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Abstract: This study analyzes the modeling and dynamics of a novel passive in 
Multi-Degree-of-Freedom (MDOF) vibration isolation platform which can achieve significant 
isolation effect. Symmetrical Scissor-Like structures (SLSs) are utilized in the proposed MDOF 
isolation platform as the supporting and isolation elastic components. Based on the mathematical 
modeling and theoretical analysis of the MDOF vibration isolation system with SLSs, the effect of 
structural parameter and joint friction on stiffness and damping properties is investigated. It is 
shown that due to geometric relations within the SLSs, the natural frequencies can be reduced via 
adjusting structural parameters of the SLS for different direction vibration isolation. Theoretical 
and experimental results show that the SLS isolation platform can achieve much better loading 
capacity and vibration isolation performance simultaneously by only using linear passive 
components because of the MDOF adjustable stiffness property. Therefore, with low costing and 
energy consumption, the proposed novel isolation platform can provide the improvement of 
vibration suppression in various engineering practices. 

Keywords: MDOF isolation platform; geometrical nonlinearity; vibration suppression, adjustable 
stiffness property 

 

1. Introduction 

It is required high stability and significant isolation performance for isolation system because it 
isolates the vibration to protect the instruments and equipment for many vibration environments. 
For different applications, different structures and control methods are carried out for different 
vibration suppression mechanisms, for example, energy transferring between different vibration 
modes [1-2], vibration suppressing with absorbers [3-5], or utilizing semi-active/active vibration 
control methods etc. [6-8]. In most cases in vibration isolation, better isolation effectiveness can be 
obtained by using elements with smaller restoring forces which result in smaller natural frequency 
of the system, especially for microgravity environment in aerospace engineering [9-11].  

For various vibration isolation purposes, Quasi-zero-stiffness (QZS) vibration isolation systems 
for one direction vibration have been extensively studied to improve working environment and 
provide better background for aerospace devices and precision instruments [12-20]. In order to 
induce adjustable stiffness property with sufficient loading capacity, a structure with springs called 
Scissor-Like structure (SLS) is proposed. The most obvious advantage of the vibration isolation 
system with SLSs is that the natural frequency and nonlinear stiffness coefficients are dependent on 
the structural parameters, which could realize high static and low dynamic property. Considering 
the advantages of the structure with SLSs, the SLSs are utilized to construct a novel MDOF vibration 
isolation system. The proposed isolation system has nonlinear stiffness and damping characteristics 
in six directions, which are all adjustable and can achieve superior vibration isolation using only 
pure linear and passive elements in the system with a simple and flexible installation structure.  

In the literature, the techniques of vibration isolation for multi-direction excitation with 
excellent isolation performance over larger frequency region have always been a hot and hard 
research topic. For the MDOF vibration isolation platform, active controllers are the chief method 
[9-11, 21-27]. The key point of the mechanism of active control in MDOF isolator is to generate 
anti-vibration forces in different directions by actuators and sensors in the designed system. The 
researches of MDOF isolation system are focused on the controllers and control strategies. Different 
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designs and the analysis of the dynamics of parallel mechanism are studied [21-27], for example, 
hybrid magnet consisting of electromagnet and permanent magnets is used as the active actuators in 
Refs. 21 and 22. Although active controllers can actively isolate vibration and timely control 
vibration, considering the energy required by active actuators, passive isolation techniques provide 
higher stability without any external power [28].  

This paper proposed a MDOF isolation platform using SLSs as the elastic components. Then the 
natural frequencies and vibration responses are studied to show the isolation effectiveness of the 
proposed system. The superior vibration isolation can be achieved using only pure linear and 
passive elements in the system with a simple and flexible installation structure because of the 
adjustable stiffness. This system could provide an effective solution to many engineering problems 
for excellent MDOF vibration suppression and sustainable development for microgravity 
environment. The paper is organized as follows. The prototype of the isolation platform with SLSs is 
carried out and its mathematical modeling is obtained in Section 2. In Section 3, the responses of the 
isolation system obtained by Harmonic Balance Method (HBM) [28] and experiment are conducted, 
and the isolation effectiveness of the proposed isolation system is compared to the one using linear 
springs as isolator. A conclusion is drawn at the last section. 

2. 2 The prototype and modeling of the proposed isolation platform  

2.1 Experimental prototype 

 
Figure 1. Experimental prototype of the MDOF isolation system with SLSs. 

Figure 1 is the experimental prototype of the proposed MDOF isolation system with SLSs. As 
shown in Figure 1, the up plate of the isolation platform is connected with the base by four 
scissor-like structures (SLSs). The SLS is consisted of several connecting rods and a linear spring is 
assembled in one layer in each SLS.  

2.2 Structural diagram 

 

Figure 2. The structural diagram of the MDOF isolation system 
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Figure 2 is the structural diagram of the isolation system. Considering the isolation platform is 
proposed for protecting an instrument (the isolation object) which is put on arbitrary position on the 
up plate, the location of the isolation object and the connecting point of the SLS are shown in Figure 
3.  

 
Figure 3. Geometry of the up plate and the isolation object M2 and the coordinates.  

In Figure 3, Point (c) is the geometrical and mass center of the up plate M1 and Point (m) is the 
center of isolation object with mass M2. The vector the origin of the up plate (c) and the isolation 
object (m) is as ࢘௠௖={L1, L2, L3}. The absolute motion of the platform x={x, y, z, φx, φy, φz} are chosen as 
generalized coordinates.  

2.3 Modeling 

Lagrange principle is used to obtain the model of the isolation platform. The mass of connecting 
rods and joints in SLSs are neglected because their weights are much smaller compared to the up 
plate, base and isolation object. The kinetic energy consists of the up plate and the isolation object 
M2, which are set as T1 and T2. The velocity of the up plate is the velocity at the center (c), thus the 
kinetic energy T1 is as 

 ଵܶ = ଵଶܯଵሺݔሶ ଶ + ሶݕ ଶ + ሶଶሻݖ + ଵଶ ௫௫ሶܬ ௫ଶ + ଵଶ ௬௬ሶܬ ௬ଶ + ଵଶ ௭௭ሶܬ ௭ଶ (1) 

For the isolation object M2 whose center has distance to the center of the center of the up plate, 
its velocity contains the translational velocity around Point (c) and the rotational velocity around the 
center Point (m). Figure 4 is the motions of the isolation object M2 which represents the isolation 
object (e.g. precise instruments etc.).  

 

Figure 4. The motion of the object M2 on the up plate.  

Figure 4 is the deflections of the isolation object M2 on the up plate whose moments of inertia in 
different rotational direction are defined as Jxxm, Jyym and Jzzm. Figure 5 is the deflection of one of the 
SLS in the isolator. From Figure 4, the kinetic energy T2 of the isolation object is as 

ଶܶ = ଶܯ12 ൤ቀݔሶ + ሶ ௬ܮଷ − ሶ ௭ܮଶቁଶ + ൫ݕሶ − ሶ ௫ܮଷ + ሶ ௭ܮଵ൯ଶ + ቀݖሶ + ሶ ௫ܮଶ − ሶ ௬ܮଵቁଶ൨ 
																																			+ ଵଶ ௫௫௠ሶܬ ௫ଶ + ଵଶ ௬௬௠ሶܬ ௬ଶ + ଵଶ ௭௭௠ሶܬ ௭ଶ  (2) 
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Therefore, the kinetic energy T of the system is as 

 ܶ = ଵܶ + ଶܶ = ଵଶܯଵሺݔሶ ଶ + ሶݕ ଶ + ሶଶሻݖ + ଵଶ ௫௫ሶܬ ௫ଶ + ଵଶ ௬௬ሶܬ ௬ଶ + ଵଶ ௭௭ሶܬ ௭ଶ + ଵଶܯଶ ൤ቀݔሶ + ሶ ௬ܮଷ − ሶ ௭ܮଶቁଶ +
																																			൫ݕሶ − ሶ ௫ܮଷ + ሶ ௭ܮଵ൯ଶ + ቀݖሶ + ሶ ௫ܮଶ − ሶ ௬ܮଵቁଶ൨ + ଵଶ ௫௫௠ሶܬ ௫ଶ +	ଵଶ ௬௬௠ሶܬ ௬ଶ + ଵଶ ௭௭௠ሶܬ ௭ଶ (3) 

The potential energy V of the system is from the deformation of the springs in SLSs. The 
deflections of SLSs in the system are shown in Figure 5. The points connecting by SLS in the base are 
defined as A0, B0 and C0; the points in the up plate are defined as A1, B1 and C1; and the points in the 
up plate for deflection are defined as A′1, B′1 and C′1.  

 

Figure 5. Deflection of the isolation system. (a) is the location of up plate and SLSs, and (b) is the 
deflection of one SLS.  

Figure 5 is the deflections of the MDOF vibration isolation system and each SLS. From Figure 5 
(a), it can be seen that the points A0, B0, C0 and D0 make a quadrilateral, and A1, B1, C1 and D1 are also 
make a quadrilateral. From Figure 5 (b) which is the deflection of the SLS, the original length of the 
springs in SLS is as 2lcosθ, and the length of the springs can be obtained by ‖ۯ଴ۯଵ‖. Because the 
absolute motions of up plate at center x={x, y, z, φx, φy, φz} are chosen as generalized coordinate where 
x, y and z are the absolute translational motions and φx, φy and φz are absolute rotational motions, the 
location of point A′1, B′1 and C′1 can be obtained by coordinate transformation matrix. Due to the 
six-excitation excitations from base which are as xe={xe, ye, ze, φxe, φye, φze}, the relative motions of the 
up plate at center are as ෝ࢞={ݔො, ݕො, ̂ݖ, ෠௫, ෠௬, ෠௭}. The transformation matrixes in the three rotational 

directions are as Rx, Ry and Rz, thus the rotational transformation matrix is defined as R which is dot 
product of the three transformation matrixes.  
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ˆ ˆ ˆ ˆ ˆsin sin cos cos sin

z zy y

x y z x x z z

x x y y

y z y z y

x y z x z

φ φφ φ
φ φ φ φ
φ φ φ φ

φ φ φ φ φ
φ φ φ φ φ

    −    
= ⋅ ⋅ = ⋅ ⋅ −   

   −         

−

= −

R R R R

ˆ ˆ ˆ ˆ ˆ ˆ ˆcos cos sin sin sin sin cos
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆcos sin cos sin sin sin cos cos sin sin cos cos

x z x y z x y

x y z x z x z x y z x y

φ φ φ φ φ φ φ
φ φ φ φ φ φ φ φ φ φ φ φ

 
 

+ 
 

+ − +  

 (4) 

where Rx, Ry and Rz are rotational transformation matrix in φx, φy and φz directions. 
From Figure 5, assuming the coordinate of point (c) is {0, 0, 0}, for the generalization of the 

results, the vector cA0, cB0, cC0 and cD0 are assumed as cA0={xa0, ya0, za0}, cB0={xb0, yb0, zb0}, cC0={xc0, yc0, 
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zc0} and cD0={xd0, yd0, zd0}, and the vector cA1, cB1, cC1 and cD1 are assumed as cA1={xa1, ya1, za1}, 
cB1={xb1, yb1, zb1}, cC1={xc1, yc1, zc1} and cD1={xd1, yd1, zd1}. Therefore, the vector A0A′1, B0B′1, C0C′1 and 
D0D′1 can be obtained by the translational motion matrix and rotational transformation matrix as 

 

{ }
{ }
{ }
{ }

0 1 0 0 1 0

0 1 0 0 1 0

0 1 0 0 1 0

0 1 0 0 1 0

ˆ ˆ ˆ, ,
ˆ ˆ ˆ, ,
ˆ ˆ ˆ, ,
ˆ ˆ ˆ, ,

x y z

x y z

x y z

x y z

′ ′= − = + ⋅ −


′ ′= − = + ⋅ −
 ′ ′= − = + ⋅ −
 ′ ′= − = + ⋅ −

A A cA cA R cA cA

B B cB cB R cB cB

C C cC cC R cC cC

D D cD cD R cD cD

 (5) 

From Eq. (5), the deflection of the axis of SLS is obtained, and then the deformations of springs 
in SLS can be obtained by the analysis of the shape of SLS. Figure 6 is the deflection of one layer of 
the SLS.  

 
Figure 6. The deflection of one layer in the SLS. (a) is original shape, and (b) is deformed shape. 

From Figure 6 (a), it can be seen that the original length of springs in the SLS is 2lcosθ. For 
deflection, the lengths of the springs in the three SLS are defined as la, lb, lc and ld which can be 
obtained by triangular relationship shown in Figure 6 (b) which is as 
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 (6) 

The potential energy V of the system is consisted of the elastic energy of the four springs in SLSs 
which can be expressed as 

 

( ) ( ) ( ) ( )2 2 2 2
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2 2
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2 2
2 2
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 (7) 

Considering the air damping of the system, the dynamic equation can be obtained by Lagrange 
principle as 
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where T is the kinetic energy and V is the potential energy shown as Eq. (3) and Eq. (7), The mass 
matrix M of the system is as 
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 (9) 

After first-order Taylor series expand, the stiffness matrix K is as 
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 (10) 

where ( )22 2 2
2 14 sinH n l l lθ= − − , and matrix C is the damping matrix of the system as 
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

C  (11) 

where ci (i=1,…,6) are damping coefficients in the six coordinates.  
Because of the assumptions that the amplitudes of motions are sufficiently small, each term in 

the dynamic equation can be expanded by Taylor series and higher order terms can be neglected. 
Therefore, the dynamic equation of the system is as 

ࡹ  ሷ࢞ + ࢞ࡷ + ࡯ ሶ࢞ = ࢋ࢞ࡷ + ࡯ ሶ࢞  (12) ࢋ

where M is the mass matrix, K is the stiffness matrix and C is the damping matrix, respectively, and 
x is the motion vector and xe is the base excitation vector.  
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3. Isolation effect 

3.1. Solutions of system 

The isolation effect of the proposed MDOF isolation platform with SLSs reflected by 
displacement transmissibility is based on the dynamic equation Eq. (12) and the responses for 
different structural parameters can be obtained by solving the linearized dynamic equations. When 
the excitation is harmonic excitation as xei=eicosωt, the responses could be set as xi=aicos(ωt+ϕ). Then, 
the displacement transmissibility Ti (dB) could be defined as the ratio between the amplitude of 
response and the excitation in respective direction as 

 ( )1010 log , , , , ,i
i x y z

i

a
T i x y z

e
φ φ φ

 
= =  

 
 (13) 

where ai is the amplitude of response and ei is the amplitude of harmonic excitation in different 
directions. From the dynamic equation Eq. (12) and mass, stiffness and damping matrices, it reveals 
that the values of components of the dynamic equations of each freedoms can be adjusted by 
changing the values of the structural parameters n, θ and l. The isolation effects for different 
structural parameters are shown in Figure 7.  

 
Figure 7. Isolation effect in x direction for different structural parameters (a) different n; (b) different 
θ; (c) different l. 

From Figure 7, it can be seen that firstly the natural frequency where has largest peak is reduced 
by increasing n, or decreasing θ and l, which verifies the analysis of natural frequencies in pervious 
section. Secondly, the value of the peak is reduced by increasing n and l while changing θ has no 
obvious effect on the value of the peak, and thirdly the response of the amplitudes are lower for 
larger n and l, or smaller θ. Also, it demonstrates that the value of the displacement transmissibility 
(dB) in the frequency range from zero to the first resonant peak could be controlled less than zero 
and the displacement transmissibility is always below zero after the first resonant peak for larger n 
or l and smaller θ. Therefore, it can be concluded that the isolation effectiveness in a broad frequency 
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band of the proposed isolation platform with SLSs can be improved by adjusting the structural 
parameters n, θ and l easily.  

3.2. Comparison with normal spring-mass isolation platform 

The isolation effectiveness of the isolation platform with SLSs and springs are compared which 
is shown in Figure 8. For two cases as n=2, θ=π/4, l=0.2 (case 1) and n=3, θ=π/6, l=0.2 (case 2), the 
performances of isolation platform with springs and SLSs are obtained and shown in Figure 8.  

 

Figure 8. The comparison of the isolation effectiveness in x direction between the platform with 
springs and SLSs for n=2, θ=π/4 and l=0.2 (case 1) and n=3, θ=π/6 and l=0.2 (case 2). 

From Figure 8, it can be seen that the isolation platform with springs has two obvious resonant 
peaks are about 100 and 110 rad·s-1 expect zero. While for the two cases of the isolation platform 
using SLSs, the fundamental natural frequency is much smaller than the one using springs. For case 
1 as n=2, θ=π/4 and l=0.2, the first resonant peak is at about 50 rad·s-1, and for case 2 as n=3, θ=π/6 and 
l=0.2, the first resonant peak is at 25 rad·s-1. Also, the values of displacement transmissibility for the 
two cases of the platform with SLSs are much smaller than the case with springs in a broad 
frequency domain.  

3.3 Isolation effectiveness 

In order to obtain the natural frequency of the proposed MDOF isolation platform and its 
isolation effectiveness, random excitation is proposed on the base and the response of the 
experimental prototype. The frequency domain of the random excitation is from 0 to 100 Hz. The 
structural parameters of the experimental prototype are as n=2, l=0.1, l2=0.285, l1=0.105, M2=0.22, 
M1=0, L1=L2=L3=0, and other structural parameters θ and kl could be adjusted easily for different 
isolation requirements. In Figure 9, two cases of isolation effectiveness are shown as θ and kl are as 
θ=π/3, kl=900. 

 
Figure 9. The isolation effectiveness for different structural parameters. (a) for θ=π/3 and kl=900; (b) 
θ=2π/5 and kl=450.  

Figure 10 shows the comparison between the theoretical results and experimental results for 
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the periodic excitation with ze=0.03, xe=ye=φxe=φye=φze=0, θ=π/3 and kl=900. The signals of the base and 
the up plate measured are acceleration signals and the acceleration signals are calculated to 
displacement signals by dividing the square of frequency since the vibrations are periodic motions. 

 

Figure 10. The displacement transmissibility for vertical direction vibration for θ=π/3, kl=900 and 
ze=0.03. 

From Figure 10, the natural frequency of the proposed isolation platform could be reduced by 
adjusting the structural parameters of the SLSs for different structural parameters. When utilizing 
four springs with kl=900 in a normal spring-damping isolator, the vertical-direction natural 

frequency is as ටସ×ଽ଴଴଴.ଶଶ = 128	rad/s≈20.38 Hz, while for utilizing the SLSs the natural frequency 

could be reduced to about 6.4 Hz as shown in Figure 10 for θ=π/3, kl=900. Therefore, using SLSs 
instead of springs could improve the isolation effectiveness, based on the fact that the natural 
frequency is reduced and the effective isolation range is increased. 

4. Conclusions 

This study proposed a MDOF vibration isolation platform with four symmetrical scissor-like 
structures (SLSs), which is designed for microgravity environments such as protecting instruments 
and isolation devices in aerospace stations. Theoretical modeling, analysis and comparison studies 
demonstrated its advantages and versatility in vibration isolation/control. The advantages of this 
isolation platform are listed as follow, 

(a)By designing the structural parameters of SLSs, the proposed MDOF isolation platform can 
achieve smaller natural frequency and much larger effective isolation frequency range compared 
with normal spring-mass isolator; 

(b)Because of the stiffness property with small linear coefficients in different directions of the 
proposed isolation platform, the system becomes an improved MDOF adjustable isolation platform; 

(c)The adjustable stiffness coefficients in different directions and isolation effectiveness of the 
isolation platform with SLSs are verified by experiment prototype and experimental results. 

Further studies will focus on the effect of active control for a MDOF vibration isolation system 
using the scissor-like structures (SLSs) and the combined effect of control parameters and nonlinear 
coefficients on isolation performance. 
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