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Abstract: In wideband radar systems, the performance of motion parameters estimation can
significantly affect the performance of object detection and the quality of inverse synthetic aperture
radar (ISAR) imaging. Although the traditional motion parameters estimation methods can reduce
the range migration (RM) and Doppler frequency migration (DFM) effects in ISAR imaging, the
computational complexity is high. In this paper, we propose a new fast non-searching motion
parameters estimation method based on cross-correlation of adjacent echoes (CCAE) for wideband
LFM signals. A cross-correlation operation is carried out for two adjacent echo signals, then the
motion parameters can be calculated by estimating the frequency of the correlation result. The
proposed CCAE method can be applied directly to the stretching system, which is commonly adopted
in wideband radar systems. Simulational results demonstrate that the new method can achieve better
estimation performances, with much lower computational cost, compared with existing methods.
The experimental results on real radar data sets are also evaluated to verify the effectiveness and
superiority of the proposed method compared to the state-of-the-art existing methods.

Keywords: motion parameters estimation, wideband LFM radar, cross-correlation.

1. Introduction

The wideband linear frequency modulation (LFM) signal is widely used in modern wideband
radar systems. Compared with the narrow-band LFM signal, it can achieve much better quality in
inverse synthetic aperture radar (ISAR) imaging, due to the higher range resolution. However, the
motions of target often cause range migration (RM) and Doppler frequency migration (DFM) effects in
the received signals, which will degrade the imaging quality. Therefore, the object’s motion parameters
should be estimated and compensated before imaging. Besides, the accuracy of motion parameters
estimation also affects the performance of target tracking and identification. Thus, high precision
motion parameters estimation is necessary and attracts much more attention in modern wideband
radar systems [1–8].

For wideband radars, the estimation methods of motion parameters can be divided into two types:
searching methods and non-searching methods. Many of the traditional range alignment methods
[8–14] in ISAR imaging are of searching methods, such as spatial domain realignment [8], adaptive
joint time-frequency technique [9], minimum entropy method [14]. Spatial domain realignment [8]
defines a correlation function between two envelops of echo signals with delays. The amount of
envelope shift is determined by searching the delay to obtain the maximum of the correlation function.
In [9], the radar echo signal is projected to a set of basis functions, which are constructed with different
parameters. A searching procedure is conducted to maximize the projection value, and then the
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motion parameters estimated. The minimum entropy method introduces a 1-D entropy function
to determine the degree of alignment between radar echoes [14]. As the delay, which minimizes
the entropy, is searched with the step determined by the bandwidth of the transmitted signal, the
accuracy of the estimated parameters is limited by the delay step. To perform high precision motion
parameters estimation, the Radon Fourier transform (RFT) method is proposed for multipulse energy
accumulation [5,15,16]. The RFT method is a multidimensional searching method and achieves a good
performance of motion parameters estimation because of long coherent integration time. A common
drawback of these searching methods is that their computation is highly complex, when they are
applied in the wideband radar systems.

In the non-searching methods, the keystone transform (KT) is able to eliminate the RM effect based
on long time coherent integration technology [17–19]. But the DFM induced by acceleration cannot
be removed by KT. In [20], a non-searching ISAR range alignment method based on minimizing the
entropy of the average range profile (ARP) is proposed. An iterative procedure is utilized to estimate
the delays of envelops, of which the precision is determined by the range resolution. Meanwhile,
an interpolation is employed on the envelops to improve the estimation precision. However, the
iterative procedure and the interpolation operation significantly increase the computational complexity.
Moreover, the phase information is not used for estimation in [20]. In [21], a novel estimation algorithm
of motion parameters is proposed for ISAR imaging, based on KT and the adjacent cross-correlation
function (ACCF). Then, a fast non-searching method based on ACCF is proposed for target motion
estimation, target detection and ISAR imaging [22–26]. There are two differences between the two
methods in [21] and in [22–26]. The first one is that the KT is not utilized in [22–26], and the other
one is that the choice of the scaling factors is improved in [26], thus better performance is obtained
under low SNR conditions. Compared with the RFT method, the ACCF method [22,23] can achieve
similar performance with much lower computational cost. However, it can be applied only to the
uncompressed received (UR) signal, whose bandwidth is equal to that of the transmitted wideband
LFM signal. In order to reduce the processing bandwidth and the sampling rate of the analog-to-digital
converter, the stretching processing is commonly used in most of the wideband LFM radars, and
therefore, the ACCF method cannot be applied in these radar systems.

In this paper, a novel and fast estimation method based on cross-correlation of adjacent echoes
(CCAE) is proposed. Specifically, the cross-correlation operation is performed on two adjacent echo
signals, then the motion parameters are calculated by estimating the frequency of the correlation
result. The proposed new method is a non-searching method and can be directly applied to the
stretched signals. Since the SNR of the stretched signal is higher than that of the UR signal, better
root-mean-square errors (RMSE) performance can be achieved by applying the CCAE method to the
stretched signals. When estimating the velocity using two echo signals, the FFT operation is needed
only once in the CCAE method. Thus, the computational complexity of the proposed CCAE method is
much lower than that of the existing methods. Numerical simulations demonstrate that the proposed
CCAE method can be applied in real wideband LFM radars.

The rest of this paper is organized as follows. In Section 2, the model of the stretched signal is
presented. In Section 3, the proposed fast non-searching CCAE method is presented first, and then
the root mean square error (RMSE) of the proposed CCAE method derived in closed form. In Section
4, the details of the experiments conducted on simulation and real data are presented. Finally, we
conclude this paper in Section 5.

2. Signal Model

In this paper, the scatterer model of the wideband LFM signal is used. It is assumed that the target
is in the far field and the incident wave is a plane wave. The scatterers are located on the line of sight.
The range profile of target of wideband radar is illustrated in Figure 1. The parameters that will be
frequently used in later derivation are listed in Table 1.
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Figure 1. Target’s range profile of wideband radar

Table 1. Notations.

Notation Type Meaning

ur Subscript The received signal is uncompressed.
st Subscript The signal is stretched.
ac Subscript The signal is obtained by multiplying a echo signal with the conjugate of another echo signal.
se Subscript The signal is the multiplication result of the different echo signal from the same scatterers.
cr Subscript The signal is the multiplication result of the different echo signal from the different scatterers.

str(t) Signal The transmitted signal.
sLO(t) Signal The local reference signal.

sur(t, tm) Signal The uncompressed received signal.
sst(t, tm) Signal The stretched signal.
Rp(tm) Signal The distance from radar to the pth scatterer.

The transmitted signal of the wideband LFM radar can be modeled as

str(t) = rect
(

t
T

)
ejπγt2

ej2π fct, (1)

where rect(u) =

{
1, |u| ≤ 1/2
0, otherwise

denotes the rectangle pulse shape, t the fast time, T the pulse width,

and fc the radar center frequency. γ = B/T is the chirp rate of the LFM signal, where B is the swept
bandwidth of the LFM signal.

The UR signal of the wideband LFM radar can be represented as

sur(t, tm) =
P−1

∑
p=0

rect
(

t− τp(tm)

T

)
× Apej2π fc(t−τp(tm))

× ejγπ(t−τp(tm))2
+ ω0(t, tm)

= sur,s(t, tm) + ω0(t, tm), (2)

where P denotes the number of scatterers, Ap the scattering coefficient of the pth scatterer, and τp(tm)

the time delay from the radar to the pth scatterer. tm = mTpr is the slow time, where m is the pulse
number, and Tpr is the pulse repetition interval (PRI). sur,s(t, tm) denotes the signal term of sur(t, tm),
ω0(t, tm) is the Gaussian noise with mean zero and variance σ2. The time delay can be expressed as

τp(tm) =
2Rp(tm)

c
, (3)
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where Rp(tm) is the distance from radar to the pth scatterer at slow time tm. Due to the wide bandwidth
of the signal, the data size of the uncompressed signal is considerably large, which leads to a high
computational complexity. Therefore, in wideband radar systems, stretching operation is often used to
reduce the data size.

The local reference signal for stretching operation can be written as

sLO(t) = rect
(

t
T̂

)
e−j(2π fct+πγt2), (4)

where T̂ is the duration of the reference signal, which is usually slightly larger than the width of
the transmitted pulse, so that it covers the received signal. The stretched signal is obtained by
multiplication

sst(t, tm) = sur(t, tm) · sLO(t)

=
P−1

∑
p=0

rect
(

t− τp(tm)

T

)
Ape−j2πγτp(tm)t

× ejπγτ2
p (tm)e−j2π fcτp(tm) + ω1(t, tm)

= sst,s(t, tm) + ω1(t, tm), (5)

where sst,s(t, tm) is the signal term of the sst(t, tm), ω1(t, tm) = ω0(t, tm) · sLO(t) is the noise. In practical
wideband radar systems, the sampling frequency of the stretched signal is much lower than that of the
UR signal. Thus, the data size of the stretched signal is much smaller than that of the UR signal. When
parameter estimation is performed on the stretched signal, the computational complexity decreases
significantly. The proposed motion parameters estimation method can be applied to both UR and
stretched signals. In the following section, the idea of “stretching” processing is first illustrated to
show the availability of the CCAE method to the UR signal, then the algorithm of the proposed CCAE
estimation method is derived using the stretched signal model.

3. Estimation of Motion Parameters Based on CCAE Method

3.1. “Stretching” Idea of Proposed CCAE Method

In radar systems, when a target is tracked, the range profile of the target varies from pulse to
pulse because of the rotational and the translational motions of the target. In this paper, the rotation of
target is not taken into consideration. However, within the interval of two adjacent transmitted pulses,
the change in motion parameters is generally small. Therefore, the range profiles of two adjacent echo
signals are highly correlated [27]. Consequently, the energy of adjacent two echoes can be accumulated.
Thus, the motion parameters may be estimated by the correlation result of adjacent echoes.

The idea of the proposed method is shown in Figure 2, where the UR signal is utilized for
convenience of illustration. It is already known that stretching operation can transform a wideband
echo signal into a narrow-band signal. In the CCAE method, considering one of the two adjacent
echo signals (e.g., the echo at slow time tm) as the “local reference” signal, the other one (e.g., the echo
at slow time tm+1) is “stretched” into a single tone signal. The frequency of the “stretched” signal
contains the information of the distance differences between the slow time tm and tm+1. The motion
parameters can be estimated according to the distance differences. In the next subsection, the CCAE
method is derived mathematically to prove the idea.
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Figure 2. The "stretching" idea of the proposed CCAE method

3.2. Proposed CCAE Algorithm

At the beginning, we apply the conjugate multiplication to both UR signals and stretched signals.
Then it is seen that the conjugate multiplication result of the UR signals is similar to that of the stretched
signals. The UR signal at slow time tm is multiplied with the conjugate of the adjacent UR signal at
slow time tm+1

sur
ac (t, tm) = sur (t, tm) · conj (sur (t, tm+1))

= sse (t, tm) + scr (t, tm) + ωur
2 (t, tm), (6)

where

sse (t, tm) =
P−1

∑
p=0

A2
p rect

(
t− τp (tm)

T

)

× rect
(

t− τp (tm+1)

T

)
× ej2πγ(τp(tm+1)−τp(tm))t

× ej2π fc(τp(tm+1)−τp(tm))

× ejπγ(τ2
p (tm)−τ2

p (tm+1)), (7)

scr (t, tm) =
P−1

∑
q=0

P−1

∑
p=0,p 6=q

Aq Ap rect
(

t− τq (tm)

T

)

× rect
(

t− τp (tm+1)

T

)
× ej2πγ(τp(tm+1)−τq(tm))t

× ej2π fc(τp(tm+1)−τq(tm))

× ejπγ(τ2
p (tm)−τ2

q (tm+1)), (8)

ωur
2 (t, tm) =ω0(t, tm)sur,s(t, tm+1)

+ ω0(t, tm+1)sur,s(t, tm)

+ ω0(t, tm)ω0(t, tm+1), (9)

where the superscript x denotes the conjugate of x, and the superscript ur indicates that the
multiplication is performed on the UR signals. In equation (6), the first term sse (t, tm) is the product of
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adjacent echoes from the same scatterer, the second term scr (t, tm) is the product of adjacent echoes
from different scatterers, and the third term ωur

2 (t, tm) is the noise after conjugate multiplication.
Similarly, when the conjugate multiplication is performed on the stretched signals, we can obtain

sac (t, tm) = sst (t, tm) · conj (sst (t, tm+1))

= sse (t, tm) + scr (t, tm) + ω2(t, tm), (10)

where

ω2(t, tm) =ω1(t, tm)sst,s(t, tm+1)

+ ω1(t, tm+1)sst,s(t, tm)

+ ω1(t, tm)ω1(t, tm+1) (11)

is the noise added to the streched signal after conjugate multiplication. The first two terms of
the right hand side of equation (10) are the same in equation (6), where the exponential term

ej2πγ(τp(tm+1)−τp(tm))t contains the information of the distance difference between the slow time tm and
tm+1. The difference lies in that the data rate of the stretched signal is lower than that of the UR signal,
and the noise bandwidth is smaller, resulting the SNR of the stretched signal is higher than that of the
UR signal. Consequently, the stretched signal is adopted in the following derivation.

In equations (7) and (8), there are two rectangular window functions. The lengths of the two
functions are equal, while the positions of them are different. In other words, the nonzero parts of the
two window functions do not completely overlap. This will cause loss in signal energy. The length of
the non-overlapping part is determined by the target’s motion, i.e.,

∆tp,q = τp(tm+1)− τq(tm)

=
2
c
(Rp(tm+1)− Rq(tm))

=
2
c

∆Rpq(tm), (12)

where ∆Rpq(tm) = Rp(tm+1)− Rq(tm).
In common radar applications, the ratio of the non-overlapping part’s length to the length T of

the transmitted signal (i.e., 2∆Rpq(tm)/cT) is much less than 1. For example, if T = 1 ms and Tpr = 10
ms, then the length of the target is 50 m and velocity 6000 m/s. Computation of the maximum value of
∆Rpq(tm) by ∆Rpq(tm) = 50 + 6000× 0.01 = 110 m gives the ratio 2∆Rpq(tm)/cT ≈ 0.073%. Thus, the
influence of the non-overlapping part can be considered negligible. Then, by substituting equation (3)
into equation (10), and applying FFT operation to equation (10) for energy focusing, one gets

Sac ( f , tm) = Sse ( f , tm) + Scr ( f , tm) + W2( f , tm), (13)

where Sse( f , tm), Scr( f , tm), W2( f , tm) are the FFT results of sse(t, tm), scr(t, tm) and ω2(t, tm)

respectively, i.e.,

Sse ( f , tm) =
P−1

∑
p=0

A2
psinc

[
T
(

f −
2γ∆Rpp(tm)

c

)]
× ej 4π

λc ∆Rpp(tm)ej 4π
c2 γ(R2

p(tm)−R2
p(tm+1)), (14)
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Scr ( f , tm) =
P−1

∑
q=0

P−1

∑
p=0,p 6=q

sinc
[

T
(

f −
2γ∆Rpq(tm)

c

)]
× Aq Apej 4π

λc ∆Rpq(tm)

× ej 4π
c2 γ(R2

p(tm)−R2
q(tm+1)), (15)

where λc is the wavelength corresponding to the center frequency fc. In equations (14) and (15), the
exponential terms are constant phase terms, which have no impact on estimating the frequency of the
spectrum, i.e., equation (13). For simplicity, the sinc functions are extracted for further discussion in
the following sections.

Define

Ssi ( f , p, q) = sinc
[

T
(

f −
2γ∆Rpq(tm)

c

)]
. (16)

Let it be assumed that the peak position of Ssi( f , p, q) is f̃pq. When p = q, equation (16) is the same
as the sinc function in equation (14). Since all scatterers are assumed to locate along the line of sight,
the distance difference between tm and tm+1 is the same for every scatterer of the target. Namely,
∆Rpp(tm) = ∆Rqq(tm) and f̃pp = f̃qq for p 6= q. The energy of all scatterers will accumulate on one
peak, which can be regarded as the main peak of the spectrum. When p 6= q, because of differences
in the combinations of p and q, the distance difference ∆Rpq(tm) will bring a number of frequency
components f̃pq (p 6= q) into the spectrum. The amplitudes of these spectral lines are much less than
that of the main spectral line f̃pp. As seen from equations (12) and (14), the main peak position of the
spectrum is determined by the distance difference of target between slow time tm and tm+1. Therefore,
the target parameters can be obtained by estimating the frequency of the main peak position. This can
be implemented by using the frequency estimation methods, such as FFT and Newton’s method [28].
The estimated frequency can be expressed as

f̂m =
2γ∆Rpp(tm)

c

=
2γ(Rp(tm+1)− Rp(tm))

c
. (17)

Unlike the estimation methods based on coherent integration strategy, the proposed CCAE
method is a fast non-searching estimation method, where the estimated parameters can be output in
real time. In the following paragraphs, we discuss the algorithm of estimating the velocity and higher
order parameters, respectively.

3.2.1. Estimation of Velocity

Assuming that only the velocity is taken into consideration, and that the velocities of different
scatterers within a target are the same, the motion of the target can be written as

Rp(tm) = R0,p + vtm, (18)

where Rp(tm) denotes the distance between the pth scatterer and the radar at tm instant, R0,p the initial
distance between the pth scatterer and the radar, and v the velocity of target. The acceleration of the
target a is set to 0. Thus, the estimated frequency f̂m can be rewritten as

f̂m =
2γ(Rp(tm+1)− Rp(tm))

c

=
2γvTpr

c
. (19)
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Consequently, using two echo signals, we can estimate the velocity by the following equation

v̂ =
c f̂m

2γTpr
. (20)

3.2.2. Estimation of Higher Order Parameters

It is seen from equation (17) that the estimated frequency of the cross-correlation result is
determined by the difference in target’s distance between the two pulses. To estimate high-order motion
parameters, differential operation or curve fitting operation can be applied to the cross-correlation
results. For example, a second-order differential operation can be applied to estimate the jerk, with
which the acceleration can be obtained using the result of the first-order differential operation. Another
approach for simultaneous estimation of velocity, acceleration and other higher order parameters
is to employ the curve fitting method, such as the least-square method. But, high-order parameter
estimation requires more pulses and consequently the output delay increases. It is worth noting that
the objective of the proposed CCAE method is to estimate the motion parameters in real time, i.e., the
estimated results should be output with minimum delay. Therefore, for estimation of high-order motion
parameters, we mainly focus on acceleration estimation in this paper. Considering the acceleration,
equation (18) is rewritten as

Rp(tm) = R0,p + vtm +
1
2

at2
m. (21)

Then the estimated frequency f̂m of equation (17) can be expressed as

f̂m =
2γTpr

c
(v + atm +

1
2

aTpr). (22)

It is seen that the estimated frequency is a slow time varied function. The acceleration can be calculated
out by fm and fm+1 (i.e., three echo signals are used).

â =
c

2γT2
pr
( f̂m+1 − f̂m). (23)

Then, the velocity can be obtained with f̂0 at slow time tm = mTpr (m = 0) and a, where tm (m = 0)
can be always set to the time of the first pulse

v̂ =
c

2γTpr
f0 −

1
2

Tpr â. (24)

3.3. Implementation of the Proposed CCAE Method

As described above, the velocity of the target can be estimated by the proposed CCAE method
using only two echo signals. To estimate the acceleration or even higher order parameters, three or
more echo signals are required. The flow chart of the proposed CCAE method is shown in Figure 3,
including the following steps:

1. The first UR or stretched signal is multiplied with the conjugate of the second UR or stretched
signal. For acceleration estimation, the second echo signal is also multiplied with the third echo
signal.

2. FFT operation is performed on the multiplication results for energy accumulation.
3. Estimate the frequencies of the above FFT results.
4. The acceleration and velocity are calculated using the estimated frequencies according to equations

(23) and (24).

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 April 2017                   doi:10.20944/preprints201704.0090.v1

Peer-reviewed version available at Appl. Sci. 2017, 7, , 500; doi:10.3390/app7050500

http://dx.doi.org/10.20944/preprints201704.0090.v1
http://dx.doi.org/10.3390/app7050500


9 of 17

Although the ACCF method [22,23] also adopt the conjugate multiplication, it is basically different
from the proposed CCAE method. In the ACCF method, first, pulse compression is applied to the
two adjacent UR signals by FFT operation and then a conjugate multiplication performed with the
pulse compression results. Then, for velocity estimation, the correlation result is transformed into time
domain by an IFFT operation. If we only estimate the velocity of the target by using two echo signals,
the ACCF method requires FFT (or IFFT) operation three times, while the proposed method only
requires once. Besides, the ACCF method can be applied to only the UR signals, while the proposed
CCAE method can be applied to both UR and stretched signals.

UR or 

stretched 

echo signal 1
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Frequency 
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Figure 3. The flow chart of proposed CCAE method

3.4. Performance Analyses

The SNR of the wideband signal is defined as in [21,29,30]. If the mean of the ω0(t, tm) in equation
(2) is zero, and the variance is σ2. Then, the SNR of sur(t, tm) can be written as SNRur = A2/σ2, where
A is the signal amplitude. Because of the stretching operation and analog-to-digital conversion, the
bandwidth of the noise will decrease. If the sampling frequency is fs, then the noise bandwidth of
the stretched signal decreases by the ratio B/ fs, Consequently, the SNR of the stretched signal, i.e.,
equation (5), can be written as

SNRst =
A2

fs
B σ2

= SNRur
B
fs

. (25)

In equation (10), the first two terms contain the signal and the third one is regarded as the
noise term, which is composed of three terms, i.e., ω1(t, tm)sst,s(t, tm+1), ω1(t, tm+1)sst,s(t, tm), and
ω1(t, tm)ω1(t, tm+1). It is clear that ω1(t, tm)sst,s(t, tm+1) and ω1(t, tm+1)sst,s(t, tm) satisfy the Gaussian
distribution, and ω1(t, tm)ω1(t, tm+1) satisfy double Gaussian distribution [31], which is approximately
regarded as the Gaussian noise in this paper. Therefore, the noise term in equation (10) is approximate
to the Gaussian noise. In addition, the means of these three terms are zero, and the variances of them
are A2σ2 fs/B, A2σ2 fs/B and σ4 f 2

s /B2, respectively. Hence, the SNR of sac(t, tm) is

SNRac =
A4

fs
B (2A2σ2 + fs

B σ4)

=
SNRst

2 + 1/SNRst
. (26)
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The velocity of the target is obtained by estimating the main peak position of the sinc function in
equation (13). This procedure can be considered similar to that of frequency estimation of a complex
sinusoidal signal sac(t, tm). For a complex sinusoidal signal with unknown amplitude, phase and
frequency [32], the RMSE of frequency estimation can be expressed as

RMSE f =

√
6

4π2SNR∆2N(N2 − 1)
, (27)

where ∆ is the sampling interval, N the number of samples, and SNR the SNR of the sinusoidal signal
[32]. According to the above definition, the RMSE of velocity of the proposed method is

RMSEv =
c

2γTpr

√
6

4π2SNRac∆2N(N2 − 1)

=
c

2γTpr

√
6(2B fs + f 2

s /SNRur)

4π2B2SNRur∆2N(N2 − 1)
. (28)

When N is large, the equation can be written as

RMSEv ≈
c

2γTprT

√
6(2B fs + f 2

s /SNRur)

4π2B2SNRur N

=
c

2BTpr

√
6(2B fs + f 2

s /SNRur)

4π2B2SNRur N
. (29)

It is seen from equation (29) that the estimation performance is affected by the PRI, the SNR of the UR
signal, and the bandwidth B. When the acceleration is taken into consideration, the acceleration is
obtained by subtracting two i.i.d variables f̂m and f̂m+1 in equation (23). The RMSE of the acceleration
can be obtained according to equation (23)

RMSEa =

√
2c

2γT2
pr

√
6(2B fs + f 2

s /SNRur)

4π2(B2SNRur)∆2N(N2 − 1)

≈
√

2c
2BT2

pr

√
6(2B fs + f 2

s /SNRur)

4π2B2SNRur N
, (30)

Similarly, according to equation (24), the velocity is calculated using the subtracted value of the two
i.i.d variables f0 and a. Thus, the RMSE of the velocity can be expressed as

RMSEv =
3c

4γTpr

√
6(2B fs + f 2

s /SNRur)

4π2B2SNRur∆2N(N2 − 1)

≈ 3c
4BTpr

√
6(2B fs + f 2

s /SNRur)

4π2B2SNRur N
. (31)

The energy loss is not considered in the above derived RMSEs. In section 3.2, it is pointed out that
the non-overlapping part of the conjugate multiplication result induces loss of signal energy. The loss
can be figured out to be small, which has little influences on estimation performance. According to
equation (25), conjugate multiplication causes decrease in SNR, consequent to which the performance
of the proposed method also suffers. However, since noise bandwidth of the stretched signal is reduced
to be much smaller than that of the UR signal, the SNR of the stretched signal is higher than that of the
UR signal. Therefore, better estimation performance can be achieved by applying the CCAE method to
the stretched signals.
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In this paper, the cross-correlation operation is performed on the adjacent two echo signals.
Actually, the cross-correlation can be performed on any two echo signals. When the two echo signals
are taken with an interval nTpr, the “Tpr” in the equation (29) should be modified as “nTpr”. As a result,
the RMSE will decrease to RMSEv/n. In other words, the performance of the proposed method can be
improved through increasing the interval of the echo signals. However, when the interval becomes too
large, the correlation between the two echo signals decreases, as a consequence of which the accuracy
of parameters estimation decreases. Therefore, for this study, the adjacent two signals are used for
parameters estimation.

4. Simulations and Real Data Processing

In this section, the proposed CCAE method is first evaluated with different simulation parameters.
In section 4.2, the performance of the CCAE method is compared with that of the ACCF method at
difference SNRs. Finally, the CCAE method is verified using real radar data.

4.1. Evaluation of Proposed CCAE Method

In this subsection, simulations are performed to evaluate the proposed CCAE method. The CPU
frequency of the computer is 3.30 GHz, and the memory size is 8 GB. The transmitted signal is an
LFM waveform, and additive white Gaussian noise is added to the UR signal. Table 2 lists the detailed
simulation parameters. The target is set as a multi-scatterer model containing 10 scatterers, and the
length of the target is about 9 m. The velocity is 100 m/s, and the acceleration is set to 0.

Table 2. Simulation Parameters of the Evaluation of the Proposed CCAE Method.

Center frequency (GHz) Bandwidth (MHz) Pulse width ( µ s) ampling frequency (MHz) PRI (ms)

9 200 100 10 5

The energy concentration of the proposed CCAE method is investigated at high SNR level, i.e., 30
dB. The spectrum of the cross-correlation result is shown in Figure 4, which shows that the energy of
different scatterers is focused on one position. The estimated velocity of the proposed method is 99.9
m/s.
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Figure 4. The spectrum of the cross-correlation result

Next, we compare the performances of the proposed CCAE method with different bandwidths
and PRIs, under different SNR conditions. The SNR varies from -26 dB to 2 dB. Under each SNR,
1000 times of Monte carlo simulations have been carried out. Figure 5 shows the RMSE results. It is
observed that when the bandwidth or the PRI increases, the RMSE decreases. To achieve the same
RMSE, the test case with B = 1 GHz and Tpr = 10 ms requires the lowest SNR, and hence it has the
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best performance. Under the same SNR, the RMSE performance of the case with B = 1 GHz, Tpr = 10
ms is about 3 dB lower than the case with B = 0.5 GHz, Tpr = 10 ms and the case with B = 1 GHz and
Tpr = 5 ms. The performance difference is about 6 dB between the case with B = 1 GHz, Tpr = 10 ms
and the case with B = 0.5 GHz, Tpr = 5 ms.

Table 3. Simulation Parameters of the Comparison with the ACCF Method.

Center frequency (GHz) Bandwidth (GHz) Pulse width (µ s) Sampling frequency (MHz) PRI (ms)

9 1 100 10 10
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Bandwidth 1GHz, PRI 10ms
Bandwidth 1GHz, PRI 5ms
Bandwidth 0.5GHz, PRI 10ms
Bandwidth 0.5GHz, PRI 5ms

Figure 5. The performances of the proposed CCAE method with different parameters

4.2. Comparison with ACCF method

In this subsection, we compare the performance of the proposed CCAE method with the ACCF
method [22,23] at different SNRs, which varies from -30 dB to 2 dB. 1000 Monte carlo simulations are
also carried out for each SNR condition. The other simulation parameters are listed in Table 3. In our
simulations, the stretched signals are used in the proposed CCAE method, and the UR signals are used
in the ACCF method, which can only be applied to the UR signals.

We first evaluate the performance of the case, in which only velocity is taken into account. The
velocity of the target is set to 100 m/s. Two pulse echoes are used for only velocity estimation. In Figure
6, it is seen that the estimated RMSE of the proposed CCAE method outperforms that of the ACCF
method. In addition, the estimated RMSE of the proposed CCAE method is close to the theoretical
RMSE, which indicates that the error induced by the noise approximation of ω1(t, tm)ω1(t, tm+1) in
section 3.4 is small.

We further evaluate the performances of the two methods with a second-order motion model.
The velocity of the target is 100 m/s, and the acceleration is 10 m/s2. Three pulses are used for velocity
and acceleration estimation, the other parameters being the same as those of the previous experiments.
The estimated acceleration results are shown in Figure 7, from which we can see that the RMSE of the
CCAE method is much lower than that of the ACCF method. As has already been analyzed in section
3.4, SNR decreases after cross-correlation. To estimate the acceleration, the conjugate multiplication has
to be used twice in the ACCF method, but only once in the CCAE method. Therefore, the performance
loss is more in the ACCF method than in the CCAE method.

When the acceleration is considered, the velocity estimation results by using CCAE and ACCF
methods are compared in Figure 8. It can be seen that the RMSE of the ACCF method is also larger
than the proposed method. To estimate the velocity, the estimated acceleration should be used to
eliminate its influence. Thus, the performance of the velocity estimation is related to the performance
of the acceleration estimation. As the performance of estimated acceleration is worse, the performance
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of velocity estimation of the ACCF method also becomes worse. In addition, for the proposed method,
the RMSEs of the estimated acceleration and velocity are both close to the theoretical RMSEs, which
proves the effectiveness of the proposed method. From a comparison of Figure 6 and Figure 8, for the
proposed CCAE method, it can be seen that the RMSE of the estimated velocity with acceleration is a
bit higher than that without acceleration. This is because the velocity is calculated by subtracting two
i.i.d variables. This can be confirmed by comparing equation (29) and (31).
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Figure 6. Comparison of RMSE results of the velocity estimation by using CCAE and ACCF methods
(without acceleration)
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Figure 7. Comparison of RMSE results of the acceleration estimation by using CCAE and ACCF
methods (with acceleration)
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Figure 8. Comparison of RMSE results of the velocity estimation by using CCAE and ACCF methods
(with acceleration)
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The total time costs of the 1000 Monte carlo simulations for all the SNR cases are listed in Table
4. It is seen that the time cost of the proposed CCAE method is much smaller than that of the ACCF
method. The reason is two-fold: first, the data size of the UR signal is larger than the stretched signal;
second, the number of FFT operation required by the ACCF method is more than that of the CCAE
method.

Table 4. Comparison of the Time Cost between CCAE and ACCF

Time cost (s) CCAE ACCF

Estimation without acceleration 81.6 5282.1
Estimation with acceleration 156.5 10175.3

Simulation environment: CPU frequency 3.30 GHz, memory 8 GB.

4.3. Verification with Real Data

Two sets of real data, obtained from the wideband LFM radar systems are applied for the
verification of the proposed method. The parameters of the two data sets are shown in Table 5. The
targets are satellites. Figure 9(a) and Figure 10(a) show the estimated velocities in comparison with the
real velocities of the targets. The errors between the estimated velocities and the real velocities of the
targets are shown in Figure 9(b) and Figure 10(b). It is seen that the estimated results are consistent
with the real velocities for both the data sets. The RMSE of the estimated velocity is 0.0561 m/s in the
first data set and 0.2842 m/s in the second data set.

Table 5. Parameters of Radars.

Parameters Radar 1 Radar 2

Center Frequency (GHz) 9 3.2
Bandwidth (MHz) 2000 300

Sampling Frequency (MHz) 10 10
Pulse Width (µs) 400 200

PRI (ms) 40 100
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Figure 9. Estimation results of data set 1. (a) The estimated velocity and the target’s real velocity. (Due
to the high speed of the target and the high precision of the estimated velocity, the two lines overlap).
(b) The error between the estimated velocity and the target’s real velocity.
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Figure 10. Estimation results of data set 2. (a) The estimated velocity and real velocity of the target.
(Due to the high speed of the target and the high precision of the estimated velocity, the two lines
overlap). (b) The error between the estimated velocity and the target’s real velocity.

Finally, the proposed CCAE method is applied to range alignment in ISAR imaging procedure,
with a civil aircraft as the target. Figure 11(a) shows the range profile with RM, caused mainly by
the target’s velocity. Thus, it can be corrected by compensating the estimated velocities in the range
profile. The result of range alignment, obtained by using the proposed method, is shown in Figure
11(b), from which it can be seen that the RM effect is eliminated, resulting in a focused ISAR image
(Figure 12). These results with real data demonstrate that the proposed method is effective in practical
radar systems.
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Figure 11. The range profile of the target. (a) The range profile with RM effect. (a) The range profile
after range alignment by the proposed CCAE method.
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Figure 12. The result of ISAR imaging after range alignment
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5. Conclusion

In this paper, a new fast motion parameters estimation method based on CCAE for wideband
LFM radars is presented. First, the conjugate multiplication is performed on the adjacent two signals.
Then the velocity is obtained by estimating the frequency of the signal, i.e., the correlation result. The
acceleration can be estimated by using three echo signals. The proposed CCAE method can be applied
to the UR signals or the stretched signals. When estimating the velocity using two echo signals, the
FFT operation is required only once in the proposed method, and the estimated parameters can be
output in real time. Simulation results show that the new method provides better RMSE performances
than the state-of-the-art existing method for both velocity and acceleration estimation, with much less
computational cost. Besides, the RMSEs of the simulation data are close to the theoretical RMSEs of the
proposed method. Real radar data sets are also evaluated to verify the effectiveness of the proposed
method. The proposed fast estimation method of motion parameters can be applied to range alignment
in ISAR imaging.
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