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Abstract: The assessment of biomass carbon stocks was conducted at plot scale as a sample to 
estimate for all vegetation areas by using destructive sampling and or allometric equation method. 
Remote sensing is one of the techniques can be used to estimate and mapping biomass carbon stock 
for the entire areas. The objectives of the study are the identification and determine the range of 
electromagnetic wave of Landsat 8 satellite data that most suitable for assessing and mapping 
biomass carbon stock distribution.  This research analyses exponential regression equation 
between spectral radiance values (Lλi) for with biomass measurement results on the field to find 
the best correlation based on the coefficient of determination value (R2). It also analyses the 
relationship between field biomass and NDVI value (Normal Differences Vegetation Index) from 
satellite data. The study area consists of 54.9% bush (Bs), 24.5% scrub (Sc), 16.8% secondary forest 
(Sf), while the rest (3.8%) is a water body.  The with average biomass carbon stock value 4.11 
tons.ha-1, 64.43 tons.ha-1, and 85.36 tons.ha-1, for strata Sc, Bs, and Sf respectively. Spectral 
radiance of SWIR (Shortwave Infra-Red) band 6 is determined as a spectral characteristic that can 
be used for estimating carbon stock with following the equation Y= 12657(EXP(-0.642(Lλband6)) with 
r2 = 0.75.  Correlation NDVI and field biomass showed the low r2 value (0.08), so in this study, 
NDVI cannot be used to estimate the biomass carbon stock. 
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1. Introduction 

The Carbon dioxide (CO2) is one of the greenhouse gasses (GHG) which an important role in 
climate. According to the IPCC (Eggleston et al., 2006); Hairiah et al., (2007), within a period of 150 
years the concentration of CO2 in the atmosphere has increased about 28%.  Land use change from 
forest conversion into open or agriculture area has caused an increasing CO2 concentration in the 
atmosphere.  About half of CO2 emissions from the land use activities and the use of fossil fuels 
(Lusiana et al., 2010). Therefore, mitigation efforts of climate change in the land-based sector to be a 
main priority agenda at this time.  One of mitigation measures is to consider the avoidance of land 
with high carbon deposits on the opening of a new development area (RSPO, 2014).  The inventory 
and calculation of any sources of carbon stocks at the landscape level should be done.  Carbon stock 
in the vegetation can be calculated with the tree biomass approaches. Absolute carbon content in the 
biomass at a given time is known as carbon deposits or carbon stock (Apps et al., 2003). 

A common approach for estimating biomass carbon stock of vegetated area is through use 
destructive sample measurement and or allometric equations for individual trees or ecosystem type 
respectively (Ketterings et al., 2001; Dharmawan., 2013; Ganeshamurthy et al., 2016). The results 
were used to determine the carbon stocks at the regional level by extrapolation approach depend on 
land cover type or forest type (Murdiyarso et al., 2004; Eggleston et al., 2006; Hairiah et al., 2007; 
Manuri et al., 2011; Krisnawati et al., 2014).  The roles of remote sensing data only for land cover 
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mapping (Asner et al., 2011). This method assumes that each type of land cover has a single value of 
biomass carbon stocks. Remote sensing data have not been used optimally to estimate directly. 

Landsat 8 has eleven bands with differences of electromagnetic (EM) wavelength range value, 
consisting of nine bands in the Operational Land Imagery (OLI) sensor and 2 bands in the Thermal 
Infrared Sensor (TIRS) (USGS, 2016).  OLI sensors receive reflectance shortwave EM and TIRS 
receive outgoing longwave EM radiance from the surface.  Spectral radiance value is determined by 
surface radiation budget, including reflection, absorption, emission and transmission by object's 
(Coakley and Yang, 2014).  Vegetation is one of the surface objects where spectral radiance value 
was affected by biomass and the water content (Ceccatoa  et al, 2010; Borzuchowski  & Schulz, 
2010). 

The study objectives are spectral radiance examinations of the Landsat 8 OLI/TIRS satellite 
bands respectively to estimate biomass of vegetation. The examination results could be used for 
biomass carbon stocks mapping at the regional level, without having to undertake land cover 
mapping and field measurements.. 

2. Methods  

2.1. Site study and material 

The site study located at Bongan subdistrict, Kutai Barat district, East Kalimantan-Indonesia, 
with the astronomical location are 116o13’00” to 116 o 24’00” East and 00 o 30’00” to 00 o 48’15” South. 
The site consists of four classes of land use, there are water body, building area, agricultural land 
and forest land. Almost all vegetation cover is wetland ecosystem, including peat swamps, 
freshwater swamps, flooded area and riparian. The agricultural land founded on the higher and 
drier land than the surrounding area. On the site, there are four rivers that often cause flooding 
during the rainy season, that is Bongan river, Bongan Tongkok river, Bongan kiri river and Bongan 
kanan river. 

This study uses primary data and secondary data. The primary data is a measurement of 
biomass and land cover ground check. Secondary data consist of (i) Landsat 8 OLI/TIRS satellite 
imagery-path/row: 117/60, acquisition date: October 12, 2014 (https://earthexplorer.usgs.gov), (ii) 
topographic and base map (http://www.big.go.id),  (iii) SRTM DEM 90m 
(http://www.cgiar-csi.org/data/srtm-90m-digital-elevation-database-v4-1) 

2.2. Fieldwork and data analysis 

In order to obtain high accuracy, field sampling methods used stratified random sampling. 
Stratification is effectively used because the effect on the increase of homogeneity within each strata 
(MacDicken, 1997), also reduces the possibility of a big difference between plots and increase the 
accuracy even though the number of plots are little. Therefore, the type and density of vegetation 
become an important criterion in the stratification of the assessment area. The number of observation 
plots in the field is adjusted to the results of the stratification of vegetation cover. Random sampling 
is done disproportionately in order to avoid vegetation cover strata with a small area that is not 
represented. At every strata of vegetation cover, three plots random samples are taken. On each plot 
sample, three plot lines are made as repetitions (Figure 1).  In each plot there are sub-plots that have 
certain sizes according to the size or the measured vegetation such as diameter at breast height 
(DBH) (Table 1). 
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Figure 1. The shape and size of plot and subplot (left) and plot position in the plot lines  (right). 

Table 1. Size of sub-plot in  biomass sampling 

Subplot size Vegetation object/biomass sampling 

1 x 1 meter 
(3x random repetition for each plot) 

Herbaceous plants, shrubs, litter, tree seedlings with  
2-5 cm diameter. 

5 x 5 meters All liana plants, palms, trees with 5-10 cm DBH, dead 
trees with 5-10 cm diameter. 

10 x 10 meters All trees with 10-20 cm DBH, dead trees with 10-20 
cm diameter, dead wood with 10-30 cm diameter. 

20 x 20 meters 
All trees with 20-35 cm DBH, dead trees with 20-35 

cm diameter, dead wood with > 30 cm diameter. 
40 x 40 meters All trees with > 35 cm DBH. 

2.2.1. Above Ground Biomass  

The approach to estimate tree above-ground biomass (AGB) at the field is allometric equations 
of several kinds of research that have been conducted globally and locally. Allometric equations that 
have developed recently are empirical equations that in their applications can refer to the forest 
ecosystem as well as on certain tree species. Most of the allometric equations use DBH variable to 
estimate the value of biomass and the tree volume at particular ecosystem types or at the tree species 
level.  Allometric equations are using the regulation by the Ministry of Forestry of Indonesia (BPPK, 
2012), as the main reference. Several other references of allometric equations derived from the 
results of credible research are also used to supplement and improve the accuracy of the assessment 
(Brown, 1997; Adinugroho, 2009; Basuki et al, 2009; Anggraeni, 2011; Krisnawati et al, 
2012).  The allometric equations diversity should be a concern in the choice of equations that will be 
used in the assessment.  Another reason must be considered is that not all species of trees have 
an allometric equation, so in this case, the ecosystem type approach is used (Krisnawati et al, 2014). 
In addition to the trees, AGB also comprises biomass derived from herbaceous plants, shrubs, and 
seedling stage trees. Biomass estimation at this stage is done by destructive sampling on 1x1 meters 
plot. 

2.2.2. Below Ground Biomass  

Measurement of root biomass or below-ground biomass (BGB) on the field can only be done by 
destructive sample, which means cutting and digging every tree species found in the plot, and then 
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take the roots and weigh the wet weight. Due to this condition, roots sampling is not conducted 
because it is difficult to do on the field and also has a negative impact for the ecosystem in the 
assessment area. Therefore, to estimate the root biomass, use root to shoot ratio (RSR) method or the 
ratio of BGB with AGB is used. As references of RSR, the values collected as presented in Table 2. 

Table 2. Ratio of below-ground biomass and above-ground biomass or root shoot ratio  

Ecology Zone 
Above-Ground 
Biomass (AGB) 

Root of Shoot 
Ratio (RSR) 

Reference 

Tropical rain forest  0.37 Fittkau and Klinge, 1973 
Tropical moist deciduous 
forest 

AGB < 125 ton/ha 0.20 (0.09 – 0.25) Mokany et al., 2006 
AGB > 125 ton/ha 0.24 (0.22 – 0.33) Mokany et al., 2006 

Tropical dry forest 
AGB < 20 ton/ha 0.56 (0.28 – 0.68) Mokany et al., 2006 
AGB > 20 ton/ha 0.28 (0.27 – 0.28) Mokany et al., 2006 

Tropical shrubland  0.40 Poupon, 1980 
Tropical mountain systems  0.27 (0.27 – 0.28) Singh et al., 1994 

2.3. Remote Sensing data analysis 

Land cover analysis is carried out as the first step to determine the stratification of the 
vegetation cover in the assessment area.  The stratification results are then used to determine the 
number of samples in the field. Stratification of vegetation cover refers to National Indonesia 
Standard (NIS) 7645 on Land Cover Classification (BSN, 2010), and the method used unsupervised 
classification (Wilson and Sader, 2002; Romero et al, 2015). Landsat 8 OLI  band combination used 
was 654 bands, it’s the best combination of vegetation analysis (Acharya and Yang, 2015). 
Digital number (DN) all bands of Landsat 8 OLI/TIRS converted to spectral radiance values as 
follows: 

=ఒܮ ൤ ௠௔௫ܮܣܥఒܳ݊݅݉ܮ−	ఒݔܽ݉ܮ − ௠௜௡൨ܮܣܥܳ × ሺܳܮܣܥ − ௠௜௡ሻܮܣܥܳ +  ఒ (1)݊݅݉ܮ

Where, Lλ = Spectral radiance band-i (Wm-2str-1μm-1); QCAL = DN band-i; Lmin = Minimum 
spectral radiance value of band-i; Lmax= Maximum spectral radiance value of band-i QCALmin = 
Minimum pixel value (metadata);  QCALmax = Maximum pixel value (metadata) 

The results of the conversion are then filtered to obtain spectral radiance values each band 
representing field plot.  To get the average value of spectral radiance band-1 for each plot, then 
used compass base approach (Risdiyanto, 2007), which are the average value of nine pixels located 
around the coordinate of plot sample.  These values are independent variables in the regression 
equation with biomass field measurements as the dependent variable.  Coefficient of determination 
(r2) of each regression equation showing the representation of biomass by  spectral radiance values 
of band-i.  In addition, the Normalized Difference Vegetation Index (NDVI) approach was also 
used to indicate the relationship with biomass in the same way.  As a reference for each regression 
analysis outcome between biomass and spectral radiance value of band-i use a graph the 
relationship between the reflectance and the wavelength (Hoffer, 1978) (Figure 2). 
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Figure 2. General chart on reflectance at each wavelength of the light spectrum range (Source: 
Hoffer, 1978) 

Table 1. Band characteristic of Landsat 8 OLI/TIRS satellite imagery  

Bands 
Wavelength 
range (μm) 

Spatial 
resolution (m) 

Band 1 – VIS-coastal aerosol  0.43 - 0.45 30 
Band 2 – VIS-Blue  0.45 - 0.51 30 
Band 3 – VIS-Green  0.53 - 0.59 30 
Band 4 – VIS-Red  0.64 - 0.67 30 
Band 5 – Near Infrared (NIR)  0.85 - 0.88 30 
Band 6 – Shortwave Infrared (SWIR) 1 1.57 - 1.65 30 
Band 7 – Shortwave Infrared (SWIR) 2 2.11 - 2.29 30 
Band 8 – VIS-Panchromatic  0.50 - 0.68 15 
Band 9 – Cirrus  1.36 - 1.38 30 
Band 10 - Thermal Infrared (TIRS) 1  10.6 - 11.19 100 
Band 11 – Thermal Infrared (TIRS) 2  11.5 - 12.51 100 
Source: USGS (2013) 

2.4. Biomass carbon stocks mapping 

The allometric equation and destructive method produce the estimation of vegetation dry 
weight or biomass level and not in the carbon unit. A common value on the global level uses the 
estimated value of carbon sourced from biomass, which is 0.47-0.50 of the biomass (Eggleston et al, 
2006). It is also in accordance with NIS 7724: 2011 on "Measurement and Calculation of Carbon 
Stock: Field Measurements for Forest Carbon Stock Assessment (Ground Based Forest Carbon 
Accounting)". So that the general equation of the total carbon stock value of land or forests are: 

CS = 0.47 (AGB+BGB) (2) 

Where, CS=Carbon Stock (tons.Ha-1),  AGB=Above Ground Biomass (tons.Ha-1), and 
BGB=Below Ground Biomass (tons.Ha-1), 
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In order to know the total number of carbon stock in the assessment area, extrapolation of the 
carbon value resulted from the calculation in each plot is necessary. Extrapolation can be done by 
one of these two approaches: (i) based on each land covers an area or ecosystem type and (ii) use the 
regression equation with highest r2 of band-i.   In this assessment, second approach will be used 
because it will provide higher accuracy than the first approach, although it requires a longer process. 

3. Results and Discussion 

3.1. Field measurement of carbon stock biomass 

The vegetated land cover is classified into three strata, namely the secondary forest (Sf), scrub 
(Sc) and bush (Bs). The area of each vegetation cover as the result of satellite data interpretation 
results is 54.9% for Bs, 24.5% for Sc and 16.8% for Sf, while the rest (3.8%) is a water body. The total 
number of plots sampling for biomass measuring are 49 plots, which consisted of 13 plots for Bs, 22 
for Sc and 14 for Sf.  The plot number is set purposefully in accordance with the hectare areas and 
type of vegetation cover. 

The average biomass for each stratum of vegetation Bs, Sc and Sf are 9.4 tons. Ha-1, 94.5 tons. 
Ha-1 and 177.8 tons. Ha-1 sequentially. These results differ from Astiani et al (2017) who present the 
value of low degraded peat forest and swamp forest is  is 273.8 tons. Ha-1, and scrub is 61.1 tons. 
Ha-1.  Biomasses on Sf close to the result Seo et al (2014).  They present the results of AGB field 
measurements in the tropical forest of the Tangkulap Forest Reserve, Sabah, Sarawak, an average of 
255.1±91.8 ton. Ha-1, and diversity coefficient is 36%. Similar results were obtained by Manuri et al 
(2011) in MRPP SouthSumatera. 

Distribution of biomass data for each of the vegetation cover is normal according to the value of 
the Anderson-Darling (AD) is relatively low and P-value> 0.05).  Each vegetation cover type has a 
biomass measurement deviation. Biomass measurement deviation on Bs is 43.1% of the average 
value, it is greater than Sc (32.8%) and Sf (24.1%).  Standard deviation is lower than the Gonçalves et 
al (2017), perform measurements at the secondary and primary forest that reaches 77%. Presences of 
any diameter tree stand 2-10 cm at some BS plot has been generated a higher biomass than the plot 
contains herbaceous plants and grasses only. At Sc and Sf plot, biomass deviation was caused by 
differences in allometric equations and species dominance to each wetland ecosystem type, such as 
between riparian and peat swamp (Figure 3 and 4). 

The different vegetation species, according to the wetland ecosystem types are not further 
analyzed. The only difference is determined by the stratum of vegetation which divided into three, 
namely Bs, Sc and Sf, represent the vegetation and or canopy density. Landsat 8 can only represent 
spectral radiance band-i accumulate as a response to the surface characteristics which determined by 
a canopy density. So that, variation in biomass measurements be accepted as a result of the diversity 
of each vegetation cover or canopy. The biomass data distribution and deviation can be considered 
to determine the spectral radiance conjunction with band-i. 
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Figure 3. Probability plot biomass field measurements for each vegetation land cover 

 

Figure 4. Boxplot of biomass field measurements for each vegetation land cover 

3.2. Regression analysis with spectral radiance band-i 

The regression equation is required to be able to explain the relationship between the spectral 
radiance as an independent variable with biomass as the dependent variable. To determine the 
regression function to be used, then conduct empirical cumulative data fitting (ecdf) analysis to 
determine the data distribution for all stratum Bs, Sc and Sf. Results ecdf analysis of data showed a 
fit distribution is exponential (Figure 5). Therefore, the regression equation used in this study is a 
non-linear regression, that is the exponential function. As predictor is a spectral radiance band-i and 
as the response is a biomass. 
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Figure 5. The empirical cumulative distribution function of fit biomass data of each vegetation cover 

Spectral radiance of band visible light (VIS) with the range of wavelength is 400-750 did not 
have a strong correlation with the biomass on the surface, although the VIS may show natural 
colour, including the green colour of the leaves (Figure 6 and 7).  VIS can only show the momentary 
condition of short-wave radiation is absorbed and reflected by the surface.  In general, the 
vegetation canopy reflecting the green spectrum and absorb the red spectrum. The larger the leaf 
area index value would provide the value of the reflectance green spectrum and absorption red 
spectrum increases.  Although red absorption spectrum by the leaf canopy can provide an 
indication of photosynthesis, but it cannot explain the accumulation of the assimilate that into 
biomass. For the assessment of biomass, VIS and infrared spectrum were formulated together to 
estimate leaf area index first, then biomass (Heiskanen, 2005; Risdiyanto and Setiawan, 2007; Wang 
and Qi, 2008) 

Red and NIR spectrum has been commonly used to identify the growth and development of 
plants. Both are often formulated as NDVI.  If the red spectrum does not have a strong correlation 
with biomass, as well as NIR (Figure 8), including if they were formulated into NDVI (Figure 9). 
Aparicio et al. (2002); Alvaro et al. (2007) obtain NDVI correlated with LAI and biomass in 
monoculture, sensitive to chlorophyll (Zavaleta et al. 2003) and sensitive to changes in tropical forest 
shadow faction, but not sensitive in the savanna (Asner and Warner, 2003). Almost biophysical 
factors at monoculture vegetation measured by spectral radiance were associated with canopy 
greenness level and it was not found in the study area. Forest vegetation with a high diversity 
indicates that NDVI was not correlated with biomass (Lu et al., 2002). 

 
Figure 6. Non-linear regression between VIS (RGB) and biomass 
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Figure 7. Non-linear regression between VIS (Band-1 and Band-8) and biomass 

 

Figure 8. Non-linear regression between NIR and biomass 

 
Figure 9. Non-linear regression between NDVI and biomass 

The exponential regression function between biomass and SWIR generate a strong correlation 
(r2=0.75), especially in the wavelength range from 1:57 - 1.65 μm (Band 6) (Figure 10).  The strongest 
correlation is also generated by Muukkonen and Heiskanen (2005) which estimating biomass for 
boreal forests using satellite ASTER standwise of data combined with forest inventory data. 
Avitabile et al (2012) and Baccini et al (2012) also shows the SWIR capability to estimate AGB. Lin 
and Tsogt (2013) get a strong correlation between the value of AGB with band-6 (SWIR 1), a fairly 
strong correlation shown by band-3 with LAI while the band 7 (SWIR 2) correlated with stem and 
AGB. 
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Variations in the density of vegetation or canopy in the study area correlate strongly with the 
SWIR so that this capability can be used to model the biomass in areas with heterogeneous types of 
vegetation cover.  SWIR spectral reflectance is affected by moisture-sensitive objects and water 
equivalent thickness (EWT) at leaf level (Ceccato, 2001). However, this biomass estimation model 
should note the physical condition of the study area is a wetland. So that the effect of the water 
content in the soil should also be considered to improve predictive accuracy. Tian and Philpot (2015) 
showed the relationship between surface soil water content, evaporation rate, and water absorption 
band in SWIR spectral reflectance depths 

 
Figure 10. Non-linear regression between SWIR and biomass 

TIRS receive the emitted thermal spectral surface whose value is determined by the emissivity 
of the object. The canopy of trees and or leaves of each plant species has a different emissivity 
(Rahkonen et al., 2003; Lopez et al., 2012; Chen, 2015), this led to differences in the proportion of 
long-wave emission (8-14 m) as research generated Salisbury and D'Aria (1992).  The emissivity is 
also a function of the specific heat (Jones and Rotenberg, 2002), so associated with biomass (Gu et al., 
2007; Dupont et al., 2014). However, non-linear regression between biomass TIRS this study did not 
show a strong relationship (Figure 11). It can be affected by wetland properties so that water content 
factor in the soil more dominant than vegetation to determine the amount of heat capacity. 

 
Figure 11. Non-linear regression between TIRS and biomass 

3.3. Biomass carbon stock mapping 

Commonly, the mapping of biomass by using multispectral satellite data use the NDVI and its 
variants. NDVI describes the condition of tree canopy, especially the leaves organ. So that in its use, 
the value of NDVI is often correlated with leaf area index (LAI).  Carlson and Ripley (1997) also 
revealed a high correlation between LAI and NDVI.  Pontailler et al. (2003) resulted 0.95 
relationships between LAI with NDVI. Similarly, the results of other studies, such as one carried out 
by Nagler et al. (2004) and Potithepa et al. (2010) which showed strong positive correlation.   In this 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 April 2017                   doi:10.20944/preprints201704.0020.v1

http://dx.doi.org/10.20944/preprints201704.0020.v1


 11 of 14 

 

study, a direct correlation between NDVI and biomass does not produce a strong relationship. 
Several studies on the relationship of NDVI with biomass does not always generate a high 
correlation. Seo et al. (2014) obtained 77% accuracy in biomass estimation by using the NDVI data in 
Sabah tropical forests. While Wahyuningrum (2006) produced low R2, which is below 50%, although 
theoretically will have a high correlation value. Factors that lead to a low correlation value is the 
atmosphere, soil moisture, and rectification process of the satellite data.  Therefore, to conduct 
carbon stocks mapping would use the exponential equation between SWIR (band 6) and biomass. 

The non-linear regression between SWIR spectral radiance and biomass has strongest 
correlation,  resulted in an exponential equation (Y=a. eb. x) with value of R2 = 0.75, as follows Y= 
12657 (EXP (-0.642 (Lλband6)), where Y is biomass.  This equation can be used to map the biomass 
carbon stocks in the study area (Figure 12). According to the mapping, the average carbon stock of 
biomass in the study area for vegetation strata Sf is 208.3 ± 28.3 tons.ha-1, Sc is 130.4 ± 47.8 
tons.ha-1and Bs is 20.3 ± 6.7 tons.ha-1. 

 
Figure 12. Carbon stock map as a result of estimation by SWIR spectral radiance Landsat 8 (band-6) 

4. Conclusions 

This study has shown that information on spectral radiance value from surface reflectance and 
emission by any vegetation strata. It has also established a basis for a more detailed study about 
remote sensing and biomass.  Remote sensing using the visible, NIR, SWIR and TIR wavelength 
ranges alone or in establishing vegetation indices was demonstrated unsuitable for retrieving 
biomass at wetland area. The analysis demonstrated that SWIR wavelength range alone is sufficient 
in retrieving biomass.  These studies assume that biomass estimation by SWIR did not consider 
differences of tree species and various ecosystem types at the wetland. Further research is required 
to understand how to remove the water content factor in land or under tree canopy for each 
vegetation strata. 
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