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1 Abstract: We analyze the thermal convection thresholds and linear characteristics of the primary
> and secondary instabilities for viscoelastic fluids saturating a porous horizontal layer heated from
3 below by a constant flux. Galerkin method is used to solve the eigenvalue problem by taking
4+ into account the elasticity of the fluid, the ratio between the viscosity of the solvent and the total
s viscosity of the fluid and the lateral confinement of the medium. For the primary instability, we
s found out that depending on the rheological parameters, two types of convective structures may
7 appear when the basic conductive solution loses its stability: stationary long wavelength instability
¢ as for Newtonian fluids and oscillatory convection. The effect of the lateral confinement of the
s porous medium by adiabatic walls is to stabilize the oblique and longitudinal rolls and therefore
10 selects transverse rolls at the onset of convection. In the range of the rheological parameters where
u  stationary long wave instability develops first, we use a parallel flow approximation to determine
12 analytically the velocity and temperature fields associated to the monocellular convective flow. The
13 linear stability analysis of the monocellular flow is performed, and the critical conditions above
12 which the flow becomes unstable are determined. The combined influence of the viscoelastic
15 parameters and the lateral confinement on the characteristics of the secondary instability is
16 quantified. The major new findings concerning the secondary instabilities may be summarized
17 as follows: (i) For concentrated viscoelastic fluids, computations showed that the most amplified
1 mode of convection corresponds to oscillatory transverse rolls which appears via a Hopf bifurcation.
19 This pattern selection is independent of both the fluid elasticity and the lateral confinement of the
20 porous medium; (ii) For diluted viscoelastic fluids, the preferred mode of convection is found to be
2 oscillatory transverse rolls for a very laterally confined medium. Otherwise stationary or oscillatory
22 longitudinal rolls may develop depending on the fluid elasticity.

23 Results also showed the destabilizing effect of the relaxation fluid elasticity and the stabilizing effect
2« of the viscosity ratio for the onset of both primary and secondary instabilities.

s Keywords: viscoelastic fluids; porous media; convection; instability

26 1. Introduction

27 The study of viscoelastic fluids have applications in a number of processes that occur in industry,
22 such as the extrusion of polymer fluids, solidification of liquid crystals, suspension solutions and
2 petroleum activities. In contrast to the case of Newtonian fluids, study of thermal convection of
30 viscoelastic fluids in porous media is limited. In rheology, one crucial problem is the formulation of
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s the constitutive equations regarding viscoelastic fluid flows in porous media. Recently, a modified
2 Darcy’s law was employed to study the stability of a viscoelastic fluid in a horizontal porous layer
53 using linear and nonlinear stability theory ([1]-[9]). Kim et al. [1] and Yoon et al. [2] performed
3+ a linear stability analysis and showed that in viscoelastic fluids such as polymeric liquids, a Hopf
s bifurcation as well as a stationary bifurcation may occur depending on the magnitude of the
36 viscoelastic parameter. From the nonlinear point of view, Kim et al. [1] carried out a nonlinear
37 stability analysis by assuming a densely packed porous layer and found that both stationary and
;2 Hopf bifurcations are supercritical relative to the critical heating rate. The question of whether
3 standing or traveling waves are preferred at onset has been fully addressed by Hirata et al. [4].
w0 The three-dimensional convective and absolute instabilities of a viscoelastic fluid in presence of a
a1 horizontal pressure gradient have been analyzed by Hirata and Ouarzazi [5]. Alves et al. [6] studied
22 the effect of viscous dissipation of viscoelastic fluids at the onset of convection. In addition to its
4 theoretical interest, Delenda et al [7] have showed that viscoelastic convection in porous media may
41 be useful for industrial applications interested by the separation of species of viscoelastic solutions.
s The introduction of a porous packing allows to control the average vertical convective velocity and
s to generate a homogeneous convection current, improving the separation of species. Fu et al. [8]
47 performed direct numerical simulations on two-dimensional thermal convection of a viscoelastic
s fluid saturating a porous square cavity. Their numerical experiments revealed the existence of
s a second transition from oscillatory convection to stationary one followed by a third transition
so to oscillatory convection for some combinations of rheological parameters while these successive
51 transitions never occur for other combinations of viscoelastic parameters. Taleb et al. [9] used both
s2 theoretical and numerical approaches and obtained a global picture and bifurcations diagrams on
53 possible successive bifurcations of convection patterns in a square porous cavity saturated by a
s« viscoelastic fluid.

ss All the above investigations considered conventional boundary conditions, namely impermeable
ss isothermal horizontal plates and impermeable adiabatic side walls, commonly known as
s Horton-Rogers-Lapwood convection. However, to the best of our knowledge, no results have
ss been published for thermal convection of viscoelastic fluids when the porous medium is heated from
ss  below and cooled from above with a constant heat flux. Therefore, the objective of this work is to
o fill this gap by investigating the onset of three-dimensional primary and secondary instabilities of a
&1 viscoelastic fluids under the assumption that the upper and lower horizontal walls are impermeable
s> and are kept at a constant flux, while the lateral vertical walls are considered impermeable and
ss adiabatic.

s+ For Newtonian fluids, the stability of an infinite porous layer with different boundary conditions was
ss studied by Nield [10] and is well documented in Sect. 6.2 of the book by Nield and Bejan [11]. For
s the case of a porous medium heated from the bottom and cooled from the top by a constant heat flux,
&7 Nield [10] found that the critical Rayleigh number at the onset of convection is approximately 12
es with a vanishing critical wavenumber. Mamou et al. [12] extended the work of Nield [10] by taking
e into account the effect of the anisotropy of the porous medium. Mojtabi and Rees [13] studied the
70 case where the impermeable boundary walls have a finite thickness. They analyzed the combined
7 influence on the onset of convection of the ratio between the thermal conductivity of the horizontal
72 walls and the thermal conductivity of the porous medium as well as the ratio between the thickness
73 of the horizontal walls and the thickness of the porous layer.

7o Kimura et al. [14] investigated secondary instabilities for a Newtonian fluid saturating a porous
75 medium heated from below by a constant flux. For Rayleigh number larger that its critical value
7 12 above which the conduction state looses its stability against long wave instability, these authors
77 used the parallel flow approximation and obtained a nonlinear solution which corresponds to a
7z monocellular flow. Two-dimensional numerical results were also presented to test the validity of the
79 approximated nonlinear solution. In addition, they analyzed its stability against three dimensional
s disturbances and showed that the monocellular flow is linearly stable to transverse disturbances for
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a1 Rayleigh number as high as 506, at which point a Hopf bifurcation sets in. However, further analysis
e2 indicated that an exchange of stability due to longitudinal disturbances will occur much sooner at
ss Rayleigh number equal to 311.53.

s This contribution aims at understanding how the viscoelastic character of the fluid influences the
s properties of convection at the onset of primary and secondary instabilities, when the porous layer
s is heated from below by a constant flux. Therefore, this work may be viewed as an extension to
& viscoelastic fluids of the work done by Kimura et al. [14].

88

89 The paper is organized as follows. After presenting the governing equations in section 2, the
%0 stability of the conductive state is studied in section 3 by considering steady as well as oscillatory
o1 three-dimensional perturbations. Section 4 is devoted to the discussion of the combined effects of the
22 viscoelastic parameters and the lateral aspect ratio of the porous medium on the pattern selection at
93 the onset of secondary instabilities. Finally, in section 5, the main conclusions of the present study
94 are presented.

os 2. Mathematical formulation

9% Let us consider an isotropic and homogeneous porous cavity of thickness e, height H, width W
97 (see figure 1). The porous medium is saturated by an Oldroyd-B fluid and we assume that the solid
s¢ matrix is in local thermal equilibrium with the fluid. The upper and lower horizontal walls are kept at
9o constant flux, while the lateral vertical walls are considered adiabatic. The solid walls of the domain
w0 Q =[0,W]x[0,¢e] x [0,H] are considered impermeable. We assume that the Oberbeck-Boussinesq
w1 approximation holds.

q

JdT oT H
=0 o =0
z1 Y e
X
W

q|

Figure 1. The porous rectangular cavity heated from below by a constant flux.

102 There are several ways to obtain macroscopic laws for polymeric flows in a porous medium: by
103 direct numerical simulations of viscoelastic flows in a specific pore geometry model (a good review
s of these studies can be found in [15]) or analytical ways. In general, the former is the most commonly
s used way for the derivation of macroscopic laws. It can be divided in two techniques: the REV
s method (representative elementary volume method) and the homogenization theory. The starting
107 point for the two techniques is a local description in a pore scale. The pore space is assumed to be
s saturated by an incompressible viscoelastic fluid. For slow flows, the momentum balance equation
109 can be linearized:

v
p at*

o where U” is the fluid velocity field, p* is the pressure, 7 is the stress tensor and g is the gravity field.

=-Vp'+pg+V-7 (1)

111 In Newtonian incompressible fluids, the constitutive relation between stress tensor 7 and strain
nz tensor D (D ; = [ufj +u; :]/2) is the Newtonian law 7 = 2 uy D, where py is the dynamic viscosity,
13 and, in this case, the relation V-7 = yNVZU* is obtained.
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114 The rheological model relating ¥ and D for viscoelastic fluids, such as a polymeric solution
us  composed of a Newtonian solvent and a polymeric solute of "Newtonian" viscosity p; and "elastic
ue  Vviscosity" p, [16] respectively, is given by:

T=17+1, (2)
117 with
T, =2 ,usD (3)
us  and
* a ~ "
(1+A1%)Tp:214pD (4)

us  where A] represents the relaxation time. Then, by combining 2 - 4 we obtain the constitutive
120 equation:

d d | ~
1+ M =—)%, =2pu(1+A==)D
( +/\1 at*)Tp ”l( +/\28t*) (5)
where the dynamic viscosity p and the retardation time A} are related to p; and p, by:
p=ptpy and  X3/0 =/ (st ).

121 An Oldroyd-B fluid may thus be characterized by three parameters: the dynamic viscosity y, the
122 relaxation A] and the retardation A} times. The relation I' = A% /A] may also be used instead of 5.
In order to derive a macroscopic filtration law based on the Oldroyd constitutive equation, we
have to introduce the filtration velocity V* defined by the Dupuit’s equation :

V= U (6)

where ¢ is the porosity. Substituting Equation 5 into 1 and using the REV method by averaging the
resulting equation and taking into account Equation 6 leads to:

p * a av* I/l * a * * a *

—(1+A — 4+ =1+ A=)V 14+ A== ) (VP - =0, 7

q;)( + 18t*)8t*+K( + Zat*) +( + 1at*)(v Pg) ( )
123 where K is the permeability.
124 Under the assumption of low Reynolds number based on the pore dimension, the generalized
125 Darcy’s law 7 is also derived by [17] using a homogenization theory.
126 The fluid density p obeys the state law :

p=po(1-Br(T"-Tp)) (8)

12 where pg is the fluid density at temperature T; which is chosen here as the temperature at the
128 geometric center of the cavity, and fr is the thermal expansion coefficient. Energy and continuity
129 equations can then be written as :

C)sf T
(p )Sf - +V>«-VT*:V(&VT*) (9)
(pc)f ot
V-V'=0 (10)
130 The boundary conditions at the impermeable horizontal walls kept at a constant flux g and the

11 impermeable insulated vertical walls are:
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aT”
—kr 5 1 at z=0,H,
or =0 at x=0,W,
ox (11)
o _ 0 at y=20,e
ay - })— )
V:n=0 at JQ.
132 here, (pc), w, v, kr, a = kr/(pc)s are respectively the heat capacity per unit volume, the

133 dynamic and kinematic viscosity of the fluid the effective thermal conductivity and the effective
13« thermal diffusivity. Subscript (sf) refers to an effective quantity, while (f) refers to the fluid alone.

135 We choose H, kr/(H(pc)s), H*(pc)ss /kr, kru/ (K (pc)s) and qH /kr as reference quantities for
136 lengh, velocity, time, pressure and temperature difference (T* - Tj). With this scaling, the following
137 set of dimensionless equations is obtained:

V-V=0 (12)
d, 1 dv d d
a—T+V-VT:V2T (14)
ot
The dimensionless boundary conditions are:
(Z—Z:—l at z=0,1,
aT A
— =0 at x=+—,
gx 2 (15)
T
9_y_0 at y=20,q,

The Darcy-Prandtl number Prp, is defined as Prp = (¢Pr)/Da, with Da = K/H? and Pr = v /kr.
Since in the common porous media the Darcy number is very small, the Darcy-Prandtl number Prp
takes quite large values. Therefore, the first term in Equation 13 is omitted in what follows. The
remaining dimensionless parameters are : the filtration Rayleigh number

prgKH?q
Ra="rTo™ "1 1
¢ avkr (16)
the horizontal and lateral aspect ratios
A=W/H, a=e¢/H (17)
the relaxation time
Ay = Ajkr/ (H?(pe)sr) (18)

and the ratio I' that varies in the interval [0,1]

T=A5/\ (19)
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138 This model reduces to the Maxwell model in the limit I' — 0 and to the Newtonian model in the
139 limit ' — 1.

140 In the following we will examine the stability of the conductive state (the primary instability) as
11 well as the stability of the monocellular flow (the secondary instability).

12 3. Primary stationary and oscillatory instabilities

143 In the conductive regime, the basic solution is a motionless state V = 0 with a vertical thermal
s stratification Ty = -z + %

145 The aim of this section is to perform a temporal stability analysis of the conductive state with
us respect to both stationary and oscillatory disturbances.

147

wus  3.1. Infinite aspect ratios

149 To investigate the stability of the basic solution, infinitesimal three-dimensional perturbations
1o are super-imposed onto the basic solution:

V=Vy+v(x,y,zt)
T=Ty+06(x,9,21t) (20)
P =P +p(xy,2t)

We first assume very large aspect ratios A(A — o0) and a(a — o). The three-dimensional disturbance

quantities are expressed as

(1,9,w,0,p) = [#(2),7(2),W(2),0(2), p(2) | exp (ikx + ily - iwt) (21)

151 where k and [ are the wave numbers in the x and y directions respectively, and the temporal
152 growth rate of unstable perturbations is given by the imaginary part of the complex frequency w =
153 w,+iw;. Therefore, the neutral temporal stability curve is obtained for w; = 0 which selects dominant
152 modes at the onset of convection.
Substituting Equations (20)-(21) into (12)-(15), linearizing the equations and applying the curl
twice to the momentum balance equation, one can obtain

(1-iwlA)(D?*-k*)w + Ra(l —iwA)k*6 =0 (22)

—iwb-w—-(D*-k*)6 =0 (23)
where D = % and k? = k% + I%. The corresponding boundary conditions take the form

dé
w=0, —Z:0 at z=0,1. (24)

The system (33) - (34) is solved by means of the Galerkin method using the following expansions

M
w(z) = ansin(nnz) (25)
n=1

M
0(z) = Zencos[(n— 1)7z] (26)
n=1


http://dx.doi.org/10.20944/preprints201704.0013.v1
http://dx.doi.org/10.3390/fluids2030042

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 April 2017 d0i:10.20944/preprints201704.0013.v1

7 of 17

30 5
28
20
s 22 =
~ ~~
10 +
16
10 : : : ; 0 ;
0 1 2 3 4 0 2 4 6 8 10
k k
Figure 2. Neutral stability curves: (a) stationary instability; (b) oscillatory instability.
155 The number M of modes is chosen so that the quantitative convergence is secured.
156
157 As the viscoelastic parameters appear only in front of a time derivative in the momentum

155 equation (16), the elasticity of the fluid cannot influence the properties of a stationary instability.
155 Consequently, the characteristics of the stationary instability are the same as for Newtonian fluids.
wo For such fluids, linear instability analysis has been considered by Nield [10] and has provided
11 quantitative information on the stability condition when the porous layer is supposed infinite in x
12 and p directions.

163 We first consider perturbations in the form of stationary convection. Having used the Galerkin
164 expansion (25) - (26) with M = 5, we obtain results with a very good agreement with those obtained
s in [10]. Fig 2(a) represents the marginal stability curve in the (k, Ra) plane and shows that a long
s wave instability (i.e. the critical wave number k., = 0) may develop if the Darcy-Rayleigh number
167 exceeds the critical value Ra® = 12,009 in accordance with the critical value Ra® = 12 found in [10].
168

169 It is well established that for isothermal horizontal boundaries, competition between the
170 processes of stress relaxation, strain retardation and thermal diffusion may also lead to an oscillatory
171 convective instability as a first bifurcation ([1]-[9]). This feature is also found in the actual study
172 when the viscoelastic fluid saturating the porous layer is heated by a constant flux.

173 In Figure 2(b) we plot the curve of neutral stability for oscillatory mode of convection in the
17« (k,Ra) plane for T = 0.02 and different values of the elasticity number A; = 0.4;0.5;0.6. It can be
175 seen from this figure that the minimum value of Rayleigh number is lower than the critical Rayleigh
e number Ra = 12 needed to trigger steady long wave instability. Therefore oscillatory instability
177 may set up as a first convective pattern instead of steady long wave instability. The dependence of
17 the critical Rayleigh number and the critical frequency at the onset of oscillatory convection on the
179 elasticity number Ay for fixed values of I' is numerically determined and the results are plotted in
10 Fig. 3(a) and in Fig. 3(b) respectively.

181 It is clear from 3(a) that an increase in A; leads to flow destabilization, i.e. to a reduction in the
12 respective critical Rayleigh number. Fig. 3(a) also shows the stabilizing effect of the ratio I. Moreover,
183 as it is seen in fig. 3(a), for a fixed value of I', there exists a particular value of A; = /\{ where
1« the critical Rayleigh numbers for the onsets of both oscillatory and stationary convection coincide
1ss  and therefore a codimension two bifurcation occurs. For A; > /\{, Fig. 3(b) shows that the critical
1.s  frequency decreases with the decrease of the fluid elasticity or the increase of the viscosity ratio.
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Figure 3. (a) Critical Rayleigh number and (b) critical frequency at the onset of oscillatory convection
as a function of A; for different values of I'. The line Ra = 12 in (a) corresponds to the critical Rayleigh
number at the onset of stationary convection.

3.2. effect of lateral confinement on pattern selection

This section is devoted to investigate the effect of the lateral confinement of the porous cavity by
assuming a very large aspect ratio A(A — o) and finite lateral aspect ratio a. The three-dimensional
disturbance quantities respecting the boundary conditions 15 are expressed as

(u,w,0,p) = [ﬁ(z),u?(z),é(z),ﬁ(z)]exp(ikx —iwt)cos(Lmy/a) (27)

v =79(z)exp(ikx —iwt)sin(Lry/a) (28)

The governing equations are still the system (33) - (34), except with I now replaced by Lr/a

where the integer L is the number of rolls in the y direction.
We begin the study by considering the stability of the conductive state against stationary rolls
with axes parallel to the x direction, called longitudinal rolls (LRs). Steady longitudinal rolls are
characterized by k = 0, L # 0 and w, = 0 . The dependence of the critical Rayleigh number at the
onset of (LRs) on the lateral aspect ratio a for different number L of rolls is displayed in Figure 4(a).
For comparison we also represent in the same figure the threshold of the steady long wave instability.
The threshold of steady three-dimensional patterns in the form of oblique rolls (i.e. k #0, L # 0 and
w, = 0) are bounded by the thresholds of the two limiting cases: the steady long wave instability and
steady LRs.

We remark that the mode L =1 is the most unstable mode for LRs. As it is expected, we note
that the critical Rayleigh number increases as a decreases, meaning that the lateral confinement
stabilizes the conductive state against longitudinal rolls. We also note that as a — oo, the limiting
value of Ra = 12 is reached monotonically and an infinity of modes may be simultaneously unstable
in this limit. Consequently, a relatively moderate lateral confinement is necessary to select the long
wave instability which corresponds in real experiments to a monocellular flow in the x direction.

Now we consider the effect of the lateral confinement on the stability of the conductive state
against oscillatory LRs defined by k = 0, L # 0 and w, # 0. Numerical results for neutral stability
curves of oscillatory LRs with L =1, L =2, L = 3 and L = 4 are shown in Figure 4(b) as functions of
the lateral aspect ratio a. These curves have a parabolic shape and intersect in some particular values
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Figure 4. Critical Rayleigh number against the lateral aspect ratio with different number of rolls
(L = 1: red dashed curve , L = 2: green dotted curve, L = 3: black dash dotted curve and L = 4: blue
densely dotted curve): (a) steady longitudinal rolls; (b) oscillatory longitudinal rolls for I' = 0.1 and

A1 = 0.5. In both figures, the horizontal lines indicate the corresponding critical Rayleigh number for
transverse rolls.

209

of a, indicating that the true critical Rayleigh number strongly depends on both a and L for fixed
rheological parameters. The destabilizing oscillatory LRs mode changes in the intersection points
of neural curves from a mono-cellular flow to a two-cellular flow and so on, as the lateral aspect
ratio a increases. In addition, the behavior of the critical Rayleigh number is non-monotonic as a
increases. We also note that the maximum of critical Rayleigh number decreases as a increases and
tends asymptotically to the critical threshold found in the unbounded case (2 — o0). The results are

therefore in contrast to the case of stationary LRs where the dominant mode corresponds to L = 1
independently of the lateral confinement.

2

=

0
211
212
213
214
215
216

217

In Figure 4(b), the critical Rayleigh number at the onset of oscillatory TRs is indicated by the

horizontal line. As can be seen from this figure, finite values of a stabilize oscillatory LRs and may
select oscillatory TRs as a dominant mode of convection.

218

219

220 4. Secondary instabilities

221 4.1. Nonlinear solution and formulation of its linear stability

222 According to above linear stability analysis, we found that a stationary bifurcation occurs giving

rise to a convective pattern in the form of a long wave instability in the x direction provided that the
22+ elasticity number A; do not exceed a particular value /\{ which depends on the viscosity ratio I'. In
25 that case, the viscoelastic fluid behaves like a Newtonian fluid. Consequently, the nonlinear solution

in the regime of steady long wave convection is the same regardless of weather or not the fluid is
viscoelastic.

223

226

227

222 As shown by Bejan [18] for a vertical cavity, and later adopted by Vasseur et al. [19] and Sen et
229 al. [20] for inclined cases, one may assume the existence of a two-dimensional and fully developed

counterflow. This may be a good approximation for the mid-region of the horizontally extended space
on condition that the unicellular convection is stable. By assuming a shallow cavity A > 1 and by

using the parallel flow approximation, Kimura et al. [14] found that the analytical solution for the
monocellular flow consists of:

230
231
232
233

234 a horizontal asymmetric velocity with a zero mean along any vertical section,
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1
U(z) = ERa C(1-22) (29)
and a vertical as well as a horizontal stratification of the temperature,
To(x,9,2) = Cx+ O (z) (30)
with 5 ,
1 z 1 1
= _-RaC*(=—-2 - )- - 1
O(z) 5 1/1C(2 12) z—i—z (31)
and
10 12
=44/ —(1-=— 2

where C is negative or positive according to whether the flow is clockwise or counter-clockwise
and both solutions are possible depending on the initial conditions.
From Equation (32) it is seen that no motion may be induced inside the cavity for Ra < 12. For the
case of a porous medium heated from the bottom and cooled from the top by a constant heat flux,
a critical Rayleigh number of Ra = 12 for the onset of convection was predicted by Nield [10]. This
result is in agreement with the prediction of Equation (32).

For finite aspect ratio, Kimura et al. [14] performed two dimensional numerical simulations of
the full problem. Their numerical results show that the conductive state is stable when the Rayleigh
number is smaller than 12. Computations carried out for Ra in excess of 12 were found to agree with
analytical solutions (29 - 31).

The equations governing the linear stability of the monocellular flow are obtained by the same
previous approach used for the stability of the conductive basic solution. By assuming very large
aspect ratios A(A — o) and a(a — oo) the following system is obtained

(1-iwlA)(D?*-k*)w + Ra(l —iwd)k*6 =0 (33)
—iwh +wDT, +ik6U, - (D*-k*)6 =0 (34)
where we substitute Uy and T by their explicit expressions (29) - (31).
The corresponding boundary conditions take the form
v=0, 990 at z=0,1. (35)

dz

On the other hand, if we assume a very large aspect ratio A and a finite value of the lateral aspect
ratio a, the governing equations are still the system (33) - (34) where k? is replaced by k2 + L7/ a’.

The resulting linear stability problem is solved by means of the Galerkin method, using the
expansion (25) - (26) at the order M = 30.

4.2. Results for Newtonian fluids

To verify the accuracy of our numerical results based on the Galerkin expansion to the order M =
30, we perform a test for the limiting case of a Newtonian fluid and compare the results with those
obtained by Kimura et al. [14] . In the first instance, two-dimensional disturbances, corresponding to
I =0, were considered. We found out that for the Newtonian fluid, the base velocity and temperature

d0i:10.20944/preprints201704.0013.v1
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Figure 5. Newtonian fluids: (a) Neutral stability curve at the onset of oscillatory transverse rolls; (b)
Critical Rayleigh number at the onset of steady longitudinal rolls against the lateral aspect ratio with
different number of rolls (L = 1: red dashed curve , L = 2: green dotted curve, L = 3: black dash
dotted curve and L = 4: blue densely dotted curve). The horizontal line corresponds to the threshold
of oscillatory transverse rolls.

profiles (29) - (31) are stable for values of Ra less than RaCT2 = 506.27 as shown by the neutral stability
curve represented in Figure 5(a). At this critical Rayleigh number occurs an instability via a Hopf
bifurcation to oscillatory TRs with a critical frequency ")cTz = 138.24 and a critical wave number
kCT2 = 4.80. These results are in a good agreement with those obtained in [14] by using a shooting
method, namely Ral, = 506.07, o], = 138.92 and k[, = 4.82.

On the other hand, Kimura et al. [14] considered three-dimensional disturbances with the value of
the y-wave number / being gradually increased from zero. For [ > 0, the stability analysis indicates
that the monocellular flow will be destabilized not by a Hopf bifurcation, but by an exchange of
stability for which the x-wave number k vanishes. In that case the threshold of the appearance of
steady longitudinal rolls as a secondary instability is found to be RIEz,s ~ 311.53. Since this critical
Rayleigh number is much lower than any of those for the Hopf bifurcations obtained when k = 0,
Kimura et al. [14] concluded that the monocellular flow will in fact be destabilized by longitudinal,
rather than transverse, disturbances.

In the second instance, three-dimensional disturbances, corresponding to k # 0 and [ = 0, were
considered in this study. Numerical results performed by assuming infinite aspects ratios A and a
indicated that the most unstable mode corresponds to k = 0 and | # 0. The corresponding critical
Rayleigh number above which this most unstable mode in the form of steady LRs is Rgz,s =313.107.
Once again, this critical value agrees very well with Rgz,s ~ 311.53 obtained in [14].

In the third instance, the effect of the confinement of the porous medium in y direction is explored.
We plot in Figure 5(b) the critical Rayleigh number against the aspect ratio for several of the
leading modes, from which it is clear that (L = 1) remains the destabilizing mode, ahead of the
other modes (L > 1), and that the order of these modes, in the sense that Ra.(L) < Ra.(L + 1),
In particular, we also note that as a — oo, the limiting value of
sz,s = 313.107 is approached monotonically. Figure 5(b) also shows that the curve corresponding

is preserved as a increases.

to steady longitudinal mode with L = 1 intersects the line RaCT2 = 506.07 at a particular value of the
lateral aspect ratio a = a*. This means that perturbations promote the appearance of oscillatory TRs
provided that a < 4 or stationary LRs otherwise.

d0i:10.20944/preprints201704.0013.v1
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25 4.3. Results for viscoelastic fluids
26 4.3.1. Hopf bifurcation to transverse rolls
287 In order to study the influence of viscoelastic parameters on the secondary instability, we first

2.s computed the bifurcation line from a stationary monocellular convective pattern to oscillatory TRs
20 (1 =0) for either a fixed value of the elasticity number A; with varying values of the viscosity ratio
20 I or a fixed value of I with varying values of A;. With regard to the question of the influence of the
201 viscosity ratio I' for a viscoelastic fluid with a relaxation time A; = 0.1 on the onset of a secondary
202 instability in the form of oscillatory TRs, Figure 6(a) illustrates the behavior of neutral stability curves
293 in the (k,Ra) plane for T = 0.75, T = 0.5 and I’ = 0.3. For a comparison, the Newtonian case ([ =1)
204 is also represented on Figure 6(a).

295 We note in this figure that the minimum of neutral stability curves increases when I' is
26 augmented to reach the critical value for Newtonian fluids in the limit of I' = 1. Physically, this result
27 means that concentrated polymeric solutions with a small viscosity ratio I' favor the appearance of
2s  oscillatory multicellular flow convection as a secondary instability. On the other hand, for diluted

viscoelastic solutions, more heating is needed to trigger the secondary instability.

800 —— ‘ ‘ 400 —~ ‘
i ‘\ Newt. R o /\1 = 01
A . P A =03
600 1% % P === =05
o Tt ’ LR 3801 %0 |
< Y S ER
Moo400) A 4~ DN R
\ I'=0.50 \,‘ N 3 f/'
200 | T - __‘I“:‘_O‘”f 360 | '\,:“ Seeae- \’:»"\ a
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k k

Figure 6. Critical Rayleigh number for the destabilization of fully developed flow against the wave

number k with I = 0 for Newtonian fluids (Newt) and for viscoelastic solutions with: (a) A; = 0.1 and

I'=0.75;0.5;0.3; (b) I = 0.75 and A1 = 0.1;0.3;0.5.
299
300 We report in Table 1 the computed results of critical Rayleigh number RaCTz, critical frequency
301 w;rz and critical wave number kCT2 at the onset of the secondary instability organized as oscillatory
s TRs for Ay = 0.1 and different values of I'. Table 1 shows a strong stabilizing effect of the viscosity
503 ratio. The values of the critical oscillatory frequency decrease with decreasing I'. This implies that
54 emerging transversal convection rolls have a larger time-period and move with a larger phase velocity
30 when the polymer concentration is high.
306 We now present results corresponding to the influence of the fluid elasticity by considering the
307 properties of the emerging oscillatory TRs at different values of A; for a fixed value of I'. Figure
;s 6(b) presents neutral stability curves for I' = 0.75, a typical viscosity ratio value for Boger fluids and
;o0 different values of the relaxation time A; = 0.1, Ay = 0.35 and A; = 0.5. We note from this figure
si0  that the neural stability curves are nearly superposed when A is increased , meaning that beyond
su  A; = 0.1, the increase in the fluid elasticity has a little influence on the critical Rayleigh number at
sz the onset of oscillatory TRs. Table 2 gathers the results for seven values of A;. It can be observed
313 from Table 2 that critical Rayleigh number RacTz, critical frequency a)CTZ and critical wave number kCT2
sia at the onset of the secondary instability are weakly dependent on the elasticity number number ;.
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transverse rolls as a secondary instability for A; = 0.1 and different values of T

r ) Wi ks

Newtonian 506.27 138.24 4.8
0.75 358.62 115.209 4.660
0.70 329.48 110.448 4.630
0.65 300.89 105.918 4.610
0.60 272.90 101.395 4.590
0.55 245.58 96.897 4.570
0.50 219.04 92.825 4.570
0.45 193.39 88.902 4.575
0.40 168.81 85.603 4.610
0.35 145.47 83.112 4.685
0.30 123.55 81.578 4.805

13 0f 17

Table 1. Critical Rayleigh number Razz, frequency “’32 and wave number ch2 at the onset of moving

We conclude that the preponderant effect on the properties of the emerging oscillatory TRs is mainly
linked to the variations in the viscosity ratio, while the effect of the elasticity remains very weak.

Table 2. Critical Rayleigh number RQZZ’ frequency “’Zz and wave number kCT2 at the onset of moving
transverse rolls as a secondary instability for I' = 0.75 and different values of 1;

M R“cTz “’cTz chz
0.7 354.21 110.819 4.545
0.6 354.31 110.979 4.550
0.5 354.45 111.042 4.550
0.4 354.66 111.251 4.555
0.3 355.05 111.642 4.565
0.2 355.83 112.584 4.590
0.1 358.62 115.209 4.660
si7 - 4.3.2. Bifurcation to steady or oscillatory longitudinal rolls
318 Finally, we present in the second part of this section the secondary instability results in

59 the case where disturbances are assumed in the form of longitudinal rolls (LRs). We mention
520 that as for the primary instability, the onset of stationary LRs convection is not affected the two
sz viscoelastic parameters. Consequently, the critical Rayleigh number above which stationary LRs
;22 convection develops as a secondary instability is the same as that found for Newtonian fluids, namely
o R,
522 flow to oscillatory LRs convection. We emphasize that the Hopf bifurcation to oscillatory LRs is

= 313.107. However, the computations indicate Hopf bifurcation from steady unicellular

525 not observed for Newtonian fluids and is due solely to the viscoelastic character of the fluids. The
s effects of the two viscoelastic parameters on the linear properties of the oscillatory LRs convection
;27 are examined in the remainder of this subsection. In order to evaluate the effect of elasticity alone,
22 Ay = 0.1, 13 = 0.3 and A; = 0.5 cases are investigated for a fixed I' = 0.75. On the other hand, the
;20 effect of viscosity ratio alone is studied by fixing A; = 0.1 and investigating the I' = 0.75, I = 0.6,
s0 I'=0.5and I' = 0.3 cases. The computed results for the six different cases are reported in Table 3,
s which indicates the critical Rayleigh number, wave number and oscillatory frequency at the onset
;2 of oscillatory LRs secondary instability. As has already been highlighted in the previous sections
;33 considering the primary instability and the TRs secondary instability, we recognize the destabilizing
s effect of the elasticity number A; and the destabilizing effect of the viscosity ratio I. Moreover, a
;s comparison between Tables 1, 2 and 3 attests that the frequencies of oscillatory LRs are much smaller
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13s  than those corresponding to oscillatory TRs.

s» An additional remark about Table 3 is necessary. For comparison purposes, we also indicate in
;s this table, the threshold of both stationary LRs and oscillatory TRs. It is clear that the true critical
;39 Rayleigh number depends on the combination of the rheological parameters. The least stable mode
s0 of convection is the one with smallest critical Rayleigh number and is identified in Table 3 with a
ss bold character. For instance, we consider diluted viscoelastic solutions with I' = 0.75 with different

;2 elasticity number A;. For the combination of the rheological parameters (1; = 0.1, I' = 0.75), the
L

c2,s
saa of steady LRs. In that case, polymeric solutions are almost inelastic and evolve as a Newtonian fluid.

;a3 true critical Rayleigh number is R., . indicating that the secondary instability pattern is in the form
ss  In contrast, for the combination (1; = 0.5, I' = 0.75), the least stable mode of convection changes
s from steady LRs to oscillatory LRs, meaning that elastic effects become the most important ones in
s7 this range. In the same way, the preferred pattern as a secondary instability depends on the viscosity
us ratio I'. Table 3 shows that by keeping A; = 0.1 and increasing gradually I' from I' = 0.75 (diluted
;s solutions) to I' = 0.3 (concentrated solutions), the most amplified mode of convection evolves from
;50 steady LRs to oscillatory LRs and eventually to oscillatory TRs.

All the results stated in the subsection 4.3 are obtained by assuming infinite aspects ratios in x

Table 3. Critical Rayleigh number Raﬁz, frequency “’52 and wave number ku at the onset of oscillatory
longitudinal rolls as secondary instability for different values of I' and A

A T Ragz,osc “’cLz kcLz R(:Tz Rgz,s

Newtonian - - - 506.27 | 313.107
0.1 0.75 426.27 1.53 5.8 358.62 | 313.107
0.3 0.75 317.55 3.58 4.5 355.03 | 313.107
0.5 0.75 291.34 2.65 3.9 354.45 | 313.107
0.1 0.6 333.47 12.35 6.3 272.90 | 313.107
0.1 0.5 288.08 17.53 6.5 219.04 | 313.107
0.1 0.3 194.20 33.62 7.0 123.55 | 313.107

351
552 and y directions. For the sake of brevity, we exemplify the effect of the lateral aspect ratio a on the

353 pattern selection for two combinations of rheological parameters (I' = 0.75, A; = 0.3) and (I' = 0.5,
s Ap = 0.1). We plot in Figures 7(a) and 7(b) the variation of the critical Rayleigh number for both
355 stationary LRs and oscillatory LRs as a function of the lateral aspect ratio a in the cases (I' = 0.75,
36 Ap = 0.3) and (I' = 0.5, A; = 0.1) respectively. Computations showed that there is a competition
357 between the two patterns in the sense that depending of the magnitude of lateral confinement, the
;s system may select either stationary LRs or oscillatory LRs. For fixed value of L and by increasing
39 a, the following behavior is observed for the curves representing the critical Rayleigh number for
s0  LRs and all values of rheological parameters, (see Figure 7(a) and 7(b)): i) the curve associated to
31 the critical Rayleigh number of oscillatory LRs decreases to reach a minimum equal to its value for
sz infinite 4. This minimum point moves to the right in the (a, Ra) plane when the number of rolls L is
33 increased; ii) then, the same curve increases to intersect an other branch corresponding to the critical
s« Rayleigh number of steady LRs at a particular value of g; iii) finally, when a exceeds this particular
ss  value, the curve associated to the critical Rayleigh number of steady LRs becomes the lower curve,
;6 decreases monotonically and tends asymptotically to the critical Rayleigh number sz’s =313.107 of
37 steady LRs found in the case of infinite a.

s  For the particular combination (I' = 0.75, A; = 0.3), as in the infinite limit of a4, the critical Rayleigh

30 number sz’s = 313.107 of steady LRs is less than the critical Rayleigh number sz,m = 317.55 of
;0 oscillatory LRs, the decreasing curve of the critical Rayleigh number of steady LRs with L = 1 crosses
L

sn  the absolute minimum R = 317.55 of oscillatory LRs at a critical value a = a™ (4™ = 2 in Figure

c2,0sc
w2 7(a)). Consequently, for all values of a larger than 4*, the dominant mode of convection is a steady

73 monocellular LRs . Otherwise, the system may select oscillatory LRs or a steady monocellular LRs
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depending on a.

It is important to note that Figure 7(a) also shows that the curve corresponding to oscillatory
longitudinal mode with L = 1 intersects the line representing the critical Rayleigh number of
oscillatory TRs RaCT2 = 355.03 at a particular value of the lateral aspect ratio a = a* ~ 0.4. This means
that perturbations promote the appearance of oscillatory TRs if a < a*, oscillatory LRs or a steady
monocellular LRs if a* < a < 4™ and stationary LRs if a > 4* . In the case of the combination (I' = 0.5,
A1 = 0.1), this behavior is not observed since as it can be seen from Figure 7(b), the critical Rayleigh
number of oscillatory TRs is much smaller than the critical Rayleigh number for both stationary and

oscillatory LRs. For this particular combination, the system selects oscillatory TRs independently of
the lateral confinement.

(a) (b)
400 ™ ™ 1] 400 ; ]
1 H B 1 . 5
' \ \ .
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& '. 5 & 3000 N
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Figure 7. Critical Rayleigh number for the onset of steady and oscillatory longitudinal rolls as a

function of aspect ratio a for different number L of rolls (L = 1: red dashed curve , L = 2: green dotted
curve, L = 3: black dash-dotted curve, L = 4: blue densely-dotted curve). (a) I = 0.75 and A; = 0.3;

(b) T = 0.5 and A; = 0.1. The horizontal line corresponds to the threshold of oscillatory transverse
rolls

5. Conclusion

In the present paper, Galerkin method is used to investigate the primary and secondary
instabilities of viscoelastic fluids saturating a porous layer heated from below by a constant flux.
The modified Darcy’s law based on the Oldroyd-B model was used for modeling the momentum
equation. In addition to Darcy-Rayleigh number Ra, two viscoelastic parameters play a key role
when characterizing the temporal behavior of the instability, namely, the relaxation time A; which
measures the elasticity of the fluid and the ratio I' between the viscosity of the solvent and the total
viscosity of the fluid. In the first part of the paper, three-dimensional disturbances were considered
in order to study the stability of the basic motionless solution. For sufficiently elastic fluids, we
found that the primary instability is oscillatory. Otherwise, the primary bifurcation gives rise to
stationary long wave instability. Results indicated that the lateral confinement of the porous layer
by isolated side walls eliminates oblique or longitudinal rolls in favor of two-dimensional transverse
rolls. Based on a fully developed parallel flow assumption, a nonlinear analytical solution for the
velocity and temperature fields was developed in the range of the rheological parameters where
stationary long wave instability develops first. In the second part of the paper, we reported findings
on the linear stability analysis of the monocellular flow which is performed with special attention
given to the interplay between the viscoelastic parameters and the lateral aspect ratio a of the porous
layer. For weakly elastic fluids we determined a second critical value of Rayleigh number above
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a3 which the system exhibits a Hopf bifurcation from steady monocellular flow to oscillatory transverse
w4 rolls convection. The well known limit of Ral, ~ 506 for Newtonian fluids is recovered and the fluid
w5 elasticity effect is found to delay the onset of the Hopf bifurcation.

ws Three dimensional analysis showed that for the diluted solutions as Boger fluids type (i.e. I' = 0.75)
w07 the monocellular flow is more unstable to either stationary longitudinal disturbances for weakly
as  elastic fluids (A; = 0.1) or to oscillatory longitudinal rolls for strongly elastic fluids (A; = 0.5). This
a9 Ppattern selection holds if the lateral walls are pushed to infinity. When a finite lateral confinement
a0 1is taken into account, there exist particular values a* and a™ of the lateral aspect ratio a such that
an  perturbations promote the appearance of oscillatory transverse rolls if a < a*, stationary or oscillatory
a1z longitudinal rolls if 4* < a < a** and stationary longitudinal rolls if a > a**. Computations proved that
a3 the interval [a*,4"] is enlarged by increasing the fluid elasticity.

a2 For concentrated viscoelastic fluids (I' = 0.6, I = 0.5 and I' = 0.3), it is found that oscillatory
a5 transverse rolls are the preferred mode of convection even for weakly elastic fluids and independently
a6 of the lateral confinement of the porous medium.

4217 Author Contributions: Abdoulaye Gueye undertook this research as part of his Ph.D. studies. Mohamed Najib

s1s QOuarzazi supervised the work and assisted with the preparation of the manuscript. Silvia Hirata and Haikel Ben
419 Hamed assisted with numerical tools.

220 Conflicts of Interest: The authors declare no conflict of interest.

421 References

22 1. Kim, M. C. and Lee, S. B. and Kim, S. and Chung, B. J. Thermal instability of viscoelastic fluids in porous
423 media. International journal of heat and mass transfer 2003, 46, 5065-5072.
424 2. Yoon, D. and Kim, M. C. and Choi, C. K. The onset of oscillatory convection in a horizontal porous layer

425 saturated with viscoelastic liquid. Transport in porous media 2004, 55, 275-284.

a6 3.  Bertola, V. and Cafaro, E. Thermal instability of viscoelastic fluids in horizontal porous layers as initial
427 value problem. International journal of heat and mass transfer 2006, 49, 4003-4012.

48 4. Hirata, S. C. and Ella Eny, G and Ouarzazi, M. N. Nonlinear pattern selection and heat transfer in thermal
420 convection of a viscoelastic fluid saturating a porous medium. International Journal of Thermal Sciences
430 2015,95, 136-146.

31 5. Hirata, S. C. and Ouarzazi, M. N. Three-dimensional absolute and convective instabilities in mixed
432 convection of a viscoelastic fluid through a porous medium. Physics Letters A 2010, 374, 2661-2666.

43 6. de B. Alves, L.S. and Barletta, A. and Hirata, S. and Ouarzazi, M. N. Effects of viscous dissipation on the
434 convective instability of viscoelastic mixed convection flows in porous media. Int. ]. Heat Mass Transfer
435 2014, 70, 586-598.

36 7. Delenda, N. and Hirata, S. C. and Ouarzazi, M. N. Primary and secondary instabilities of viscoelastic
437 mixtures saturating a porous medium: Application to separation of species. Journal of Non-Newtonian
438 Fluid Mechanics 2012, 181, 11-21.

39 8. Fu, C.J. and Zhang, Z.Y. and Tan, W.C. Numerical simulation of thermal convection of a viscoelastic fluid
440 in a porous square box heated from below. Phys. Fluids 2007, 19, 104107.

a1 9. Taleb, A. and Ben Hamed, H. and Ouarzazi, M. N. and Beji, H. Analytical and numerical analysis of
442 bifurcations in thermal convection of viscoelastic fluids saturating a porous square box. Phys. Fluids 2016,
443 28, 053106.

aa 10. Nield, D. A. Onset of thermohaline convection in a porous medium. Water Resources Research 1968, 4,
445 553-560.

a6 11. Nield, D. A. and Bejan, A. Convection in Porous Media, Springer, New York; 2006.

4712, Mamou, M. and Mahidjiba, A. and Vasseur, P. and Robillard, L. Onset of convection in an anisotropic
448 porous medium heated from below by a constant heat flux. Int. Commun. Heat Mass Trans. 1998, 25,
449 799-808.

a0 13. Mojtabi, A. and Rees, D.A.S. The effect of conducting bounding plates on the onset of
451 Horton-Rogers-Lapwood convection. Int. J. Heat Mass Trans. 2011, 54, 293-301.


http://dx.doi.org/10.20944/preprints201704.0013.v1
http://dx.doi.org/10.3390/fluids2030042

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 April 2017 d0i:10.20944/preprints201704.0013.v1

17 of 17

42 14. Kimura, S. and Vynnycky, M. and Alavyoon, F. Unicellular natural circulation in a shallow horizontal
453 porous layer heated from below by a constant flux. Journal of Fluid Mechanics 1995, 294, 231-257.

asa 15, Skartsis, L. and Khomami, B. and Kardos, J. L. Polymeric flow through fibrous media. Journal of Rheology
455 1992, 36, 589-620.

46 16. Joseph, Daniel D. Fluid dynamics of viscoelastic liquids. Springer-Verlag New York 1990.

47 17.  Khuzhayorov, B. and Auriault, J. L. and Royer, P. Derivation of macroscopic filtration law for transient

458 linear viscoelastic fluid flow in porous media. International Journal of Engineering Science 2000, 38,
459 487-504.

a0 18. Bejan, A.. The boundary layer regime in a porous layer with uniform heat flux from the side. International
461 Journal of Heat and Mass Transfer 1983, 26, 1339-1346.

42 19. Vasseur, P. and Satish, M. G. and Robillard, L. Natural convection in a thin, inclined, porous layer exposed
463 to a constant heat flux. International Journal of Heat and Mass Transfer 1987, 30, 537-549.

44 20. Sen, M. and Vasseur, P. and Robillard, L. Multiple steady states for unicellular natural convection in an
465 inclined porous layerInternational journal of heat and mass transfer198730 2097-2113.

© 2017 by the authors. Licensee Preprints, Basel, Switzerland. This article is an open access
‘@ ® \ article distributed under the terms and conditions of the Creative Commons by

Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).


http://creativecommons.org/licenses/by/4.0/.
http://dx.doi.org/10.20944/preprints201704.0013.v1
http://dx.doi.org/10.3390/fluids2030042

	Introduction
	Mathematical formulation
	Primary stationary and oscillatory instabilities
	 Infinite aspect ratios
	 effect of lateral confinement on pattern selection

	Secondary instabilities
	Nonlinear solution and formulation of its linear stability
	Results for Newtonian fluids
	Results for viscoelastic fluids
	 Hopf bifurcation to transverse rolls
	Bifurcation to steady or oscillatory longitudinal rolls


	Conclusion

