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Abstract: We analyze the thermal convection thresholds and linear characteristics of the primary1

and secondary instabilities for viscoelastic fluids saturating a porous horizontal layer heated from2

below by a constant flux. Galerkin method is used to solve the eigenvalue problem by taking3

into account the elasticity of the fluid, the ratio between the viscosity of the solvent and the total4

viscosity of the fluid and the lateral confinement of the medium. For the primary instability, we5

found out that depending on the rheological parameters, two types of convective structures may6

appear when the basic conductive solution loses its stability: stationary long wavelength instability7

as for Newtonian fluids and oscillatory convection. The effect of the lateral confinement of the8

porous medium by adiabatic walls is to stabilize the oblique and longitudinal rolls and therefore9

selects transverse rolls at the onset of convection. In the range of the rheological parameters where10

stationary long wave instability develops first, we use a parallel flow approximation to determine11

analytically the velocity and temperature fields associated to the monocellular convective flow. The12

linear stability analysis of the monocellular flow is performed, and the critical conditions above13

which the flow becomes unstable are determined. The combined influence of the viscoelastic14

parameters and the lateral confinement on the characteristics of the secondary instability is15

quantified. The major new findings concerning the secondary instabilities may be summarized16

as follows: (i) For concentrated viscoelastic fluids, computations showed that the most amplified17

mode of convection corresponds to oscillatory transverse rolls which appears via a Hopf bifurcation.18

This pattern selection is independent of both the fluid elasticity and the lateral confinement of the19

porous medium; (ii) For diluted viscoelastic fluids, the preferred mode of convection is found to be20

oscillatory transverse rolls for a very laterally confined medium. Otherwise stationary or oscillatory21

longitudinal rolls may develop depending on the fluid elasticity.22

Results also showed the destabilizing effect of the relaxation fluid elasticity and the stabilizing effect23

of the viscosity ratio for the onset of both primary and secondary instabilities.24

Keywords: viscoelastic fluids; porous media; convection; instability25

1. Introduction26

The study of viscoelastic fluids have applications in a number of processes that occur in industry,27

such as the extrusion of polymer fluids, solidification of liquid crystals, suspension solutions and28

petroleum activities. In contrast to the case of Newtonian fluids, study of thermal convection of29

viscoelastic fluids in porous media is limited. In rheology, one crucial problem is the formulation of30
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the constitutive equations regarding viscoelastic fluid flows in porous media. Recently, a modified31

Darcy’s law was employed to study the stability of a viscoelastic fluid in a horizontal porous layer32

using linear and nonlinear stability theory ([1]-[9]). Kim et al. [1] and Yoon et al. [2] performed33

a linear stability analysis and showed that in viscoelastic fluids such as polymeric liquids, a Hopf34

bifurcation as well as a stationary bifurcation may occur depending on the magnitude of the35

viscoelastic parameter. From the nonlinear point of view, Kim et al. [1] carried out a nonlinear36

stability analysis by assuming a densely packed porous layer and found that both stationary and37

Hopf bifurcations are supercritical relative to the critical heating rate. The question of whether38

standing or traveling waves are preferred at onset has been fully addressed by Hirata et al. [4].39

The three-dimensional convective and absolute instabilities of a viscoelastic fluid in presence of a40

horizontal pressure gradient have been analyzed by Hirata and Ouarzazi [5]. Alves et al. [6] studied41

the effect of viscous dissipation of viscoelastic fluids at the onset of convection. In addition to its42

theoretical interest, Delenda et al [7] have showed that viscoelastic convection in porous media may43

be useful for industrial applications interested by the separation of species of viscoelastic solutions.44

The introduction of a porous packing allows to control the average vertical convective velocity and45

to generate a homogeneous convection current, improving the separation of species. Fu et al. [8]46

performed direct numerical simulations on two-dimensional thermal convection of a viscoelastic47

fluid saturating a porous square cavity. Their numerical experiments revealed the existence of48

a second transition from oscillatory convection to stationary one followed by a third transition49

to oscillatory convection for some combinations of rheological parameters while these successive50

transitions never occur for other combinations of viscoelastic parameters. Taleb et al. [9] used both51

theoretical and numerical approaches and obtained a global picture and bifurcations diagrams on52

possible successive bifurcations of convection patterns in a square porous cavity saturated by a53

viscoelastic fluid.54

All the above investigations considered conventional boundary conditions, namely impermeable55

isothermal horizontal plates and impermeable adiabatic side walls, commonly known as56

Horton-Rogers-Lapwood convection. However, to the best of our knowledge, no results have57

been published for thermal convection of viscoelastic fluids when the porous medium is heated from58

below and cooled from above with a constant heat flux. Therefore, the objective of this work is to59

fill this gap by investigating the onset of three-dimensional primary and secondary instabilities of a60

viscoelastic fluids under the assumption that the upper and lower horizontal walls are impermeable61

and are kept at a constant flux, while the lateral vertical walls are considered impermeable and62

adiabatic.63

For Newtonian fluids, the stability of an infinite porous layer with different boundary conditions was64

studied by Nield [10] and is well documented in Sect. 6.2 of the book by Nield and Bejan [11]. For65

the case of a porous medium heated from the bottom and cooled from the top by a constant heat flux,66

Nield [10] found that the critical Rayleigh number at the onset of convection is approximately 1267

with a vanishing critical wavenumber. Mamou et al. [12] extended the work of Nield [10] by taking68

into account the effect of the anisotropy of the porous medium. Mojtabi and Rees [13] studied the69

case where the impermeable boundary walls have a finite thickness. They analyzed the combined70

influence on the onset of convection of the ratio between the thermal conductivity of the horizontal71

walls and the thermal conductivity of the porous medium as well as the ratio between the thickness72

of the horizontal walls and the thickness of the porous layer.73

Kimura et al. [14] investigated secondary instabilities for a Newtonian fluid saturating a porous74

medium heated from below by a constant flux. For Rayleigh number larger that its critical value75

12 above which the conduction state looses its stability against long wave instability, these authors76

used the parallel flow approximation and obtained a nonlinear solution which corresponds to a77

monocellular flow. Two-dimensional numerical results were also presented to test the validity of the78

approximated nonlinear solution. In addition, they analyzed its stability against three dimensional79

disturbances and showed that the monocellular flow is linearly stable to transverse disturbances for80
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Rayleigh number as high as 506, at which point a Hopf bifurcation sets in. However, further analysis81

indicated that an exchange of stability due to longitudinal disturbances will occur much sooner at82

Rayleigh number equal to 311.53.83

This contribution aims at understanding how the viscoelastic character of the fluid influences the84

properties of convection at the onset of primary and secondary instabilities, when the porous layer85

is heated from below by a constant flux. Therefore, this work may be viewed as an extension to86

viscoelastic fluids of the work done by Kimura et al. [14].87

88

The paper is organized as follows. After presenting the governing equations in section 2, the89

stability of the conductive state is studied in section 3 by considering steady as well as oscillatory90

three-dimensional perturbations. Section 4 is devoted to the discussion of the combined effects of the91

viscoelastic parameters and the lateral aspect ratio of the porous medium on the pattern selection at92

the onset of secondary instabilities. Finally, in section 5, the main conclusions of the present study93

are presented.94

2. Mathematical formulation95

Let us consider an isotropic and homogeneous porous cavity of thickness e, height H, width W96

(see figure 1). The porous medium is saturated by an Oldroyd-B fluid and we assume that the solid97

matrix is in local thermal equilibrium with the fluid. The upper and lower horizontal walls are kept at98

constant flux, while the lateral vertical walls are considered adiabatic. The solid walls of the domain99

Ω = [0,W ] × [0,e] × [0,H ] are considered impermeable. We assume that the Oberbeck-Boussinesq100

approximation holds.101

∂T
∂x = 0 ∂T

∂x = 0
H

y e

W

x
z

q

q

Figure 1. The porous rectangular cavity heated from below by a constant flux.

There are several ways to obtain macroscopic laws for polymeric flows in a porous medium: by102

direct numerical simulations of viscoelastic flows in a specific pore geometry model (a good review103

of these studies can be found in [15]) or analytical ways. In general, the former is the most commonly104

used way for the derivation of macroscopic laws. It can be divided in two techniques: the REV105

method (representative elementary volume method) and the homogenization theory. The starting106

point for the two techniques is a local description in a pore scale. The pore space is assumed to be107

saturated by an incompressible viscoelastic fluid. For slow flows, the momentum balance equation108

can be linearized:109

ρ
∂U∗

∂t∗
= −∇p∗+ ρg+∇ · τ̃ (1)

where U∗ is the fluid velocity field, p∗ is the pressure, τ̃ is the stress tensor and g is the gravity field.110

In Newtonian incompressible fluids, the constitutive relation between stress tensor τ̃ and strain111

tensor D̃ (Di,j = [u∗i,j + u∗j,i ]/2) is the Newtonian law τ̃ = 2 µN D̃, where µN is the dynamic viscosity,112

and, in this case, the relation ∇ · τ̃ = µN∇2U∗ is obtained.113
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The rheological model relating τ̃ and D̃ for viscoelastic fluids, such as a polymeric solution114

composed of a Newtonian solvent and a polymeric solute of "Newtonian" viscosity µs and "elastic115

viscosity" µp [16] respectively, is given by:116

τ̃ = τ̃s + τ̃p (2)

with117

τ̃s = 2 µsD̃ (3)

and118

(1+λ∗1
∂
∂t∗

)τ̃p = 2 µpD̃ (4)

where λ∗1 represents the relaxation time. Then, by combining 2 - 4 we obtain the constitutive119

equation:120

(1+λ∗1
∂
∂t∗

)τ̃p = 2 µ(1+λ∗2
∂
∂t∗

)D̃ (5)

where the dynamic viscosity µ and the retardation time λ∗2 are related to µs and µp by:

µ= µs + µp and λ∗2/λ∗1 = µs/(µs + µp).

An Oldroyd-B fluid may thus be characterized by three parameters: the dynamic viscosity µ, the121

relaxation λ∗1 and the retardation λ∗2 times. The relation Γ = λ∗2/λ∗1 may also be used instead of λ∗2.122

In order to derive a macroscopic filtration law based on the Oldroyd constitutive equation, we
have to introduce the filtration velocity V∗ defined by the Dupuit’s equation :

V∗ = φU∗ (6)

where φ is the porosity. Substituting Equation 5 into 1 and using the REV method by averaging the
resulting equation and taking into account Equation 6 leads to:

ρ

φ
(1+λ∗1

∂
∂t∗

)
∂V∗

∂t∗
+
µ

K
(1+λ∗2

∂
∂t∗

)V∗+ (1+λ∗1
∂
∂t∗

)(∇P ∗ − ρg) = 0, (7)

where K is the permeability.123

Under the assumption of low Reynolds number based on the pore dimension, the generalized124

Darcy’s law 7 is also derived by [17] using a homogenization theory.125

The fluid density ρ obeys the state law :126

ρ = ρ0(1− βT (T ∗ − T ∗0 )) (8)

where ρ0 is the fluid density at temperature T ∗0 which is chosen here as the temperature at the127

geometric center of the cavity, and βT is the thermal expansion coefficient. Energy and continuity128

equations can then be written as :129

(ρc)sf
(ρc)f

∂T ∗

∂t∗
+V∗ · ∇T ∗ = ∇ · (α∇T ∗) (9)

∇ ·V∗ = 0 (10)

The boundary conditions at the impermeable horizontal walls kept at a constant flux q and the130

impermeable insulated vertical walls are:131
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− kT
∂T ∗

∂z
= q at z = 0,H ,

∂T ∗

∂x
= 0 at x = 0,W ,

∂T ∗

∂y
= 0 at y = 0,e,

V ·n = 0 at ∂Ω.

(11)

here, (ρc), µ, ν, kT , α = kT /(ρc)f are respectively the heat capacity per unit volume, the132

dynamic and kinematic viscosity of the fluid the effective thermal conductivity and the effective133

thermal diffusivity. Subscript (sf) refers to an effective quantity, while (f) refers to the fluid alone.134

We choose H , kT /(H(ρc)f ), H2(ρc)sf /kT , kT µ/(K(ρc)f ) and qH/kT as reference quantities for135

lengh, velocity, time, pressure and temperature difference (T ∗ − T ∗0 ). With this scaling, the following136

set of dimensionless equations is obtained:137

∇ ·V = 0 (12)

(1+λ1
∂
∂t

)
1
P rD

∂V
∂t

+ (1+ Γλ1
∂
∂t

)V+ (1+λ1
∂
∂t

)(∇P −RaT ez) = 0, (13)

∂T
∂t

+V · ∇T = ∇2T (14)

The dimensionless boundary conditions are:

∂T
∂z

= −1 at z = 0,1,

∂T
∂x

= 0 at x = ±A
2

,

∂T
∂y

= 0 at y = 0,a,

V ·n = 0 at ∂Ω.

(15)

The Darcy-Prandtl number P rD is defined as P rD = (φP r)/Da, withDa= K/H2 and P r = ν/kT .
Since in the common porous media the Darcy number is very small, the Darcy-Prandtl number P rD
takes quite large values. Therefore, the first term in Equation 13 is omitted in what follows. The
remaining dimensionless parameters are : the filtration Rayleigh number

Ra=
βT gKH

2q

ανkT
(16)

the horizontal and lateral aspect ratios

A=W/H , a= e/H (17)

the relaxation time
λ1 = λ∗1kT /(H2(ρc)sf ) (18)

and the ratio Γ that varies in the interval [0,1]

Γ = λ∗2/λ∗1 (19)
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This model reduces to the Maxwell model in the limit Γ → 0 and to the Newtonian model in the138

limit Γ → 1.139

In the following we will examine the stability of the conductive state (the primary instability) as140

well as the stability of the monocellular flow (the secondary instability).141

3. Primary stationary and oscillatory instabilities142

In the conductive regime, the basic solution is a motionless state V = 0 with a vertical thermal143

stratification T0 = −z+ 1
2 .144

The aim of this section is to perform a temporal stability analysis of the conductive state with145

respect to both stationary and oscillatory disturbances.146

147

3.1. Infinite aspect ratios148

To investigate the stability of the basic solution, infinitesimal three-dimensional perturbations149

are super-imposed onto the basic solution:150


V = V0 + v(x,y,z, t)
T = T0 +θ(x,y,z, t)
P = P0 + p(x,y,z, t)

(20)

We first assume very large aspect ratios A(A→∞) and a(a→∞). The three-dimensional disturbance
quantities are expressed as

(u,v,w,θ,p) =
[
ũ(z), ṽ(z), w̃(z), θ̃(z), p̃(z)

]
exp(ikx+ ily − iωt) (21)

where k and l are the wave numbers in the x and y directions respectively, and the temporal151

growth rate of unstable perturbations is given by the imaginary part of the complex frequency ω =152

ωr+iωi . Therefore, the neutral temporal stability curve is obtained forωi = 0 which selects dominant153

modes at the onset of convection.154

Substituting Equations (20)-(21) into (12)-(15), linearizing the equations and applying the curl
twice to the momentum balance equation, one can obtain

(1− iωΓλ1)(D
2 − k̃2)w̃+Ra(1− iωλ1)k̃

2θ̃ = 0 (22)

−iωθ̃ − w̃ − (D2 − k̃2)θ̃ = 0 (23)

where D = d
dz and k̃2 = k2 + l2. The corresponding boundary conditions take the form

w̃ = 0,
dθ̃
dz

= 0 at z = 0,1. (24)

The system (33) - (34) is solved by means of the Galerkin method using the following expansions

w̃(z) =
M∑
n=1

wnsin(nπz) (25)

θ̃(z) =
M∑
n=1

θncos[(n− 1)πz] (26)
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Figure 2. Neutral stability curves: (a) stationary instability; (b) oscillatory instability.

The number M of modes is chosen so that the quantitative convergence is secured.155

156

As the viscoelastic parameters appear only in front of a time derivative in the momentum157

equation (16), the elasticity of the fluid cannot influence the properties of a stationary instability.158

Consequently, the characteristics of the stationary instability are the same as for Newtonian fluids.159

For such fluids, linear instability analysis has been considered by Nield [10] and has provided160

quantitative information on the stability condition when the porous layer is supposed infinite in x161

and y directions.162

We first consider perturbations in the form of stationary convection. Having used the Galerkin163

expansion (25) - (26) with M = 5, we obtain results with a very good agreement with those obtained164

in [10]. Fig 2(a) represents the marginal stability curve in the (k̃, Ra) plane and shows that a long165

wave instability (i.e. the critical wave number k̃c = 0) may develop if the Darcy-Rayleigh number166

exceeds the critical value Ras = 12,009 in accordance with the critical value Ras = 12 found in [10].167

168

It is well established that for isothermal horizontal boundaries, competition between the169

processes of stress relaxation, strain retardation and thermal diffusion may also lead to an oscillatory170

convective instability as a first bifurcation ([1]-[9]). This feature is also found in the actual study171

when the viscoelastic fluid saturating the porous layer is heated by a constant flux.172

In Figure 2(b) we plot the curve of neutral stability for oscillatory mode of convection in the173

(k̃,Ra) plane for Γ = 0.02 and different values of the elasticity number λ1 = 0.4;0.5;0.6. It can be174

seen from this figure that the minimum value of Rayleigh number is lower than the critical Rayleigh175

number Ra = 12 needed to trigger steady long wave instability. Therefore oscillatory instability176

may set up as a first convective pattern instead of steady long wave instability. The dependence of177

the critical Rayleigh number and the critical frequency at the onset of oscillatory convection on the178

elasticity number λ1 for fixed values of Γ is numerically determined and the results are plotted in179

Fig. 3(a) and in Fig. 3(b) respectively.180

It is clear from 3(a) that an increase in λ1 leads to flow destabilization, i.e. to a reduction in the181

respective critical Rayleigh number. Fig. 3(a) also shows the stabilizing effect of the ratio Γ . Moreover,182

as it is seen in fig. 3(a), for a fixed value of Γ , there exists a particular value of λ1 = λ
f
1 where183

the critical Rayleigh numbers for the onsets of both oscillatory and stationary convection coincide184

and therefore a codimension two bifurcation occurs. For λ1 > λ
f
1 , Fig. 3(b) shows that the critical185

frequency decreases with the decrease of the fluid elasticity or the increase of the viscosity ratio.186
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Figure 3. (a) Critical Rayleigh number and (b) critical frequency at the onset of oscillatory convection
as a function of λ1 for different values of Γ . The line Ra= 12 in (a) corresponds to the critical Rayleigh
number at the onset of stationary convection.

3.2. effect of lateral confinement on pattern selection187

This section is devoted to investigate the effect of the lateral confinement of the porous cavity by
assuming a very large aspect ratio A(A→∞) and finite lateral aspect ratio a. The three-dimensional
disturbance quantities respecting the boundary conditions 15 are expressed as

(u,w,θ,p) =
[
ũ(z), w̃(z), θ̃(z), p̃(z)

]
exp(ikx − iωt)cos(Lπy/a) (27)

v = ṽ(z)exp(ikx − iωt)sin(Lπy/a) (28)

The governing equations are still the system (33) - (34), except with l now replaced by Lπ/a188

where the integer L is the number of rolls in the y direction.189

We begin the study by considering the stability of the conductive state against stationary rolls190

with axes parallel to the x direction, called longitudinal rolls (LRs). Steady longitudinal rolls are191

characterized by k = 0, L , 0 and ωr = 0 . The dependence of the critical Rayleigh number at the192

onset of (LRs) on the lateral aspect ratio a for different number L of rolls is displayed in Figure 4(a).193

For comparison we also represent in the same figure the threshold of the steady long wave instability.194

The threshold of steady three-dimensional patterns in the form of oblique rolls (i.e. k , 0, L , 0 and195

ωr = 0) are bounded by the thresholds of the two limiting cases: the steady long wave instability and196

steady LRs.197

We remark that the mode L = 1 is the most unstable mode for LRs. As it is expected, we note198

that the critical Rayleigh number increases as a decreases, meaning that the lateral confinement199

stabilizes the conductive state against longitudinal rolls. We also note that as a → ∞, the limiting200

value of Ra = 12 is reached monotonically and an infinity of modes may be simultaneously unstable201

in this limit. Consequently, a relatively moderate lateral confinement is necessary to select the long202

wave instability which corresponds in real experiments to a monocellular flow in the x direction.203

204

Now we consider the effect of the lateral confinement on the stability of the conductive state205

against oscillatory LRs defined by k = 0, L , 0 and ωr , 0. Numerical results for neutral stability206

curves of oscillatory LRs with L = 1, L = 2, L = 3 and L = 4 are shown in Figure 4(b) as functions of207

the lateral aspect ratio a. These curves have a parabolic shape and intersect in some particular values208
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Figure 4. Critical Rayleigh number against the lateral aspect ratio with different number of rolls
(L = 1: red dashed curve , L = 2: green dotted curve, L = 3: black dash dotted curve and L = 4: blue
densely dotted curve): (a) steady longitudinal rolls; (b) oscillatory longitudinal rolls for Γ = 0.1 and
λ1 = 0.5. In both figures, the horizontal lines indicate the corresponding critical Rayleigh number for
transverse rolls.

of a, indicating that the true critical Rayleigh number strongly depends on both a and L for fixed209

rheological parameters. The destabilizing oscillatory LRs mode changes in the intersection points210

of neural curves from a mono-cellular flow to a two-cellular flow and so on, as the lateral aspect211

ratio a increases. In addition, the behavior of the critical Rayleigh number is non-monotonic as a212

increases. We also note that the maximum of critical Rayleigh number decreases as a increases and213

tends asymptotically to the critical threshold found in the unbounded case (a→∞). The results are214

therefore in contrast to the case of stationary LRs where the dominant mode corresponds to L = 1215

independently of the lateral confinement.216

In Figure 4(b), the critical Rayleigh number at the onset of oscillatory TRs is indicated by the217

horizontal line. As can be seen from this figure, finite values of a stabilize oscillatory LRs and may218

select oscillatory TRs as a dominant mode of convection.219

4. Secondary instabilities220

4.1. Nonlinear solution and formulation of its linear stability221

According to above linear stability analysis, we found that a stationary bifurcation occurs giving222

rise to a convective pattern in the form of a long wave instability in the x direction provided that the223

elasticity number λ1 do not exceed a particular value λf1 which depends on the viscosity ratio Γ . In224

that case, the viscoelastic fluid behaves like a Newtonian fluid. Consequently, the nonlinear solution225

in the regime of steady long wave convection is the same regardless of weather or not the fluid is226

viscoelastic.227

As shown by Bejan [18] for a vertical cavity, and later adopted by Vasseur et al. [19] and Sen et228

al. [20] for inclined cases, one may assume the existence of a two-dimensional and fully developed229

counterflow. This may be a good approximation for the mid-region of the horizontally extended space230

on condition that the unicellular convection is stable. By assuming a shallow cavity A � 1 and by231

using the parallel flow approximation, Kimura et al. [14] found that the analytical solution for the232

monocellular flow consists of:233

a horizontal asymmetric velocity with a zero mean along any vertical section,234

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 April 2017                   doi:10.20944/preprints201704.0013.v1

Peer-reviewed version available at Fluids 2017, 2, 42; doi:10.3390/fluids2030042

http://dx.doi.org/10.20944/preprints201704.0013.v1
http://dx.doi.org/10.3390/fluids2030042


10 of 17

U (z) =
1
2
Ra C(1− 2z) (29)

and a vertical as well as a horizontal stratification of the temperature,

T0(x,y,z) = Cx+Θ(z) (30)

with

Θ(z) =
1
2
Ra C2(

z2

2
− z

3

3
− 1

12
)− z+ 1

2
(31)

and235

C = ±
√

10
Ra

(1− 12
Ra

) (32)

where C is negative or positive according to whether the flow is clockwise or counter-clockwise236

and both solutions are possible depending on the initial conditions.237

From Equation (32) it is seen that no motion may be induced inside the cavity for Ra < 12. For the238

case of a porous medium heated from the bottom and cooled from the top by a constant heat flux,239

a critical Rayleigh number of Ra = 12 for the onset of convection was predicted by Nield [10]. This240

result is in agreement with the prediction of Equation (32).241

242

For finite aspect ratio, Kimura et al. [14] performed two dimensional numerical simulations of243

the full problem. Their numerical results show that the conductive state is stable when the Rayleigh244

number is smaller than 12. Computations carried out for Ra in excess of 12 were found to agree with245

analytical solutions (29 - 31).246

247

The equations governing the linear stability of the monocellular flow are obtained by the same
previous approach used for the stability of the conductive basic solution. By assuming very large
aspect ratios A(A→∞) and a(a→∞) the following system is obtained

(1− iωΓλ1)(D
2 − k̃2)w̃+Ra(1− iωλ1)k̃

2θ̃ = 0 (33)

−iωθ̃+ w̃DT0 + ikθ̃U0 − (D2 − k̃2)θ̃ = 0 (34)

where we substitute U0 and T0 by their explicit expressions (29) - (31).
The corresponding boundary conditions take the form

w̃ = 0,
dθ̃
dz

= 0 at z = 0,1. (35)

On the other hand, if we assume a very large aspect ratio A and a finite value of the lateral aspect248

ratio a, the governing equations are still the system (33) - (34) where k̃2 is replaced by k2 + Lπ/a2.249

250

The resulting linear stability problem is solved by means of the Galerkin method, using the251

expansion (25) - (26) at the order M = 30.252

4.2. Results for Newtonian fluids253

To verify the accuracy of our numerical results based on the Galerkin expansion to the orderM =254

30, we perform a test for the limiting case of a Newtonian fluid and compare the results with those255

obtained by Kimura et al. [14] . In the first instance, two-dimensional disturbances, corresponding to256

l = 0, were considered. We found out that for the Newtonian fluid, the base velocity and temperature257
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Figure 5. Newtonian fluids: (a) Neutral stability curve at the onset of oscillatory transverse rolls; (b)
Critical Rayleigh number at the onset of steady longitudinal rolls against the lateral aspect ratio with
different number of rolls (L = 1: red dashed curve , L = 2: green dotted curve, L = 3: black dash
dotted curve and L= 4: blue densely dotted curve). The horizontal line corresponds to the threshold
of oscillatory transverse rolls.

profiles (29) - (31) are stable for values of Ra less than RaTc2 = 506.27 as shown by the neutral stability258

curve represented in Figure 5(a). At this critical Rayleigh number occurs an instability via a Hopf259

bifurcation to oscillatory TRs with a critical frequency ωTc2 = 138.24 and a critical wave number260

kTc2 = 4.80. These results are in a good agreement with those obtained in [14] by using a shooting261

method, namely RaTc2 = 506.07, ωTc2 = 138.92 and kTc2 = 4.82.262

On the other hand, Kimura et al. [14] considered three-dimensional disturbances with the value of263

the y-wave number l being gradually increased from zero. For l > 0, the stability analysis indicates264

that the monocellular flow will be destabilized not by a Hopf bifurcation, but by an exchange of265

stability for which the x-wave number k vanishes. In that case the threshold of the appearance of266

steady longitudinal rolls as a secondary instability is found to be RLc2,s ≈ 311.53. Since this critical267

Rayleigh number is much lower than any of those for the Hopf bifurcations obtained when k , 0,268

Kimura et al. [14] concluded that the monocellular flow will in fact be destabilized by longitudinal,269

rather than transverse, disturbances.270

In the second instance, three-dimensional disturbances, corresponding to k , 0 and l , 0, were271

considered in this study. Numerical results performed by assuming infinite aspects ratios A and a272

indicated that the most unstable mode corresponds to k = 0 and l , 0. The corresponding critical273

Rayleigh number above which this most unstable mode in the form of steady LRs is RLc2,s = 313.107.274

Once again, this critical value agrees very well with RLc2,s ≈ 311.53 obtained in [14].275

In the third instance, the effect of the confinement of the porous medium in y direction is explored.276

We plot in Figure 5(b) the critical Rayleigh number against the aspect ratio for several of the277

leading modes, from which it is clear that (L = 1) remains the destabilizing mode, ahead of the278

other modes (L > 1), and that the order of these modes, in the sense that Rac(L) < Rac(L + 1),279

is preserved as a increases. In particular, we also note that as a → ∞, the limiting value of280

RLc2,s = 313.107 is approached monotonically. Figure 5(b) also shows that the curve corresponding281

to steady longitudinal mode with L = 1 intersects the line RaTc2 = 506.07 at a particular value of the282

lateral aspect ratio a = a∗. This means that perturbations promote the appearance of oscillatory TRs283

provided that a < a∗ or stationary LRs otherwise.284
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4.3. Results for viscoelastic fluids285

4.3.1. Hopf bifurcation to transverse rolls286

In order to study the influence of viscoelastic parameters on the secondary instability, we first287

computed the bifurcation line from a stationary monocellular convective pattern to oscillatory TRs288

(l = 0) for either a fixed value of the elasticity number λ1 with varying values of the viscosity ratio289

Γ or a fixed value of Γ with varying values of λ1. With regard to the question of the influence of the290

viscosity ratio Γ for a viscoelastic fluid with a relaxation time λ1 = 0.1 on the onset of a secondary291

instability in the form of oscillatory TRs, Figure 6(a) illustrates the behavior of neutral stability curves292

in the (k,Ra) plane for Γ = 0.75, Γ = 0.5 and Γ = 0.3. For a comparison, the Newtonian case (Γ = 1)293

is also represented on Figure 6(a).294

We note in this figure that the minimum of neutral stability curves increases when Γ is295

augmented to reach the critical value for Newtonian fluids in the limit of Γ = 1. Physically, this result296

means that concentrated polymeric solutions with a small viscosity ratio Γ favor the appearance of297

oscillatory multicellular flow convection as a secondary instability. On the other hand, for diluted298

viscoelastic solutions, more heating is needed to trigger the secondary instability.

2 4 6 8 10
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400

600

800

k

R
a

(a)

Newt.

Γ = 0.75

Γ = 0.50

Γ = 0.30

3 4 5 6

360

380

400

k

R
a

(b)

λ1 = 0.1
λ1 = 0.3
λ1 = 0.5

Figure 6. Critical Rayleigh number for the destabilization of fully developed flow against the wave
number k with l = 0 for Newtonian fluids (Newt) and for viscoelastic solutions with: (a) λ1 = 0.1 and
Γ = 0.75;0.5;0.3; (b) Γ = 0.75 and λ1 = 0.1;0.3;0.5.

299

We report in Table 1 the computed results of critical Rayleigh number RaTc2, critical frequency300

ωTc2 and critical wave number kTc2 at the onset of the secondary instability organized as oscillatory301

TRs for λ1 = 0.1 and different values of Γ . Table 1 shows a strong stabilizing effect of the viscosity302

ratio. The values of the critical oscillatory frequency decrease with decreasing Γ . This implies that303

emerging transversal convection rolls have a larger time-period and move with a larger phase velocity304

when the polymer concentration is high.305

We now present results corresponding to the influence of the fluid elasticity by considering the306

properties of the emerging oscillatory TRs at different values of λ1 for a fixed value of Γ . Figure307

6(b) presents neutral stability curves for Γ = 0.75, a typical viscosity ratio value for Boger fluids and308

different values of the relaxation time λ1 = 0.1, λ1 = 0.35 and λ1 = 0.5. We note from this figure309

that the neural stability curves are nearly superposed when λ1 is increased , meaning that beyond310

λ1 = 0.1, the increase in the fluid elasticity has a little influence on the critical Rayleigh number at311

the onset of oscillatory TRs. Table 2 gathers the results for seven values of λ1. It can be observed312

from Table 2 that critical Rayleigh number RaTc2, critical frequency ωTc2 and critical wave number kTc2313

at the onset of the secondary instability are weakly dependent on the elasticity number number λ1.314
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Table 1. Critical Rayleigh number RaTc2, frequency ωTc2 and wave number kTc2 at the onset of moving
transverse rolls as a secondary instability for λ1 = 0.1 and different values of Γ

Γ RaTc2 ωTc2 kTc2
Newtonian 506.27 138.24 4.8

0.75 358.62 115.209 4.660

0.70 329.48 110.448 4.630

0.65 300.89 105.918 4.610

0.60 272.90 101.395 4.590

0.55 245.58 96.897 4.570

0.50 219.04 92.825 4.570

0.45 193.39 88.902 4.575

0.40 168.81 85.603 4.610

0.35 145.47 83.112 4.685

0.30 123.55 81.578 4.805

We conclude that the preponderant effect on the properties of the emerging oscillatory TRs is mainly315

linked to the variations in the viscosity ratio, while the effect of the elasticity remains very weak.316

Table 2. Critical Rayleigh number RaTc2, frequency ωTc2 and wave number kTc2 at the onset of moving
transverse rolls as a secondary instability for Γ = 0.75 and different values of λ1

λ1 RaTc2 ωTc2 kTc2
0.7 354.21 110.819 4.545

0.6 354.31 110.979 4.550

0.5 354.45 111.042 4.550

0.4 354.66 111.251 4.555

0.3 355.05 111.642 4.565

0.2 355.83 112.584 4.590

0.1 358.62 115.209 4.660

4.3.2. Bifurcation to steady or oscillatory longitudinal rolls317

Finally, we present in the second part of this section the secondary instability results in318

the case where disturbances are assumed in the form of longitudinal rolls (LRs). We mention319

that as for the primary instability, the onset of stationary LRs convection is not affected the two320

viscoelastic parameters. Consequently, the critical Rayleigh number above which stationary LRs321

convection develops as a secondary instability is the same as that found for Newtonian fluids, namely322

RLc2,s = 313.107. However, the computations indicate Hopf bifurcation from steady unicellular323

flow to oscillatory LRs convection. We emphasize that the Hopf bifurcation to oscillatory LRs is324

not observed for Newtonian fluids and is due solely to the viscoelastic character of the fluids. The325

effects of the two viscoelastic parameters on the linear properties of the oscillatory LRs convection326

are examined in the remainder of this subsection. In order to evaluate the effect of elasticity alone,327

λ1 = 0.1, λ1 = 0.3 and λ1 = 0.5 cases are investigated for a fixed Γ = 0.75. On the other hand, the328

effect of viscosity ratio alone is studied by fixing λ1 = 0.1 and investigating the Γ = 0.75, Γ = 0.6,329

Γ = 0.5 and Γ = 0.3 cases. The computed results for the six different cases are reported in Table 3,330

which indicates the critical Rayleigh number, wave number and oscillatory frequency at the onset331

of oscillatory LRs secondary instability. As has already been highlighted in the previous sections332

considering the primary instability and the TRs secondary instability, we recognize the destabilizing333

effect of the elasticity number λ1 and the destabilizing effect of the viscosity ratio Γ . Moreover, a334

comparison between Tables 1, 2 and 3 attests that the frequencies of oscillatory LRs are much smaller335
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than those corresponding to oscillatory TRs.336

An additional remark about Table 3 is necessary. For comparison purposes, we also indicate in337

this table, the threshold of both stationary LRs and oscillatory TRs. It is clear that the true critical338

Rayleigh number depends on the combination of the rheological parameters. The least stable mode339

of convection is the one with smallest critical Rayleigh number and is identified in Table 3 with a340

bold character. For instance, we consider diluted viscoelastic solutions with Γ = 0.75 with different341

elasticity number λ1. For the combination of the rheological parameters (λ1 = 0.1, Γ = 0.75), the342

true critical Rayleigh number is RLc2,s indicating that the secondary instability pattern is in the form343

of steady LRs. In that case, polymeric solutions are almost inelastic and evolve as a Newtonian fluid.344

In contrast, for the combination (λ1 = 0.5, Γ = 0.75), the least stable mode of convection changes345

from steady LRs to oscillatory LRs, meaning that elastic effects become the most important ones in346

this range. In the same way, the preferred pattern as a secondary instability depends on the viscosity347

ratio Γ . Table 3 shows that by keeping λ1 = 0.1 and increasing gradually Γ from Γ = 0.75 (diluted348

solutions) to Γ = 0.3 (concentrated solutions), the most amplified mode of convection evolves from349

steady LRs to oscillatory LRs and eventually to oscillatory TRs.350

All the results stated in the subsection 4.3 are obtained by assuming infinite aspects ratios in x

Table 3. Critical Rayleigh numberRaLc2, frequencyωLc2 and wave number kLc2 at the onset of oscillatory
longitudinal rolls as secondary instability for different values of Γ and λ1

λ1 Γ RaLc2,osc ωLc2 kLc2 RTc2 RLc2,s
Newtonian - - - 506.27 313.107
0.1 0.75 426.27 1.53 5.8 358.62 313.107
0.3 0.75 317.55 3.58 4.5 355.03 313.107
0.5 0.75 291.34 2.65 3.9 354.45 313.107

0.1 0.6 333.47 12.35 6.3 272.90 313.107

0.1 0.5 288.08 17.53 6.5 219.04 313.107

0.1 0.3 194.20 33.62 7.0 123.55 313.107

351

and y directions. For the sake of brevity, we exemplify the effect of the lateral aspect ratio a on the352

pattern selection for two combinations of rheological parameters (Γ = 0.75, λ1 = 0.3) and (Γ = 0.5,353

λ1 = 0.1). We plot in Figures 7(a) and 7(b) the variation of the critical Rayleigh number for both354

stationary LRs and oscillatory LRs as a function of the lateral aspect ratio a in the cases (Γ = 0.75,355

λ1 = 0.3) and (Γ = 0.5, λ1 = 0.1) respectively. Computations showed that there is a competition356

between the two patterns in the sense that depending of the magnitude of lateral confinement, the357

system may select either stationary LRs or oscillatory LRs. For fixed value of L and by increasing358

a, the following behavior is observed for the curves representing the critical Rayleigh number for359

LRs and all values of rheological parameters, (see Figure 7(a) and 7(b)): i) the curve associated to360

the critical Rayleigh number of oscillatory LRs decreases to reach a minimum equal to its value for361

infinite a. This minimum point moves to the right in the (a, Ra) plane when the number of rolls L is362

increased; ii) then, the same curve increases to intersect an other branch corresponding to the critical363

Rayleigh number of steady LRs at a particular value of a; iii) finally, when a exceeds this particular364

value, the curve associated to the critical Rayleigh number of steady LRs becomes the lower curve,365

decreases monotonically and tends asymptotically to the critical Rayleigh number RLc2,s = 313.107 of366

steady LRs found in the case of infinite a.367

For the particular combination (Γ = 0.75, λ1 = 0.3), as in the infinite limit of a, the critical Rayleigh368

number RLc2,s = 313.107 of steady LRs is less than the critical Rayleigh number RLc2,osc = 317.55 of369

oscillatory LRs, the decreasing curve of the critical Rayleigh number of steady LRs with L= 1 crosses370

the absolute minimum RLc2,osc = 317.55 of oscillatory LRs at a critical value a = a∗∗ (a∗∗ ≈ 2 in Figure371

7(a)). Consequently, for all values of a larger than a∗∗, the dominant mode of convection is a steady372

monocellular LRs . Otherwise, the system may select oscillatory LRs or a steady monocellular LRs373
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depending on a.374

It is important to note that Figure 7(a) also shows that the curve corresponding to oscillatory375

longitudinal mode with L = 1 intersects the line representing the critical Rayleigh number of376

oscillatory TRs RaTc2 = 355.03 at a particular value of the lateral aspect ratio a= a∗ ≈ 0.4. This means377

that perturbations promote the appearance of oscillatory TRs if a < a∗, oscillatory LRs or a steady378

monocellular LRs if a∗ < a < a∗∗ and stationary LRs if a > a∗∗ . In the case of the combination (Γ = 0.5,379

λ1 = 0.1), this behavior is not observed since as it can be seen from Figure 7(b), the critical Rayleigh380

number of oscillatory TRs is much smaller than the critical Rayleigh number for both stationary and381

oscillatory LRs. For this particular combination, the system selects oscillatory TRs independently of382

the lateral confinement.383

384
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Figure 7. Critical Rayleigh number for the onset of steady and oscillatory longitudinal rolls as a
function of aspect ratio a for different number L of rolls (L= 1: red dashed curve , L= 2: green dotted
curve, L = 3: black dash-dotted curve, L = 4: blue densely-dotted curve). (a) Γ = 0.75 and λ1 = 0.3;
(b) Γ = 0.5 and λ1 = 0.1. The horizontal line corresponds to the threshold of oscillatory transverse
rolls

5. Conclusion385

In the present paper, Galerkin method is used to investigate the primary and secondary386

instabilities of viscoelastic fluids saturating a porous layer heated from below by a constant flux.387

The modified Darcy’s law based on the Oldroyd-B model was used for modeling the momentum388

equation. In addition to Darcy-Rayleigh number Ra, two viscoelastic parameters play a key role389

when characterizing the temporal behavior of the instability, namely, the relaxation time λ1 which390

measures the elasticity of the fluid and the ratio Γ between the viscosity of the solvent and the total391

viscosity of the fluid. In the first part of the paper, three-dimensional disturbances were considered392

in order to study the stability of the basic motionless solution. For sufficiently elastic fluids, we393

found that the primary instability is oscillatory. Otherwise, the primary bifurcation gives rise to394

stationary long wave instability. Results indicated that the lateral confinement of the porous layer395

by isolated side walls eliminates oblique or longitudinal rolls in favor of two-dimensional transverse396

rolls. Based on a fully developed parallel flow assumption, a nonlinear analytical solution for the397

velocity and temperature fields was developed in the range of the rheological parameters where398

stationary long wave instability develops first. In the second part of the paper, we reported findings399

on the linear stability analysis of the monocellular flow which is performed with special attention400

given to the interplay between the viscoelastic parameters and the lateral aspect ratio a of the porous401

layer. For weakly elastic fluids we determined a second critical value of Rayleigh number above402
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which the system exhibits a Hopf bifurcation from steady monocellular flow to oscillatory transverse403

rolls convection. The well known limit of RaTc2 ≈ 506 for Newtonian fluids is recovered and the fluid404

elasticity effect is found to delay the onset of the Hopf bifurcation.405

Three dimensional analysis showed that for the diluted solutions as Boger fluids type (i.e. Γ = 0.75)406

the monocellular flow is more unstable to either stationary longitudinal disturbances for weakly407

elastic fluids (λ1 = 0.1) or to oscillatory longitudinal rolls for strongly elastic fluids (λ1 = 0.5). This408

pattern selection holds if the lateral walls are pushed to infinity. When a finite lateral confinement409

is taken into account, there exist particular values a∗ and a∗∗ of the lateral aspect ratio a such that410

perturbations promote the appearance of oscillatory transverse rolls if a < a∗, stationary or oscillatory411

longitudinal rolls if a∗ < a < a∗∗ and stationary longitudinal rolls if a > a∗∗. Computations proved that412

the interval [a∗,a∗∗] is enlarged by increasing the fluid elasticity.413

For concentrated viscoelastic fluids (Γ = 0.6, Γ = 0.5 and Γ = 0.3), it is found that oscillatory414

transverse rolls are the preferred mode of convection even for weakly elastic fluids and independently415

of the lateral confinement of the porous medium.416
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