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 Abstract: Metabolomic analysis of biological fluids and tissues has become an increasingly routine 
tool in the biological toolbox. However, challenges remain to be overcome, including developing 
strategies to maximise coverage of the metabolome without requiring large sample volumes. Here we 
describe a multimodal strategy that combines data using both LC-MS and GC-MS from a unique vial 
with a sample of plasma (20µl) or a sample of brain tissue (3mg). Using a split phase extraction the 
non-aqueous phase was analyzed by reversed phase (RP) LC-MS, whilst the aqueous phase was 
analyzed using hydrophilic liquid interaction chromatography (HILIC)LC-MS, with both phases also 
analysed using GC-MS after derivatization of the extract. Analytical performance was assessed in 7 
rat cerebellum samples and a pilot study of 40 plasma samples (20 vs. 20: AD vs. healthy controls). 
The method, which uses four hours of instrument time, measured 20,707 metabolite features in brain 
samples and 17,266 in plasma samples, from those 44.1% features displayed CV’s below 15% and 
75.2% below 30%. The method has potential to resolve subtle biological differences and to correlate 
metabolite composition directly to clinical outcomes including MMSE, age and ADCS-ADL. This 
method can acquire in the order of 20K metabolic features when low volumes are available. 
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1. Introduction 

Metabolomics is the unbiased analysis of the composition of small molecule metabolites in a given 

biological tissue or bio-fluid under a specific set of environmental conditions[1, 2]. In recent years the 

development of new methods has seen metabolomics progress from a novel analytical technique 

towards a mainstay of the biological toolbox. However, before this transformation can be completed a 

number of technical challenges remain to be overcome, foremost among these is maximizing 

coverage of the metabolome[3, 4]. A number of previous studies have done this by utilizing multiple 

complimentary techniques including liquid chromatography – mass spectrometry (LC-MS), nuclear 

magnetic resonance spectroscopy (NMR) and gas chromatography – mass spectrometry (GC-MS)[5-

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 April 2017                   doi:10.20944/preprints201704.0080.v1

©  2017 by the author(s). Distributed under a Creative Commons CC BY license.

http://dx.doi.org/10.20944/preprints201704.0080.v1
http://creativecommons.org/licenses/by/4.0/


 

2 
 

7]. However, these strategies require individual sample preparation techniques which significantly 

increases the volume of sample and potentially variation and analysis time.  

Dementia represents a major cause of morbidity and mortality worldwide, with Alzheimer’s disease 

(AD) accounting for 60-80% of all dementia cases[8], which is characterized by a progressive 

cognitive decline, starting with problems with short term memory progressing to disorientation, mood 

swings and language problems[9, 10]. In 2006 it was estimated that worldwide 46 million people 

suffered from AD[11] with the estimated financial cost expected to reach $1 trillion by 2018[12] 

With an increasing elderly population the prevalence of AD is expected to increase fourfold to 131.5 

million sufferers by 2050, significantly increasing both the social and financial burden represented by 

AD. Alzheimer’s disease is known to have a long prodromal phase to the disease in which pathology 

accumulates without the presence of symptoms, making the discovery of a panel of biomarkers that 

can identify individuals in this phase of the disease. Current efforts to do this have been unsuccessful 

but it is hoped by extending our coverage of the metabolome to include metabolites previously 

unstudied in AD will help to overcome this.  

To this end we developed a strategy that enables 6 analytical assays (4 LC-MS and 2 GC-MS) to be 

applied to a single in-vial dual extraction utilising as little as 3mg of brain tissue [13] or 20µl of 

plasma[14]. The method was designed to analyse samples in the future such as human brain, 

prioritising the information acquired over the length of the analysis. The robustness and utility of this 

strategy was assessed by combining all the data and applying the method to 7 rat cerebellum samples 

and a pilot experiment of plasma samples of 20 Alzheimer’s patients versus 20 healthy age matched 

controls split into stable and declining individuals to allow us to assess the ability of the platform to 

detect both large and subtle metabolic differences.   

2. Experimental section 

2.1. Chemicals and Reagents 

All solvents including acetonitrile, ammonium formate, formic acid, methanol, methyl tertiary butyl 

ether (MTBE), toluene and water were all LC-MS grade purchased from Sigma-Aldrich with the 

exception of acetonitrile which was purchased from VWR international. Three internal standards 

were added for LC-MS analysis, L-serine13C3
15N (95%) and L-valine13C5

15N (95%) for hydrophilic 

liquid interaction chromatography (HILIC) and Tripentadecanoylglycerol for reversed phase (RP). 

Sample derivatisation for GC-MS analysis was performed using N,O-Bis(trimethylsilyl)trifluoro-

acetamide (BSTFA) with 1% trimethylchlorosilane (TMCS) purchased from Sigma-Aldrich.  
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2.2. Biological Material 

Brain tissue samples were obtained from rat cerebellums which were harvested as per Schedule 1 of 

the Animal (scientific procedures) Act of 1986-King’s College London. Plasma samples from 40 

individuals, 20 Alzheimer’s patients and 20 healthy controls were collected in Kupio (Finland) for the 

Addneuromed cohort were selected for analysis. Patient groups were balanced for age and gender, 

with mini-mental state examination score (MMSE) balanced between genders within each group 

(Table 1). MMSE was used as the primary cognitive measure, with Alzheimer’s disease cooperative 

study scale – Ability of Daily Living (ADCS-ADL) being used as a secondary cognitive measure 

specifically for AD patients. 

Table 1 Characteristics of study cohort. a male/female, b number of APOE4(genetic risk factor for AD) positive 
patients, c Alzheimer’s disease Cooperative Study scale for Activities of Daily Living. 

 Controls Alzheimer’s 

Gendera 10/10 10/10 

Age 74.8 +/- 5.0 75.3 +/- 6.1 

MMSE 28.5 +/- 1.4 22.5 +/- 4.6 

APOE4b 4 11 

ADCS-ADLc n/a 48.2 (+/- 16.4) 

 

2.3. Sample Preparation  

The in vial dual extractions (IVDE) were performed as previously described for plasma [14] and 

brain tissue[13], the workflow is summarised in. After all of the LC-MS analysis had been performed 

the remaining aqueous and non-aqueous phases were split into separate vials and dried down under a 

stream of nitrogen at 37oC. Samples where then re-suspended in a 1:1 solution of acetonitrile and the 

derivatising agents (BSTFA) with 1% TMCS, and were incubated at 37oC for 1 hour. After 

incubation samples were again dried down under nitrogen and were subsequently re-suspended in 

25µl of toluene for analysis. A graphical description of the analytical workflow used in this study is 

shown in Figure1. 
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Figure 1 Analytical workflow from sample preparation to multiplatform analysis using LC-MS and GC-MS and 
onto multimodal and multivariate analysis. 

2.4. Data Acquisition  

The HILIC and reversed phase LC-MS analysis was performed on a Waters ultra-performance liquid 

chromatogrpahy (UPLC) system coupled to a quadrupole rime-of-flight (Q-ToF) mass spectrometer 

(Waters, Milford, MA, USA) as described previously[13, 14].  GC-MS analysis was carried out on a 

Shimadzu QP-2010 with an AOC-20S auto sampler and AOC-20i auto injector (Shimadzu, Kyoto, 

Japan).  The aqueous phase was analyzed in split less mode with 4µl of sample injected on a BP5MS 

column (length 30m, thickness 0.25mm, diameter 0.25mm). The carrier gas (helium) pressure was 

79.5Kpa, with a total flow of 125ml/min, a column flow of 1.18ml/min, a linear velocity of 40cm/sec 

and a purge flow of 6ml/min. The gradient temperature started at 80oC and was held for 5 minutes 

followed by a linear increase of 10oC per minute to 200oC, where the rate of increase was slowed to 

2oC per minute to a final temperature of 225oC where it was held for 4 minutes.  Analysis of 4µl non-

aqueous phase was performed in the split less mode on the same column. The carrier gas (helium) 

pressure was set to 86.2Kpa with a total flow of 122.8ml/min a column flow of 1.16ml/min, a linear 

velocity of 40cm/sec and a purge flow of 6ml/min. The gradient temperature started at 100oC and was 

held for 5 minutes followed by a linear increase of 15oC per minute to 250oC, where the rate of 

increase was slowed to 2oC per minute to a final temperature of 310oC where it was held for 4 

minutes. Mass spectral analysis of both phases was performed using electron impact ionisation 

between 50 and 600m/z with an ion source temperature of 200oC, an interface temperature of 280oC 

with a scan speed of 833 and an event time of 0.7 seconds. Samples were analyzed in a randomized 

order with pooled samples (Quality control (QC) samples) being analyzed after every 6 injections. 
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2.5. Data Processing  

 

Initially all raw data files were converted into an mzXML format, LC-MS files were converted using 

msConvert (ProteoWizard), whilst GC-MS files were converted using GCMS Solutions® (Shimadzu). 

Converted data files were analyzed using XCMS, performed in the open source software package R, 

picking was performed using a ”massifquant” method for the GCMS data allows isotope trace feature 

detection and a ‘'centwave’’ method for LCMS data, allows the deconvolution of closely eluting or 

slightly overlapping peaks. Metabolite features were defined as any peak with an average intensity 5 

times higher in the analytical samples than is measured for this peak in the extraction blanks. 

Measured metabolite features from all assays were combined into a single multimodal dataset that 

was analyzed using a range of multivariate tests including principle component analysis (PCA) and 

orthogonal projections to latent structures – discriminant analysis (OPLS-DA) and hierarchical 

clustering analysis (HCA) performed in SIMCA 14.0 (Umetrics, Umeå, Sweden). The data in all 

models was logarithmically transformed (base10) and pareto scaled. The performance of the 

generated models was assessed based on the cumulative correlation coefficients (R2X[cum]) and 

predictive performance based on seven-fold cross validation (Q2[cum]), with the significance of the 

model assessed based on the ANOVA of the cross-validated residuals (CV-ANOVA). Feature 

selection to create curated models was performed by iteratively removing variables using the variable 

influence to projections plot to achieve the fitted model with the optimal R2 and Q2 values[15]. The 

predictive ability of the generated OPLS models were validated by using permutation test [16]. The 

results showed that none of the permuted Q2 values is higher than the one in the original model which 

confirms the reliability of the produced models. 

 

3. Results and Discussion 

3.1. Reproducibility test and data quality of the method 

The total time of this method was four hours which is unusually long in metabolomics, where methods 

need to be high-throughput. The present method was designed to acquire as much information as possible 

from one sample and the instrument time and cost of analysis were increased to achieve this end. The 

quality of the generated data was assessed by looking at the compositional similarity of QC samples 

based on all metabolite features using PCA (Figure 2). QCs clustered apart from QC1 which was the first 
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injection into the run (highlighted in a box), the other QCs clustered once the columns were equilibrated, 

hence showing a clustering lower than biological variance suggesting across run reproducibility and 

stability. In a PCA analysis of just the QC samples it could be seen that the analytical drift across the run 

accounted for 17.2% of the overall variance observed in the QC. 

 

Figure 2 PCA score plot of plasma samples generated from the combined dataset from all 6 analytical methods 
combined. Plot showing controls, Alzheimer’ and quality control samples, first QC is enclosed in a square. 

The selectivity and reproducibility of the method was assessed in both brain tissue (Table 2) and plasma 

(Table 3) by determining the number of peaks measured and their relative variance.  In the raw brain data, 

it can be seen that the peaks detected in the 4 LC-MS methods were a total of 9459 peaks (signal/noise > 

5), and reproducible with 61.8% of the metabolite features with coefficients of variance (CV) of less than 

15% and 84.0% with CV’s below 30% (Table 2). The data generated by GC-MS was also shown to be 

measuring 11248 (signal/noise > 5) metabolite features, however the reproducibility of the data is poor 

with only 1.5% of metabolite features showing CV’s of less than 15% and 12.3% below 30% CV’s. To 

improve the reproducibility, the data was normalized to total ion count (TIC), with this normalization 

significantly improving the reproducibility with 34.4% of total peaks now with CV’s of less than 15% 

and 68.7 below 30%, however normalization appeared to have a limited effect on the LC-MS data. The 

initial selectivity and reproducibility of the method in plasma was assessed in the 8 pooled QC samples 

run during the pilot experiment. As with the data generated from brain tissue the LC-MS data was shown 

to be measuring a total of 9551 metabolite features as well as highly reproducible with 36.9% of peaks 

showing CV’s of less than 15%, and 61.8% below 30% CV’s, whilst 9.8% of the 7715 of the GC-MS 

metabolite features showing CV’s lower than 15% and only 17.3% with CV’s below 30%. The data was 

normalized to TIC, produced a modest increase in the reproducibility of the RP data from 33.3% and 

74.0% to 50.7% and 75.2% and HILIC data from 41% and 60.5% to 50.5% and 71% with CV’s below 
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15% and 30% respectively. Normalization of the GC-MS data also improved reproducibility from 16.5% 

to 30.9% with CV’s below 15% and 30%. Inspection of the non-aqueous phase data which shows the 

least number of features with CV’s <30% compared to LC-MS and GC-MS aqueous method. However, 

during method development the non-aqueous phase achieved CV’s (data not shown) in line with the brain 

experiments shown in Table 2. The aqueous phase showed 34.9% of features with CV’s below 15%, and 

63.3% below 30% also in line with the brain experiment. 

Table 2 Reproducibility of RAW and TIC normalized data generated by each analytical method from brain tissue 
samples. Variability of metabolite features measured in 7 independent IVDE’s from rat cerebellum. a peak numbers for 
raw data b peak numbers for TIC  normalized data c coefficient of variance of peak intensity between runs. GC; gas 
chromatography, HILIC; hydrophilic liquid interaction chromatography, Neg; negative, Pos; positive, RP; reversed phase. 

 HILIC Pos HILIC Neg RP Pos RP Neg GC Aqueous GC-Non-aqueous 

 RAWa       TICb RAWa       TICb RAWa       TICb RAWa       TICb RAWa       TICb RAWa       TICb 

<5%c 676 658 299 388 168 184 196 94 2 247 5 399

5-10%c 724 733 613 492 443 407 303 411 11 495 9 512

10-15%c 853 838 555 483 389 336 267 249 87 1147 64 1069

15-30%c 711 724 762 804 746 801 241 248 594 2119 611 1745

>30%c 309 320 524 586 653 671 27 32 5398 2084 4467 1431

Total 3273 2753 2399 1034 6092 5156

 

Table 3 Reproducibility of RAW and TIC normalized data generated by each analytical method from plasma samples. 
Variability of metabolite features measured in 8 pooled QC samples. a peak numbers for raw data b peak numbers for TIC 
normalized data c coefficient of variance of peak intensity between runs. GC; gas chromatography, HILIC; hydrophilic liquid 
interaction chromatography, Neg; negative, Pos; positive, RP; reversed phase. 

 HILIC Pos HILIC Neg RP Pos RP Neg GC Aqueous GC-Non-aqueous 

 RAWa       TICb RAWa       TICb RAWa       TICb RAWa       TICb RAWa       TICb RAWa       TICb 

<5%c 592 668 102 336 78 175 56 241 18 87 3 17

5-10%c 684 794 458 473 203 398 236 272 95 254 6 29

10-15%c 349 447 256 284 261 369 230 253 609 809 27 58

15-30%c 668 748 488 472 1029 837 213 196 522 925 72 212

>30%c 1167 803 1180 919 996 788 305 78 2048 1217 4315 4107

Total 3460 2484 2567 1040 3292 4423

 

Having shown the method was reproducible the next stage in assessing its performance was to determine 

its ability to detect differences in a small pilot between biological classes using multimodal multivariate 

data analysis.  
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Curated models were generated using both raw and TIC normalized data from all of the 6 platforms 

combined into a single dataset to identify the metabolite features with the greatest predictive performance 

for discriminating diagnostic classes. The optimal model calculated between all control and AD samples 

from the combination of all LC-MS and GC-MS raw data was based on 314 metabolite features, and 

showed a significant class separation (R2X = 0.489, R2Y = 0.903, Q2 = 0.794, CV-ANOVA = 1.418×10-

11). However, in the same comparison a better separation was achieved by using the TIC normalized LC-

MS and GC-MS data, with the final curated model based of 426 features (Figure 3A) (R2X = 0.585, R2Y 

= 0.933, Q2 = 0.869, CV-ANOVA = 2.72×10-14). Of the 426 metabolite features on which this model is 

based 95 were measured in HILIC positive, 84 were measured in HILIC negative, 63 came from RP 

positive, 72 from RP negative, with GC aqueous accounting for 69 and GC Non-aqueous for 43 of the 

features. In both the OPLS-DA (Figure 3A) and PCA (Figure 3B) analysis there is a visible separation 

between controls and AD, but also between the control samples themselves, the stable (control A) and 

declining control (B) samples. To investigate this further we performed hierarchical clustering analysis 

(HCA) (Figure 3C) to assess the compositional similarity of individual samples from the three sample 

groups. This analysis showed that the ‘declining’ control samples clustered in the same primary clade as 

the AD samples suggesting that they were more compositionally similar to the AD samples than they are 

to the ‘stable’ controls. Whilst these samples were diagnosed clinically as controls and showed no 

difference in cognitive ability at baseline, at a 12 month follow up these individuals had exhibited a 

significant decline in cognitive function (0.83 MMSE points, p = 0.019).  

 
Figure 3 Multivariate analysis of all data shown using OPLS-DA and PCA scores plots and HCA dendrogram. A) 
curated OPLS-DA model of healthy controls vs. AD patients (R2X = 0.585, R2Y = 0.933, Q2 = 0.869, CV-ANOVA = 
2.72×10-14)., B) PCA analysis (R2X = 0.561, Q2 = 0.498) based on the 426 metabolite features identified in curated OPLS-
DA model, C) HCA based on the PCA model to analyze compositional similarity of individual samples. 
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When metabolite features were considered individually it could be seen that the ‘declining’ controls had a 

similar abundance to that which is observed in the AD samples or is intermediary between the ‘stable’ 

controls and AD samples (Figure 4). Of the metabolite features that were important for driving the 

separation between the two groups of controls we annotated the excitatory neurotransmitter glutamate 

(Figure 4) which has previously been linked to the pathology and progression of Alzheimer’s disease [17-

21].  

 
Figure 4 Boxplots showing examples of features discriminating between all three diagnostic groups. The feature name is 
the mode of chromatography followed by the ionization mode, then the feature mass and retention time in minutes. AD; 
Alzheimer’s disease, HILIC; hydrophilic liquid interaction chromatography, QC; quality control. 

 

In this small pilot metabolic shifts potentially associated with subtle differences in biological phenotypes 

were observed. Hence, this multimodal method was able to discriminate ‘stable’, ‘declining’ controls and 

AD patients using a PCA, however promising this result, the number of samples does not warrant 

metabolite identification which will be performed once features are validated in a follow up larger scale 

study.  

Having observed that this method could discriminate between defined biological classes we wanted to 

determine whether metabolite composition could be directly correlated with a range of relevant clinical 

measures. Determining the association between metabolite composition and clinical outcomes was done 

using OPLS analysis with MMSE, age and ADCS-ADL set as Y variables. Using SIMCA’s inner 

relations plot it can be seen that metabolite composition correlates with MMSE (Figure 5A) (R2 = 0.893), 

age (Figure 5B) (R2 = 0.636) and ADCS-ADL (Figure 5C) (R2 =0.634). This direct correlation of 

metabolite composition to clinical outcomes further demonstrated biological relevance of the data 

generated using this multimodal method.  
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Figure 5  Inner relations plots of OPLS models demonstrating significant correlations between metabolite composition 
and a range of clinical outcomes. A) MMSE (R2 = 0.893), B) age (R2 = 0.636), and C) ADCS-ADL (R2 = 0.634).

4. Conclusions 

This study illustrates the utility of combining metabolomics data to measure large numbers of metabolite 

features from small sample volumes with multivariate statistics, to detect metabolic differences to clinical 

outcomes. It is hoped that by improving our ability to measure the metabolome using multimodal data, 

including proteomics and genomics and increasing sample numbers, diagnostic and prognostic markers of 

AD pathology can be discovered. 
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