
IDENTITIES OF THE CHEBYSHEV POLYNOMIALS, THE INVERSE OF A

TRIANGULAR MATRIX, AND IDENTITIES OF THE CATALAN NUMBERS

FENG QI AND BAI-NI GUO

Abstract. In the paper, the authors establish two identities to express the generating function

of the Chebyshev polynomials of the second kind and its higher order derivatives in terms of the

generating function and its derivatives each other, deduce an explicit formula and an identities
for the Chebyshev polynomials of the second kind, derive the inverse of an integer, unit, and

lower triangular matrix, present several identities of the Catalan numbers, and give some remarks
on the closely related results including connections of the Catalan numbers respectively with the

Chebyshev polynomials, the central Delannoy numbers, and the Fibonacci polynomials.

1. Preliminaries

It is common knowledge [8, 15, 52] that the generalized hypergeometric series

pFq(a1, . . . , ap; b1, . . . , bq; z) =

∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n!

is defined for complex numbers ai ∈ C and bi ∈ C \ {0,−1,−2, . . . }, for positive integers p, q ∈ N,
and in terms of the rising factorials (x)n defined by

(x)n =

n−1∏
`=0

(x+ `) =

{
x(x+ 1) · · · (x+ n− 1), n ≥ 1;

1, n = 0.

Specially, one calls 2F1(a, b; c; z) the classical hypergeometric function.
It is well known [12, 47, 55] that the Catalan numbers Cn for n ≥ 0 form a sequence of natural

numbers that occur in tree enumeration problems such as “In how many ways can a regular n-gon
be divided into n−2 triangles if different orientations are counted separately? whose solution is the
Catalan number Cn−2”. The Catalan numbers Cn can be generated by

2

1 +
√

1− 4x
=

1−
√

1− 4x

2x
=

∞∑
n=0

Cnx
n = 1 + x+ 2x2 + 5x3 + · · ·

and explicitly expressed as

Cn =
1

n+ 1

(
2n

n

)
= 2F1(1− n,−n; 2; 1) =

4nΓ(n+ 1/2)√
π Γ(n+ 2)

,
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2 F. QI AND B.-N. GUO

where the classical Euler gamma function can be defined [8, 15, 24, 30, 52] by

Γ(z) =

∫ ∞
0

tz−1e−t d t, <(z) > 0

or by

Γ(z) = lim
n→∞

n!nz∏n
k=0(z + k)

, z ∈ C \ {0,−1,−2, . . . }.

For more information on the Catalan numbers Ck and their recent developments, please refer to
the monographs [2, 12, 55], the papers [13, 25, 34, 40, 46, 47, 54, 59, 61, 62, 63] and the closely
related references therein.

The first six Chebyshev polynomials of the second kind Uk(x) for 0 ≤ k ≤ 5 are

U0(x) = 1, U1(x) = 2x, U2(x) = 4x2 − 1, U3(x) = 8x3 − 4x,

U4(x) = 16x4 − 12x2 + 1, U5(x) = 32x5 − 32x3 + 6x.

They can be generated by

F (t) = F (t, x) =
1

1− 2xt+ t2
=

∞∑
n=0

Un(x)tn

for |x| < 1 and |t| < 1. For more information on the Chebyshev polynomials of the second kind
Uk(x), please refer to [28, Section 7], the monographs [8, 15, 52] and the closely related references
therein.

Let bxc denote the floor function whose value is the largest integer less than or equal to x and
let dxe stand for the ceiling function which gives the smallest integer not less than x. When n ∈ Z,
it is easy to see that⌊n

2

⌋
=

1

2

[
n− 1− (−1)n

2

]
and

⌈n
2

⌉
=

1

2

[
n+

1− (−1)n

2

]
.

In this paper, we will establish two identities to express the generating function F (t) of the
Chebyshev polynomials of the second kind Uk(x) and its higher order derivatives F (k)(t) in terms
of F (t) and F (k)(t) each other, deduce an explicit formula and an identities for the Chebyshev
polynomials of the second kind Uk(x), derive the inverse of an integer, unit, and lower triangular
matrix, present several identities of the Catalan numbers Ck, and give some remarks on the closely
related results including connections of the Catalan numbers Ck respectively with the Chebyshev
polynomials Uk(x), the central Delannoy numbers, and the Fibonacci polynomials.

2. Lemmas

In order to prove our main results, we recall several lemmas below.

Lemma 2.1 ([2, p. 134, Theorem A] and [2, p. 139, Theorem C]). For n ≥ k ≥ 0, the Bell
polynomials of the second kind, denoted by Bn,k(x1, x2, . . . , xn−k+1), are defined by

Bn,k(x1, x2, . . . , xn−k+1) =
∑

1≤i≤n,`i∈{0}∪N∑n
i=1 i`i=n∑n
i=1 `i=k

n!∏n−k+1
i=1 `i!

n−k+1∏
i=1

(xi
i!

)`i
.
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The Faà di Bruno formula can be described in terms of the Bell polynomials of the second kind
Bn,k(x1, x2, . . . , xn−k+1) by

dn

d tn
f ◦ h(t) =

n∑
k=1

f (k)(h(t))Bn,k
(
h′(t), h′′(t), . . . , h(n−k+1)(t)

)
, n ∈ N. (2.1)

Lemma 2.2 ([2, p. 135]). For complex numbers a and b, we have

Bn,k
(
abx1, ab

2x2, . . . , ab
n−k+1xn−k+1

)
= akbnBn,k(x1, x2, . . . , xn−k+1). (2.2)

Lemma 2.3 ([9, Theorem 4.1], [45, Eq. (2.8)], and [56, Lemma 2.5]). For 0 ≤ k ≤ n, the Bell
polynomials of the second kind Bn,k satisfy

Bn,k(x, 1, 0, . . . , 0) =
1

2n−k
n!

k!

(
k

n− k

)
x2k−n, (2.3)

where
(
p
q

)
= 0 for q > p ≥ 0.

Lemma 2.4 ([7] and [12, pp. 112–114]). Let T (r, 1) = 1 and

T (r, c) =

r∑
i=c−1

T (i, c− 1), c ≥ 2,

or, equivalently,

T (r, c) =

c∑
j=1

T (r − 1, j), r, c ∈ N.

Then

T (r, c) =
r − c+ 2

r + 1

(
r + c− 1

r

)
, r, c ∈ N

and T (n, n) = Cn for n ∈ N.

Lemma 2.5 ([16, p. 2, Eq. (10)] and [3]). For n ∈ N, the Catalan numbers Cn have the integral
representation

Cn =
1

2π

∫ 4

0

√
4− x
x

xn dx. (2.4)

Lemma 2.6. For t 6= 0 and j ∈ N, we have

2F1

(
1− j

2
,

2− j
2

; 1− j; 1

t2

)
=

1

2j
t√

t2 − 1

[(
1 +

√
t2 − 1

t

)j
−
(

1−
√
t2 − 1

t

)j]
. (2.5)

Proof. In [8, pp. 999–1000], it was listed that

Gλn(t) =
1√
π

Γ(2λ+ n)

n!Γ(2λ)

Γ
(
2λ+1

2

)
Γ(λ)

∫ π

0

(
t+
√
t2 − 1 cosφ

)n
sin2λ−1 φdφ (2.6)

and

Gλn(t) =
2nΓ(λ+ n)

n!Γ(λ)
tn2F1

(
−n

2
,

1− n
2

; 1− λ− n;
1

t2

)
, (2.7)

where Gλn(t) stands for the Gegenbauer polynomials which are the coefficients of αn in the power-
series expansion

1

(1− 2tα+ α2)λ
=

∞∑
k=0

Gλk(t)αn.
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Taking n = j − 1 and λ = 1 in equalities (2.6) and (2.7), combining them, and simplifying give

2F1

(
1− j

2
,

2− j
2

; 1− j; 1

t2

)
=

j

2j
1

tj−1

∫ π

0

(
t+
√
t2 − 1 cosφ

)j−1
sinφ dφ

=
j

2j
(t2 − 1)(j−1)/2

tj−1

∫ π

0

(
t√

t2 − 1
+ cosφ

)j−1
sinφ dφ

=
j

2j
(t2 − 1)(j−1)/2

tj−1

∫ π

0

j−1∑
`=0

(
j − 1

`

)(
t√

t2 − 1

)j−1−`
cos` φ sinφ dφ

=
j

2j
(t2 − 1)(j−1)/2

tj−1

j−1∑
`=0

(
j − 1

`

)(
t√

t2 − 1

)j−1−` ∫ π

0

cos` φ sinφ dφ

=
j

2j
(t2 − 1)(j−1)/2

tj−1

(
t√

t2 − 1

)j−1 j−1∑
`=0

(
j − 1

`

)(√
t2 − 1

t

)`
(−1)` + 1

`+ 1

=
j

2j

j−1∑
`=0

(
j − 1

`

)(√
t2 − 1

t

)`
(−1)` + 1

`+ 1

=
1

2j
t√

t2 − 1

[(
1 +

√
t2 − 1

t

)j
−
(

1−
√
t2 − 1

t

)j]
.

The formula (2.5) is thus proved. The proof of Lemma 2.5 is complete. �

Lemma 2.7 ([8, p. 399]). If <(ν) > 0, then∫ π/2

0

cosν−1 x cos(ax) dx =
π

2ννB
(
ν+a+1

2 , ν−a+1
2

) , (2.8)

where B(α, β) stands for the classical beta function satisfying

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
= B(β, α), <(α),<(β) > 0.

3. Identities of the Chebyshev polynomials of the second kind

In this section, we establish three identities and an explicit formula for the Chebyshev polynomials
of the second kind Uk(x), their generating function F (t), and higher order derivatives F (k)(t). Why
do we start our research in this paper from here? Please read Remark 6.1 in Section 6 below.

Theorem 3.1. For n ∈ N, the nth derivatives of the generating function F (t) of the Chebyshev
polynomials of the second kind Uk(x) satisfy

F (n)(t) =
n!

[2(t− x)]n

n∑
k=dn/2e

(−1)k
(

k

n− k

)
[2(t− x)]2kF k+1(t) (3.1)

and

Fn+1(t) =
1

n

1

[2(t− x)]2n

n∑
k=1

(−1)k

(k − 1)!

(
2n− k − 1

n− 1

)
[2(t− x)]kF (k)(t). (3.2)
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Consequently, the Chebyshev polynomials of the second kind Un(x) satisfy

Un(x) =
(−1)n

(2x)n

n∑
k=dn/2e

(−1)k
(

k

n− k

)
(2x)2k (3.3)

and
n∑
k=1

k

(
2n− k − 1

n− 1

)
(2x)kUk(x) = n(2x)2n. (3.4)

Proof. By the formulas (2.1), (2.2), and (2.3) in sequence, we have

F (n)(t) =
dn

d tn

(
1

1− 2tx+ t2

)
=

n∑
k=1

(
1

u

)(k)

Bn,k(−2x+ 2t, 2, 0, . . . , 0)

=

n∑
k=1

(−1)kk!

uk+1
2kBn,k(t− x, 1, 0, . . . , 0)

=

n∑
k=1

(−1)kk!

uk+1
2k

1

2n−k
n!

k!

(
k

n− k

)
(t− x)2k−n

= (−1)nn!

n∑
k=1

(−1)k22k−n
(

k

n− k

)
(x− t)2k−n

(1− 2tx+ t2)k+1

= (−1)nn!

n∑
k=1

(−1)k22k−n
(

k

n− k

)
(x− t)2k−nF k+1(t)

for n ∈ N, where u = u(t, x) = 1− 2tx+ t2. This can be rewritten as the formula (3.1).
We can reformulate the formula (3.1) as

[2(t−x)]1
1! F ′(t)

[2(t−x)]2
2! F ′′(t)

[2(t−x)]3
3! F (3)(t)

...
[2(t−x)]n−2

(n−2)! F (n−2)(t)
[2(t−x)]n−1

(n−1)! F (n−1)(t)
[2(t−x)]n

n! F (n)(t)


= An



(−1)1[2(x− t)]2F 2(t)
(−1)2[2(x− t)]4F 3(t)
(−1)3[2(x− t)]6F 4(t)

...
(−1)n−2[2(x− t)]2(n−2)Fn−1(t)
(−1)n−1[2(x− t)]2(n−1)Fn(t)

(−1)n[2(x− t)]2nFn+1(t)


for n ∈ N, where An = (ai,j)n×n with

ai,j =


0, i < j(

j

i− j

)
, j ≤ i ≤ 2j

0, i > 2j
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for i, j ∈ N. This means that

(−1)1[2(x− t)]2F 2(t)
(−1)2[2(x− t)]4F 3(t)
(−1)3[2(x− t)]6F 4(t)

...
(−1)n−2[2(x− t)]2(n−2)Fn−1(t)
(−1)n−1[2(x− t)]2(n−1)Fn(t)

(−1)n[2(x− t)]2nFn+1(t)


= A−1n



[2(t−x)]1
1! F ′(t)

[2(t−x)]2
2! F ′′(t)

[2(t−x)]3
3! F (3)(t)

...
[2(t−x)]n−2

(n−2)! F (n−2)(t)
[2(t−x)]n−1

(n−1)! F (n−1)(t)
[2(t−x)]n

n! F (n)(t)


(3.5)

for n ∈ N, where A−1n = (bi,j)n×n denotes the inverse matrix of An.
By the software Mathematica, we can obtain immediately that

A−17 =


1 0 0 0 0 0
1 1 0 0 0 0
0 2 1 0 0 0
0 1 3 1 0 0
0 0 3 4 1 0
0 0 1 6 5 1



−1

=


1 0 0 0 0 0
−1 1 0 0 0 0
2 −2 1 0 0 0
−5 5 −3 1 0 0
14 −14 9 −4 1 0
−42 42 −28 14 −5 1

 . (3.6)

The first few values of the sequence T (r, c) can be listed as Table 1, where T (r, c) denote the rth
element in column c for r, c ≥ 1, see [12, p. 113]. Comparing Table 1 and the inverse matrix (3.6),

Table 1. Definition of T (r, c)

1 2 3 4 5
1 1
2 1 2
3 1 3 5
4 1 4 9 14
5 1 5 14 28 42

we should infer that

T (k +m, k) = (−1)k+1bk+m+1,m+2, k ≥ 1, m ≥ 0.

Hence, by Lemma 2.4, we should obtain

bp,q = (−1)p−qT (p− 1, p− q + 1) = (−1)p−q
q

p

(
2p− q − 1

p− 1

)
, p ≥ q ≥ 2.

It is easy to see that the formula

bp,q = (−1)p−q
q

p

(
2p− q − 1

p− 1

)
should be valid for all p ≥ q ≥ 1. This should imply that

(−1)n[2(x− t)]2nFn+1(t) =

n∑
k=1

bn,k
[2(t− x)]k

k!
F (k)(t), n ∈ N. (3.7)
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We now start out to inductively verify the equation (3.7). When n = 1, 2, the equation (3.7) are

−[2(x− t)]2F 2(t) = b1,1
2(t− x)

1!
F ′(t) = b1,1

2(t− x)

1!

2x− 2t

(1− 2tx+ t2)2

and

[2(x− t)]4F 3(t) =

2∑
k=1

b2,k
[2(t− x)]k

k!
F (k)(t)

= b2,1
2(t− x)

1!
F ′(t) + b2,2

[2(t− x)]2

2!
F ′′(t)

= b2,1
2(t− x)

1!

2x− 2t

(1− 2tx+ t2)2
+ b2,2

[2(t− x)]2

2!

2
(
3t2 − 6tx+ 4x2 − 1

)
(t2 − 2tx+ 1)3

which are clearly valid. When n ≥ 3, we rewrite (3.7) as

(−1)nFn+1(t) =

n∑
k=1

bn,k
[2(t− x)]k−2n

k!
F (k)(t). (3.8)

Differentiating with respect to t on both sides of (3.8) yields

(−1)n(n+ 1)Fn(t)F ′(t) =

n∑
k=1

bn,k
k!

{
2(k − 2n)[2(t− x)]k−2n−1F (k)(t) + [2(t− x)]k−2nF (k+1)(t)

}
=

n∑
k=1

bn,k
k!

2(k − 2n)[2(t− x)]k−2n−1F (k)(t) +

n∑
k=1

bn,k
k!

[2(t− x)]k−2nF (k+1)(t)

=

n∑
k=1

2(k − 2n)bn,k
k!

[2(t− x)]k−2n−1F (k)(t) +

n+1∑
k=2

bn,k−1
(k − 1)!

[2(t− x)]k−1−2nF (k)(t)

=
bn,1
1!

2(1− 2n)

[2(t− x)]2n
F ′(t) +

bn,n
n!

1

[2(t− x)]n
F (n+1)(t)

+

n∑
k=2

[
bn,k
k!

2(k − 2n) +
bn,k−1

(k − 1)!

]
[2(t− x)]k−2n−1F (k)(t)

which can be rearranged as

(−1)n+1Fn+2(t) =
2(1− 2n)bn,1

n+ 1

[2(t− x)]1−2(n+1)

1!
F ′(t)

+ bn,n
[2(t− x)](n+1)−2(n+1)

(n+ 1)!
F (n+1)(t)

+

n∑
k=2

2(k − 2n)bn,k + kbn,k−1
n+ 1

[2(t− x)]k−2(n+1)

k!
F (k)(t).

It is easy to see that

2(1− 2n)bn,1
n+ 1

=
2(1− 2n)

n+ 1
(−1)n−1

1

n

(
2n− 2

n− 1

)
= (−1)n

1

n+ 1

(
2n

n

)
= bn+1,1.
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Since bk,k = 1 for all 1 ≤ k ≤ n ∈ N, it is sufficient to show

2(k − 2n)bn,k + kbn,k−1
n+ 1

= bn+1,k (3.9)

for 2 ≤ k ≤ n. This is equivalent to

2(k − 2n)

n+ 1
(−1)n−k

k

n

(
2n− k − 1

n− 1

)
+

k

n+ 1
(−1)n−k+1 k − 1

n

(
2n− k
n− 1

)
= (−1)n+1−k k

n+ 1

(
2n− k + 1

n

)
which can be verified straightforwardly. The equation (3.7), which can be reformulated as (3.2) for
n ∈ N, is thus proved.

The formulas (3.3) and (3.4) follow readily from taking t → 0 on both sides of (3.1) and (3.2)
respectively. The proof of Theorem 3.1 is complete. �

4. Inverse of a triangular matrix

In this section, basing on equations (3.1) and (3.2), we derive the inverse of an integer, unit, and
lower triangular matrix.

Theorem 4.1. For n ∈ N, let

An = (ai,j)n×n =



(
1
0

)
0 0 0 · · · 0 0 0 0(

1
1

) (
2
0

)
0 0 · · · 0 0 0 0

0
(
2
1

) (
3
0

)
0 · · · 0 0 0 0

0
(
2
2

) (
3
1

) (
4
0

)
· · · 0 0 0 0

0 0
(
3
2

) (
4
1

)
· · · 0 0 0 0

0 0
(
3
3

) (
4
2

)
· · · 0 0 0 0

0 0 0
(
4
3

)
· · · 0 0 0 0

...
...

...
...

. . .
...

...
...

...

0 0 0 0 · · ·
(
n−3
0

)
0 0 0

0 0 0 0 · · ·
(
n−3
1

) (
n−2
0

)
0 0

0 0 0 0 · · ·
(
n−3
2

) (
n−2
1

) (
n−1
0

)
0

0 0 0 0 · · ·
(
n−3
3

) (
n−2
2

) (
n−1
1

) (
n
0

)



,

where

ai,j =


0, i < j(

j

i− j

)
, j ≤ i ≤ 2j

0, i > 2j
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for 1 ≤ i, j ≤ n. Then

A−1n = (bi,j)n×n

=



1 0 0 · · · 0 0 0
−1 1 0 · · · 0 0 0
2 −2 1 · · · 0 0 0
−5 5 −3 · · · 0 0 0
14 −14 9 · · · 0 0 0
−42 42 −28 · · · 0 0 0

...
...

...
. . .

...
...

...
(−1)n−1

n−2
(
2n−6
n−3

) (−1)n2
n−2

(
2n−7
n−3

) (−1)n−13
n−2

(
2n−8
n−3

)
· · · 1 0 0

(−1)n
n−1

(
2n−4
n−2

) (−1)n−12
n−1

(
2n−5
n−2

) (−1)n3
n−1

(
2n−6
n−2

)
· · · −(n− 2) 1 0

(−1)n−1

n

(
2n−2
n−1

) (−1)n2
n

(
2n−3
n−1

) (−1)n−13
n

(
2n−4
n−1

)
· · · n−2

n

(
n+1
n−1
)
−(n− 1) 1



,

where

bi,j =

0, 1 ≤ i < j ≤ n;

(−1)i−j
j

i

(
2i− j − 1

i− 1

)
, n ≥ i > j ≥ 1.

(4.1)

Proof. This follows straightforwardly from combining (3.5) with (3.2). The proof of Theorem 4.1
is complete. �

5. Identities of the Catalan numbers

In this section, we present several identities of the Catalan numbers Ck.

Theorem 5.1. For i ≥ j ≥ 1, we have

b(j−1)/2c∑
`=0

(−1)`
(
j − `− 1

`

)
Ci−`−1 =

j

i

(
2i− j − 1

i− 1

)
. (5.1)

Proof. Observing the special result (3.6), we guess that the elements bi,j of the inverse of the
triangular matrix An should satisfy the following relations:

(1) for i < j, the elements in the upper triangle are bi,j = 0;
(2) for all i ∈ N, the elements on the main diagonal are bi,i = 1;
(3) the elements in the first two columns satisfy bi,1 = −bi,2 for i ≥ 2;
(4) the elements in the first column are bi,1 = (−1)i−1Ci−1;
(5) for 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ n− 2,

bi+1,j+2 = bi,j − bi+1,j+1;

(6) for i ≥ j ≥ 2,

bi,j =

i−j−1∑
k=−1

(−1)k+1bi−1,j+k.

Basing on these observations, we guess out that the elements bi,j should alternatively satisfy

bi,j = (−1)i−j
b(j−1)/2c∑

`=0

(−1)`
(
j − `− 1

`

)
Ci−`−1, i ≥ j ≥ 1. (5.2)
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Combining this with (4.1) and simplifying yield the identity (5.1).
We now start off to verify the identity (5.1). By virtue of the integral representation (2.4), the

formula (2.5) in Lemma 2.6, and the integral (2.8) in Lemma 2.7, we acquire

b(j−1)/2c∑
`=0

(−1)`
(
j − `− 1

`

)
Ci−`−1

=
1

2π

∫ 4

0

√
4− x
x

[b(j−1)/2c∑
`=0

(−1)`
(
j − `− 1

`

)
xi−`−1

]
dx

=
1

2π

∫ 4

0

xi−3/2(4− x)1/2

[b(j−1)/2c∑
`=0

(j − 1− `)!
(j − 1− 2`)!

1

`!

(
− 1

x

)`]
dx

=
1

2π

∫ 4

0

xi−3/2(4− x)1/2

[b(j−1)/2c∑
`=0

(
1−j
2

)
`

(
2−j
2

)
`

(1− j)`
1

`!

(
4

x

)`]
dx

=
1

2π

∫ 4

0

xi−3/2(4− x)1/2

[ ∞∑
`=0

(
1−j
2

)
`

(
2−j
2

)
`

(1− j)`
1

`!

(
4

x

)`]
dx

=
1

2π

∫ 4

0

xi−3/2(4− x)1/22F1

(
1− j

2
,

2− j
2

; 1− j; 4

x

)
dx

=
4i

2π

∫ 1

0

ti−3/2(1− t)1/22F1

(
1− j

2
,

2− j
2

; 1− j; 1

t

)
d t

=
4i

2π

∫ 1

0

ti−3/2(1− t)1/2 1

2j

√
t√

t− 1

[(
1 +

√
t− 1√
t

)j
−
(

1−
√
t− 1√
t

)j]
d t

=
22i−j

2π
i

∫ 1

0

ti−1
[(

1 +

√
1− 1

t

)j
−
(

1−
√

1− 1

t

)j]
d t

(
i =
√
−1
)

=
22i−j

π
i

∫ ∞
0

s

(1 + s2)i+1

[(
1− is

)j − (1 + is
)j]

d s

=
22i−j

π
i

∫ ∞
0

s

(1 + s2)i+1

[(√
1 + s2 e−i arctan s

)j
−
(√

1 + s2 ei arctan s
)j]

d s

=
22i−j

π
i

∫ ∞
0

s

(1 + s2)i−j/2+1

(
e−ij arctan s − eij arctan s

)
d s

=
22i−j

π

∫ ∞
0

s

(1 + s2)i−j/2+1
sin(j arctan s) d s

=
22i−j

π

∫ π/2

0

tan t

(1 + tan2 t)i−j/2+1
sin(jt) sec2 t d t

=
22i−j

π

∫ π/2

0

tan t

sec2i−j t
sin(jt) d t

=
22i−j

π

∫ π/2

0

sin t cos2i−j−1 t sin(jt) d t
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=
22i−j

π

∫ π/2

0

[cos((j − 1)t)− cos((j + 1)t)] cos2i−j−1 td t

=
22i−j

π

[
π

22i−j(2i− j)B(i, i− j + 1)
− π

22i−j(2i− j)B(i+ 1, i− j)

]
=

1

2i− j

[
1

B(i, i− j + 1)
− 1

B(i+ 1, i− j)

]
=

1

2i− j

[
Γ(2i− j + 1)

Γ(i)Γ(i− j + 1)
− Γ(2i− j + 1)

Γ(i+ 1)Γ(i− j)

]
= (2i− j − 1)!

[
1

Γ(i)Γ(i− j + 1)
− 1

Γ(i+ 1)Γ(i− j)

]
= (2i− j − 1)!

[
1

(i− 1)!(i− j)!
− 1

i!(i− j − 1)!

]
=
j

i

(
2i− j − 1

i− 1

)
.

The identity (5.1) is thus proved. The proof of Theorem 5.1 is complete. �

Theorem 5.2. For i, j, n ∈ N, the Catalan numbers Cn satisfy

bn/2c∑
k=0

(−1)k
(
n− k
k

)
Cn−k = 1, (5.3)

∑
i≤2`≤2i
`≥j

b(j−1)/2c∑
k=0

(−1)`−k
(

`

i− `

)(
j − k − 1

k

)
C`−k−1 = 0, (5.4)

and ∑
i≥`≥j
`≤2j

b(`−1)/2c∑
k=0

(−1)`−k
(

j

`− j

)(
`− k − 1

k

)
Ci−k−1 = 0. (5.5)

Proof. This follows from expanding the matrix equation

AnA
−1
n = A−1n An = In (5.6)

and utilizing the expression (5.2) in Theorem 4.1, where In stands for the identity matrix of n
orders. This can be written in details as follows.

The matrix equation (5.6) is equivalent to

n∑
`=1

ai,`b`,j =


0, i < j
i∑
`=j

ai,`b`,j , i ≥ j =

{
0, i 6= j

1, i = j

and

n∑
`=1

bi,`a`,j =


0, i < j
i∑
`=j

bi,`a`,j , i ≥ j =

{
0, i 6= j

1, i = j
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which can be rearranged as

i∑
`=j

ai,`b`,j =

{
0, i > j

1, i = j
or

i∑
`=j

bi,`a`,j =

{
0, i > j

1, i = j

for 1 ≤ i, j ≤ n.
When 1 ≤ i = j ≤ n, it follows that

1 =

i∑
`=j

ai,`b`,j =

i∑
`=j

bi,`a`,j = ai,ibi,i = bi,i

=

i−1∑
k=0

(−1)k
(
i− k − 1

k

)
Ci−k−1 =

b(i−1)/2c∑
k=0

(−1)k
(
i− k − 1

k

)
Ci−k−1.

The identity (5.3) is thus concluded.
When 1 ≤ j < i ≤ n, it follows that

0 =

i∑
`=j

ai,`b`,j =
∑

i/2≤`≤i
`≥j

ai,`b`,j

=
∑

i/2≤`≤i
`≥j

(
`

i− `

)
(−1)`−j

b(j−1)/2c∑
k=0

(−1)k
(
j − k − 1

k

)
C`−k−1

= (−1)j
∑

i/2≤`≤i
`≥j

b(j−1)/2c∑
k=0

(−1)`−k
(

`

i− `

)(
j − k − 1

k

)
C`−k−1

and

0 =

i∑
`=j

bi,`a`,j =
∑
i≥`≥j
`≤2j

bi,`a`,j

=
∑
i≥`≥j
`≤2j

(−1)i−`
b(`−1)/2c∑
k=0

(−1)k
(
`− k − 1

k

)
Ci−k−1

(
j

`− j

)

= (−1)i
∑
i≥`≥j
`≤2j

b(`−1)/2c∑
k=0

(−1)`−k
(

j

`− j

)(
`− k − 1

k

)
Ci−k−1.

The identities (5.4) and (5.5) are thus derived. The proof of Theorem 5.2 is complete. �

Theorem 5.3. Let m,n ∈ N. If n ≥ 2m ≥ 2, then∑m−1
`=0 (−1)`

(
2m−`−1

`

)
n+2`+1
n−`+1 Cn−`−1∑m−1

`=0 (−1)`
(
2m−`−2

`

)
1

2m−2`−1Cn−`−1
= m(2m− 1). (5.7)
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Proof. Employing the expression (5.2) and making use of Theorem 5.1, we can write the recursive
equation (3.9) as

2(k − 2n)(−1)n−k
b(k−1)/2c∑

`=0

(−1)`
(
k − `− 1

`

)
Cn−`−1

+k(−1)n−k+1

b(k−2)/2c∑
`=0

(−1)`
(
k − `− 2

`

)
Cn−`−1

= (−1)n−k+1

{
k

b(k−2)/2c∑
`=0

(−1)`
(
k − `− 2

`

)
Cn−`−1

−2(k − 2n)

b(k−1)/2c∑
`=0

(−1)`
(
k − `− 1

`

)
Cn−`−1

}

= (−1)n−k+1(n+ 1)

b(k−1)/2c∑
`=0

(−1)`
(
k − `− 1

`

)
Cn−`

for n ≥ 2, that is,

k

b(k−2)/2c∑
`=0

(−1)`
(
k − `− 2

`

)
Cn−`−1 − 2(k − 2n)

b(k−1)/2c∑
`=0

(−1)`
(
k − `− 1

`

)
Cn−`−1

= (n+ 1)

b(k−1)/2c∑
`=0

(−1)`
(
k − `− 1

`

)
Cn−`, n ≥ 2. (5.8)

When k = 2m and m ∈ N, the equation (5.8) is equivalent to

2m

m−1∑
`=0

(−1)`
(

2m− `− 2

`

)
Cn−`−1 − 4(m− n)

m−1∑
`=0

(−1)`
(

2m− `− 1

`

)
Cn−`−1

= (n+ 1)

m−1∑
`=0

(−1)`
(

2m− `− 1

`

)
Cn−`,

2m

m−1∑
`=0

(−1)`
(

2m− `− 2

`

)
Cn−`−1 − 4m

m−1∑
`=0

(−1)`
(

2m− `− 1

`

)
Cn−`−1

= (n+ 1)

m−1∑
`=0

(−1)`
(

2m− `− 1

`

)
Cn−` − 4n

m−1∑
`=0

(−1)`
(

2m− `− 1

`

)
Cn−`−1,

2m

m−1∑
`=0

(−1)`
[(

2m− `− 2

`

)
− 2

(
2m− `− 1

`

)]
Cn−`−1

=

m−1∑
`=0

(−1)`
(

2m− `− 1

`

)
[(n+ 1)Cn−` − 4nCn−`−1],
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and

m(2m− 1)

m−1∑
`=0

(−1)`
(2m− `− 2)!

`!(2m− 2`− 1)!
Cn−`−1 =

m−1∑
`=0

(−1)`
(

2m− `− 1

`

)
n+ 2`+ 1

n− `+ 1
Cn−`−1

which can be rearranged as

m−1∑
`=0

(−1)`
[
m(2m− 1)− (2m− `− 1)(n+ 2`+ 1)

n− `+ 1

]
(2m− `− 2)!

`!(2m− 2`− 1)!
Cn−`−1 = 0

for n ≥ 2m ≥ 2. This can be further rewritten as (5.7). The proof of Theorem 5.3 is complete. �

6. Remarks

Finally, we give some remarks on the closely related results stated in previous sections.

Remark 6.1. Now we explain the motivation of Theorem 3.1 as follows. In [11], the following results
were inductively and recursively obtained.

(1) The nonlinear differential equations

2nn!Fn+1(t) =

n∑
i=1

ai(n)(x− t)i−2nF (i)(t), n ∈ N

has a solution

F (t) = F (t, x) =
1

1− 2tx+ t2
,

where a1(n) = (2n− 3)!! and

ai(n) =

n−i∑
ki−1=0

n−i−ki−1∑
ki−2=0

· · ·
n−i−ki−1−···−k2∑

k1=0

2
∑i−1

j=1 kj

×
i∏

j=2

〈
n−

i−1∑
`=j

k` −
2i+ 2− j

2

〉
kj−1

(
2

(
n− i−

i−1∑
j=1

kj

)
− 1

)
!! (6.1)

for 2 ≤ i ≤ n, with the notation that

〈x〉n =

n−1∏
k=0

(x− k) =

{
x(x− 1) · · · (x− n+ 1), n ≥ 1

1, n = 0

is the falling factorial and that the double factorial of negative odd integers −2n − 1 is
defined by

(−2n− 1)!! =
(−1)n

(2n− 1)!!
= (−1)n

2nn!

(2n)!

for n ≥ 0. See [11, Theorem 1].

(2) The higher order Chebyshev polynomials of the second kind U
(α)
n (x) generated by(

1

1− 2xt+ t2

)α
=

∞∑
n=0

U (α)
n (x)tn
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satisfy

U (k+1)
n (x) =

1

2kk!

k∑
i=1

ai(k)

n∑
`=0

(
2k + n− `− i− 1

n− `

)
U`+i(x)xi+`−2k−n〈`+ i〉i

for k ∈ N, where U
(1)
n (x) = Un(x). See [11, Theorem 2].

(3) The higher order Legendre polynomials p
(α)
n (x) generated by(

1√
1− 2xt+ t2

)α
=

∞∑
n=0

p(α)n (x)tn

satisfy

n∑
`=0

p
(k+1)
` (x)p

(k+1)
n−` (x) =

1

2kk!

k∑
i=1

ai(k)

n∑
`=0

(
2k + n− `− i− 1

n− `

)
U`+i(x)〈`+ i〉ixi+`−2k−n

for k ∈ N and n ≥ 0 and

U (k+1)
n (x) =

1

2kk!

k∑
i=1

ai(k)

n∑
`=0

`+i∑
j=0

(
2k + n− `− i− 1

n− `

)
xi+`−2k−n〈`+ i〉ip`+i−j(x)

for k, n ∈ N, where p
(1)
n (x) = pn(x). See [11, Corollaries 3 and 4].

(4) The higher order Chebyshev polynomials of the third kind V
(α)
n (x) generated by(

1− t√
1− 2xt+ t2

)α
=

∞∑
n=0

V (α)
n (x)tn

satisfy

n∑
`=0

(
k + n− `
n− `

)
V

(k+1)
` (x) =

1

2kk!

k∑
i=1

i∑
`=0

ai(k)
i!

`!

×
∑

m+s+p=n

(
2k +m− i− 1

m

)(
i− `+ s

s

)
〈`+ p〉`xi−2k−mV`+p(x)

for k ∈ N and n ≥ 0, where V
(1)
n (x) = Vn(x). See [11, Theorem 5].

(5) The higher order Chebyshev polynomials of the fourth kind W
(α)
n (x) generated by(

1 + t√
1− 2xt+ t2

)α
=

∞∑
n=0

W (α)
n (x)tn

satisfy

n∑
`=0

(−1)n−`
(
k + n− `
n− `

)
W

(k+1)
` (x) =

1

2kk!

k∑
i=1

i∑
`=0

(−1)i−`ai(k)
i!

`!

×
∑

m+s+p=n

(−1)s
(

2k +m− i− 1

m

)(
i− `+ s

s

)
〈`+ p〉`xi−2k−mW`+p(x)

for k ∈ N and n ≥ 0, where W
(1)
n = Wn(x). See [11, Theorem 6].
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(6) The higher order Chebyshev polynomials of the first kind T
(α)
n (x) generated by(

1− t2√
1− 2xt+ t2

)α
=

∞∑
n=0

T (α)
n (x)tn

satisfy

2k+1k!
∑

s+m+p=n

(
k + s

s

)(
m+ k

m

)
(−1)mT (k+1)

p (x)

=

k∑
i=1

i∑
`=0

ai(k)
i!

`!

∑
m+s+p=n

(
2k +m− i− 1

m

)(
i+ s− `

s

)
〈`+ p〉`xi−2k−mTp+`(x)

+

k∑
i=1

i∑
`=0

ai(k)
i!

`!
(−1)i−`

∑
m+s+p=n

(−1)s
(

2k +m− i− 1

m

)(
i+ s− `

s

)
〈`+ p〉`xi−2k−mTp+`(x)

for k ∈ N and n ≥ 0. See [11, Theorem 7].

It is clear that the quantities ai(n) defined by (6.1) play a key role in the above-mentioned con-
clusions obtained in the paper [11]. However, the quantities ai(n) are expressed complicatedly and
can not be computed easily. Can one find a simple expression for the quantities ai(n)? Theorem 3.1
answers this question by

ak(n) =
(−1)n−k

2n−k
n!

k!
bn,k =

1

2n−k
(n− 1)!

(k − 1)!

(
2n− k − 1

n− 1

)
(6.2)

for n ≥ k ≥ 1. By this much simpler expression for ak(n), we can reformulate all the above-
mentioned main results in the paper [11] in terms of the quantities defined in (6.2). For saving time
of the authors and space of this paper, we do not write down them in details.

Due to the same motivation and reason as Theorem 3.1, the authors composed and published
the papers [10, 19, 20, 21, 35, 36, 37, 38, 48, 49, 50, 57, 58], for examples.

Remark 6.2. The identity (5.3) recovers [61, p. 2187, Theorem 2, Eq. (15b)]. It can also be verified
alternatively and directly by the same method used in the proof of the identity (5.1).

Actually, the identity (5.3) is a special case i = j ∈ N of the identity (5.1). In other words, the
identity (5.1) generalizes, or say, extends (5.3).

It is clear that the proof of the identity (5.3) is simpler than the one of (5.3) adopted in [61] and
related references therein.

Remark 6.3. The integral representation (2.4) for the Catalan numbers Ck and its variant forms
can be found in [3, 4, 5, 6, 16, 17, 44] and the closely related references therein.

In recent years, there are plenty of literature, such as [14, 18, 25, 27, 31, 32, 40, 41, 44, 46,
47, 59, 62, 63], dedicated to generalizations of the Catalan numbers Cn and to investigating their
properties.

Remark 6.4. The formula (2.3) in Lemma 2.3 has also been applied many times in some papers
such as [9, 26, 29, 33, 36, 38, 39, 42, 43, 45, 51, 56, 60] and the closely related references therein.

Remark 6.5. Let An = In + Mn and In be the identity matrix of order n. By linear algebra, it is
easy to see that Mn

n = 0 and

(In +Mn)
(
In −Mn +M2

n −M3
n + · · ·+ (−1)n−1Mn−1

n

)
= In −Mn

n = In.
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This means that

A−1n = (In +Mn)−1 = In +

n−1∑
k=1

(−1)kMk
n .

In theory, this formula is useful for computing the inverse A−1n . But, in practice, it is too difficult
to acquire the simple form in (4.1).

Can one conclude a general and concrete formula for computing Mk
n from Theorem 4.1?

Remark 6.6. Motivated by the proof of the identity 5.1, we naturally ask a question: can one
explicitly compute integrals of the type∫ 1

0

zα−1(1− z)β−1pFq(a, b; c;xzσ) d z?

In [53, p. 340, Remark], it was given that∫ 1

0

zα−1(1− z)β−12F1(a, b; c;xzσ) d z =
Γ(c)Γ(β)

Γ(a)Γ(b)
3Φ2((a, 1), (b, 1), (α, σ); (c, 1), (α+ β, σ);x),

where

pΦq((α1, β1), . . . , (αp, βp); (ρ1, µ1), . . . , (ρp, µq); z) =

∞∑
n=0

Γ(α1 + β1n) · · ·Γ(αp + βpn)

Γ(ρ1 + µ1n) · · · (Γ(ρq + µqn))

zn

n!

and βr, µt are real positive numbers such that

1 +

q∑
t=1

µt −
p∑
r=1

βr > 0.

Making use of this result, we can supply an alternative proof of the identity 5.1 in Theorem 5.1.
There is a similar formula in [52, p. 104, Theorem 38].
This question has also been considered in [1, 23] and the closely related references therein.

Remark 6.7. In [15, p. 387, 15.4.18], it was listed that the formula

2F1

(
a, a+

1

2
; 2a; z

)
=

1√
1− z

(
1

2
+

√
1− z
2

)1−2a

holds for the principal branch when |z| < 1, and by analytic continuation elsewhere. Straightfor-

wardly letting a = 1−j
2 results in

2F1

(
1− j

2
,

2− j
2

; 1− j; t
)

=
1√

1− t

(
1

2
+

√
1− t
2

)j
, |t| < 1.

Replacing t by 1
t leads to

2F1

(
1− j

2
,

2− j
2

; 1− j; 1

t

)
=

1

2j

√
t

t− 1

(
1 +

√
t− 1

t

)j
, |t| > 1.

This expression for 2F1

(
1−j
2 , 2−j2 ; 1− j; 1

t

)
is slightly different from (2.5) in Lemma 2.6.

Remark 6.8. Comparing main results of this paper with those in [28], we can see that there exist
some close connections among the Chebyshev polynomials of the second kind Un, the Catalan
numbers Cn, the central Delannoy numbers Dn, the Fibonacci polynomials Fn(x), and triangular
and tridiagonal matrices.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 March 2017                   doi:10.20944/preprints201703.0209.v1

http://dx.doi.org/10.20944/preprints201703.0209.v1


18 F. QI AND B.-N. GUO

Comparing Theorem 3.1 with Theorem 5.1 reveals that the equality (3.4) can be reformulated
in terms of the Catalan numbers Cn as

n∑
k=1

[b(k−1)/2c∑
`=0

(−1)`
(
k − `− 1

`

)
Cn−`−1

]
(2x)kUk(x) = (2x)2n. (6.3)

Taking x = 3 in (6.3) and considering results in [28, Section 10] disclose that

n∑
k=1

6k

[b(k−1)/2c∑
`=0

(−1)`
(
k − `− 1

`

)
Cn−`−1

][
k∑
`=0

D(`)D(k − `)

]
= 62n,

where D(k) denotes the central Delannoy numbers which are combinatorially the numbers of “king
walks” from the (0, 0) corner of an n×n square to the upper right corner (n, n) and can be generated
analytically by

1√
1− 6x+ x2

=

∞∑
k=0

D(k)xk = 1 + 3x+ 13x2 + 63x3 + · · · .

Taking x = s
2

√
−1 in (6.3) and utilizing results in [28, Section 8] expose that

n∑
k=1

(−1)k

[b(k−1)/2c∑
`=0

(−1)`
(
k − `− 1

`

)
Cn−`−1

]
skFk+1(s) = (−1)ns2n,

where the Fibonacci polynomials

Fn(s) =
1

2n

(
s+
√

4 + s2
)n − (s−√4 + s2

)n
√

4 + s2

can be generated by

t

1− ts− t2
=

∞∑
n=1

Fn(s)tn = t+ st2 +
(
s2 + 1

)
t3 +

(
s3 + 2s

)
t4 + · · · .

Remark 6.9. Now we can see that our main results in this paper stride analysis, special functions,
combinatorics, number theory, matrix theory, integral transforms, and the like.
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Working Paper (2016), available online at http://dx.doi.org/10.13140/RG.2.1.1988.3288.

[43] F. Qi, X.-T. Shi, and B.-N. Guo, Two explicit formulas of the Schröder numbers, Integers 16 (2016), Paper
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