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Abstract: A new evolutionary game is introduced which incorporates states and actions into the
strategies of the organisms of the evolving populations. The game centrally features actions that
result in demographic flow between states that may not conserve organism numbers. It is by this
feature that the game encapsulate a range of other evolutionary games, and can encode almost
very complex interactions between organisms, species and populations. The game’s formalism is
expounded and the nature of the game’s equilibrium is discussed. This discussion leads to an
algorithm for numerically determining the stable equilibrium points which is exemplified in the
context of a modified Hawk-Dove game. The game’s flexibility for modeling population dynamics
is evaluated and compared with other evolutionary games.
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1. Introduction

Biological species are well recognised as being engaged in an evolutionary fight-for-survival
and Game Theory has been used to analyse the strategies in such a fight. This kind of analysis is the
defining feature of Evolutionary Game Theory, whose many features and concepts are often credited
to John Maynard Smith and George R. Price [1,2]. The most standard evolutionary game concerns
the continuous growth/decay of organism types; the organism types are defined by the strategy
they play as they are continuously randomly paired to participate in a simultaneous symmetric
two-player game where the expected payoff determines each participant’s growth.[3] However,
there is sometimes felt to be a component missing from evolutionary analysis of strategies - the
consideration of state.[4,5]

Evolutionary game theory has been a valuable tool in characterising the dynamics and
interactions among biological species and it also has proven utility in other fields which feature
evolutionary dynamics. Some examples of phenomena which have been modeled via Evolutionary
Game Theory include: altruism, empathy, human culture, moral behavior, private property,
proto-linguistic behavior, social learning, societal norms, personality and mating-dynamics [4,6–8].

However, many organisms exhibit behaviors and strategies which are intrinsically coupled with
state and hence cannot be directly modeled using standard evolutionary game theory. Simple and
canonical examples include the behavior of perspiring with increasing body temperature causing
dehydration, foraging behavior with hunger signals causing food shortage, sleep with ambient light
levels causing vulnerability to predation, or hibernation with the change of season causing hunger.

Within this paper we detail an evolutionary game for modeling stateful evolutionary dynamics
and an algorithm which solves for its equilibria. We give a simple demonstration of the game via an
extension of the classic Hawk-Dove game[1] and we compare the game with the approach of others.
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1.1. Related Work

Complex state-action interactions between individuals can always be stochastically modeled by
artificial life simulations.[9] But recent work has been conducted to incorporate some state-action
dynamics into the exacting mathematical framework of evolutionary game theory.

This work has developed along two different branches, the first branch consists of encoding
the organisms as belonging to nodes on a graph structure.[10] In this approach the organisms
at a node play the symmetric game against weighted probabilities of their nearest neighbors
and/or themself. Such games are called ‘Spacial Evolutionary Games’[11,12] and they have unique
and dynamic behavior[13,14]. Spacial Evolutionary Games feature the addition of specifying a
‘who-plays-with-who’ into the game structure but the game itself is the same for all the participants.
Spacial Evolutionary Games are apt to model the evolution of organism’s strategies between strategic
nodes but it is seen to fail to capture the organisms having state beyond generalised location.

The second approach is more recent and consists of integrating state (and transitions between
state) into the symmetric two-player game itself. This pioneering effort has centered around the
works of Eitan Altman, and his colleagues Ilaria Brunetti and Yezekael Hayel [15–20], who introduce
the Markov-Decision-Evolutionary-Game (MDEG) and variants thereof.

An MDEG consists in analysing the growth/decay of organism-types in a population where the
organisms can occupy a finite set of states. The organism-types are defined by the strategy they play
of choosing actions depending on their state as they are continuously randomly paired to participate
in a two-player symmetric game. The game consists of each participant choosing an action and
the game’s outcomes depend on the chosen actions and the states of the participants. The game’s
outcomes determine the instantaneous payoff and probable transition to other states experienced by
the participants. The expected long-term payoff determines the growth/decay of the organism-types
which then changes the composition of the population in which the game is played.

Several example MDEG games are introduced in Altman’s literature including modifications
and extensions of the Hawk-Dove game from which we take inspiration.[16,18] MDEG includes many
features for modeling state-action interactions within evolutionary game theory and serves to provide
a contrast for our game. By our game, we show that by relaxing the markov nature of MDEG we allow
a remarkably more flexible game, a game which features other evolutionary games as subtypes.

1.2. Structure

The remainder of this paper is organised as follows: section 2 presents the core concept
of non-markovian transmission of organisms between states, section 3 gives formalism to the
non-markovian game and its algorithm, section 4 discusses the game’s equilibria and gives
confinement for the algorithm’s equilibria search, section 5 details a Hawk-Dove game as example of
the working algorithm, and section 6 concludes the paper by evaluating and comparing the features
of our game.

2. Non-Markov population models

The demographic flow of individuals of a species’ population between states is sometimes
described in ecological-studies by a matrix that is not necessarily markov.[21] The simplest example
of such matrices are Leslie Matrices used for studying the structure of populations of individuals
transitioning between evenly spaced age-states. Leslie Matrices are square, and they have form [22]:

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 March 2017                   doi:10.20944/preprints201703.0234.v1

http://dx.doi.org/10.20944/preprints201703.0234.v1


3 of 21

M =



F0 F1 F2 . . . Fm−2 Fm−1 Fm

P0 0 0 . . . 0 0 0
0 P1 0 . . . 0 0 0
0 0 P2 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . Pm−2 0 0
0 0 0 . . . 0 Pm−1 0


0 < Px < 1; Fx ≥ 0

Where Pi represents the probability of and individual in the ith age bracket successfully living into the
(i + 1)th age bracket, and Fi is average number of offspring for an individual in ith age bracket within
the duration of the age bracket. For a column vector n = [n0, n1, n2, . . . , nm] with each ni representing
the number of individuals in each age-bracket, Mn gives the expected number of individuals in
the population after the duration of one age bracket of time, and M2n the expectation individuals
after two age brackets, M3n after three, and so on. Successive applications eventually yield a steady
population profile between the ni, and a constant exponential growth rate λ given by the Euler–Lotka
equation. The λ is the dominant and only real-positive eigenvalue of the matrix, with the steady
distribution n as its corresponding eigenvector, that is Mn = λn.

Although the elements in the Leslie matrix are positive and represent states of organisms in the
population and the transition between, the matrix isn’t Markov because its columns don’t necessarily
sum to one. The informal difference is that whereas in a Markov-chain matrix the elements represent
the expectation of transition between states, Leslie matrix elements represent the expectation of
transmission between states inclusive of such possible factors as births and deaths. We term the class of
such matrices as ‘transmission matrices’ in this article and assert the only thing defining such matrices
are that they are real, square and have non-negative elements.1 We do this because such matrices can
be built more broadly than simple Leslie-matrix form[24,25]. Consider the rich interaction between
organism-states captured by the matrix of transmissions for the ’Nodding Thistle’ in figure 1.
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(a) Life cycle graph of the population model
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
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

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
(b) 4x4 matrix model of a Nodding Thistle (Carduus
nutans) population in Australia, classification based
on seed and rosette size. The transmission numbers
represent aggregate survival/growth/propagation of
individuals from one class into another per year. The
projected population growth rate (λ) is 1.207 per year.
Data from Jongejans et.al[25]
Original data from Shea et.al[26]

Figure 1

It is by these transmission matrices that we are able to highlight the notion of transmission
between two states as being the demographic flow of the population from one to the other. This
notion forms a core concept in the next section as we introduce actions for the organisms and thence
compare strategies in game-theory analysis for equilibria.

1 General non-negative real square matrices (or at-least irreducible ones) have at-least one real non-negative eigenvalue (via
indirect application of Perron-Frobenius theorem, see chapter 3 of [23]) hence a transmission matrix identifies at-least one
growth-rate
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3. Description of the Game

Consider an ecosystem of different species of organisms, where the organisms of each species
have a distinct set of states which they can occupy. Further imagine that each state has a set of actions
which an organism in the state can execute. Let:

• K be a finite set of species
• S be the finite set of all states
• Sk be nonempty disjoint subsets of states S available to species k ∈ K
• A be the finite set of all actions
• Ak be nonempty disjoint subsets of actions A available to species k ∈ K
• Ak,s be nonempty subset of actions Ak available to species k ∈ K in state s ∈ Sk

Further imagine that each individual organism has a strategy in addition to its state, which encodes
the probabilities of what action it will execute depending on the state it is in. Let:

• Wk be the set of possible strategies for species k ∈ K, such that for any strategy wk ∈ Wk that wk
a,s

denotes the probability that an organism with strategy wk will execute action a ∈ Ak,s if it is in
state s ∈ Sk.

The elements of Wk are all that satisfy the basic rules of probability:

– probabilities of taking actions from any state must sum to one:
∀k ∈ K ∀wk ∈Wk ∀s ∈ Sk ∑a∈Ak,s

wk
a,s = 1

– all probabilities must be non-negative:
∀k ∈ K ∀wk ∈Wk ∀s ∈ Sk ∀a ∈ Ak,s wk

a,s ≥ 0
– inaccessible actions have probability of zero:

∀k ∈ K ∀wk ∈Wk ∀s ∈ Sk ∀a /∈ Ak,s wk
a,s = 0

The remaining elements are:

• Pt,k,s,w is the number2 of organisms at time t of species k ∈ K in a state s ∈ Sk with strategy
w ∈Wk;

• P∗t,k,s,a = ∑wk∈Wk Pt,k,s,wk wk
a,s is the number of organisms at time t of species k ∈ K in a state s ∈ Sk

which are going to take action a ∈ Ak,s.
• Tk,s,a(P∗t ) are positive functions of argument3 P∗t , giving transmission of organisms (of a strategy

wk) to state s ∈ Sk when action a ∈ Ak is executed by an organism (of strategy wk).
• α as the proportion of the population that will take an action at a time step t→ t + 1; 0 < α < 1.

Once the above elements K, S, A, T, α and initial population P0 are specified - the game’s process
is fully specified.
The game’s process consists of stages: The organisms in the population of a strategy wk have
population distribution across states given by Pt. α of the those individuals have wk strategy which
determines the distribution of actions taken by them. The total actions taken by all strategies
determines the total transmissions among the states - thus updating Pt to Pt+1. The process is
embedded as Algorithm 1.

From Algorithm 1 is noticed that if the states were indexed Sk = {sk,0, sk,1, . . . }, that every
strategy wk would have its own transmission matrix analogous to those given in section 2:

ml,j = Mt,k,wk

sk,l ,sk,j
= ∑

a∈Ak,sj

Tk,sk,l ,a(P∗t )w
k
a,sk,j

(1)

2 Pt,k,s,w defines a distribution of the population at time t, which may be normalised and hence represent a probability
distribution or left unnormalised as representing actual numbers of organisms. The only constraint is that it be
non-negative ∀t, k, s, w Pt,k,s,w ≥ 0. If the probability distribution is to be normalised then the normalisation can either
be ‘built-in’ to the transmission T terms or included as a separate step in the algorithm 1

3 where P∗t is shorthand for the set of all the numbers across k, s and a, P∗t = {P∗t,k,s,a | k ∈ K, s ∈ Sk , a ∈ Ak,s}
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Algorithm 1 Forward Stepping Algorithm

1: procedure SIMULATE(K, S, W, T, P0, α, tmax)

2: t← 0

3: while t < tmax do

4: P∗t,k,s,a ← ∑wk∈Wk Pt,k,s,wk wk
a,s . calculate reduced population distribution

5: for k ∈ K do . for each species:

6: for wk ∈Wk do . for each strategy:

7: Mt,k,wk
s1,s2 ← ∑a∈Ak,s2

Tk,s1,a(P∗t )w
k
a,s2

. calculate total transmissions

8: zs1 ← ∑s∈Sk Mt,k,wk
s1,s Pt,k,s,wk . apply matrix to the strategy’s population

9: Pt+1,k,s,wk ← αzs + (1− α)Pt,k,s,wk . incorporate new population by α

10: end for

11: end for

12: t← t + 1

13: end while

14: return P∗tmax

15: end procedure

Such that ml,j would be net transmission from the jth state to the lth state for the individuals that take
actions. We term such a matrix the "strategy’s transmission matrix". Furthermore that if the actions
were indexed Ak,sk,j

= {ak,j,0, ak,j,1, . . . } that the probabilities of any strategy wk ∈ Wk would form an
indexed set of numbers which we define to be the strategy’s "terms".

qj,i = wk
ak,j,i ,sk,j

(2)

Any appropriately dimensioned indexed set of numbers qj,i can be the terms of a strategy if it is
"implementable". which is iff: ∀j ∑i qj,i = 1 and ∀i, j qi,j ∈ R+

⋃{0}, ie. if the numbers could be
taken to be probabilities of a strategy. The terms of a strategy are the same size and dimensions as
all the strategies of the same species, and so it possible to add, subtract and multiply them together
element-wise to form linear combinations of strategy terms. The result of a linear combination of
strategy terms is implementable if the coefficients of the linear combination are positive and sum to
unity. In the next section we will talk of linear combinations of strategies in this manner.

In anticipation of Appendix B we will present it here that: any strategy’s transmission matrix
has a form where it has columns are linear combination of column vectors weighted by its terms.
Consider that if we index the T functions as yj,i,l = Tk,sk,l ,ak,j,i

, and if yj,i denotes a column of such
terms then ml,j has form:

ml,j = ∑
i

yj,i,lqj,i =
[

y0,0q0,0 + y0,1q0,1 + y0,2q0,2 + . . . y1,0q1,0 + y1,1q1,1 + . . . y2,0q2,0 + . . .
]

(3)

4. Searching for Stable Equilibria

In direct correspondence with standard game theory language [3], it is possible to define basic
relationships between the strategies. Each organism’s strategy wk encodes the probabilities of what
actions it will take across its states. A strategy is ‘pure’ if these probabilities encode certainty of taking
a single action per state otherwise it is ‘mixed’. Any mixed strategy can be decomposed (perhaps not
uniquely) into a linear combination of pure strategies. And any set of pure strategies defines a span
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of mixed strategies which can be linearly composed of them. The set of pure strategies which could
feature in a linear decomposition of a mixed strategy is defined as the ‘support’ of the mixed strategy.

If we define an ‘equilibrium’ as being the condition where all the ml,j transmission matrices
remain constant - and an ‘equilibrium point’ being defined by those values. Then then it is necessarily
the case that an equilibrium leads to a condition where all the species and strategies that are
significantly present in the population are steadily growing by the same growth-rate in steady-state
(see appendix A for discussion and a limited proof). For if any organisms of a strategy existed in
the population with a lesser steady-state growth-rate then it would proportionally die out, or if any
organisms of a strategy existed with a greater steady-state growth-rate then it would lead the others
to proportionately die out.

We further define the equilibrium as being ‘stable’ in a similar way to Maynard Smith [1–3],
specifically if it cannot be disturbed from equilibrium by the presence of a small incorporation-of (or
‘invaded by’) any possible ‘mutant’ strategy. We note that this is at-least the case where no ‘mutant’
strategy has a greater steady-state growth-rate in the context of the population.

It is proven in appendix B that for any stable equilibrium established with a population of mixed
strategies that it is possible to establish the same equilibrium point without mixed strategies at all.
Informally the reasoning is that: because any mixed strategy is a stochastic mix of its supporting pure
strategies it can only perform as well as the best of them. And when it performs equal to the best then
they must all perform equally. And in this case there is an equivalent combination of the supporting
strategies which have the same state-action profile P∗t,k,s,a as as the mixed strategy; the same profile
which defines the transmission matrices and thus the equilibrium point itself.

From these considerations it is thus unnecessary to consider mixed strategies in the search for
stable equilibria because every stable equilibria can be established by combinations of pure strategies
alone (although there may be zero or multiple such stable equilibria between them). In this way,
multiple runs of Algorithm 1 with different initial combinations of pure strategies is sufficient to
determine all possible stable equilibria of the game.

4.1. Software Implementation

An implementation of Algorithm 1 for arbitrary configuration of Species/States/Actions using
pure strategies was written in the Python programming language using Scoop and SymPy libraries
for parallelisation and for mathematical expression parsing respectively. The source-code is available
at https://github.com/Markopolo141/FSM-evolve/ and at the time of publication consists of a small
and readable ∼400 lines.

5. A Quick Example

One of the most famous evolutionary games is that of Hawk-Dove[1] which has been extended
to multiple states by Eitan Altman et al[16,18]. A simplified version of Altman’s game (as presented
in [18]) is as follows:

• K = {b} A singular species of bird
• S = Sb = {y, a, p} are the states of: young, agressive adult, passive adult
• A = Ab = {Ra, Rp, Ga, Gp}, Ab,y = {Ga, Gp}, Ab,p = {Rp}, Ab,a = {Ra} are actions

available to various states: Ga/Gp is grow into aggressive/passive adult, Ra/Rp is reproduce
aggressively/passively.

• All the transmission rates are:
Tb,y,Ga (P∗t ) = 0 Tb,y,Gp (P∗t ) = 0 Tb,y,Ra (P∗t ) = 2(1− p) Tb,y,Rp (P∗t ) = 1− p + A

Tb,a,Ga (P∗t ) = 1− pC Tb,a,Gp (P∗t ) = 0 Tb,a,Ra (P∗t ) = 0 Tb,a,Rp (P∗t ) = 0
Tb,p,Ga (P∗t ) = DpC Tb,p,Gp (P∗t ) = DpC + 1− pC Tb,p,Ra (P∗t ) = 0 Tb,p,Rp (P∗t ) = 0

where A, D, C are parameters of the game all between 0 and 1, and p =
P∗t,b,a,Ra

P∗t,b,a,Ra
+P∗t,b,p,Rp
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Young

Aggressive
Adult

Passive
Adult

γ(1− pC)

2(1− p)

1− p + A

DpC + (1− γ)(1− pC)

Figure 2. A diagram of the flow of individual organisms between states of a simple Hawk-Dove game
γ being strategy parameter between Ga and Gb, p being proportion of Adults that are Aggressive, and
A,D,C being game parameters

It is noted that the only state which has multiple actions available to it is y with Ga and Gp, and
therefore the any strategy wb is totally specified once γ = wb

Ga ,y is specified, thus all strategies of the
game can be parameterised by a single number γ, with 0 ≤ γ ≤ 1.
If the states are indexed in order y, a, p and the actions are indexed in order Ra, Rp, Ga, Gp then a
strategy wb where γ = wb

Ga ,y has transmission matrix mi,j of the form:

mi,j =

 0 2(1− p) 1− p + A
γ(1− pC) 0 0

DpC + (1− γ)(1− pC) 0 0

 (4)

The demographic flow of organisms of strategy wb between states can be visualised as per Figure 2.
We compared the results of the python software (of section 4.1) on the Hawk-Dove game with

those obtained by mathematical analysis (as given in Appendix D) and also via stochastic simulation.
The Moran process is a very simple stochastic model of the evolution of finite populations,

wherein each ’turn’ a random individual is chosen for reproduction proportional to its fitness and
a corresponding random individual is chosen for death, the Moran process is generally regarded as a
cornerstone technique of stochastic evolutionary game dynamics.[27]

A Moran process for the above game is programmed (with source-code shown in Appendix E)
and the results of the Moran process against the python implementation and mathematical analysis
are shown in figure 3. The figure shows the value p (the proportion of adults that are aggressive) and
the proportion of young (%Y) at equilibrium against the parameter A for fixed C and D and shows a
strong coincidence in achieving a non-trivial result for all three methodologies.

6. Discussion

The game (as defined in section 3) is designed with broad features to encapsulate a large number
of potential applications. The game’s elements consist of there being a population/s of entities that
can be described as stateful and stochastically transmit themselves between states based on their
present state and the states and actions of others in accordance with a conserved strategy of choosing
actions.

It should be quite straightforward that the game’s representation encapsulates other
evolutionary games:
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Simulated and Analytical dynamics of Hawk-Dove game
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Figure 3. Dynamics of the Hawk-Dove game across parameter A, with D = 0.75 and C = 0.70
shown are results for p as well as proportion Young %Y for Moran stochastic simulation, analytical
prediction, and our software solver’s results

• Classical evolutionary games feature a finite set of strategies, each with growth-rates according
to the expected payoff against the population of strategies. The rather degenerate analogue in
our game, would have a single species with a single state and multiple actions of transmission
to that same single state. Each of these actions would correspond to a strategy and would have
transmission in proportion to its payoff.

• Spacial evolutionary games feature a finite set of strategies across nodes, each with growth-rates
according to expected payoff against its neighbors. The analogue in our game, would consist
in modeling each node as a separate species, each with a single state and multiple action of
transmission to the single state. Each action would correspond to a strategy at a node and any
action’s transmission would be in proportion to its payoff against its neighbors.

Furthermore we observed (although not yet proven) that MDEG games are also encapsulated:

• MDEG games seem to be closely analogued in our game as having the exact same states and
actions and almost having the same transmissions between states. In an MDEG game, the
transmissions between states are conservative in the sense that playing an action never directly
changes the net total number of individuals in the population but results in an additive payoff
whos long-term value determines the growth-rate for the strategy. We have observed that
the same dynamics can be encapsulated in our game by having the same conservative action
transmissions plus a small multiple of the payoff values that would be achieved in the original
MDEG game.

The breadth of our game’s flexibility comes from allowing the transmission terms Tk,i,j to be any
function of population state P∗t .
For instance, the T terms can be non-linear and represent non-linear dynamics between individuals,
such as might be encoded in a classical evolutionary game with a 3-player symmetric payoff matrices.
The T terms might keep the total population size under a maximum, or only under a maximum or
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minimum for a particular state. They may encode dynamics similar to various evolutionary models
eg. replicator dynamics, best-response dynamics or payoff comparison dynamics.[28]
In short, the game’s T terms can encode significantly complex interactions between organisms,
species and populations.

Consideration must be made in running the game’s simulation (per algorithm 1) that there is
no guarantee it will fall into a stable equilibrium, or that it will do so in a timely manner. This is
particularly true if astability is intrinsically part of the model (such as the game of paper-scissors-rock
[29]). It is also worth noting that setting α too high can potentially introduce astability into borderline
stable models.

A limitation of our game is that it is intentionally designed to ’wash-out’ periodic transients
between the states as the simulation progresses (as α < 1 acts as a dampener on such transients) so
it cannot be used to model populations in which long-term periodic behavior between states in the
simulation is desired4. Another limitation is that there is no current facilitation for transmission of
organisms from one strategy into another, such as might be used to explicitly model the effects of
significant mutation on the population (see Novak [12] for example analysis).

These limitations notwithstanding, hopefully it is seen that this article serves as a step towards
the incorporation of state (in the most general sense) into evolutionary game theory analysis.
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Appendix A That all proportionally present strategies have the same growth-rate at equilibrium

At an equilibrium, if mwk

l,j is the constant transmission matrix for strategy wk, and if vwk ,t
j =

Pt,k,sk,j ,wk is a vector of the number of organisms at time t of strategy wk in the jth state. Then
application of the transmission matrix to the vector gives the vector at the next time index t + 1 via
Algorithm 1 as:

vwk ,t+1
l = α

(
∑

j
mwk

l,j vwk ,t
j

)
+ (1− α)vwk ,t+1

l ie. vwk ,t+1 =
(

αmwk
+ (1− α)I

)
vwk ,t

Thus the strategy’s population vector vwk ,t can be stepped forward in time by repeated matrix
multiplication by the non-negative matrix Z = (αmwk

+ (1− α)I) where I is identity matrix.
It is generally observed that repeated matrix powers often yields exponential growth and if we
assume Z is irreducible and diagonalisable matrix then the proof is straightforward and Theorem
1 gives the desired result:

lim
m→∞

vwk ,t

(αλwk + (1− α))t = bwk
v̂wk

thus: vwk ,t ≈ (αλwk + (1− α))tbwk
v̂wk

(5)

Where λwk and v̂wk
are largest eigenvalue and corresponding eigenvector of mwk

, and bwk
is a

constant. If we assume the same is true for all strategies in the population then each has an
asymptotic exponential growth-rate γwk = αλwk + 1− α. And so between any two strategies wk and

4 although α *could* be set to 1 to facilitate this
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wp, that if λwk > λwp then γwk > γwp and strategy wk dominates strategy wp. Thus between the
strategies in the population the only strategies that will be ultimately undominated are those of the
maximum growth-rate. And thus at equilibrium the only strategies of significant proportion in the
population have the same growth-rate γ.

The set of possible matrices mwk
(and Z) is obviously much larger than those diagonalisable and

irreducible. And while is generally observed that most matrices yield the same exponential-growth
character there are some which don’t, specifically defective matrices5. In this paper we assume such
matrices are the rare exception and our analysis does not treat their case. Although we believe
that all conclusions of the paper hold with their case included it will be left to future (and more
mathematically involved) work to demonstrate such.

Appendix B That any stable equilibrium point can always be among pure strategies

In this section we will attempt to prove that any stable equilibrium point can be established
among pure strategies alone. The total demonstration of this claim is formulated in matrix
mathematics to avoid any possible vagueness as Theorem 5. But because of this, there is a step
of interpretation needed between accepting the Theorem and understanding its connection and
relevance to our game. It is this interpretation that we address in this section.

To make this connection we begin by coming to a definition of a strategy’s being ‘replaceable’
by other strategies, if there exists a possible replacement of one’s organisms for the others’ in a
population such as would not disturb the equilibrium point. Then we re-frame this condition in terms
of matrices such as to directly relate to the theorems. The theorems are then shown to demonstrate
that all mixed strategies are replaceable by sets of pure strategies, which demonstrates the claim of
this appendix.

Appendix B.1 on ‘replaceable’ strategy

Suppose that there are two populations P1 and P2 consisting of the same set of strategies Wk

except that P2 has an additional mixed strategy wΣ. Suppose that both have the same values of
P1∗t,k,s,a = P2∗t,k,s,a = P∗t,k,s,a ie. the same numbers of the organisms at time t, of species k, in states s
taking actions a in the population (as per definition in section 3).
As P∗t defines the transmission matrices of any strategies (via equation 1) then the strategies in both
populations have the same transmission matrices. Therefore if P1 is in stable equilibrium then so to
is P2 and they both have the same equilibrium point.
At a stable equilibrium each strategy wk in the population has the same maximal exponential
growth-rate of γ (as per equation 5 in Appendix A) as:

Pt,k,sk,j ,wk = γtbwk
v̂wk

j

And per definition of P∗t (in section 3):

P∗t,k,sk,j ,a
= ∑

wk∈Wk

Pt,k,sk,j ,wk wk
a,sk,j

= γt ∑
wk∈Wk

bwk
v̂wk

j wk
a,sk,j

5 consider the linear growth of vector
[

1
1

]
by repeated multiplications of matrix

[
1 1
0 1

]
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where each bwk
is interpreted as the relative ’amount’ of strategy wk (especially if v̂wk

is normalised),
Thus:

P1∗t,k,sk,j ,a
= P2∗t,k,sk,j ,a

implies: γt

(
∑

wk∈Wk

bwk
v̂wk

j wk
a,sk,j

)
= γt

(
cwΣ

v̂wΣ

j wΣ
a,sk,j

+ ∑
wk∈Wk

cwk
v̂wk

j wk
a,sk,j

)

If we let dwk
= bwk−cwk

cwΣ , then this implies:

v̂wΣ

j wΣ
a,sk,j

= ∑
wk∈Wk

dwk
v̂wk

j wk
a,sk,j

Thus if there exists positive ‘amounts’ dwk
of strategies in the set wk ∈ Wk such that the above

condition is true, then P1 and P2 will have identical equilibrium point. And indeed any ‘amount’
of strategy wΣ can be exchanged one for the others while keeping equilibrium. This leads naturally
to our informal definition:

Definition 1. A strategy in the population wΣ ∈Wk of growth-rate γ is ‘replaceable at stable equilibrium’ by
a set of other strategies Wk, if all strategies w ∈ Wk have a growth-rate γ and there exists positive coefficients
cw such that:

∀j, a v̂wΣ

j wΣ
a,sk,j

= ∑
w∈Wk

cwv̂w
j wa,sk,j

With v̂w denoting an eigenvector corresponding to growth-rate γ of w’s transmission matrix per Appendix A.

Appendix B.2 ‘replaceable’ strategy terms

The span of strategy transmission matrices are defined by their columns as weighted sums of
column vectors (see equation 3). Each set of weights are the subsets of the strategy’s terms, and suffer
the constraints of their being non-negative and summing to unity. The pure strategies have terms
which are entirely 0s and 1s and their matrices are the extreme poles of such a span.
The condition of replaceability (as per the above definition 1) is a relationship of eigenvectors v̂w

between several transmission matrices and the same probabilities which define them wa,s. And thus
replaceability is actually a very specific relationship of the eigenvectors of sets of matrices who’s
columns are weighted sums of column vectors and the weights themself.

We conclude this Appendix by giving a definition of "replaceability", as it applies to the terms of
strategies in precise mathematical language. It in relation to this definition that Theorem 5 applies, to
the conclusion that any strategy is replaceable by pure strategies.

Definition 2. A ‘strategy’s terms’ qj,i is a set of numbers indexed by j, i such that
∀j ∑i qj,i = 1 and ∀j, i qj,i ∈ R+

⋃{0}
Definition 3. A ‘pure’ strategy’s terms is a strategy’s terms qi,j such that ∀i, j qi,j ∈ {1, 0}

Definition 4. For sets of element-wise non-negative column vectors yj,i, a ‘strategy terms’ qj,i is ‘replaceable
at stable equilibrium’ by other strategy terms q0, q1, . . . iff there exists positive real coefficients c0, c1, . . . such
that:

λ = max
z

ρ(m(z)) = ρ(m(q)) = ρ(m(q0)) = ρ(m(q1)) = . . .

and ∀i, j V(m(q), λ)jqj,i = c0V(m(q0), λ)jq0j,i + c1V(m(q1), λ)jq1j,i + . . .

Where m(q) denotes the matrix m(q)l,j = ∑i yj,i,lqj,i =
[

y0,0q0,0 + y0,1q0,1 + . . . y1,0q1,0 + . . . . . .
]

Where ρ(·) denotes spectral radius.
Where V̂(·, λ) denotes an eigenvector of a matrix with an eigenvalue of magnitude λ
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Appendix C The Proofs

Lemma 1. for sets of complex numbers λn and γn related by γn = αλn + 1− α for an α such that 0 < α < 1
and λ0 = maxn(|λn|) that: γ0 = maxn(|γn|) and for any γm 6= γ0 that |γm| < γ0

Proof. Applying the triangle inequality for any λm:
|γm| = |αλm + 1− α| ≤ |αλm|+ |1− α| = α|λm|+ 1− α

Therefore:
|γm| ≤ α maxn(|λn|) + 1− α = αλ0 + 1− α = γ0

Hence γ0 is upper bound for set |γm| and also is identical to an elemet in the set, hence is a maxima;
satisfying the first part of the proof.
For a γm 6= γ0 then λm 6= λ0, and we break λm into real and imaginary components λm = rm + iim

(for i being imaginary number).
If rm > λ0 then

√
r2

m + i2m = |λm| > λ0 which is contradiction of construction of λ0.
If rm = λ0 then

√
r2

m + i2m = |λ0| ≤ λ0 would only be true if im = 0, then γm = γ0 contradicting
construction of γm.
Therefore rm < λ0.
As γm = αλm + (1− α) then:
|γm|2 = (αrm + (1− α))2 + (αim)2 = α2(r2

m + i2m) + 2αrm(1− α) + (1− α)2

Since |λm| ≤ λ0 therefore r2
m + i2m ≤ λ2

0, and also that rm < λ0:
|γm|2 < α2λ2

0 + 2αλ0(1− α) + (1− α)2 = (αλ0 + (1− α))2 = |γ0|2
Therefore |γm| < |γ0|, and the proof is complete.

Theorem 1. for an irreducible, diagonalisable non-negative real n× n matrix M with spectral radius λ, and
non-negative non-zero vector v and an α such that 1 > α > 0, then for Z = (αM + (1− α)I).
That λ is an eigenvalue of M and its corresponding postive eigenvector z is such there is an b ∈ R+ that:

lim
m→∞

Zmv
(αλ + (1− α))m = bz

Proof. Since M is irreducible and non-negative then it has a non-negative real eigenvalue λ0 equal
to its spectral radius λ and a corresponding positive eigenvector z0 via Perron-Frobenius theorem.
Let z0, z1, . . . and λ0, λ1, . . . be set of complex eigenvectors/values for M (vectors as scaled to have
magnitude of 1), in which case z0, z1, . . . and γ0, γ1, . . . are eigenvectors/values for Z with γi =

αλi + (1− α).
Since λ0 = λ, then γ0 = αλ0 + (1− α) is unique largest magnitude eigenvalue of Z, as via lemma 1.
since z0, z1, . . . span Cn, therefore v can be decomposed into a linear combination of them:
v = c0z0 + c1z1 + c2z2 + · · · = ∑i(v · zi)zi (where · is hermitian inner product)
With c0, c1, . . . being the complex coefficients. Because vector v is non-negative and non-zero and z0

is also positive therefore c0 is real and positive. Taking m repeated applications of 1
γ0

Z gives:
Zmv
γm

0
=
(

γ0
γ0

)m
c0z0 +

(
γ1
γ0

)m
c1z1 +

(
γ2

ρ(Z)

)m
c2z2 + . . .

for large m, all terms with γai magnitudes less than that of γ0 tend to zero leaving the single term:
Zmv
γm

0
=
(

γ0
γ0

)m
c0z0 = c0z0

therefore:
Zmv

(αλ0+(1−α))m = c0z0

which completes the proof.
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Lemma 2. for a n× n matrix A, and n column vector b, with Ab,k denoting the matrix with its kth column as
b. If λ is an eigenvalue for both A and Ab,k then it is also an eigenvalue for αA + (1− α)Ab,k for any α ∈ R

Proof. Consider the characteristic polynomials of λ for A and Ab,k:
det(A− λI) = det(Ab,k − λI) = 0
If we let C(·)i,j denote the i,jth cofactor of a matrix, then these determinants can be expanded along
the kth column to give:
(∑i Ai,kC(A− λI)i,k)− λC(A− λI)k,k = (∑i biC(A− λI)i,k)− λC(A− λI)k,k = 0
Therefore:
α ((∑i Ai,kC(A− λI)i,k)− λC(A− λI)k,k) + (1− α) ((∑i biC(A− λI)i,k)− λC(A− λI)k,k) = 0
= (∑i(αAi,k + (1− α)bi)C(A− λI)i,k)− λC(A− λI)k,k = det(αA + (1− α)Ab,k − λI) = 0
Thus it is demonstrated that λ is also an eigenvalue for αA + (1− α)Ab,k.

Theorem 2. For a real n× n element-wise non-negative matrix A, and real element-wise non-negative column
vector b, with Ab,k denoting the matrix with its kth column as b. For the matrix mapping B(α) = αA + (1−
α)Ab,k defined on a range 0 ≤ α ≤ 1. If ρ(B(α)) denotes the spectral radius of B(α).
Then ρ(B(α)) is continuous, and either constant or strictly monotonic with α.

Proof. Because B(α) = αA + (1 − α)Ab,k is a matrix continuous in all its elements it is thus well
established that it will have n continuous eigenvalues[30].6

It is thus straightforward to note that the function ρ(B(α)) is also continuous with α for all α.
Furthermore that the value ρ(B(α)) is itself an eigenvalue of B(α) for all α via the Perron-Frobenius
theorem. Suppose for a contradiction that ρ(B(α)) is not monotone, in this case there must exist at
least three values of alpha, α1 < α2 < α3 such that ρ(B(α2)) > max(ρ(B(α0)), ρ(B(α3))) or ρ(B(α2)) <

min(ρ(B(α0)), ρ(B(α3))).

• suppose that ρ(B(α2)) > max(ρ(B(α1)), ρ(B(α3))): let β be a value between ρ(B(α2)) and
max(ρ(B(α1)), ρ(B(α3))). Thus via the intermediate value theorum there exists γ1 (α1 < γ1 < α2)
and γ2 (α2 < γ2 < α3) such that ρ(B(γ1)) = ρ(B(γ2)) = β. Thus β is an eigenvalue of B(α1) (via
Lemma 2), and β > ρ(B(α1) which contradicts the construction of ρ(B(α1).

• suppose that ρ(B(α2)) < min(ρ(B(α1)), ρ(B(α3))): let β be a value between ρ(B(α2)) and
min(ρ(B(α1)), ρ(B(α3))). Thus via the intermediate value theorum there exists γ1 (α1 < γ1 < α2)
and γ2 (α2 < γ2 < α3) such that ρ(B(γ1)) = ρ(B(γ2)) = β. Thus β is an eigenvalue of B(α2) (via
Lemma 2), and β > ρ(B(α2) which contradicts the construction of ρ(B(α2).

Therefore ρ(B(α)) is monotonic.
If there does not exist any α1, α2 ∈ [0, 1] such that ρ(B(α1)) = ρ(B(α2))

then ρ(B(α)) is strictly monotonic.
If there does exist an α1, α2 ∈ [0, 1] such that ρ(B(α1)) = ρ(B(α2))

then ρ(B(α)) is constant via lemma 2.
Which completes the proof.

6 An informal outline of the proof is that: 1. If the elements of a matrix are continuous 2. Then the coefficients of the
characteristic polynomial are continuous (as they are additions and multiplications of them) 3. Then the roots of the
characteristic polynomial are continuous (see [31]) 4. Hence the eigenvalues are continuous
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Theorem 3. For a n × n matrix Ai,j, and column vectors b and c, with Ab,k and Ac,k denoting the matrix
with its kth column as b and c respectively. For the matrix mapping B(α) = αAb,k + (1− α)Ac,k for α ∈ R.
Let λ(α) and v(α) be an eigenvalue/vector pairing of B(α)
If there exists different α1 and α2 such that λ(α1) = λ(α2), then λ(α) = λ(α1) and v(α) = α−α1

α2−α1
v(α2) +

α−α2
α1−α2

v(α1) is a solution for all α, with v(α)k being constant.

Proof. if b = c then Ab,k = Ac,k and B(α) = Ab,k, then λ(α) = λ(α1) and v(α) = v(α1) is trivial
solution which fulfills the proof. Otherwise b 6= c.
Since λ(α1) is an eigenvalue for all B(α) via Lemma 2 then ∂λ(α)

∂α = 0 and λ(α) = λ(α1) = λ is true.

As:
(

αAb,k + (1− α)Ac,k
)

v(α) = λv(α)
If v(α)k denotes the kth value of v(α), then differentiating with respect to α

Gives:
(

αAb,k + (1− α)Ac,k − λI
)

∂v(α)
∂α + (b− c)v(α)k = 0

now, there are two cases:
if there is an α3 such that v(α3)k = 0 then:(

α3 Ab,k + (1− α3)Ac,k − λI
)

∂v(α3)
∂α = 0

Setting ∂v(α)
∂α = 0 is permissable, making v(α)k = 0.

therefore constant v(α) = v(α3) is solution which fulfills the proof
if there is not an α3 such that v(α3)k = 0, then:

It is possible do scaling, thus setting v(α)k = d to be a non-zero constant and therefore ∂v(α)k
∂α = 0

Thus there is a ∂v(α)
∂α such that:

(
αAb,k + (1− α)Ac,k − λI

)
∂v(α)

∂α + d(b− c) = 0

Thus there is a ∂v(α)
∂α such that for all i:

(
∑j,j 6=k

(
Ai,j − λIi,j

) ∂v(α)j
∂α

)
+ d(bi − ci) = 0

Therefore ∂v(α)
∂α can be constant

Therefore v(α) = α−α1
α2−α1

v(α2) +
α−α2
α1−α2

v(α1) is only linear solution that adjoins v(α2) and v(α2).
Which completes the proof.

Theorem 4. For a real n × n element-wise non-negative matrix A, for m element-wise non-negative
column vectors b0, b1, . . . , for Abi ,k denoting the matrix with its kth column as bi, for the matrix mapping
B(c0, c1, . . . ) = ∑i ci Abi ,k defined on inputs where: ∀i ci ≥ 0 and

(
∑m−1

i=0 ci

)
= 1, for ρ(B) denoting

the spectral radius of B, for V(·, λ)k denotes the kth element of an eigenvector of a matrix corresponding to
eigenvalue λ, for a set of reals d0, d1, . . . :

If: ρ(B(d0, d1, . . . )) = max ρ(B) = λ then:

V(B(d0, d1, . . . ), λ) =
m−1

∑
i=0

diV(Abi ,k, λ) and:

∀di 6= 0 V(Abi ,k, λ)k = V(B(d0, d1, . . . ), λ)k = C ie. they all have the same kth value, equal C

Proof. We begin by introducing the following mapping on the coordinates c0, c1, . . . , cm−1 by
parameter α, valid for 0 ≤ α ≤ 1 and cm−1 6= 1:

Q(c0, c1, . . . , cm−1, α) = B
(

c0(1−α)

∑m−2
y=0 cy

, c1(1−α)

∑m−2
y=0 cy

, . . . , cm−2(1−α)

∑m−2
y=0 cy

, α

)
= αAbm−1,k + (1− α)

∑m−2
y=0 cy Aby ,k

∑m−2
y=0 cy

(6)

Q is a valid mapping under the input constraints, Ie. that the inputs to B satisfy the constraints if
the c-inputs of Q (the c0, c1, . . . , cm−1) satisfy the constraints (that they are non-negative and they sum
to one). We also notice by inspection of equation 6 that Q(. . . , α) satisfies the critera for Theorem 2
and thus ρ(Q(. . . , α)) is either constant or strictly monotonic. When α = 1 the input to B takes the
singular value: Q(c0, c1, . . . , cm−1, 1) = B(0, 0, . . . , 1) = Abm−1,k (7)
When α = 0 the input to B takes the zero of the last value with the other values scaled to validate
input constraints:
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Q(c0, . . . , cm−1, 0) = B(γc0, . . . , γcm−2, 0) = B(γc0, . . . , γcm−2) with: γ = (∑m−2
i=0 ci)

−1 (8)
And when α = cm−1 that Q(c0, c1, . . . , cm−1, cm−1) = B(c0, c1, . . . , cm−1) (9)
Proof by induction:

• Considering the case m = 1: In which case there is a singular vector b0 and the only permissable
value of B(d0) under the constraints is B(1) therefore V(B(d0), λ) = V(Ab0,k, λ) thus the theorem
is satisfied for m = 1.

• Considering the case m = j + 1 under the assumption of theorem satisfaction of m = j:
If dj = 1 then:

V(B(d0, d1, . . . ), λ) = V(Abj ,k, λ) and the theorem is satisfied
Otherwise:

ρ(Q(d0, d1, . . . , dj, α)) exists and is constant or strictly monotonic with α

- as per theorem 2 on equation 6
ρ(Q(d0, d1, . . . , dj, α)) passes through ρ(B(d0, d1, . . . , dj))

- as per equation 9.
Assuming ρ(B(d0, d1, . . . , dj)) ≥ max(ρ(Q(c0, c1, . . . , cj, 1)), ρ(Q(c0, c1, . . . , cj, 0)))
- which is a condition of the theorem.
Therefore there are three cases:

If dj = 1 then ρ(B(d0, d1, . . . , dj)) = ρ(Q(c0, c1, . . . , cj, 1)):
Then V(B(d0, d1, . . . ), λ) = V(Abj ,k, λ) and the theorem is satisfied

If dj = 0 then ρ(B(d0, d1, . . . , dj)) = ρ(Q(c0, c1, . . . , cj, 0)):
Then B(d0, d1, . . . , dj−1, dj) = B(d0, d1, . . . , dj−1)

And V(B(d0, d1, . . . , dj−1, dj), λ) = V(B(d0, d1, . . . , dj−1), λ)

And V(B(d0, d1, . . . , dj−1), λ) = ∑m−2
i=0 diV(Abi ,k, λ)

- by the inductive assumption
Thus V(B(d0, d1, . . . , dj−1, dj), λ) = ∑m−1

i=0 diV(Abi ,k, λ) and the theorem is satisfied
Otherwise ρ(Q(d0, d1, . . . , dj, α)) must be constant with change in α:

Since Q(d0, d1, . . . , dj, α) is non-negative matrix
Then ρ(Q(d0, d1, . . . , dj, α)) = λ is an eigenvalue of it
-via the Perron-Frobenius theorem
Thus via Theorem 3: V(Q(d0, d1, . . . , dj, α), λ)

= αV(Q(d0, d1, . . . , dj, 1), λ) + (1− α)V(Q(d0, d1, . . . , dj, 0), λ)

and V(Q(d0, d1, . . . , dj, α), λ)k = C is constant irrespective of α

So via equations 7,8,9: V(B(d0, d1, . . . , dj), λ)

= djV(Abj ,k, λ) + (1− dj)V(B(γd0, γd1, . . . , γdj−1), λ) with: γ = (∑
j−1
i=0 dj)

−1

And V(B(d0, d1, . . . , dj), λ)k = V(Abj ,k, λ)k = V(B(γd0, γd1, . . . , γdj−1), λ)k = C
As V(B(γd0, γd1, . . . , γdj−1), λ) = γ ∑m−2

i=0 diV(Abi ,k, λ)

- by the inductive assumption
and each non-zero di has V(Abi ,k, λ)k = C
Thus: V(B(d0, d1, . . . , dj), λ) = ∑m−1

i=0 diV(Abi ,k, λ) and the theorem is satisfied

Which completes the proof.
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Theorem 5. For n sets of real element-wise non-negative n-column vectors, {y0,0, y0,1, . . . , y1,0, y1,1, . . . }.
Letting q be similarly dimensioned set of sets of real numbers, q = {q0,0, q0,1, . . . , q1,0, q1,1, . . . }
Letting q{i,j} be the same as q except modified in that the subset qi is all zeros except for the jth being 1.
Letting q{i,j},a,b,c... be the same as q{i,j} except that the first unmodified subset is all zeros except for the ath
being 1, and the second unmodified q subset is all zeros except for the bth, and etc.
Considering matrix constructions of form:
m(a) =

[
∑x a0,xy0,x ∑x a1,xy1,x ∑x a2,xy2,x . . .

]
Defined for any a input such that: ∀j ∑i aj,i = 1 and ∀j, i aj,i ≥ 0.
for ρ(·) is spectral radius, and V(·, λ) is an eigenvector of a matrix for eigenvalue λ, and δ is Kronecker delta.
If ρ(m(q)) = maxζ ρ(m(ζ)) = λ

Then
∀i, j V(m(q), λ)jqj,i = ∑

k
∑
α

· · ·∑
ω

q0,α . . . qn−1,ωV(m(q{j,k},α,β,γ,...,ω), λ)jδik

Proof.
For any j, Theorem 4 applies to m(q) on the jth set of q’s values:
Therefore V(m(q), λ) = ∑i qj,iV(m(q{j,i}), λ) and ∀i V(m(q{j,i}), λ)j = C is a constant.
Thus V(m(q), λ)j = ∑i qj,iV(m(q{j,i}), λ)j = ∑i qj,iC = C, and
Therefore ∀i V(m(q), λ)j = V(m(q{j,i}), λ)j

Thus ∀i qj,iV(m(q), λ)j = qj,iV(m(q{j,i}), λ)j

Thus ∀i qj,iV(m(q), λ)j = ∑k δikqj,kV(m(q{j,k}), λ)j (10)

Now, theorem 4 applies to V(m(q{j,k}), λ):
therefore V(m(q{j,k}), λ) = ∑α q0,αV(m(q{j,k},α), λ)

theorem 4 applies again to to V(m(q{j,k},α), λ):
therefore V(m(q{j,k},α), λ) = ∑β q1,βV(m(q{j,k},α,β), λ)

theorem 4 applies again to to V(m(q{j,k},α,β), λ):
therefore V(m(q{j,k},α,β), λ) = ∑γ q2,γV(m(q{j,k},α,β,γ), λ)

and so on. . .
Therefore: V(m(q{j,k}), λ) = ∑α ∑β ∑γ · · ·∑ω q0,αq1,βq2,γ . . . qn−1,ωV(m(q{j,k},α,β,γ,...,ω), λ) (11)
Which is fully expanded.

Substituting equation 11 into equation 10 gives:
∀i qj,iV(m(q), λ)j = ∑α ∑β ∑γ · · ·∑k · · ·∑ω q0,αq1,βq2,γ . . . qj,k . . . qn−1,ωδikV(m(q{j,k},α,β,γ,...,ω), λ)j

Which completes the proof
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Appendix D Derivation of Hawk-Dove dynamics

The Hawk-Dove game given in the body of the article is simple enough to yield analytic solution.
It is possible to directly determine the largest real eigenvalue of the tranmsission matrix (as per
equation 4) as:

λ =
√

2γ(1− p)(1− pC) + (1− p + A)(DpC + (1− γ)(1− pC))

And by this, it is posible to compute the equilibrium points of the population. The population’s
equilibrium points will either be on the ’interior’ of the strategy space (1 > γ > 0) or be on the
boundary (γ = 1 or γ = 0). We can calculate the interior equilibrium points via the ’indifference
principle’[18], whereby the population has reached an ’interior’ equilibrium where it makes no more
sense to play Dove any more than Hawk. This corresponds to the case where all Dove and Hawk
strategies have the same growth-rate.

Appendix D.1 the interior case for 1 > γ > 0

Solving for ∂λ
∂γ = 0 gives

1− p = A

As the conditions for interior equilibrium. This condition which corresponds to the Aggressive
and Passive Adults having the same expected number of offspring. Thus the expected population
growth-rate at equilibrium is thus

λ{p=1−A} =
√

2A
√

C(1− A)(D− 1) + 1

This identifies that the total growth-rate is the multiplication of the roots of transmission rate from
young to adult and from adult to young.
Using the shorthand: PY = P∗t,b,y,Ga

+ P∗t,b,y,Gp
, and PA = P∗t,b,a,Ra

, and PP = P∗t,b,p,Rp
The corresponding eigenvector of population proportions is (presented unnormalised for simplicity)
as: PY

PA
PP

 =

 λ{p=1−A}
γ(1− C + CA)

DC(1− A) + (1− γ)(1− C + CA)


Thus the fraction of Child to Adults at equilibrium is PY

PY+PA+PP
=

√
2A√

2A+
√

C(1−A)(D−1)+1

Appendix D.2 the boundary case for γ = 1

The growth-rate of strategy γ = 1 is λ{γ=1} =
√

2(1− p)(1− pC) + DpC(1− p + A) and has
population proportions: PY

PA
PP

 =

λ{γ=1}
1− pC
DpC


A population of γ = 1 (in which p = PA

PA+PP
) has p =

−(C+1)+
√

(C+1)2+4(DC−C)
2(DC−C) (which exists if

(C + 1)2 + 4(DC− C) > 0). The strategy γ = 1 is strictly dominant strategy when all other strategies
have a lower growth-rate:

∀γ λ2
{γ=1,p=... } > λ2

{p=... }

∀γ 2(1− p)(1− pC)+ (1− p+ A)DpC > 2γ(1− p)(1− pC)+ (1− p+ A)(DpC+(1−γ)(1− pC))

∀γ 1− p− A > γ(1− p− A)
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which is true iff p < 1− A, which thus happens on a condition among the A, C, D:√
(C + 1)2 + 4(DC− D) > 2(1− A)(DC− D) + C + 1

When this condition is met, the strategy γ = 1 dominates, yielding p =
−(C+1)+

√
(C+1)2+4(DC−C)

2(DC−C)

with the fraction of Child to Adults PY
PY+PA+PP

=

√
DpC(1+p+A)√

DpC(1+p+A)+1−pC+DpC

Appendix D.3 the boundary case for γ = 0

The growth-rate of strategy γ = 0 is λ{γ=0} =
√
(1− p− A)(DpC + 1− pC) and has population

proportions: PY
PA
PP

 =

 λ{γ=0}
0

DpC + 1− pC


A population of γ = 0 (in which p = PA

PA+PP
) has straightforwardly p = 0 and growth-rate

λ{γ=0,p=0} =
√

1− A.
However, in such a population the strategy γ = 1 has a greater growth-rate than γ = 0

as:
(

λ{γ=1,p=0} =
√

2
)

>
(√

1− A = λ{γ=0,p=0}

)
and thus the boundary case γ = 0 is never an

dominant strategy.

Appendix D.4 Stitching it together

Given the parameters of the game A, C, D is:

(C + 1)2 + 4(DC− D) > 0 and
√
(C + 1)2 + 4(DC− D) > 2(1− A)(DC− D) + C + 1 ?

• if so then the Game equilibrium is Hawk-Saturated:

p =
−(C + 1) +

√
(C + 1)2 + 4(DC− C)

2(DC− C)
and

PY
PY + PA + PP

=

√
DpC(1 + p + A)√

DpC(1 + p + A) + 1− pC + DpC

• if not then a Hawk-Dove equilibrium exists:

p = 1− A and
PY

PY + PA + PP
=

√
2A√

2A +
√

C(1− A)(D− 1) + 1
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Appendix E Example Python source-code for Moran Process simulation

import random

num_bots = 1200
turns = num_bots∗100
D = 0 . 7 5
A = 0 . 8
C = 0 . 7 0

bots = [ ( i %3, i %2) for i in range ( num_bots ) ]

def add_bots ( number , s t a t e ,gamma ) :
for i in range ( i n t ( number ) ) :

bots [ random . randint ( 0 , num_bots−1)] = ( s t a t e ,gamma)
i f random . random ( ) < number−i n t ( number ) :

bots [ random . randint ( 0 , num_bots−1)] = ( s t a t e ,gamma)

def c a l c u l a t e _ p ( ) :
ah = 0
ad = 0
for b in bots :

i f b [ 0 ] = = 0 :
ah += 1

i f b [ 0 ] = = 1 :
ad += 1

i f ah+ad==0:
return 0 . 0

e lse :
return ( 1 . 0 ∗ ah ) / ( ad+ah )

def turn ( b ) :
p = c a l c u l a t e _ p ( )
i f b [ 0 ] = = 0 :

add_bots (2∗(1−p ) , 2 , b [ 1 ] )
i f b [ 0 ] = = 1 :

add_bots(1−p+A, 2 , b [ 1 ] )
i f b [0]==2 and b [ 1 ] = = 0 :

add_bots(1−p∗C, 0 , b [ 1 ] )
add_bots (D∗p∗C, 1 , b [ 1 ] )

i f b [0]==2 and b [ 1 ] = = 1 :
add_bots (C∗p∗ (D−1)+1 ,1 ,b [ 1 ] )

for i in range ( turns ) :
turn ( random . choice ( bots ) )
i f i %( turns /1000)==0:

add_bots ( 1 , random . randint ( 0 , 2 ) , random . randint ( 0 , 1 ) )
print "p = { } " . format ( c a l c u l a t e _ p ( ) )
print " proport ion Child = { } " . format (sum(

[ b [0]==2 for b in bots ] )∗1 . 0 / num_bots )
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