For example, 
identifying periodic changes in the body temperature or heart rate of a patient can be useful 
information. Thus, the discovery of the shape of a pattern's occurrences (i.e., periodic or partial 
periodic) and the relationship between the physiological information obtained from the BSN can help 
predict or provide care to the user. 

 However, using pattern matching [15, 16] or human daily activity recognition [11-14] 
algorithms to find such important and interesting knowledge from BSN readings may be unsuitable 
because of the high data rate and variety of data streams obtained from BSNs. Recently, data mining 
techniques that aim to discover new knowledge from the obtained data have also been utilized to 
analyze knowledge from the BSN data [17, 18, 19, 20]. A software architecture has been developed 
by [19] to monitor routine behavior based on a patient’s daily activity. This obtains frequent patterns 
in order to identify the structure of a human’s daily activity using a frequent pattern mining [21] 
technique. An automatic data mining method using physical activity measurements has been 
proposed by Candás et al. [22] to detect abnormal human behavior. Machado et al. [23] designed a 
human activity recognition framework using on-body accelerometer sensors. Nevertheless, all these 
pattern mining approaches are limited in terms of detecting periodic changes in human behavior or 
identifying a subject’s activity. 

Furthermore, periodic-frequent or regular-frequent pattern mining, which aims to discover 
those frequent patterns that occur at regular intervals in a temporally ordered transactional database, 
was studied by Tanbeer et al. [24, 25, 26] with the aim of identifying frequent periodic patterns since 
the shapes of a pattern's occurrence in databases cannot be determined by the interesting measures 
(such as support and closure) used in frequent pattern mining approaches. Additionally, Rashid [27] 
proposed a different measure (regular-frequent pattern mining), measured as the variance among 
frequent pattern periods, in order to detect periodic patterns in transaction-like databases. On the 
other hand, [24, 25] introduced an efficient approach to detect and identify regular behavior patterns 
that exhibit complete cyclic repetitions from BSN data. It uses a periodic pattern mining algorithm to 
analyze patient data in order to follow up the health conditions of patients. As the real world is 
generally imperfect, some interested patterns that occur frequently with partial cyclic repetitions in 
humans’ daily routines may exist and those patterns may have a significant effect on human health 
and could help caregivers take serious decisions regarding a patient’s health [28]. Unfortunately, 
those types of patterns cannot be identified using the existing periodic-frequent pattern mining 
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algorithms because the approaches in [24-26] try to discover those patterns that are frequent and have 
complete cyclic repetitions in the entire database. Most of these algorithms use a maximum periodicity 
threshold to discover periodic patterns, which measures pattern periodicity based on the largest 
amount of time difference or number of timeslots between two occurrences of a pattern. Typically, a 
pattern with single periodicity greater than the user-defined maximum periodicity threshold will be 
discarded and it will be considered as non-periodic. This approach is not flexible, as some interested 
patterns can be discarded based on only one of its periods. In this paper, we propose a solution to 
this problem by discovering periodic patterns using three measures: the interested-recurrence period, 
minimal-itemset occurrence, and average interested-period. 

In addition, data analysis in the case of BSN is no easy task. Consider, for example, the case of 
caregivers or doctors being interested in identifying the set of vital health parameters with similar 
occurrence periods that occur nearly in the same time periods. On the other hand, some of a patient’s 
periodic (regular) frequent patterns are periodic due to random sensor readings without inherent 
association. Using such periodic-frequent patterns without analyzing item associations could be 
detrimental for caregivers in decision making about a patient’s health. To overcome this challenge, 
we employ a productivity test to identify the set of productive-associated periodic-frequent patterns. 

Example 1: During human profile analysis, the caregiver observed from the set of readings that 
the patient’s heart rate and blood pressure status were very high and less frequently occurred 
compared with the high readings of blood pressure and body temperature. Furthermore, the duration 
between two consecutive high readings can be generally longer than the two consecutive high 
readings of blood pressure and body temperature. Identifying the above types of inherent regularities 
in a patient’s health-related readings can be significantly helpful for caregivers in following up a 
patient’s health condition and enabling real-time health-related data analysis. 

In [28], the authors introduced a new class of patterns known as chronic-frequent patterns by 
investigating the partial periodic behavior of frequent patterns in a transactional database. A pattern 
is said to be chronic frequent if it has a sufficient number of cyclic repetitions in the entire database. 
The method uses a pattern-growth mining approach with two database scans, which cannot be 
applied in the case of BSN-generated data because of the high rate of data that need to be read once. 
In addition, the number of generated patterns is huge, partially because of random occurrences 
without item relationships. The work of [29] introduced a new type of periodic pattern named 
productive patterns, which have the ability to find full period patterns (i.e., patterns that occur at 
regular intervals), and conducted a productivity test to ensure the association between the generated 
patterns. Nevertheless, the approach uses a generate-and-test method based on the a priori algorithm, 
which results in huge search space and thus cannot be applied in the case of stream data [21]. In our 
current work, we employ the productivity test using an efficient fp-growth-inspired approach to 
mine the set of productive patterns. 

In this paper, we plan to develop a smart home solution that maintains the occupant lifestyles of care 
users, especially the elderly and physically impaired people. We aim to achieve this goal using 
sensor-based data collection systems (e.g., BSNs) relevant to a “smart home” for efficient healthcare 
decision making. With this motivation, we propose an approach to identify the periodic 
interestingness of health-related vital signs in a single run using an efficient pattern mining 
algorithm. Considering the productivity of all periodic vital signs and with the elimination of 
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randomly generated patterns, the overall system helps reduce false alarms in monitoring stations. In 
this paper, we introduce a new tree structure, called the Productive Periodic-Frequent Pattern Tree 
(PPFP-tree), to capture both the frequency and the periodic behavior of the patterns. A pattern-
growth algorithm, called Productive Periodic-Frequent Pattern-growth (PPFP-growth), is then 
proposed to discover the patterns from the PPFP-tree. Our contributions are as follows:  

1. We focus on mining the different parameter readings obtained from body sensors that occur 
either fully or partially in the smart home in order to follow up a patient’s health conditions 
using a novel tree-based data structure, called the PPFP-tree, with a single database scan. 

2. We further employ two pruning techniques. The first technique is based on the concepts of 
partial periodic patterns and is used to discover periodic-frequent patterns containing either 
cyclic or acyclic pattern repetition. The second one is a productiveness measure used to 
ensure that periodic-frequent patterns without item associations or more generally obtained 
due to random occurrences are eliminated. 

3. Once the PPFP-tree is constructed, we use an efficient pattern-growth-based mining 
technique to mine the patient readings (PPFP-growth) algorithm using our pruning 
techniques. 

4. A performance study is conducted to compare the performance of PPFP-growth with existing 
periodic mining algorithms, and we show that PPFP-growth is more runtime efficient than 
existing algorithms. 

The rest of the paper is organized as follows. Section 2 presents an example scenario for applying the 
proposed approach in BSNs. Section 3 presents related work. Section 4 introduces our model of 
mining productive-associated patterns. Section 5 describes the working of the PPFP-growth 
algorithm. The experimental evaluation of PPFP-growth and some recent related work is presented 
in Section 6. Finally, Section 7 concludes the paper and provides directions for future work. 

2. Productive-associated Periodic Pattern Mining in Healthcare 

Consider an assisted living system where a patient lives alone and let a set of body sensors be attached 

to a patient’s body to obtain health-related data continuously (i.e., each minute). Each sensor will 

collect a particular type of vital sign as shown in Table 1. 
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Table 1. The five vital signs and their sensor acronyms used in this example. 

Bio-signal Sensor Acronym Range (beats/min) 

 

Heart rate 

 

HR 

Very High High Normal Low 

above 100  70-99  40-69  below 40  

 

Respiratory rate 

 

RR 

Range (Breaths per minute) 

Very High High Normal Low 

21-25 15-21 12 -15 Below 5 

Blood O2 saturation  

SO2 

Range Percentage (%) 

High Normal Low 

95-100 80-90 Below 83 

Diastolic blood pressure  

DBP 

Range (mmHg) 

Very High High Normal Low 

above 110  90 – 109 65-84  35- 59  

Body temperature   

BT 

Range (degrees Celsius) 

Very High High Normal Low 

above 40  39 – 39.9 37 – 38  36 – 36.9  

 

Thus, the sensor readings obtained by all sensors (e.g., HR, RR, So2, DBP, and BT) can be shown as a 
combination of the different vital signs from all sensors (e.g., a vital sign reading list). Depending on 
the ranges and/or types of vital parameters, the values sensed by each sensor can be subdivided into 
several categories based on a predefined range, as shown in Table 1. For example, if the readings 
from HR and BT are HR-High and BT-High at time Tn, respectively, the vital sign reading list for Tn 
would be as follows: Tn: (HR-High, BT-High). Thus, the five readings continuously generated by the 
sensors for the patients can be represented as: 

T1: SO2 -Low, RR-Low. 
T2: DBP-Normal, HR- High, BT-Very High. 
T3: HR-High, BT-High. 
T4: SO2 -Low, RR-Low. 
T5: DBP- Very High, HR- Low. 
T6: HR-High, BT-Low. 
T7: DBP-low, HR-Very High, BT-Low. 
T8: HR-High, BT-High. 
T9: SO2 -Low, RR-Low. 

Once the temporal readings are recorded in the form of the above lists with timestamp information, 
we can apply our PPFP-tree miner to obtain all periodic patterns in patient data, as patients who are 
actually ill are likely to have several abnormal periodic vital signs. For example, it can be observed 
from the above set of readings that the pattern < SO2 -Low, RR-Low > occurs three times in the patient 
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reading vital sign at (T1, T4, T9), which may indicate that the blood oxygen saturation and respiratory 
rate decreases at least once during the daytime. Once we find this pattern, we apply our productivity 
test to see to what extent SO2 and RR have a productive association. Once we discover such 
knowledge, the caregiver will easily detect that the patient will experience hypoventilation [30] at any 
time. Moreover, the monitoring caregiver can identify additional patterns of abnormalities by 
monitoring the productive-associated periodic vitals. For example, a serious emergency known as 
sepsis can occur when the patient has low blood pressure, a very high heart rate, and a decrease in 
body temperature. Therefore, caregivers need to be aware of these abnormalities to avoid any 
potentially emergent situation associated with periodic changes in multiple vital signs. 

3. Related Work  

The flexibility and widespread use of wearable sensors have promoted the process of modeling 

human behavior from sensor-generated data for the purpose of following human health and 

detecting any unusual or emergent behavior through human recognition systems that can monitor 

occupants’ behavior in smart environments. The research community has presented several 

frameworks for prototyping general smart environments or particular smart homes. As an example, 

[31] proposed the Syndesi framework. Syndesi creates a personalized smart environment to realize 

human actions based on human behavior profiles. The framework provides the necessary services to 

home occupants to quickly control and react easily with their environment (e.g., electrical devices 

based on human preferences and needs). [32] Proposed Gaia, a distributed middleware supporting 

ubiquitous computing environments. Gaia allows developers to monitor a combination of individual 

services as a whole by introducing programmable active spaces. In the context of the CASAS project, 

[33, 34] presented automatic daily life activity pattern discovery and monitoring for assisted living. 

This overcomes the limitation of supervised activity-recognizing approaches by discovering human 

activity from collected sensor data. Additionally, the system can detect variations in human 

monitoring services and is also able to handle real-time multi-sensor data efficiently. Recently, many 

cloud-assisted frameworks for the development of smart homes have been proposed by the research 

community [35, 36, 37, 38]. The work in [39] shows CASE, a framework that recognizes human 

activities by discovering the frequent episodes from occupant-related data based on the a priori 

algorithm [40]. The work in [41] shows a probabilistic-based approach to forecast smart home 

occupants’ behavior and wellness by monitoring the daily usage of home appliances. For example, 

elderly people’s behavior follows some regularity in their activity execution such as eating at 7 a.m. 

and sleeping at 9 p.m. When daily activities are performed regularly, it means that the smart home 

inhabitant is in a state of wellness. In this work, ambient-assisted predictive techniques are used for 

the extraction of patterns related to sensor activation time. Recently, many works in the areas of 

human behavior analysis [14, 15, 17] and human activity recognition have been conducted; however 

unfortunately, most of those methods require supervised techniques for handling and labeling 

sensor-generated data. Additionally, real-time human activity recognition using data mining 

techniques has become popular for detecting human behavior from BSN data [17-20]. Candás et al. 
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[22] proposed an unsupervised data mining method to detect unusual (abnormal) human behavior 

using physical activity. This detects anomalies in behavior automatically by assessing the physical 

activity level of human and compares it with existing historical data. 

 Despite the accuracy of the proposed approaches in activity recognition, a significant 

proportion of smart home services provided by a smart home comprises monitoring residents’ 

activities to find only frequent patterns in their activities of daily living for health purposes. Hence, 

a significant amount of research is still required to develop algorithms that can help with an accurate 

diagnosis. Moreover, frequent patterns are huge in space if we try to find them in BSN-generated 

data and are limited in terms of detecting changes in human behavior that occur regularly or periodic 

in everyday life. 

Nevertheless, mining periodic-frequent patterns is no easy task as it is faced with several 

challenges. For instance, the periodicity measure in [27], which is susceptible to noise in the database, 

might often report the noised maximal period of a pattern as its regular period. Additionally, as we 

mentioned earlier, the methods in [25] and [26] often generate regular (periodic) frequent patterns 

that occur in the whole database with totally distinct periods. 

Recently, Tanbeer et al. [26] developed a regular pattern tree to exactly mine regular patterns 

from transactional databases. This approach requires two database scans and uses the maximum 

occurrence interval of a pattern in a database to measure a pattern’s periodicity. Thus, many 

researchers are extending Tanbeer’s work to mine top−k [42, 43, 44] periodic patterns, but their 

approaches remain limited to k items. The work presented in [24, 25] proposed an efficient and 

scalable regular mining algorithm with one database scan. The algorithm can be conducted in either 

single or multiple distributed BSN data for the purpose of following up the health conditions of users. 

A major drawback of those approaches is using a maximum periodicity threshold as a measure for 

finding periodic patterns, which results in discarding the itemset automatically if it has a single 

period of length value greater than the MaxPr threshold. Thus, this measure is too strict and could 

lead to losing a very important pattern that appears irregularly or partially. 

In [45], the authors introduced a periodic-ratio measure to report the partial periodic pattern that 

occurs frequently in a transaction-like database. Unfortunately, the periodic-ratio measure does not 

satisfy the downward closure property, and as a result the approach is computationally extensive. In 

[28], the authors reported a kind of periodic pattern called a chronic-frequent pattern, namely 

frequent patterns that have either complete cyclic repetition in the database or partial cyclic 

repetition. The model builds a chronic-frequent tree with two database scans. In [29], a productive 

periodic pattern is generated; productive patterns are exhibited frequently, and this regularity is not 

due to the random occurrences of uncorrelated items. Further, the framework in [29] limits the 

pattern’s periodicity to a given threshold and within the same range of a period’s values given by the 

user. The model uses the basic a priori-like approach to generate the periodic pattern. 
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Table 2: Comparison of the issues addressed by our approach against current related work. ‘issues1 ‘discover 

full or partial pattern,’ issues2 ‘one database scan,’ and issues3 ‘the ability to generate correlated 

periodic-frequent patterns.’ The symbol ‘✔’ represents the issue addressed and ‘✖’ represents the 

issue not addressed by the corresponding work. 

   Issue1   Issue2 Issue3 

[21] ✖ 

 

✖ 

 

✖ 

 

[26] ✖ 

 

✖ 

 

✖ 

 

[25] ✖ 

 

✔ 

 

✖ 

 

[28] ✔ 

 

✖ 

 

✖ 

 

[45] ✔ 

 

✖ 

 

✖ 

 

[29] ✖ 

 

✖ 

 

✔ 

 

Our approach ✔ 

 

✔ 

 

✔ 

 

 

 Again, some of the mentioned work considers both partial and full cyclic pattern mining with 

two database scans. However, none of the above algorithms can be applicable to efficiently mining 

the big data coming from BSN data, which are close to transactional databases, to detect the periodic 

patterns that occur in partial or full cyclic databases. Such correlated patterns could help detect some 

new knowledge, especially for human care or disease detection. Therefore, there is a need to develop 

an efficient mining technique to address the problem of productive pattern mining from body sensor 

data. Table 2 compares our approach and related approaches with respect to three issues: i) the ability 

to discover full or partial patterns, ii) the ability to discover patterns using one database scan, and iii) 

the discovery of correlated periodic-frequent patterns. It can be observed that our approach tries to 

address all of the issues, while related work addresses only some of them. 

4. Proposed Model 

Our approach to remote monitoring systems is presented in Fig. 1, where an elderly person is 
equipped with different body sensors (e.g., ECG sensor, BP sensor). These sensors collect different 
physiological data on the patient in a continuous manner. After transmitting vital data to storage 
devices, the knowledge discovery process begins to search for some interested values related to the 
vital signs over continuous batches of the collected data of multiple vital signs. The periodicity and 
productivity of interrelated parameters are used to recommend a patient’s doctors for subsequent 
decisions related to the patient’s health condition. 
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Figure 1. The workflow of productive-associated periodic-frequent pattern mining. 

The basic notations and definitions of productive-associated periodic pattern mining in a body sensor 

database are as follows: 

Let a set of body sensors represented as T= { ,	 , …, } be in a particular BSN at smart 

home SM. The pattern of a sensor’s X = { ,……, } ⊆T, where j ≤ k, is of length-k, satisfying some 

conditions of measures such as frequency; for instance, X = { ,	 , } is a length-3 pattern.  

A body sensor database, BSD, over T is defined to be a nonempty set of an epoch’s BSD = { , ….., 

}, where each epoch in the BSD is identified by m (called TID), where TID represents the occurrence 

of the timeslot-id of the sensor. The cover of pattern X in SDB,	 ( ), is the set of epochs’ TIDs 

that contain X. That is, ( ) = { ∶ 	 ∈ ∧ 	 ⊆ }	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (1) 
The support of a pattern X in 	 	 ( ), is defined as 	 ( ) = 	 | ( )||	 | 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (2) 
where | ( )| is called the support count of X in SDB and |	 | represents the size of SDB in 

the total number of epochs. Pattern X in SDB is said to be frequent if 	 ( ) is larger than or 

equal to ( ), a user-specified minimum support threshold value. 

 

Example 2. Consider the sensor database shown in Table 3. It contains seven epochs. The set of items, I = 

{ , , , , }, and the set of body sensor readings ′ 	 	 ′ ′ i.e., ‘{ , }’ is known as 

an itemset (or a pattern). This pattern contains two items. Therefore, it is a length-2 pattern. The pattern 

‘{ , }’ appears in the epochs having ids 3, 4, and 7. Therefore, ( , )= {3, 4, 7}. Hence, 	 ( , )= |{3,4,7}| = 3. If the user-defined ( )= 3, then ‘‘{ , } is a frequent pattern 

as 	 ( , ) ≥ . 
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Table 3. A SENSOR DATABASE (SDB) 

 

 

Definition 1 (a period of X). Let  and	 ; j ∈ [1, (m -1)] be two consecutive timeslot-ids 

of pattern X in BSD. Then, =	 −	  (i.e., the number of timeslots) is defined as the j-th 

period of X in BSD. As mentioned in [25], a ‘null’ epoch with no sensor data is considered in the 

period computation at the beginning of BSD, i.e.,  = null, where  is the first epoch in the pattern 

occurrence list. Similarly,	 , is the n-th epoch in BSD, i.e., the last epoch to be considered. 

 

Example 3. Continuing with Example 2, the pattern ‘ , ’ has appeared in the TID of 3, 4, and 7. 

Therefore, a period for ‘ , ,’ is 3(= 3 -  ), 1(=4 -3), 3(=7-4), 0(= − 7) where =0,	 = 7.  

 

Definition 2. (The interested-recurrence period of pattern X.) 

Let	 ( ) = {	 , , …… . , }, where r is the total number of periods of X in BSD, be the 

complete set of all the periodic occurrences of X in TDB. A ∈ ( ) is said to be the periodic-

Recurrence iff 	 	 ℎ 	 	 	 ,  where maxPer (ɛ) is the largest occurrence 

interval defined by use. 

Example 4. From Example 3, the complete set of periods for the pattern ‘ , ’ is ( , ) ={	 3, 1, 3, 0} if the user-defined ( )= 2; then, ,  and ,  are the periodic-recurrence of the 

patterns but ,  and ,  are not periodic-recurrence as their value ≰ 	 ( ). 
In order to solve the problem of finding periodic patterns that may have acyclic repetition in the 

BSN database, we add a measure to check the number of interested periods in an itemset, which is: 

Definition 3. (The minimal-itemset occurrence) Let ⊆ 	 ( ) be the set of interested 

periods such that ∀ 	 ∈ 	 , 	 ≤ 	 ( ). The minimal-itemset occurrence, say MPR(x), is 

the size of , that is, MPR(x) = | |. 

Tanbeer [28] and all the extension work considered the periodicity of the pattern to be the 

maximum period in ( ), that is, periodicity (X) = 	 ( |∀ ∈ ( )). A drawback of 

maximum periodicity is that this measure may be too strict as the periodic pattern is discarded 

automatically if one of its periods is of a length greater than the maximum periodicity threshold 

defined by the user. To provide more flexibility in evaluating pattern periodicity and overcome this 

Id Epoch Id Epoch Id  Epoch 

1  ,  4  , , ,  7  , ,  

2   5  , ,    

3  , , , , 	 	 	 	  6  , ,    
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limitation of traditional PFP mining algorithms, the concept of the average interested-period is 

proposed, which is defined as follows. 

Definition 4. (Average interested-period of an itemset X.) Let ⊆ 	 ( ) be the set of 

interested periods such that ∀ 	 ∈ 	 , 	 ≤ 	 ( ).  The periodicity of X is defined as ( ) = ∑ /| 	 |	 ∈	 . 

For example, let the interested period of itemset ′ , 	 be	 , = {1, 0} and its average 

periodicity is ( , ) = 0.5. 
 

Although the usefulness of considering average periodicity as a measure of the period length of 

an itemset ensures that we consider any partial or full periodic pattern without any restriction, we 

cannot directly evaluate the periodicity of a pattern with similar periods or even use the average as a 

sole measure because Definition 2 does not consider whether an itemset has an occurrence’s periods 

that are similar or vary widely. For instance, consider an itemset with the given  = {1, 3, 5, 7} 

and  = {10, 10, 10, 10, 10, 10, 10, 10}. Although itemsets BSx and BSy have totally distinct periods, 

(x) = ( )  = 8. Hence, using only the average as a sole periodicity measure is 

misleading and will not solve the problem of reporting patterns with similar periods. The work in 

[29] solved this issue by combining the average periodicity measure with the standard deviation 

measures(s). Here, we use the same solution, but we restrict our periodicity only to the interested 

periods that match the user’s request. 

Definition 5. (Problem Definition) We have a BSN database BSD, user-defined minimum 

support threshold ε, maximum period maxPrd, minimal-itemset occurrence threshold MPR, 

periodicity measure per difference factor p1, pattern X, and interested period . X is a periodic-

frequent pattern if  (X) ≥ ε, | | ≥ MPR, (per − p1) ≤  ( ) − std( ) and  

( ) + std( ) ≤ (per + p1). 

With Definition 5, we report every periodic pattern that has either cyclic or acyclic occurrences 

with similar regular periods in the BSN database. Many diseases may have some set of values that 

occurs at the same time and later disappears and then reappears, for example. Suppose disease X 

results in increases in body temperature and in heart rate beats three times within one month; then, 

the patient may face another disease symptom. Moreover, how we can detect the relationships 

between different BSN reading parameters and ensure that the generated patterns are not due to 

random occurrences is a major issue in analyzing the vital signs obtained from BSNs. To enable 

reporting only the periodic-frequent physiological parameters that are vital for decision making, we 

test the positive correlations among them using the productive-associated test as proposed in [29] as 

follows. 

Definition 6. A periodic frequent pattern, X in BSD, is a productive pattern if, for all X1, X2 such 
that, (X1 ⊂ X), (X2 ⊂ X), (X1∪X2 = X), and (X1∩X2 = ∅), then, 
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| | − ( )( ). | | 	> | | − ( 1)( 1). | | 	×	 | | − ( 2)( 2). | | 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (3) 
Our productive pattern test in definition 6 is the same as the productivity test proposed in [29, 46] as 

follow: For any periodic itemset	 , | | ( )( ).| | 	  can be re-written as | | ( )( ) 	 × | | 
where | | ( )( ) = 	 ( )| | = ( ) . Hence our productive-association test can be 

expressed as utilized in [46] as: 
 | | − ( )( ). | | 	 > | | − ( 1)( 1). | | 	 ×	 | | − ( 2)( 2). | | = ( )> 	 ( )× ( ) 

Through Definition 6, a periodic-frequent pattern, X in BSD is productive iff every subset 

itemset formed with an inherent item association in BSD ensures that all reported patterns are 

correlated and not due to random occurrences. The productive-associated test satisfies the downward 

closure property that every superset of a productive itemset will always contain a productive itemset, 

and hence we use it as one of our pruning strategies to eliminate non-productive itemsets from the 

reported periodic-frequent patterns. 

5. Mining Productive-Associative Periodic-Frequent Patterns 

Here, we propose an efficient PPFP-tree data structure with one database scan over the BSN database 

to mine the complete set of periodic patterns that has productive association. 

5.1. PPFP-tree Structure 

The PPFP-tree has a root node referred to as the ‘null’ and a set of prefix trees. It also has a header 

table called the body sensor data table (BSD-table). The BSD-table consists of five fields (i, f, rc, Lt, p): 

(i) body sensor name (BSi), (ii) frequency count of BSi, (iii) periodicity of BSi, (iv) last occurrence tid 

of BSi, and (v) a pointer to the first node in the PPFP-tree for each sensor value. After building the 

PPFP-tree and traversing it once, we calculate the periodicity (rc) and Lt for each sensor. The prefix 

tree structure is similar to Han’s [21] prefix tree used to mine the Frequent Pattern-tree (FP-tree). 

However, the nodes in the PPFP-tree do not maintain the support count. Instead, they maintain the 

occurrence information of each sensor in the BSN database by keeping each sensor timeslot only at 

the last node of every epoch. The prefix tree has two types of nodes: ordinary nodes and tail nodes. 

The former is similar to the FP-tree ordinary node, whereas the latter is the node that represents the 

last item of any sorted epoch. The structure of the tail node is of the form Nj[t1,t2,...,tn], where Nj ∈ X 

is the sensor’s node name and tn ∈ TID is the timeslot-id of an epoch in which Nj is the last sensor. 
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To ensure a high degree of compactness in the PPFP-tree, items are arranged in support-descending 

order. Both nodes maintain parent, children, and node traversal pointers to fasten the tree traversing 

process for sensor BSi. 

5.2. PPFP-tree Construction 

The construction of a PPFP-tree is similar to the frequent pattern tree and Regular Pattern tree [21, 

26]. However, we use a single database scan over the sensor data, and captures the complete sensor 

database information in a compact manner. 

The PPFP-tree construction process initialized with a root node “null”. Using the BSD-list, we 

perform a single scan on the database to discover single items and their support inside the sensor 

database. Afterward, the BSD-table is created. The BSD-table is in descending order to ensure tree 

compactness. Moreover, only the items that satisfy the minimum user support threshold will take 

part in the construction of the PPFP-tree. Let tcur represent the sensor timeslot of the current epoch. A 

temporary array lt explicitly records the last occurring epochs of all patterns in the BSD-list. Let us 

visit a construction example for the database given in Table 3 by following algorithm 1 given in Fig. 

2. 

Algorithm1: PPFP-Tree construction  

Input: The sensor database BSD; 

Output: An PPFP-tree; 

1: Begin 

2:   Create the root R of an PPFP-tree, Tree, and label it “null”. 

3:        for each epoch ti ∈ BSD do  

4:          if ti ≠ NULL then 

5:             for each item tcur ∈ ti  do 

6:                  if tcur.f == 0 then          /*  it’s first occurrence */ 

7:                    Set tcur.f=1 and lt=tcur 

8:                  else 

9:                    if tcur- lt <= maxPrd then 

10:                       add tcur- lt  to tcur.pr 

11:                  endif  

12:              Set ++f and lt=tcur. 

13:            Endif  

14:              Add candidate items of ti to BSD-list. 

15:             endif 

16:         end for   

17:             Select and sort the candidate items in BSD-list in support descending order. 

18:              Call Insert_PPFP_tree(BSD-list, Tree). 

19:        end for  

20:  Update BSD- table. 

21:  Call PPFP-growth (PPFP-Tree, null);  

22: end 
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Figure 2. PPFP-Tree construction algorithm. 

A root node with ‘null’ (line: 2) is the first step in the tree building process. Next, we scan the 

database once and get the support of each single item (lines: 3–14); then, we sort the items listed in 

support-descending order. The construction of the tree starts with a call to the procedure on line 19 

by executing the Insert_PPFP_tree procedure given in Fig. 3. 

The tree construction starts by adding the first epoch {1: Bs3, Bs1}, according to the BSD-list order, 

as shown in Fig. 4(a). The tid occurrence value of the epoch is saved in the tail node “Bs1:1” (line 11). 

The process is repeated recursively for the other epochs in the database. Fig. 4 (b) shows the PPFP-

tree constructed after scanning the second epoch, third epoch, and entire database. For the 

simplification of the figures, the node traversal pointers are not shown.  

 

 

 

 

 

Algorithm2: Insert_PPFP_tree (BSD-list, Tree). 

1: Let [l|L], where l is the first sorted epoch and L is there remaining epoch in the 

given list. 

2: while l is non-empty  do  

3:    if l  has child N such that l.sensorName ≠ N.sensorName then  

4:        Create a new node N.  

5:      Let its parent node be linked to Tree.  

6:      Let its node-link be linked to nodes with the same item Name via the node-

link structure. 

7:             if l is the tail-sensor of BSD-list then 

8:                  if N = an ordinary node then 

9:                     assign a tid-list to N; 

10:        end 

11:      add the tid of BSD-list in N's tid-list; 

12:     end if  

13:  end while  

14: Remove l from L. 

15: call Insert_PPFP-tree(L, N); 

Figure 3. Insert_PPFP_tree Procedure. 

 

Once the PPFP-tree is constructed, we use the pointers of each sensor from the BSD-table in order 

to scan the tree and calculate the values given in Definitions 3 and 4 for each sensor in the BSD-table 

(line: 20). To efficiently complete this process, all tid(s) at each sensor tail node are accumulated in a 
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temporary array for each sensor in the BSD-table by traversing the whole tree once. During the tid 

accumulation process, we begin in BSD-table in reverse order, i.e., we start from the last sensor of the 

BSD-table. 

Continuing with our running example, Fig. 4(c) shows the final PPFP-tree status and the BSD-

table with the periodicity (rc) and last tid (Lt) of each sensor. Therefore, with a single BSD scan, the 

PPFP-tree maintains all BSD information in a compact manner. Once the PPFP-tree is constructed, an 

efficient FP-growth-inspired pattern mining technique is employed to find the complete set of 

productive-associated periodic-frequent patterns from the current database (line: 21). In the next 

subsection, we discuss the productive-associated periodic-frequent pattern mining process from the 

PPFP-tree. 

  

 

(a) 

 

(b)  

 

(c)  

  

Figure 4. PPFP-tree construction with MinSup=3, Maxper=3, MPRD=2. (a) PPFP-tree after inserting TID=1, (b) PPFP-tree after 

inserting all BSD epochs, (c) Final PPFP-tree. 

5.3 Mining the PPFP-tree 

We mine the PPFP-tree recursively in decreasing size using a pattern-growth approach by creating 

conditional pattern-bases and corresponding conditional trees without constructing any additional 

database scans. While constructing the prefix tree, we map the tid list of every node of ‘Si’ to all its 

path items. 
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Algorithm 4 shows the construction of the prefix-tree in PPFP-growth. After we construct 

the tree and all of its nodes, we have to execute the call to Algorithm 4. Then, we choose the last 

sensor ‘Bsi’ from the BS-table (line 1). After that, we construct its prefix-tree (line 2). 

 

Algorithm3: CalculateInterestedPeriodicity ( : an array of timeslot-ids containing S) 

1: Begin 

2: Set IP= −1 minpr=0 and IPcur = 0 .               /* subtract 0 from the first value ( 0 − 0 ).*/ 

3:     if IPcur > maxPer then   

4:        add IPcur  to IP.                      /* list of interested period*/ 

5:    end if 

6: for i = 1; i < . − 1;++i do 

7:     Calculate IPcur = + 1 − .  

8:         if IPcur > maxPer then 

9:           add IPcur  to IP.   

10:         end if                     

11: end for  

12: Calculate IPcur = |SDB| −  [ . ], and repeat the steps numbered from 8 to 10. 

13:  If . 	 ≥  then  

14:  Calculate average and Standard Deviation of IP. 

15: end  

Figure 5. Algorithm 3 

Then, we check the productivity of the new itemset and check its support value (line 3). If 

the pattern is productive with Definition 6, we then call Algorithm 3 (shown in Fig. 5) to check the 

pattern periodicity. 

Fig. 6(a) shows the prefix-tree of ‘Bs4’. Fig. 6(b) shows the conditional tree of ‘Bs4,’ the status of 

the PPFP-tree after removing the last item ‘Bs4’ from the BSD-table shown in Fig. 6(c), assuming 

that the user defines maxper = 3 avg=1.4 diff=0.8. 
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(a) 

 

(b) 

 

(c) 

 
Figure 6. Prefix-tree and conditional tree construction with the PPFP-tree. (a) Prefix-tree for ‘Bs4’ (b) Conditional tree for 

‘Bs4’ and (c) PPFP-tree after removing item ‘Bs4’. 

 

In Algorithm 3, the tid list of the construct node is used to calculate the set of an interested pattern 

period. The period is considered if its values are no greater than the user-given minimum periodicity 

threshold (line 3). The pattern’s average periodicity and standard deviation are calculated. 

Continuing with the ‘Bs4’ pattern, we find that the pattern ‘Bs4, Bs1’ is productive. A recursive 

process of creating the prefix-tree and its conditional tree is repeated for further extensions of ‘ij’ until 

BS-table = ∅. 

Algorithm4: PPFP-growth (tree , α) 

1: for each sensor Sα in the header of Tree in reverse-order do  

2:     Generate pattern Sβ = Xi ∪ Sα. map all Xi’s tid-list to temporary arrays (TSβ) for all sensors in Sα.   

3:     if β. ≥ ( )  and Sβ  Productive according to Definition 6 then 

4:        Call CalculateInterestedPeriodicity (TSβ). 

5:         if  Sβ  is periodic according Definition 5 then 

6:            Construct first Sβ conditional pattern base then Sβ_Tree conditional PPFP-tree.  

7:                   if Tree Sβ_Tree = ∅ then   

8:                           Call PPFP-growth(Sβ_Tree, Sβ);  

9:                   end if  

10:          end if  

11:     Delete the node Xi from the Tree and push the Xi’s tid-list to its parent nodes. 

12:  end for  
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6. Experimental Study 

The experiment was carried out on a 64-bit Core i5 processor running Windows 10, and with 12 GB 

of free RAM. We selected three benchmark datasets that are both synthetic and real-world databases. 

The datasets were chosen because they represent the main characteristics of the vital parameters and 

sensors’ data (dense, sparse, and long transactions), as shown in Table 4. In our experimental 

analysis, we implement the following algorithms: 

- PPFP-growth is our implementation of the mining algorithm based on Definitions 5 and 6. 

PPFP reports the productive-associated full/partial periodic-frequent pattern using a pattern-

growth mining approach with one database scan, and we use the productive measure to 

report only the periodic-frequent patterns with pattern associations. At the same time, this 

accelerates the process of mining. 

- CPFP is our implementation of the work presented in [28]. CPFP finds the periodic-frequent 

pattern that occurs in acyclic or cyclic database repetition without the productive measure 

and within two database scans. 

- PPFP is our implementation of the work in [29] that reports productive periodic-frequent 

patterns using an a priori-like approach [40]. 

 

-  

Table 4. Dataset characteristics 

Dataset Type Transactions number 

T10I4D100K Synthetic 100,000 

Accident Real sparse, many items 7593 

Kosarak25K Real dense, long 25,000 

 

 Synthetic databases are used frequently to evaluate frequent-pattern mining algorithms. Those 

datasets generated by using the IBM data generator [40] and the real dataset are used from SPMF [47, 

48, 49]. All mentioned algorithms are implemented in Java. The experiments consisted of two parts. 

First, we compare the PPFP-growth algorithm with the CPFP algorithm. Second, we compare the 

PPFP-growth algorithm with PPFP. 

6.1. Comparing the execution time of the PPFP-growth algorithm and CPFP algorithm 

In the first part of the experiments, the PPFP-growth algorithm and CPFP algorithm were run on each 

dataset with fixed MPR, periodicity, and range values, while varying the minSup and maxPer 

parameters. To be able to compare PPFP-growth with CPFP, CPFP was run with the value calculated 

by PPFP-growth. Execution times were measured for each algorithm using the Java API. 
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For each dataset, the values for MPR, periodicity, and range are dataset-specific (i.e., they were 

found empirically for each dataset) and are chosen to show the trade-off between the execution time 

of each algorithm. Additionally, the notation PPFP-growth X-W-Y represents the PPFP-growth 

algorithm with MPR = X, periodicity = W, and range = Y. Fig. 7(a–f) compares the execution time of 

our proposed algorithm with that of the CPFP for mining all periodic-frequent patterns that occur in 

all or part of the database with respect to the user-given X-W-Y values. It can be observed that mining 

PPFP-growth is generally much faster than mining periodic items using the CPFP algorithm. 

Considering all the datasets, PPFP-growth is up to four times faster than CPFP depending on the 

parameters. The reason is that the search space is huge when we try to find all periodic patterns 

without using the productivity test. Moreover, CPFP uses two database scans. Additionally, the 

PPFP-growth algorithm only searches for productive-associated periodic patterns and thus prunes a 

large part of the search space containing non-productive periodic patterns. For the accident dataset, 

PPFP-growth can be up to four times faster than CPFP depending on the parameters. However, it 

begins to be the same runtime in some cases. The reason is that the dataset is sparse and the cost of 

calculating productivity can compensate for the cost of pruning the search space. 
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(a) 

 

(b) 

(c)  

 

(d) 

(e) 

 

 

(f) 

 

Figure 7. Execution times of PPFP-growth and CPFP. 
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6.2. Comparing the execution time of the PPFP-growth algorithm and PPFP algorithm 

In the second part of the experiments, to compare the execution time of the PPFP-growth algorithm 

and the PPFP algorithm, we fixed the minSup, maxPer, and MPR parameters for the ‘T10I4D100K’ and 

‘accident’ datasets, while varying the periodicity(per) and range (diff) values. However, for the 

‘Kosarak25K’ dataset, we changed the minSup values and fixed the maxPer, MPR, per, and diff values. 

Further, the parameter values are dataset-specific. Additionally, the notation PPFP-growth X-W-Y 

for the Kosarak25K dataset represents the PPFP-growth algorithm with MPR = X, periodicity = W, and 

range = Y. We also used the calculated value (periodicity, diff) of PPFP-growth to show the execution 

time of the PPFP algorithm. 

(a) (b) 

 

(c) 

Figure 8. Execution time of PPFP-growth and PPFP. 

In Fig. 8(a–c), we compare the execution time for the algorithms of PPFP-growth and PPFP. It can be 

observed that using the PPFP-tree data structure with a single database scan in the PPFP-growth 
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algorithm outperforms the Apriori-based PPFP execution time depending on the parameter values. 

For the Kosarak25K dataset, no results are shown for PPFP because it cannot terminate within 1,000 

seconds, while PPFP-growth terminates in less than seconds. The reason is that when decreasing 

minSup in these datasets, the search space increases, which increases the delay for discovering the 

patterns depending on the generate-and-test PPFP algorithm. On the other hand, PPFP-growth still 

terminates on these datasets because the PPFP-tree avoids the combinatorial explosion problem of 

candidate generation as in a priori-like algorithms [40]. 

 

7. Conclusions and Future Work 

Demand for new technologies to promote and assist significant decision making in a smart health 
system has been greatly boosted in the past few years. Here, we provide a new pattern mining 
algorithm to mine the productive-associated PFPs from health-related information collected from 
smart homes to promote important decision making in healthcare. We present the interested pattern 
measures to identify the interested PFP set of periods and a measure to identify the set of productive-
associated PFPs. We also develop PPFP-growth, an efficient algorithm for mining the set of 
productive-associated PFPs. In the future, we plan to develop a context-aware abnormal human 
behavior algorithm in which the patient’s vital signs are analyzed with respect to other human 
activity data such as sitting, sleeping, or exercising. Context-aware multiple stream data from 
different home sensors could reveal more accurate patterns regarding human health, as vital signs 
are sometimes affected by human activity. The heart rate could increase when exercising if we have 
not considered this context situation, meaning a false alarm could be generated. In addition, we 
would like to investigate alternative techniques to further reduce the computational cost of mining 
productive patterns. 
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