IDENTITIES OF THE CHEBYSHEV POLYNOMIALS, THE INVERSE OF A TRIANGULAR MATRIX, AND IDENTITIES OF THE CATALAN NUMBERS

FENG QI AND BAI-NI GUO

Abstract

In the paper, the authors establish two identities to express the generating function of the Chebyshev polynomials of the second kind and its higher order derivatives in terms of the generating function and its derivatives each other, deduce an explicit formula and an identities for the Chebyshev polynomials of the second kind, derive the inverse of an integer, unit, and lower triangular matrix, present several identities of the Catalan numbers, and give some remarks on the closely related results including connections of the Catalan numbers respectively with the Chebyshev polynomials, the central Delannoy numbers, and the Fibonacci polynomials.

1. Preliminaries

It is common knowledge [8, 15, 52] that the generalized hypergeometric series

$$
{ }_{p} F_{q}\left(a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{q} ; z\right)=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n} \cdots\left(a_{p}\right)_{n}}{\left(b_{1}\right)_{n} \cdots\left(b_{q}\right)_{n}} \frac{z^{n}}{n!}
$$

is defined for complex numbers $a_{i} \in \mathbb{C}$ and $b_{i} \in \mathbb{C} \backslash\{0,-1,-2, \ldots\}$, for positive integers $p, q \in \mathbb{N}$, and in terms of the rising factorials $(x)_{n}$ defined by

$$
(x)_{n}=\prod_{\ell=0}^{n-1}(x+\ell)= \begin{cases}x(x+1) \cdots(x+n-1), & n \geq 1 \\ 1, & n=0\end{cases}
$$

Specially, one calls ${ }_{2} F_{1}(a, b ; c ; z)$ the classical hypergeometric function.
It is well known [12, 47, 55] that the Catalan numbers C_{n} for $n \geq 0$ form a sequence of natural numbers that occur in tree enumeration problems such as "In how many ways can a regular n-gon be divided into $n-2$ triangles if different orientations are counted separately? whose solution is the Catalan number C_{n-2} ". The Catalan numbers C_{n} can be generated by

$$
\frac{2}{1+\sqrt{1-4 x}}=\frac{1-\sqrt{1-4 x}}{2 x}=\sum_{n=0}^{\infty} C_{n} x^{n}=1+x+2 x^{2}+5 x^{3}+\cdots
$$

and explicitly expressed as

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}={ }_{2} F_{1}(1-n,-n ; 2 ; 1)=\frac{4^{n} \Gamma(n+1 / 2)}{\sqrt{\pi} \Gamma(n+2)},
$$

[^0]where the classical Euler gamma function can be defined [8, 15, 24, 30, 52] by
$$
\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} \mathrm{~d} t, \quad \Re(z)>0
$$
or by
$$
\Gamma(z)=\lim _{n \rightarrow \infty} \frac{n!n^{z}}{\prod_{k=0}^{n}(z+k)}, \quad z \in \mathbb{C} \backslash\{0,-1,-2, \ldots\}
$$

For more information on the Catalan numbers C_{k} and their recent developments, please refer to the monographs [2, 12, 55], the papers [13, 25, 34, 40, 46, 47, 54, 59, 61, 62, 63] and the closely related references therein.

The first six Chebyshev polynomials of the second kind $U_{k}(x)$ for $0 \leq k \leq 5$ are

$$
\begin{gathered}
U_{0}(x)=1, \quad U_{1}(x)=2 x, \quad U_{2}(x)=4 x^{2}-1, \quad U_{3}(x)=8 x^{3}-4 x \\
U_{4}(x)=16 x^{4}-12 x^{2}+1, \quad U_{5}(x)=32 x^{5}-32 x^{3}+6 x
\end{gathered}
$$

They can be generated by

$$
F(t)=F(t, x)=\frac{1}{1-2 x t+t^{2}}=\sum_{n=0}^{\infty} U_{n}(x) t^{n}
$$

for $|x|<1$ and $|t|<1$. For more information on the Chebyshev polynomials of the second kind $U_{k}(x)$, please refer to [28, Section 7], the monographs [8, 15, 52] and the closely related references therein.

Let $\lfloor x\rfloor$ denote the floor function whose value is the largest integer less than or equal to x and let $\lceil x\rceil$ stand for the ceiling function which gives the smallest integer not less than x. When $n \in \mathbb{Z}$, it is easy to see that

$$
\left\lfloor\frac{n}{2}\right\rfloor=\frac{1}{2}\left[n-\frac{1-(-1)^{n}}{2}\right] \quad \text { and } \quad\left\lceil\frac{n}{2}\right\rceil=\frac{1}{2}\left[n+\frac{1-(-1)^{n}}{2}\right] .
$$

In this paper, we will establish two identities to express the generating function $F(t)$ of the Chebyshev polynomials of the second kind $U_{k}(x)$ and its higher order derivatives $F^{(k)}(t)$ in terms of $F(t)$ and $F^{(k)}(t)$ each other, deduce an explicit formula and an identities for the Chebyshev polynomials of the second kind $U_{k}(x)$, derive the inverse of an integer, unit, and lower triangular matrix, present several identities of the Catalan numbers C_{k}, and give some remarks on the closely related results including connections of the Catalan numbers C_{k} respectively with the Chebyshev polynomials $U_{k}(x)$, the central Delannoy numbers, and the Fibonacci polynomials.

2. Lemmas

In order to prove our main results, we recall several lemmas below.
Lemma 2.1 ([2, p. 134, Theorem A] and [2, p. 139, Theorem C]). For $n \geq k \geq 0$, the Bell polynomials of the second kind, denoted by $\mathrm{B}_{n, k}\left(x_{1}, x_{2}, \ldots, x_{n-k+1}\right)$, are defined by

$$
\mathrm{B}_{n, k}\left(x_{1}, x_{2}, \ldots, x_{n-k+1}\right)=\sum_{\substack{1 \leq i \leq n, \ell_{i} \in\{0\} \cup \mathbb{N} \\ \sum_{i=1}^{n}=1 \ell_{i}=n \\ \sum_{i=1}^{n} \ell_{i}=k}} \frac{n!}{\prod_{i=1}^{n-k+1} \ell_{i}!} \prod_{i=1}^{n-k+1}\left(\frac{x_{i}}{i!}\right)^{\ell_{i}}
$$

The Fà̀ di Bruno formula can be described in terms of the Bell polynomials of the second kind $\mathrm{B}_{n, k}\left(x_{1}, x_{2}, \ldots, x_{n-k+1}\right)$ by

$$
\begin{equation*}
\frac{\mathrm{d}^{n}}{\mathrm{~d} t^{n}} f \circ h(t)=\sum_{k=1}^{n} f^{(k)}(h(t)) \mathrm{B}_{n, k}\left(h^{\prime}(t), h^{\prime \prime}(t), \ldots, h^{(n-k+1)}(t)\right), \quad n \in \mathbb{N} . \tag{2.1}
\end{equation*}
$$

Lemma 2.2 ([2, p. 135]). For complex numbers a and b, we have

$$
\begin{equation*}
\mathrm{B}_{n, k}\left(a b x_{1}, a b^{2} x_{2}, \ldots, a b^{n-k+1} x_{n-k+1}\right)=a^{k} b^{n} \mathrm{~B}_{n, k}\left(x_{1}, x_{2}, \ldots, x_{n-k+1}\right) \tag{2.2}
\end{equation*}
$$

Lemma 2.3 (9, Theorem 4.1], [45, Eq. (2.8)], and [56, Lemma 2.5]). For $0 \leq k \leq n$, the Bell polynomials of the second kind $\mathrm{B}_{n, k}$ satisfy

$$
\begin{equation*}
\mathrm{B}_{n, k}(x, 1,0, \ldots, 0)=\frac{1}{2^{n-k}} \frac{n!}{k!}\binom{k}{n-k} x^{2 k-n} \tag{2.3}
\end{equation*}
$$

where $\binom{p}{q}=0$ for $q>p \geq 0$.
Lemma 2.4 ([7] and [12, pp. 112-114]). Let $T(r, 1)=1$ and

$$
T(r, c)=\sum_{i=c-1}^{r} T(i, c-1), \quad c \geq 2
$$

or, equivalently,

$$
T(r, c)=\sum_{j=1}^{c} T(r-1, j), \quad r, c \in \mathbb{N}
$$

Then

$$
T(r, c)=\frac{r-c+2}{r+1}\binom{r+c-1}{r}, \quad r, c \in \mathbb{N}
$$

and $T(n, n)=C_{n}$ for $n \in \mathbb{N}$.
Lemma 2.5 ([16, p. 2, Eq. (10)] and [3]). For $n \in \mathbb{N}$, the Catalan numbers C_{n} have the integral representation

$$
\begin{equation*}
C_{n}=\frac{1}{2 \pi} \int_{0}^{4} \sqrt{\frac{4-x}{x}} x^{n} \mathrm{~d} x \tag{2.4}
\end{equation*}
$$

Lemma 2.6. For $t \neq 0$ and $j \in \mathbb{N}$, we have

$$
\begin{equation*}
{ }_{2} F_{1}\left(\frac{1-j}{2}, \frac{2-j}{2} ; 1-j ; \frac{1}{t^{2}}\right)=\frac{1}{2^{j}} \frac{t}{\sqrt{t^{2}-1}}\left[\left(1+\frac{\sqrt{t^{2}-1}}{t}\right)^{j}-\left(1-\frac{\sqrt{t^{2}-1}}{t}\right)^{j}\right] . \tag{2.5}
\end{equation*}
$$

Proof. In [8, pp. 999-1000], it was listed that

$$
\begin{equation*}
G_{n}^{\lambda}(t)=\frac{1}{\sqrt{\pi}} \frac{\Gamma(2 \lambda+n)}{n!\Gamma(2 \lambda)} \frac{\Gamma\left(\frac{2 \lambda+1}{2}\right)}{\Gamma(\lambda)} \int_{0}^{\pi}\left(t+\sqrt{t^{2}-1} \cos \phi\right)^{n} \sin ^{2 \lambda-1} \phi \mathrm{~d} \phi \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{n}^{\lambda}(t)=\frac{2^{n} \Gamma(\lambda+n)}{n!\Gamma(\lambda)} t^{n}{ }_{2} F_{1}\left(-\frac{n}{2}, \frac{1-n}{2} ; 1-\lambda-n ; \frac{1}{t^{2}}\right), \tag{2.7}
\end{equation*}
$$

where $G_{n}^{\lambda}(t)$ stands for the Gegenbauer polynomials which are the coefficients of α^{n} in the powerseries expansion

$$
\frac{1}{\left(1-2 t \alpha+\alpha^{2}\right)^{\lambda}}=\sum_{k=0}^{\infty} G_{k}^{\lambda}(t) \alpha^{n}
$$

Taking $n=j-1$ and $\lambda=1$ in equalities (2.6) and (2.7), combining them, and simplifying give

$$
\begin{gathered}
{ }_{2} F_{1}\left(\frac{1-j}{2}, \frac{2-j}{2} ; 1-j ; \frac{1}{t^{2}}\right)=\frac{j}{2^{j}} \frac{1}{t^{j-1}} \int_{0}^{\pi}\left(t+\sqrt{t^{2}-1} \cos \phi\right)^{j-1} \sin \phi \mathrm{~d} \phi \\
=\frac{j}{2^{j}} \frac{\left(t^{2}-1\right)^{(j-1) / 2}}{t^{j-1}} \int_{0}^{\pi}\left(\frac{t}{\sqrt{t^{2}-1}}+\cos \phi\right)^{j-1} \sin \phi \mathrm{~d} \phi \\
=\frac{j}{2^{j}} \frac{\left(t^{2}-1\right)^{(j-1) / 2}}{t^{j-1}} \int_{0}^{\pi} \sum_{\ell=0}^{j-1}\binom{j-1}{\ell}\left(\frac{t}{\sqrt{t^{2}-1}}\right)^{j-1-\ell} \cos ^{\ell} \phi \sin \phi \mathrm{d} \phi \\
=\frac{j}{2^{j}} \frac{\left(t^{2}-1\right)^{(j-1) / 2}}{t^{j-1}} \sum_{\ell=0}^{j-1}\binom{j-1}{\ell}\left(\frac{t}{\sqrt{t^{2}-1}}\right)^{j-1-\ell} \int_{0}^{\pi} \cos ^{\ell} \phi \sin \phi \mathrm{d} \phi \\
=\frac{j}{2^{j}} \frac{\left(t^{2}-1\right)^{(j-1) / 2}}{t^{j-1}}\left(\frac{t}{\sqrt{t^{2}-1}}\right)^{j-1} \sum_{\ell=0}^{j-1}\binom{j-1}{\ell}\left(\frac{\sqrt{t^{2}-1}}{t}\right)^{\ell} \frac{(-1)^{\ell}+1}{\ell+1} \\
=\frac{j}{2^{j}} \sum_{\ell=0}^{j-1}\binom{j-1}{\ell}\left(\frac{\sqrt{t^{2}-1}}{t}\right)^{\ell} \frac{(-1)^{\ell}+1}{\ell+1} \\
=\frac{1}{2^{j}} \frac{t}{\sqrt{t^{2}-1}}\left[\left(1+\frac{\sqrt{t^{2}-1}}{t}\right)^{j}-\left(1-\frac{\sqrt{t^{2}-1}}{t}\right)^{j}\right] .
\end{gathered}
$$

The formula 2.5 is thus proved. The proof of Lemma 2.5 is complete.
Lemma 2.7 ([8, p. 399]). If $\Re(\nu)>0$, then

$$
\begin{equation*}
\int_{0}^{\pi / 2} \cos ^{\nu-1} x \cos (a x) \mathrm{d} x=\frac{\pi}{2^{\nu} \nu B\left(\frac{\nu+a+1}{2}, \frac{\nu-a+1}{2}\right)} \tag{2.8}
\end{equation*}
$$

where $B(\alpha, \beta)$ stands for the classical beta function satisfying

$$
B(\alpha, \beta)=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}=B(\beta, \alpha), \quad \Re(\alpha), \Re(\beta)>0
$$

3. Identities of the Chebyshev polynomials of The second kind

In this section, we establish three identities and an explicit formula for the Chebyshev polynomials of the second kind $U_{k}(x)$, their generating function $F(t)$, and higher order derivatives $F^{(k)}(t)$. Why do we start our research in this paper from here? Please read Remark 6.1 in Section 6 below.

Theorem 3.1. For $n \in \mathbb{N}$, the nth derivatives of the generating function $F(t)$ of the Chebyshev polynomials of the second kind $U_{k}(x)$ satisfy

$$
\begin{equation*}
F^{(n)}(t)=\frac{n!}{[2(t-x)]^{n}} \sum_{k=\lceil n / 2\rceil}^{n}(-1)^{k}\binom{k}{n-k}[2(t-x)]^{2 k} F^{k+1}(t) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
F^{n+1}(t)=\frac{1}{n} \frac{1}{[2(t-x)]^{2 n}} \sum_{k=1}^{n} \frac{(-1)^{k}}{(k-1)!}\binom{2 n-k-1}{n-1}[2(t-x)]^{k} F^{(k)}(t) \tag{3.2}
\end{equation*}
$$

Consequently, the Chebyshev polynomials of the second kind $U_{n}(x)$ satisfy

$$
\begin{equation*}
U_{n}(x)=\frac{(-1)^{n}}{(2 x)^{n}} \sum_{k=\lceil n / 2\rceil}^{n}(-1)^{k}\binom{k}{n-k}(2 x)^{2 k} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{n} k\binom{2 n-k-1}{n-1}(2 x)^{k} U_{k}(x)=n(2 x)^{2 n} \tag{3.4}
\end{equation*}
$$

Proof. By the formulas $(2.1),(2.2$, and (2.3) in sequence, we have

$$
\begin{aligned}
F^{(n)}(t) & =\frac{\mathrm{d}^{n}}{\mathrm{~d} t^{n}}\left(\frac{1}{1-2 t x+t^{2}}\right) \\
& =\sum_{k=1}^{n}\left(\frac{1}{u}\right)^{(k)} \mathrm{B}_{n, k}(-2 x+2 t, 2,0, \ldots, 0) \\
& =\sum_{k=1}^{n} \frac{(-1)^{k} k!}{u^{k+1}} 2^{k} \mathrm{~B}_{n, k}(t-x, 1,0, \ldots, 0) \\
& =\sum_{k=1}^{n} \frac{(-1)^{k} k!}{u^{k+1}} 2^{k} \frac{1}{2^{n-k}} \frac{n!}{k!}\binom{k}{n-k}(t-x)^{2 k-n} \\
& =(-1)^{n} n!\sum_{k=1}^{n}(-1)^{k} 2^{2 k-n}\binom{k}{n-k} \frac{(x-t)^{2 k-n}}{\left(1-2 t x+t^{2}\right)^{k+1}} \\
& =(-1)^{n} n!\sum_{k=1}^{n}(-1)^{k} 2^{2 k-n}\binom{k}{n-k}(x-t)^{2 k-n} F^{k+1}(t)
\end{aligned}
$$

for $n \in \mathbb{N}$, where $u=u(t, x)=1-2 t x+t^{2}$. This can be rewritten as the formula (3.1).
We can reformulate the formula (3.1) as

$$
\left(\begin{array}{c}
\frac{[2(t-x)]^{1}}{1!} F^{\prime}(t) \\
\frac{[2(t-x)]^{2}}{2!} F^{\prime \prime}(t) \\
\frac{[2(t-x)]^{3}}{3!} F^{(3)}(t) \\
\vdots \\
\frac{[2(t-x)]^{n-2}}{(n-2)!} F^{(n-2)}(t) \\
\frac{[2(t-x)]^{n-1}}{n-1)!} F^{(n-1)}(t) \\
\frac{[2(t-x)]^{n}}{n!} F^{(n)}(t)
\end{array}\right)=A_{n}\left(\begin{array}{c}
(-1)^{1}[2(x-t)]^{2} F^{2}(t) \\
(-1)^{2}[2(x-t)]^{4} F^{3}(t) \\
(-1)^{3}[2(x-t)]^{6} F^{4}(t) \\
\vdots \\
(-1)^{n-2}[2(x-t)]^{2(n-2)} F^{n-1}(t) \\
(-1)^{n-1}[2(x-t)]^{2(n-1)} F^{n}(t) \\
(-1)^{n}[2(x-t)]^{2 n} F^{n+1}(t)
\end{array}\right)
$$

for $n \in \mathbb{N}$, where $A_{n}=\left(a_{i, j}\right)_{n \times n}$ with

$$
a_{i, j}= \begin{cases}0, & i<j \\ \binom{j}{i-j}, & j \leq i \leq 2 j \\ 0, & i>2 j\end{cases}
$$

for $i, j \in \mathbb{N}$. This means that

$$
\left(\begin{array}{c}
(-1)^{1}[2(x-t)]^{2} F^{2}(t) \tag{3.5}\\
(-1)^{2}[2(x-t)]^{4} F^{3}(t) \\
(-1)^{3}[2(x-t)]^{6} F^{4}(t) \\
\vdots \\
(-1)^{n-2}[2(x-t)]^{2(n-2)} F^{n-1}(t) \\
(-1)^{n-1}[2(x-t)]^{2(n-1)} F^{n}(t) \\
(-1)^{n}[2(x-t)]^{2 n} F^{n+1}(t)
\end{array}\right)=A_{n}^{-1}\left(\begin{array}{c}
\frac{[2(t-x)]^{1}}{} F^{\prime}(t) \\
\frac{[2(t-x)]^{2}}{2!} F^{\prime \prime}(t) \\
\frac{[2(t-x)]^{3}}{3!} F^{(3)}(t) \\
\vdots \\
\frac{[2(t-x)]^{n-2}}{(n-2)!} F^{(n-2)}(t) \\
\frac{[(t-x))^{n-1}}{n-1)!} F^{(n-1)}(t) \\
\frac{[2(t-x)]^{n}}{n!} F^{(n)}(t)
\end{array}\right)
$$

for $n \in \mathbb{N}$, where $A_{n}^{-1}=\left(b_{i, j}\right)_{n \times n}$ denotes the inverse matrix of A_{n}.
By the software Mathematica, we can obtain immediately that

$$
A_{7}^{-1}=\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \tag{3.6}\\
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 & 0 & 0 \\
0 & 1 & 3 & 1 & 0 & 0 \\
0 & 0 & 3 & 4 & 1 & 0 \\
0 & 0 & 1 & 6 & 5 & 1
\end{array}\right)^{-1}=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 & 0 \\
2 & -2 & 1 & 0 & 0 & 0 \\
-5 & 5 & -3 & 1 & 0 & 0 \\
14 & -14 & 9 & -4 & 1 & 0 \\
-42 & 42 & -28 & 14 & -5 & 1
\end{array}\right) .
$$

The first few values of the sequence $T(r, c)$ can be listed as Table 1] where $T(r, c)$ denote the r th element in column c for $r, c \geq 1$, see [12, p. 113]. Comparing Table 1 and the inverse matrix (3.6),

Table 1. Definition of $T(r, c)$

	1	2	3	4	5
1	1				
2	1	2			
3	1	3	5		
4	1	4	9	14	
5	1	5	14	28	42

we should infer that

$$
T(k+m, k)=(-1)^{k+1} b_{k+m+1, m+2}, \quad k \geq 1, \quad m \geq 0 .
$$

Hence, by Lemma 2.4, we should obtain

$$
b_{p, q}=(-1)^{p-q} T(p-1, p-q+1)=(-1)^{p-q} \frac{q}{p}\binom{2 p-q-1}{p-1}, \quad p \geq q \geq 2 .
$$

It is easy to see that the formula

$$
b_{p, q}=(-1)^{p-q} \frac{q}{p}\binom{2 p-q-1}{p-1}
$$

should be valid for all $p \geq q \geq 1$. This should imply that

$$
\begin{equation*}
(-1)^{n}[2(x-t)]^{2 n} F^{n+1}(t)=\sum_{k=1}^{n} b_{n, k} \frac{[2(t-x)]^{k}}{k!} F^{(k)}(t), \quad n \in \mathbb{N} . \tag{3.7}
\end{equation*}
$$

We now start out to inductively verify the equation (3.7). When $n=1,2$, the equation (3.7) are

$$
-[2(x-t)]^{2} F^{2}(t)=b_{1,1} \frac{2(t-x)}{1!} F^{\prime}(t)=b_{1,1} \frac{2(t-x)}{1!} \frac{2 x-2 t}{\left(1-2 t x+t^{2}\right)^{2}}
$$

and

$$
\begin{gathered}
{[2(x-t)]^{4} F^{3}(t)=\sum_{k=1}^{2} b_{2, k} \frac{[2(t-x)]^{k}}{k!} F^{(k)}(t)} \\
=b_{2,1} \frac{2(t-x)}{1!} F^{\prime}(t)+b_{2,2} \frac{[2(t-x)]^{2}}{2!} F^{\prime \prime}(t) \\
=b_{2,1} \frac{2(t-x)}{1!} \frac{2 x-2 t}{\left(1-2 t x+t^{2}\right)^{2}}+b_{2,2} \frac{[2(t-x)]^{2}}{2!} \frac{2\left(3 t^{2}-6 t x+4 x^{2}-1\right)}{\left(t^{2}-2 t x+1\right)^{3}}
\end{gathered}
$$

which are clearly valid. When $n \geq 3$, we rewrite (3.7) as

$$
\begin{equation*}
(-1)^{n} F^{n+1}(t)=\sum_{k=1}^{n} b_{n, k} \frac{[2(t-x)]^{k-2 n}}{k!} F^{(k)}(t) . \tag{3.8}
\end{equation*}
$$

Differentiating with respect to t on both sides of (3.8) yields

$$
\begin{gathered}
(-1)^{n}(n+1) F^{n}(t) F^{\prime}(t)=\sum_{k=1}^{n} \frac{b_{n, k}}{k!}\left\{2(k-2 n)[2(t-x)]^{k-2 n-1} F^{(k)}(t)+[2(t-x)]^{k-2 n} F^{(k+1)}(t)\right\} \\
=\sum_{k=1}^{n} \frac{b_{n, k}}{k!} 2(k-2 n)[2(t-x)]^{k-2 n-1} F^{(k)}(t)+\sum_{k=1}^{n} \frac{b_{n, k}}{k!}[2(t-x)]^{k-2 n} F^{(k+1)}(t) \\
=\sum_{k=1}^{n} \frac{2(k-2 n) b_{n, k}}{k!}[2(t-x)]^{k-2 n-1} F^{(k)}(t)+\sum_{k=2}^{n+1} \frac{b_{n, k-1}}{(k-1)!}[2(t-x)]^{k-1-2 n} F^{(k)}(t) \\
=\frac{b_{n, 1}}{1!} \frac{2(1-2 n)}{[2(t-x)]^{2 n}} F^{\prime}(t)+\frac{b_{n, n}}{n!} \frac{1}{[2(t-x)]^{n}} F^{(n+1)}(t) \\
\quad+\sum_{k=2}^{n}\left[\frac{b_{n, k}}{k!} 2(k-2 n)+\frac{b_{n, k-1}}{(k-1)!}[2(t-x)]^{k-2 n-1} F^{(k)}(t)\right.
\end{gathered}
$$

which can be rearranged as

$$
\begin{aligned}
(-1)^{n+1} F^{n+2}(t)= & \frac{2(1-2 n) b_{n, 1}}{n+1} \frac{[2(t-x)]^{1-2(n+1)}}{1!} F^{\prime}(t) \\
& +b_{n, n} \frac{[2(t-x)]^{(n+1)-2(n+1)}}{(n+1)!} F^{(n+1)}(t) \\
& +\sum_{k=2}^{n} \frac{2(k-2 n) b_{n, k}+k b_{n, k-1}}{n+1} \frac{[2(t-x)]^{k-2(n+1)}}{k!} F^{(k)}(t) .
\end{aligned}
$$

It is easy to see that

$$
\frac{2(1-2 n) b_{n, 1}}{n+1}=\frac{2(1-2 n)}{n+1}(-1)^{n-1} \frac{1}{n}\binom{2 n-2}{n-1}=(-1)^{n} \frac{1}{n+1}\binom{2 n}{n}=b_{n+1,1} .
$$

Since $b_{k, k}=1$ for all $1 \leq k \leq n \in \mathbb{N}$, it is sufficient to show

$$
\begin{equation*}
\frac{2(k-2 n) b_{n, k}+k b_{n, k-1}}{n+1}=b_{n+1, k} \tag{3.9}
\end{equation*}
$$

for $2 \leq k \leq n$. This is equivalent to

$$
\begin{aligned}
\frac{2(k-2 n)}{n+1}(-1)^{n-k} \frac{k}{n}\binom{2 n-k-1}{n-1}+\frac{k}{n+1}(-1)^{n-k+1} \frac{k-1}{n} & \binom{2 n-k}{n-1} \\
& =(-1)^{n+1-k} \frac{k}{n+1}\binom{2 n-k+1}{n}
\end{aligned}
$$

which can be verified straightforwardly. The equation (3.7), which can be reformulated as 3.2 for $n \in \mathbb{N}$, is thus proved.

The formulas (3.3) and (3.4) follow readily from taking $t \rightarrow 0$ on both sides of (3.1) and (3.2) respectively. The proof of Theorem 3.1 is complete.

4. Inverse of a triangular matrix

In this section, basing on equations (3.1) and 3.2 , we derive the inverse of an integer, unit, and lower triangular matrix.

Theorem 4.1. For $n \in \mathbb{N}$, let

$$
A_{n}=\left(a_{i, j}\right)_{n \times n}=\left(\begin{array}{ccccccccc}
\binom{1}{0} & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
\left(\begin{array}{l}
2
\end{array}\right) & \binom{2}{1} & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & \binom{2}{2} & \binom{3}{0} & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & \binom{2}{2} & \binom{3}{1} & \binom{4}{0} & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & \binom{3}{2} & \binom{1}{4} & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & \binom{3}{3} & \binom{2}{4} & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \binom{3}{3} & \cdots & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & \binom{n-3}{0} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & \binom{n-3}{n-2} & \binom{n-2}{n} & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & \binom{n-3}{n-1} & \binom{n-2}{0} & 0 \\
0 & 0 & 0 & 0 & \cdots & \binom{n-3}{3} & \binom{n-2}{2} \\
\binom{n-1}{1} & \binom{n}{0}
\end{array}\right),
$$

where

$$
a_{i, j}= \begin{cases}0, & i<j \\ \binom{j}{i-j}, & j \leq i \leq 2 j \\ 0, & i>2 j\end{cases}
$$

for $1 \leq i, j \leq n$. Then

$$
A_{n}^{-1}=\left(b_{i, j}\right)_{n \times n}
$$

$$
=\left(\begin{array}{ccccccc}
1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
-1 & 1 & 0 & \cdots & 0 & 0 & 0 \\
2 & -2 & 1 & \cdots & 0 & 0 & 0 \\
-5 & 5 & -3 & \cdots & 0 & 0 & 0 \\
14 & -14 & 9 & \cdots & 0 & 0 & 0 \\
-42 & 42 & -28 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
\frac{(-1)^{n-1}}{n-2}\binom{2 n-6}{n-3} & \frac{(-1)^{n} 2}{n-2}\binom{2 n-7}{n-3} & \frac{(-1)^{n-1} 3}{n-2}\binom{2 n-8}{n-3} & \cdots & 1 & 0 & 0 \\
\frac{(-1)^{n}}{n-1}\binom{2 n-4}{n-2} & \frac{(-1)^{n-1} 2}{n-1}\binom{2 n-5}{n-2} & \frac{(-1)^{n} 3}{n-1}\binom{2 n-6}{n-2} & \cdots & -(n-2) & 1 & 0 \\
\frac{(-1)^{n-1}}{n}\binom{2 n-2}{n-1} & \frac{(-1)^{n} 2}{n}\binom{2 n-3}{n-1} & \frac{(-1)^{n-1} 3}{n}\binom{2 n-4}{n-1} & \cdots & \frac{n-2}{n}\binom{n+1}{n-1} & -(n-1) & 1
\end{array}\right),
$$

where

$$
b_{i, j}= \begin{cases}0, & 1 \leq i<j \leq n \tag{4.1}\\ (-1)^{i-j} \frac{j}{i}\binom{2 i-j-1}{i-1}, & n \geq i>j \geq 1\end{cases}
$$

Proof. This follows straightforwardly from combining (3.5) with (3.2). The proof of Theorem 4.1 is complete.

5. Identities of the Catalan numbers

In this section, we present several identities of the Catalan numbers C_{k}.
Theorem 5.1. For $i \geq j \geq 1$, we have

$$
\begin{equation*}
\sum_{\ell=0}^{\lfloor(j-1) / 2\rfloor}(-1)^{\ell}\binom{j-\ell-1}{\ell} C_{i-\ell-1}=\frac{j}{i}\binom{2 i-j-1}{i-1} . \tag{5.1}
\end{equation*}
$$

Proof. Observing the special result (3.6), we guess that the elements $b_{i, j}$ of the inverse of the triangular matrix A_{n} should satisfy the following relations:
(1) for $i<j$, the elements in the upper triangle are $b_{i, j}=0$;
(2) for all $i \in \mathbb{N}$, the elements on the main diagonal are $b_{i, i}=1$;
(3) the elements in the first two columns satisfy $b_{i, 1}=-b_{i, 2}$ for $i \geq 2$;
(4) the elements in the first column are $b_{i, 1}=(-1)^{i-1} C_{i-1}$;
(5) for $1 \leq i \leq n-1$ and $1 \leq j \leq n-2$,

$$
b_{i+1, j+2}=b_{i, j}-b_{i+1, j+1}
$$

(6) for $i \geq j \geq 2$,

$$
b_{i, j}=\sum_{k=-1}^{i-j-1}(-1)^{k+1} b_{i-1, j+k}
$$

Basing on these observations, we guess out that the elements $b_{i, j}$ should alternatively satisfy

$$
\begin{equation*}
b_{i, j}=(-1)^{i-j} \sum_{\ell=0}^{\lfloor(j-1) / 2\rfloor}(-1)^{\ell}\binom{j-\ell-1}{\ell} C_{i-\ell-1}, \quad i \geq j \geq 1 \tag{5.2}
\end{equation*}
$$

Combining this with (4.1) and simplifying yield the identity (5.1).
We now start off to verify the identity (5.1). By virtue of the integral representation (2.4), the formula $\sqrt{2.5}$ in Lemma 2.6 and the integral (2.8) in Lemma 2.7, we acquire

$$
\begin{aligned}
& \sum_{\ell=0}^{\lfloor(j-1) / 2\rfloor}(-1)^{\ell}\binom{j-\ell-1}{\ell} C_{i-\ell-1} \\
& =\frac{1}{2 \pi} \int_{0}^{4} \sqrt{\frac{4-x}{x}}\left[\sum_{\ell=0}^{\lfloor(j-1) / 2\rfloor}(-1)^{\ell}\binom{j-\ell-1}{\ell} x^{i-\ell-1}\right] \mathrm{d} x \\
& =\frac{1}{2 \pi} \int_{0}^{4} x^{i-3 / 2}(4-x)^{1 / 2}\left[\sum_{\ell=0}^{\lfloor(j-1) / 2\rfloor} \frac{(j-1-\ell)!}{(j-1-2 \ell)!} \frac{1}{\ell!}\left(-\frac{1}{x}\right)^{\ell}\right] \mathrm{d} x \\
& =\frac{1}{2 \pi} \int_{0}^{4} x^{i-3 / 2}(4-x)^{1 / 2}\left[\sum_{\ell=0}^{\lfloor(j-1) / 2\rfloor} \frac{\left(\frac{1-j}{2}\right)_{\ell}\left(\frac{2-j}{2}\right)_{\ell}}{(1-j)_{\ell}} \frac{1}{\ell!}\left(\frac{4}{x}\right)^{\ell}\right] \mathrm{d} x \\
& =\frac{1}{2 \pi} \int_{0}^{4} x^{i-3 / 2}(4-x)^{1 / 2}\left[\sum_{\ell=0}^{\infty} \frac{\left(\frac{1-j}{2}\right)_{\ell}\left(\frac{2-j}{2}\right)_{\ell}}{(1-j)_{\ell}} \frac{1}{\ell!}\left(\frac{4}{x}\right)^{\ell}\right] \mathrm{d} x \\
& =\frac{1}{2 \pi} \int_{0}^{4} x^{i-3 / 2}(4-x)^{1 / 2}{ }_{2} F_{1}\left(\frac{1-j}{2}, \frac{2-j}{2} ; 1-j ; \frac{4}{x}\right) \mathrm{d} x \\
& =\frac{4^{i}}{2 \pi} \int_{0}^{1} t^{i-3 / 2}(1-t)^{1 / 2}{ }_{2} F_{1}\left(\frac{1-j}{2}, \frac{2-j}{2} ; 1-j ; \frac{1}{t}\right) \mathrm{d} t \\
& =\frac{4^{i}}{2 \pi} \int_{0}^{1} t^{i-3 / 2}(1-t)^{1 / 2} \frac{1}{2^{j}} \frac{\sqrt{t}}{\sqrt{t-1}}\left[\left(1+\frac{\sqrt{t-1}}{\sqrt{t}}\right)^{j}-\left(1-\frac{\sqrt{t-1}}{\sqrt{t}}\right)^{j}\right] \mathrm{d} t \\
& =\frac{2^{2 i-j}}{2 \pi} \boldsymbol{i} \int_{0}^{1} t^{i-1}\left[\left(1+\sqrt{1-\frac{1}{t}}\right)^{j}-\left(1-\sqrt{1-\frac{1}{t}}\right)^{j}\right] \mathrm{d} t \quad(\boldsymbol{i}=\sqrt{-1}) \\
& =\frac{2^{2 i-j}}{\pi} \boldsymbol{i} \int_{0}^{\infty} \frac{s}{\left(1+s^{2}\right)^{i+1}}\left[(1-\boldsymbol{i} s)^{j}-(1+\boldsymbol{i} s)^{j}\right] \mathrm{d} s \\
& =\frac{2^{2 i-j}}{\pi} \boldsymbol{i} \int_{0}^{\infty} \frac{s}{\left(1+s^{2}\right)^{i+1}}\left[\left(\sqrt{1+s^{2}} e^{-\boldsymbol{i} \arctan s}\right)^{j}-\left(\sqrt{1+s^{2}} e^{\boldsymbol{i} \arctan s}\right)^{j}\right] \mathrm{d} s \\
& =\frac{2^{2 i-j}}{\pi} \boldsymbol{i} \int_{0}^{\infty} \frac{s}{\left(1+s^{2}\right)^{i-j / 2+1}}\left(e^{-i j \arctan s}-e^{i j \arctan s}\right) \mathrm{d} s \\
& =\frac{2^{2 i-j}}{\pi} \int_{0}^{\infty} \frac{s}{\left(1+s^{2}\right)^{i-j / 2+1}} \sin (j \arctan s) \mathrm{d} s \\
& =\frac{2^{2 i-j}}{\pi} \int_{0}^{\pi / 2} \frac{\tan t}{\left(1+\tan ^{2} t\right)^{i-j / 2+1}} \sin (j t) \sec ^{2} t \mathrm{~d} t \\
& =\frac{2^{2 i-j}}{\pi} \int_{0}^{\pi / 2} \frac{\tan t}{\sec ^{2 i-j} t} \sin (j t) \mathrm{d} t \\
& =\frac{2^{2 i-j}}{\pi} \int_{0}^{\pi / 2} \sin t \cos ^{2 i-j-1} t \sin (j t) \mathrm{d} t
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2^{2 i-j}}{\pi} \int_{0}^{\pi / 2}[\cos ((j-1) t)-\cos ((j+1) t)] \cos ^{2 i-j-1} t \mathrm{~d} t \\
& =\frac{2^{2 i-j}}{\pi}\left[\frac{\pi}{2^{2 i-j}(2 i-j) B(i, i-j+1)}-\frac{\pi}{2^{2 i-j}(2 i-j) B(i+1, i-j)}\right] \\
& =\frac{1}{2 i-j}\left[\frac{1}{B(i, i-j+1)}-\frac{1}{B(i+1, i-j)}\right] \\
& =\frac{1}{2 i-j}\left[\frac{\Gamma(2 i-j+1)}{\Gamma(i) \Gamma(i-j+1)}-\frac{\Gamma(2 i-j+1)}{\Gamma(i+1) \Gamma(i-j)}\right] \\
& =(2 i-j-1)!\left[\frac{1}{\Gamma(i) \Gamma(i-j+1)}-\frac{1}{\Gamma(i+1) \Gamma(i-j)}\right] \\
& =(2 i-j-1)!\left[\frac{1}{(i-1)!(i-j)!}-\frac{1}{i!(i-j-1)!}\right] \\
& =\frac{j}{i}\binom{2 i-j-1}{i-1}
\end{aligned}
$$

The identity (5.1) is thus proved. The proof of Theorem 5.1 is complete.
Theorem 5.2. For $i, j, n \in \mathbb{N}$, the Catalan numbers C_{n} satisfy

$$
\begin{gather*}
\sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k}\binom{n-k}{k} C_{n-k}=1, \tag{5.3}\\
\sum_{i \leq 2 \ell \leq 2 i} \sum_{k=0}^{\lfloor(j-1) / 2\rfloor}(-1)^{\ell-k}\binom{\ell}{i-\ell}\binom{j-k-1}{k} C_{\ell-k-1}=0 \tag{5.4}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{\substack{i \geq \geq \geq j \\ \ell \leq 2 j}} \sum_{k=0}^{\lfloor(\ell-1) / 2\rfloor}(-1)^{\ell-k}\binom{j}{\ell-j}\binom{\ell-k-1}{k} C_{i-k-1}=0 \tag{5.5}
\end{equation*}
$$

Proof. This follows from expanding the matrix equation

$$
\begin{equation*}
A_{n} A_{n}^{-1}=A_{n}^{-1} A_{n}=I_{n} \tag{5.6}
\end{equation*}
$$

and utilizing the expression (5.2) in Theorem 4.1. where I_{n} stands for the identity matrix of n orders. This can be written in details as follows.

The matrix equation (5.6) is equivalent to

$$
\sum_{\ell=1}^{n} a_{i, \ell} b_{\ell, j}=\left\{\begin{array}{ll}
0, & i<j \\
\sum_{\ell=j}^{i} a_{i, \ell} b_{\ell, j}, & i \geq j
\end{array}= \begin{cases}0, & i \neq j \\
1, & i=j\end{cases}\right.
$$

and

$$
\sum_{\ell=1}^{n} b_{i, \ell} a_{\ell, j}=\left\{\begin{array}{ll}
0, & i<j \\
\sum_{\ell=j}^{i} b_{i, \ell} a_{\ell, j}, & i \geq j
\end{array}= \begin{cases}0, & i \neq j \\
1, & i=j\end{cases}\right.
$$

which can be rearranged as

$$
\sum_{\ell=j}^{i} a_{i, \ell} b_{\ell, j}=\left\{\begin{array}{ll}
0, & i>j \\
1, & i=j
\end{array} \quad \text { or } \quad \sum_{\ell=j}^{i} b_{i, \ell} a_{\ell, j}= \begin{cases}0, & i>j \\
1, & i=j\end{cases}\right.
$$

for $1 \leq i, j \leq n$.
When $1 \leq i=j \leq n$, it follows that

$$
\begin{gathered}
1=\sum_{\ell=j}^{i} a_{i, \ell} b_{\ell, j}=\sum_{\ell=j}^{i} b_{i, \ell} a_{\ell, j}=a_{i, i} b_{i, i}=b_{i, i} \\
=\sum_{k=0}^{i-1}(-1)^{k}\binom{i-k-1}{k} C_{i-k-1}=\sum_{k=0}^{\lfloor(i-1) / 2\rfloor}(-1)^{k}\binom{i-k-1}{k} C_{i-k-1} .
\end{gathered}
$$

The identity (5.3) is thus concluded.
When $1 \leq j<i \leq n$, it follows that

$$
\begin{gathered}
0=\sum_{\ell=j}^{i} a_{i, \ell} b_{\ell, j}=\sum_{\substack{i / 2 \leq \ell \leq i \\
\ell \geq j}} a_{i, \ell} b_{\ell, j} \\
=\sum_{\substack{i / 2 \leq \ell \leq i \\
\ell \geq j}}\binom{\ell}{i-\ell}(-1)^{\ell-j} \sum_{k=0}^{\lfloor(j-1) / 2\rfloor}(-1)^{k}\binom{j-k-1}{k} C_{\ell-k-1} \\
=(-1)^{j} \sum_{\substack{i / 2 \leq \ell \leq i \\
\ell \geq j}} \sum_{k=0}^{\lfloor(j-1) / 2\rfloor}(-1)^{\ell-k}\binom{\ell}{i-\ell}\binom{j-k-1}{k} C_{\ell-k-1}
\end{gathered}
$$

and

$$
\begin{gathered}
0=\sum_{\ell=j}^{i} b_{i, \ell} a_{\ell, j}=\sum_{\substack{i \geq \ell \geq j \\
\ell \leq 2 j}} b_{i, \ell} a_{\ell, j} \\
=\sum_{\substack{i \geq \ell \geq j \\
\ell \leq 2 j}}(-1)^{i-\ell} \sum_{k=0}^{\lfloor(\ell-1) / 2\rfloor}(-1)^{k}\binom{\ell-k-1}{k} C_{i-k-1}\binom{j}{\ell-j} \\
=(-1)^{i} \sum_{\substack{i \geq \ell \geq j \\
\ell \leq 2 j}} \sum_{k=0}^{\lfloor(\ell-1) / 2\rfloor}(-1)^{\ell-k}\binom{j}{\ell-j}\binom{\ell-k-1}{k} C_{i-k-1} .
\end{gathered}
$$

The identities (5.4) and 5.5 are thus derived. The proof of Theorem 5.2 is complete.
Theorem 5.3. Let $m, n \in \mathbb{N}$. If $n \geq 2 m \geq 2$, then

$$
\begin{equation*}
\frac{\sum_{\ell=0}^{m-1}(-1)^{\ell}\binom{2 m-\ell-1}{\ell} \frac{n+2 \ell+1}{n-\ell+1} C_{n-\ell-1}}{\sum_{\ell=0}^{m-1}(-1)^{\ell}\binom{2 m-\ell-2}{\ell} \frac{1}{2 m-2 \ell-1} C_{n-\ell-1}}=m(2 m-1) . \tag{5.7}
\end{equation*}
$$

Proof. Employing the expression (5.2) and making use of Theorem 5.1, we can write the recursive equation (3.9) as

$$
\begin{aligned}
& 2(k-2 n)(-1)^{n-k} \sum_{\ell=0}^{\lfloor(k-1) / 2\rfloor}(-1)^{\ell}\binom{k-\ell-1}{\ell} C_{n-\ell-1} \\
& \quad+k(-1)^{n-k+1} \sum_{\ell=0}^{\lfloor(k-2) / 2\rfloor}(-1)^{\ell}\binom{k-\ell-2}{\ell} C_{n-\ell-1} \\
& =(-1)^{n-k+1}\left\{k \sum_{\ell=0}^{\lfloor(k-2) / 2\rfloor}(-1)^{\ell}\binom{k-\ell-2}{\ell} C_{n-\ell-1}\right. \\
& \left.-2(k-2 n) \sum_{\ell=0}^{\lfloor(k-1) / 2\rfloor}(-1)^{\ell}\binom{k-\ell-1}{\ell} C_{n-\ell-1}\right\} \\
& =(-1)^{n-k+1}(n+1) \sum_{\ell=0}^{\lfloor(k-1) / 2\rfloor}(-1)^{\ell}\binom{k-\ell-1}{\ell} C_{n-\ell}
\end{aligned}
$$

for $n \geq 2$, that is,

$$
\begin{align*}
& k \sum_{\ell=0}^{\lfloor(k-2) / 2\rfloor}(-1)^{\ell}\binom{k-\ell-2}{\ell} C_{n-\ell-1}-2(k-2 n) \sum_{\ell=0}^{\lfloor(k-1) / 2\rfloor}(-1)^{\ell}\binom{k-\ell-1}{\ell} C_{n-\ell-1} \\
&=(n+1) \sum_{\ell=0}^{\lfloor(k-1) / 2\rfloor}(-1)^{\ell}\binom{k-\ell-1}{\ell} C_{n-\ell}, \quad n \geq 2 \tag{5.8}
\end{align*}
$$

When $k=2 m$ and $m \in \mathbb{N}$, the equation (5.8) is equivalent to

$$
\begin{gathered}
2 m \sum_{\ell=0}^{m-1}(-1)^{\ell}\binom{2 m-\ell-2}{\ell} C_{n-\ell-1}-4(m-n) \sum_{\ell=0}^{m-1}(-1)^{\ell}\binom{2 m-\ell-1}{\ell} C_{n-\ell-1} \\
=(n+1) \sum_{\ell=0}^{m-1}(-1)^{\ell}\binom{2 m-\ell-1}{\ell} C_{n-\ell} \\
2 m \sum_{\ell=0}^{m-1}(-1)^{\ell}\binom{2 m-\ell-2}{\ell} C_{n-\ell-1}-4 m \sum_{\ell=0}^{m-1}(-1)^{\ell}\binom{2 m-\ell-1}{\ell} C_{n-\ell-1} \\
=(n+1) \sum_{\ell=0}^{m-1}(-1)^{\ell}\binom{2 m-\ell-1}{\ell} C_{n-\ell}-4 n \sum_{\ell=0}^{m-1}(-1)^{\ell}\binom{2 m-\ell-1}{\ell} C_{n-\ell-1}, \\
2 m \sum_{\ell=0}^{m-1}(-1)^{\ell}\left[\binom{2 m-\ell-2}{\ell}-2\binom{2 m-\ell-1}{\ell}\right] C_{n-\ell-1} \\
=\sum_{\ell=0}^{m-1}(-1)^{\ell}\binom{2 m-\ell-1}{\ell}\left[(n+1) C_{\left.n-\ell-4 n C_{n-\ell-1}\right]}\right.
\end{gathered}
$$

and

$$
m(2 m-1) \sum_{\ell=0}^{m-1}(-1)^{\ell} \frac{(2 m-\ell-2)!}{\ell!(2 m-2 \ell-1)!} C_{n-\ell-1}=\sum_{\ell=0}^{m-1}(-1)^{\ell}\binom{2 m-\ell-1}{\ell} \frac{n+2 \ell+1}{n-\ell+1} C_{n-\ell-1}
$$

which can be rearranged as

$$
\sum_{\ell=0}^{m-1}(-1)^{\ell}\left[m(2 m-1)-\frac{(2 m-\ell-1)(n+2 \ell+1)}{n-\ell+1}\right] \frac{(2 m-\ell-2)!}{\ell!(2 m-2 \ell-1)!} C_{n-\ell-1}=0
$$

for $n \geq 2 m \geq 2$. This can be further rewritten as 5.7 . The proof of Theorem 5.3 is complete.

6. Remarks

Finally, we give some remarks on the closely related results stated in previous sections.
Remark 6.1. Now we explain the motivation of Theorem 3.1 as follows. In [11], the following results were inductively and recursively obtained.
(1) The nonlinear differential equations

$$
2^{n} n!F^{n+1}(t)=\sum_{i=1}^{n} a_{i}(n)(x-t)^{i-2 n} F^{(i)}(t), \quad n \in \mathbb{N}
$$

has a solution

$$
F(t)=F(t, x)=\frac{1}{1-2 t x+t^{2}}
$$

where $a_{1}(n)=(2 n-3)!$! and

$$
\begin{align*}
a_{i}(n)=\sum_{k_{i-1}=0}^{n-i} \sum_{k_{i-2}=0}^{n-i-k_{i-1}} \ldots & \sum_{k_{1}=0}^{n-i-k_{i-1}-\cdots-k_{2}} 2^{\sum_{j=1}^{i-1} k_{j}} \\
& \times \prod_{j=2}^{i}\left\langle n-\sum_{\ell=j}^{i-1} k_{\ell}-\frac{2 i+2-j}{2}\right\rangle_{k_{j-1}}\left(2\left(n-i-\sum_{j=1}^{i-1} k_{j}\right)-1\right)!! \tag{6.1}
\end{align*}
$$

for $2 \leq i \leq n$, with the notation that

$$
\langle x\rangle_{n}=\prod_{k=0}^{n-1}(x-k)= \begin{cases}x(x-1) \cdots(x-n+1), & n \geq 1 \\ 1, & n=0\end{cases}
$$

is the falling factorial and that the double factorial of negative odd integers $-2 n-1$ is defined by

$$
(-2 n-1)!!=\frac{(-1)^{n}}{(2 n-1)!!}=(-1)^{n} \frac{2^{n} n!}{(2 n)!}
$$

for $n \geq 0$. See [11, Theorem 1].
(2) The higher order Chebyshev polynomials of the second kind $U_{n}^{(\alpha)}(x)$ generated by

$$
\left(\frac{1}{1-2 x t+t^{2}}\right)^{\alpha}=\sum_{n=0}^{\infty} U_{n}^{(\alpha)}(x) t^{n}
$$

satisfy

$$
U_{n}^{(k+1)}(x)=\frac{1}{2^{k} k!} \sum_{i=1}^{k} a_{i}(k) \sum_{\ell=0}^{n}\binom{2 k+n-\ell-i-1}{n-\ell} U_{\ell+i}(x) x^{i+\ell-2 k-n}\langle\ell+i\rangle_{i}
$$

for $k \in \mathbb{N}$, where $U_{n}^{(1)}(x)=U_{n}(x)$. See [11, Theorem 2].
(3) The higher order Legendre polynomials $p_{n}^{(\alpha)}(x)$ generated by

$$
\left(\frac{1}{\sqrt{1-2 x t+t^{2}}}\right)^{\alpha}=\sum_{n=0}^{\infty} p_{n}^{(\alpha)}(x) t^{n}
$$

satisfy

$$
\sum_{\ell=0}^{n} p_{\ell}^{(k+1)}(x) p_{n-\ell}^{(k+1)}(x)=\frac{1}{2^{k} k!} \sum_{i=1}^{k} a_{i}(k) \sum_{\ell=0}^{n}\binom{2 k+n-\ell-i-1}{n-\ell} U_{\ell+i}(x)\langle\ell+i\rangle_{i} x^{i+\ell-2 k-n}
$$

for $k \in \mathbb{N}$ and $n \geq 0$ and
$U_{n}^{(k+1)}(x)=\frac{1}{2^{k} k!} \sum_{i=1}^{k} a_{i}(k) \sum_{\ell=0}^{n} \sum_{j=0}^{\ell+i}\binom{2 k+n-\ell-i-1}{n-\ell} x^{i+\ell-2 k-n}\langle\ell+i\rangle_{i} p_{\ell+i-j}(x)$
for $k, n \in \mathbb{N}$, where $p_{n}^{(1)}(x)=p_{n}(x)$. See [11, Corollaries 3 and 4].
(4) The higher order Chebyshev polynomials of the third kind $V_{n}^{(\alpha)}(x)$ generated by

$$
\left(\frac{1-t}{\sqrt{1-2 x t+t^{2}}}\right)^{\alpha}=\sum_{n=0}^{\infty} V_{n}^{(\alpha)}(x) t^{n}
$$

satisfy

$$
\begin{aligned}
\sum_{\ell=0}^{n}\binom{k+n-\ell}{n-\ell} V_{\ell}^{(k+1)}(x)= & \frac{1}{2^{k} k!} \sum_{i=1}^{k} \sum_{\ell=0}^{i} a_{i}(k) \frac{i!}{\ell!} \\
& \times \sum_{m+s+p=n}\binom{2 k+m-i-1}{m}\binom{i-\ell+s}{s}\langle\ell+p\rangle_{\ell} x^{i-2 k-m} V_{\ell+p}(x)
\end{aligned}
$$

for $k \in \mathbb{N}$ and $n \geq 0$, where $V_{n}^{(1)}(x)=V_{n}(x)$. See [11, Theorem 5].
(5) The higher order Chebyshev polynomials of the fourth kind $W_{n}^{(\alpha)}(x)$ generated by

$$
\left(\frac{1+t}{\sqrt{1-2 x t+t^{2}}}\right)^{\alpha}=\sum_{n=0}^{\infty} W_{n}^{(\alpha)}(x) t^{n}
$$

satisfy

$$
\begin{aligned}
\sum_{\ell=0}^{n}(-1)^{n-\ell}\binom{k+n-\ell}{n-\ell} & W_{\ell}^{(k+1)}(x)=\frac{1}{2^{k} k!} \sum_{i=1}^{k} \sum_{\ell=0}^{i}(-1)^{i-\ell} a_{i}(k) \frac{i!}{\ell!} \\
& \times \sum_{m+s+p=n}(-1)^{s}\binom{2 k+m-i-1}{m}\binom{i-\ell+s}{s}\langle\ell+p\rangle_{\ell} x^{i-2 k-m} W_{\ell+p}(x)
\end{aligned}
$$

for $k \in \mathbb{N}$ and $n \geq 0$, where $W_{n}^{(1)}=W_{n}(x)$. See [11, Theorem 6].
(6) The higher order Chebyshev polynomials of the first kind $T_{n}^{(\alpha)}(x)$ generated by

$$
\left(\frac{1-t^{2}}{\sqrt{1-2 x t+t^{2}}}\right)^{\alpha}=\sum_{n=0}^{\infty} T_{n}^{(\alpha)}(x) t^{n}
$$

satisfy

$$
\begin{gathered}
2^{k+1} k!\sum_{s+m+p=n}\binom{k+s}{s}\binom{m+k}{m}(-1)^{m} T_{p}^{(k+1)}(x) \\
=\sum_{i=1}^{k} \sum_{\ell=0}^{i} a_{i}(k) \frac{i!}{\ell!} \sum_{m+s+p=n}\binom{2 k+m-i-1}{m}\binom{i+s-\ell}{s}\langle\ell+p\rangle_{\ell} x^{i-2 k-m} T_{p+\ell}(x) \\
+\sum_{i=1}^{k} \sum_{\ell=0}^{i} a_{i}(k) \frac{i!}{\ell!}(-1)^{i-\ell} \sum_{m+s+p=n}(-1)^{s}\binom{2 k+m-i-1}{m}\binom{i+s-\ell}{s}\langle\ell+p\rangle_{\ell} x^{i-2 k-m} T_{p+\ell}(x)
\end{gathered}
$$

for $k \in \mathbb{N}$ and $n \geq 0$. See [11, Theorem 7].
It is clear that the quantities $a_{i}(n)$ defined by 6.1) play a key role in the above-mentioned conclusions obtained in the paper [11]. However, the quantities $a_{i}(n)$ are expressed complicatedly and can not be computed easily. Can one find a simple expression for the quantities $a_{i}(n)$? Theorem 3.1 answers this question by

$$
\begin{equation*}
a_{k}(n)=\frac{(-1)^{n-k}}{2^{n-k}} \frac{n!}{k!} b_{n, k}=\frac{1}{2^{n-k}} \frac{(n-1)!}{(k-1)!}\binom{2 n-k-1}{n-1} \tag{6.2}
\end{equation*}
$$

for $n \geq k \geq 1$. By this much simpler expression for $a_{k}(n)$, we can reformulate all the abovementioned main results in the paper [11] in terms of the quantities defined in (6.2). For saving time of the authors and space of this paper, we do not write down them in details.

Due to the same motivation and reason as Theorem 3.1, the authors composed and published the papers [10, 19, 20, 21, 35, 36, 37, 38, 48, 49, 50, 57, 58, for examples.

Remark 6.2. The identity (5.3) recovers [61, p. 2187, Theorem 2, Eq. (15b)]. It can also be verified alternatively and directly by the same method used in the proof of the identity (5.1).

Actually, the identity 5.3 is a special case $i=j \in \mathbb{N}$ of the identity 5.1). In other words, the identity (5.1) generalizes, or say, extends (5.3).

It is clear that the proof of the identity (55.3) is simpler than the one of (5.3) adopted in 61] and related references therein.

Remark 6.3. The integral representation (2.4) for the Catalan numbers C_{k} and its variant forms can be found in [3, 4, 5, 6, 16, 17, 44] and the closely related references therein.

In recent years, there are plenty of literature, such as [14, 18, 25, 27, 31, 32, 40, 41, 44, 46, 47, 59, 62, 63, dedicated to generalizations of the Catalan numbers C_{n} and to investigating their properties.

Remark 6.4. The formula 2.3 in Lemma 2.3 has also been applied many times in some papers such as [9, 26, 29, 33, 36, 38, 39, 42, 43, 45, 51, 56, 60, and the closely related references therein.

Remark 6.5. Let $A_{n}=I_{n}+M_{n}$ and I_{n} be the identity matrix of order n. By linear algebra, it is easy to see that $M_{n}^{n}=0$ and

$$
\left(I_{n}+M_{n}\right)\left(I_{n}-M_{n}+M_{n}^{2}-M_{n}^{3}+\cdots+(-1)^{n-1} M_{n}^{n-1}\right)=I_{n}-M_{n}^{n}=I_{n}
$$

This means that

$$
A_{n}^{-1}=\left(I_{n}+M_{n}\right)^{-1}=I_{n}+\sum_{k=1}^{n-1}(-1)^{k} M_{n}^{k}
$$

In theory, this formula is useful for computing the inverse A_{n}^{-1}. But, in practice, it is too difficult to acquire the simple form in $\sqrt{4.1}$.

Can one conclude a general and concrete formula for computing M_{n}^{k} from Theorem 4.1?
Remark 6.6. Motivated by the proof of the identity 5.1, we naturally ask a question: can one explicitly compute integrals of the type

$$
\int_{0}^{1} z^{\alpha-1}(1-z)^{\beta-1}{ }_{p} F_{q}\left(a, b ; c ; x z^{\sigma}\right) \mathrm{d} z ?
$$

In [53, p. 340, Remark], it was given that

$$
\int_{0}^{1} z^{\alpha-1}(1-z)^{\beta-1}{ }_{2} F_{1}\left(a, b ; c ; x z^{\sigma}\right) \mathrm{d} z=\frac{\Gamma(c) \Gamma(\beta)}{\Gamma(a) \Gamma(b)}{ }_{3} \Phi_{2}((a, 1),(b, 1),(\alpha, \sigma) ;(c, 1),(\alpha+\beta, \sigma) ; x)
$$

where

$$
{ }_{p} \Phi_{q}\left(\left(\alpha_{1}, \beta_{1}\right), \ldots,\left(\alpha_{p}, \beta_{p}\right) ;\left(\rho_{1}, \mu_{1}\right), \ldots,\left(\rho_{p}, \mu_{q}\right) ; z\right)=\sum_{n=0}^{\infty} \frac{\Gamma\left(\alpha_{1}+\beta_{1} n\right) \cdots \Gamma\left(\alpha_{p}+\beta_{p} n\right)}{\Gamma\left(\rho_{1}+\mu_{1} n\right) \cdots\left(\Gamma\left(\rho_{q}+\mu_{q} n\right)\right)} \frac{z^{n}}{n!}
$$

and β_{r}, μ_{t} are real positive numbers such that

$$
1+\sum_{t=1}^{q} \mu_{t}-\sum_{r=1}^{p} \beta_{r}>0
$$

Making use of this result, we can supply an alternative proof of the identity 5.1 in Theorem 5.1.
There is a similar formula in [52, p. 104, Theorem 38].
This question has also been considered in [1, 23] and the closely related references therein.
Remark 6.7. In [15, p. 387, 15.4.18], it was listed that the formula

$$
{ }_{2} F_{1}\left(a, a+\frac{1}{2} ; 2 a ; z\right)=\frac{1}{\sqrt{1-z}}\left(\frac{1}{2}+\frac{\sqrt{1-z}}{2}\right)^{1-2 a}
$$

holds for the principal branch when $|z|<1$, and by analytic continuation elsewhere. Straightforwardly letting $a=\frac{1-j}{2}$ results in

$$
{ }_{2} F_{1}\left(\frac{1-j}{2}, \frac{2-j}{2} ; 1-j ; t\right)=\frac{1}{\sqrt{1-t}}\left(\frac{1}{2}+\frac{\sqrt{1-t}}{2}\right)^{j}, \quad|t|<1
$$

Replacing t by $\frac{1}{t}$ leads to

$$
{ }_{2} F_{1}\left(\frac{1-j}{2}, \frac{2-j}{2} ; 1-j ; \frac{1}{t}\right)=\frac{1}{2^{j}} \sqrt{\frac{t}{t-1}}\left(1+\sqrt{\frac{t-1}{t}}\right)^{j}, \quad|t|>1 .
$$

This expression for ${ }_{2} F_{1}\left(\frac{1-j}{2}, \frac{2-j}{2} ; 1-j ; \frac{1}{t}\right)$ is slightly different from 2.5) in Lemma 2.6 .
Remark 6.8. Comparing main results of this paper with those in [28], we can see that there exist some close connections among the Chebyshev polynomials of the second kind U_{n}, the Catalan numbers C_{n}, the central Delannoy numbers D_{n}, the Fibonacci polynomials $F_{n}(x)$, and triangular and tridiagonal matrices.

Comparing Theorem 3.1 with Theorem 5.1 reveals that the equality (3.4) can be reformulated in terms of the Catalan numbers C_{n} as

$$
\begin{equation*}
\sum_{k=1}^{n}\left[\sum_{\ell=0}^{\lfloor(k-1) / 2\rfloor}(-1)^{\ell}\binom{k-\ell-1}{\ell} C_{n-\ell-1}\right](2 x)^{k} U_{k}(x)=(2 x)^{2 n} \tag{6.3}
\end{equation*}
$$

Taking $x=3$ in (6.3) and considering results in [28, Section 10] disclose that

$$
\sum_{k=1}^{n} 6^{k}\left[\sum_{\ell=0}^{\lfloor(k-1) / 2\rfloor}(-1)^{\ell}\binom{k-\ell-1}{\ell} C_{n-\ell-1}\right]\left[\sum_{\ell=0}^{k} D(\ell) D(k-\ell)\right]=6^{2 n},
$$

where $D(k)$ denotes the central Delannoy numbers which are combinatorially the numbers of "king walks" from the $(0,0)$ corner of an $n \times n$ square to the upper right corner (n, n) and can be generated analytically by

$$
\frac{1}{\sqrt{1-6 x+x^{2}}}=\sum_{k=0}^{\infty} D(k) x^{k}=1+3 x+13 x^{2}+63 x^{3}+\cdots
$$

Taking $x=\frac{s}{2} \sqrt{-1}$ in 6.3) and utilizing results in [28, Section 8] expose that

$$
\sum_{k=1}^{n}(-1)^{k}\left[\sum_{\ell=0}^{\lfloor(k-1) / 2\rfloor}(-1)^{\ell}\binom{k-\ell-1}{\ell} C_{n-\ell-1}\right] s^{k} F_{k+1}(s)=(-1)^{n} s^{2 n}
$$

where the Fibonacci polynomials

$$
F_{n}(s)=\frac{1}{2^{n}} \frac{\left(s+\sqrt{4+s^{2}}\right)^{n}-\left(s-\sqrt{4+s^{2}}\right)^{n}}{\sqrt{4+s^{2}}}
$$

can be generated by

$$
\frac{t}{1-t s-t^{2}}=\sum_{n=1}^{\infty} F_{n}(s) t^{n}=t+s t^{2}+\left(s^{2}+1\right) t^{3}+\left(s^{3}+2 s\right) t^{4}+\cdots
$$

Remark 6.9. Now we can see that our main results in this paper stride analysis, special functions, combinatorics, number theory, matrix theory, integral transforms, and the like.

References

[1] P. Agarwal, F. Qi, M. Chand, and S. Jain, Certain integrals involving the generalized hypergeometric function and the Laguerre polynomials, J. Comput. Appl. Math. 313 (2017), 307-317; Available online at http://dx. doi.org/10.1016/j.cam.2016.09.034
[2] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, Revised and Enlarged Edition, D. Reidel Publishing Co., Dordrecht and Boston, 1974.
[3] T. Dana-Picard, Integral presentations of Catalan numbers, Internat. J. Math. Ed. Sci. Tech. 41 (2010), no. 1, 63-69; Available online at http://dx.doi.org/10.1080/00207390902971973
[4] T. Dana-Picard, Integral presentations of Catalan numbers and Wallis formula, Internat. J. Math. Ed. Sci. Tech. 42 (2011), no. 1, 122-129; Available online at http://dx.doi.org/10.1080/0020739X.2010.519792
[5] T. Dana-Picard, Parametric integrals and Catalan numbers, Internat. J. Math. Ed. Sci. Tech. 36 (2005), no. 4, 410-414; Available online at http://dx.doi.org/10.1080/00207390412331321603
[6] T. Dana-Picard and D. G. Zeitoun, Parametric improper integrals, Wallis formula and Catalan numbers, Internat. J. Math. Ed. Sci. Tech. 43 (2012), no. 4, 515-520; Available online at http://dx.doi.org/10.1080/ 0020739X. 2011.599877.
[7] O. Dunkel, W. A. Bristol, W.R. Church, and V. F. Ivanoff, Problems and Solutions: Solutions: 3421, Amer. Math. Monthly 38 (1931), no. 1, 54-57; Available online at http://dx.doi.org/10.2307/2301598
[8] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Translated from the Russian, Translation edited and with a preface by Daniel Zwillinger and Victor Moll, Eighth edition, Revised from the seventh edition, Elsevier/Academic Press, Amsterdam, 2015; Available online at http://dx.doi.org/10.1016/ B978-0-12-384933-5.00013-8
[9] B.-N. Guo and F. Qi, Explicit formulas for special values of the Bell polynomials of the second kind and the Euler numbers, ResearchGate Technical Report (2015), available online at http://dx.doi.org/10.13140/2.1. 3794.8808
[10] B.-N. Guo and F. Qi, Some identities and an explicit formula for Bernoulli and Stirling numbers, J. Comput. Appl. Math. 255 (2014), 568-579; Available online at http://dx.doi.org/10.1016/j.cam. 2013.06.020
[11] T. Kim, D. S. Kim, J.-J. Seo, and D. V. Dolgy, Some identities of Chebyshev polynomials arising from non-linear differential equations, J. Comput. Anal. Appl. 23 (2017), no. 5, 820-832.
[12] T. Koshy, Catalan Numbers with Applications, Oxford University Press, Oxford, 2009.
[13] F.-F. Liu, X.-T. Shi, and F. Qi, A logarithmically completely monotonic function involving the gamma function and originating from the Catalan numbers and function, Glob. J. Math. Anal. 3 (2015), no. 4, 140-144; Available online at http://dx.doi.org/10.14419/gjma.v3i4.5187
[14] M. Mahmoud and F. Qi, Three identities of the Catalan-Qi numbers, Mathematics 4 (2016), no. 2, Article 35, 7 pages; Available online at http://dx.doi.org/10.3390/math4020035
[15] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, New York, 2010; Available online at http://dlmf.nist.gov/.
[16] K. A. Penson and J.-M. Sixdeniers, Integral representations of Catalan and related numbers, J. Integer Seq. 4 (2001), no. 2, Article 01.2.5.
[17] F. Qi, An improper integral with a square root, Preprints 2016, 2016100089, 8 pages; Available online at http://dx.doi.org/10.20944/preprints201610.0089.v1.
[18] F. Qi, Asymptotic expansions, complete monotonicity, and inequalities of the Catalan numbers, ResearchGate Technical Report (2015), available online at http://dx.doi.org/10.13140/RG.2.1.4371.6321
[19] F. Qi, Explicit formulas for the convolved Fibonacci numbers, ResearchGate Working Paper (2016), available online at http://dx.doi.org/10.13140/RG.2.2.36768.17927,
[20] F. Qi and B.-N. Guo, Explicit formulas and nonlinear ODEs of generating functions for Eulerian polynomials, ResearchGate Working Paper (2016), available online at http://dx.doi.org/10.13140/RG.2.2.23503.69288
[21] F. Qi and B.-N. Guo, Explicit formulas for derangement numbers and their generating function, J. Nonlinear Funct. Anal. 2016, Article ID 45, 10 pages.
[22] F. Qi, B.-N. Guo, V. Čerňanová, and X.-T. Shi, Explicit expressions, Cauchy products, integral representations, convexity, and inequalities of central Delannoy numbers, ResearchGate Working Paper (2016), available online at http://dx.doi.org/10.13140/RG.2.1.4889.6886
[23] F. Qi and K. S. Nisar, Some integral transforms of the generalized k-Mittag-Leffler function, Preprints 2016, 2016100020, 8 pages; Available online at http://dx.doi.org/10.20944/preprints201610.0020.v1
[24] F. Qi, Limit formulas for ratios between derivatives of the gamma and digamma functions at their singularities, Filomat 27 (2013), no. 4, 601-604; Available online at http://dx.doi.org/10.2298/FIL1304601Q.
[25] F. Qi, A. Akkurt, and H. Yildirim, Catalan numbers, k-gamma and k-beta functions, and parametric integrals, J. Comput. Anal. Appl. 24 (2018), in press. ResearchGate Working Paper (2017), available online at http: //dx.doi.org/10.13140/RG.2.2.19398.06721.
[26] F. Qi and V. Cerňanová, Some discussions on a kind of improper integrals, Internat. J. Anal. Appl. 11 (2016), no. 2, 101-109.
[27] F. Qi and P. Cerone, Several expressions, some properties, and a double inequality of the Fuss-Catalan numbers, ResearchGate Research (2015), available online at http://dx.doi.org/10.13140/RG.2.1.1655.6004
[28] F. Qi, V. Čerňanová, and Y. S. Semenov, On tridiagonal determinants and the Cauchy product of central Delannoy numbers, ResearchGate Working Paper (2016), available online at http://dx.doi.org/10.13140/RG. 2.1.3772.6967
[29] F. Qi and B.-N. Guo, Explicit and recursive formulas, integral representations, and properties of the large Schröder numbers, Kragujevac J. Math. 41 (2017), no. 1, 121-141.
[30] F. Qi and B.-N. Guo, Integral representations and complete monotonicity of remainders of the Binet and Stirling formulas for the gamma function, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 111 (2017), no. 2, 425-434; Available online at http://dx.doi.org/10.1007/s13398-016-0302-6
[31] F. Qi and B.-N. Guo, Logarithmically complete monotonicity of a function related to the Catalan-Qi function, Acta Univ. Sapientiae Math. 8 (2016), no. 1, 93-102; Available online at http://dx.doi.org/10.1515/ ausm-2016-0006
[32] F. Qi and B.-N. Guo, Logarithmically complete monotonicity of Catalan-Qi function related to Catalan numbers, Cogent Math. (2016), 3:1179379, 6 pages; Available online at http://dx.doi.org/10.1080/23311835.2016. 1179379
[33] F. Qi and B.-N. Guo, Several explicit and recursive formulas for the generalized Motzkin numbers, Preprints 2017, 22017030200, 11 pages; Available online at http://dx.doi.org/10.20944/preprints201703.0200.v1
[34] F. Qi and B.-N. Guo, Some properties and generalizations of the Catalan, Fuss, and Fuss-Catalan numbers, Mathematical Analysis and Applications: Selected Topics, 35 pages, edited by H. Dutta, M. Ruzhansky, and R. P. Agarwal, Wiley, October 2017.
[35] F. Qi and B.-N. Guo, Some properties of a solution to a family of inhomogeneous linear ordinary differential equations, Preprints 2016, 2016110146, 11 pages; Available online at http://dx.doi.org/10.20944/ preprints201611.0146.v1
[36] F. Qi and B.-N. Guo, Some properties of the Hermite polynomials and their squares and generating functions, Preprints 2016, 2016110145, 14 pages; Available online at http://dx.doi.org/10.20944/preprints201611. $0145 . \mathrm{v1}$
[37] F. Qi and B.-N. Guo, Viewing some nonlinear ODEs and their solutions from the angle of derivative polynomials, ResearchGate Working Paper (2016), available online at http://dx.doi.org/10.13140/RG.2.1.4593.1285
[38] F. Qi and B.-N. Guo, Viewing some ordinary differential equations from the angle of derivative polynomials, Preprints 2016, 2016100043, 12 pages; Available online at http://dx.doi.org/10.20944/preprints201610. $0043 . v 1$
[39] F. Qi, B.-N. Guo, V. Čerňanová, and X.-T. Shi, Explicit expressions, Cauchy products, integral representations, convexity, and inequalities of central Delannoy numbers, ResearchGate Working Paper (2016), available online at http://dx.doi.org/10.13140/RG.2.1.4889.6886
[40] F. Qi, M. Mahmoud, X.-T. Shi, and F.-F. Liu, Some properties of the Catalan-Qi function related to the Catalan numbers, SpringerPlus (2016), 5:1126, 20 pages; Available online at http://dx.doi.org/10.1186/ s40064-016-2793-1
[41] F. Qi, X.-T. Shi, and P. Cerone, A unified generalization of the Catalan, Fuss, and Fuss-Catalan numbers and the Catalan-Qi function, ResearchGate Working Paper (2015), available online at http://dx.doi.org/10. 13140/RG.2.1.3198.6000
[42] F. Qi, X.-T. Shi, and B.-N. Guo, Integral representations of the large and little Schröder numbers, ResearchGate Working Paper (2016), available online at http://dx.doi.org/10.13140/RG.2.1.1988.3288
[43] F. Qi, X.-T. Shi, and B.-N. Guo, Two explicit formulas of the Schröder numbers, Integers 16 (2016), Paper No. A23, 15 pages.
[44] F. Qi, X.-T. Shi, and F.-F. Liu, An integral representation, complete monotonicity, and inequalities of the Catalan numbers, ResearchGate Technical Report (2015), available online at http://dx.doi.org/10.13140/RG. 2.1.3754.4806
[45] F. Qi, X.-T. Shi, F.-F. Liu, and D. V. Kruchinin, Several formulas for special values of the Bell polynomials of the second kind and applications, J. Appl. Anal. Comput. (2017), in press. ResearchGate Technical Report (2015), available online at http://dx.doi.org/10.13140/RG.2.1.3230.1927
[46] F. Qi, X.-T. Shi, M. Mahmoud, and F.-F. Liu, Schur-convexity of the Catalan-Qi function related to the Catalan numbers, Tbilisi Math. J. 9 (2016), no. 2, 141-150; Available online at http://dx.doi.org/10.1515/ tmj-2016-0026
[47] F. Qi, X.-T. Shi, M. Mahmoud, and F.-F. Liu, The Catalan numbers: a generalization, an exponential representation, and some properties, J. Comput. Anal. Appl. 23 (2017), no. 5, 937-944.
[48] F. Qi, J.-L. Wang, and B.-N. Guo, Simplifying two families of nonlinear ordinary differential equations, Preprints 2017, 22017030192, 6 pages; Available online at http://dx.doi.org/10.20944/preprints201703.0192.v1.
[49] F. Qi and J.-L. Zhao, Some properties of the Bernoulli numbers of the second kind and their generating function, J. Differ. Equ. Appl. (2017), in press. ResearchGate Working Paper (2017), available online at http://dx.doi. org/10.13140/RG.2.2.13058.27848
[50] F. Qi, J.-L. Zhao, and J.-L. Wang, Derivative polynomials of a function related to the Apostol-Euler and Frobenius-Euler numbers, J. Nonlinear Sci. Appl. 10 (2017), in press. ResearchGate Working Paper (2017), available online at http://dx.doi.org/10.13140/RG.2.2.35572.35204
[51] F. Qi and M.-M. Zheng, Explicit expressions for a family of the Bell polynomials and applications, Appl. Math. Comput. 258 (2015), 597-607; Available online at http://dx.doi.org/10.1016/j.amc.2015.02.027
[52] E. D. Rainville, Special Functions, The Macmillan Co., New York, 1960.
[53] S. B. Rao, J. C. Prajapati, A. K. Shukla, Wright type hypergeometric function and its properties, Adv. Pure Math. 3 (2013), 335-342; Available online at http://dx.doi.org/10.4236/apm. 2013.33048
[54] X.-T. Shi, F.-F. Liu, and F. Qi, An integral representation of the Catalan numbers, Glob. J. Math. Anal. 3 (2015), no. 3, 130-133; Available online at http://dx.doi.org/10.14419/gjma.v3i3.5055
[55] R. P. Stanley, Catalan Numbers, Cambridge University Press, New York, 2015; Available online at http: //dx.doi.org/10.1017/CBO9781139871495
[56] C.-F. Wei and F. Qi, Several closed expressions for the Euler numbers, J. Inequal. Appl. 2015, 2015:219, 8 pages; Available online at http://dx.doi.org/10.1186/s13660-015-0738-9.
[57] A.-M. Xu and G.-D. Cen, Closed formulas for computing higher-order derivatives of functions involving exponential functions, Appl. Math. Comput. 270 (2015), 136-141; Available online at http://dx.doi.org/10.1016/ j.amc.2015.08.051.
[58] A.-M. Xu and Z.-D. Cen, Some identities involving exponential functions and Stirling numbers and applications, J. Comput. Appl. Math. 260 (2014), 201-207; Available online at http://dx.doi.org/10.1016/j.cam.2013.09. 077.
[59] L. Yin and F. Qi, Several series identities involving the Catalan numbers, Preprints 2017, 2017030029, 11 pages; Available online at http://dx.doi.org/10.20944/preprints201703.0029.v1
[60] J.-L. Zhao and F. Qi, Two explicit formulas for the generalized Motzkin numbers, J. Inequal. Appl. 2017, 2017:44, 8 pages; Available online at http://dx.doi.org/10.1186/s13660-017-1313-3
[61] R. R. Zhou and W. Chu, Identities on extended Catalan numbers and their q-analogs, Graphs Combin. 32 (2016), no. 5, 2183-2197; Available online at http://dx.doi.org/10.1007/s00373-016-1694-y
[62] Q. Zou, Analogues of several identities and supercongruences for the Catalan-Qi numbers, J. Inequal. Spec. Funct. 7 (2016), no. 4, 235-241.
[63] Q. Zou, The q-binomial inverse formula and a recurrence relation for the q-Catalan-Qi numbers, J. Math. Anal. 8 (2017), no. 1, 176-182.
(Qi) Institute of Mathematics, Henan Polytechnic University, Jiaozuo City, Henan Province, 454010, China; College of Mathematics, Inner Mongolia University for Nationalities, Tongliao City, Inner Mongolia Autonomous Region, 028043, China; Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin City, 300387, China

E-mail address: qifeng618@gmail.com, qifeng618@hotmail.com, qifeng618@qq.com
$U R L$: https://qifeng618.wordpress.com
(Guo) School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City, Henan Province, 454010, China

E-mail address: bai.ni.guo@gmail.com, bai.ni.guo@hotmail.com
$U R L$: http://www.researchgate.net/profile/Bai-Ni_Guo/

[^0]: 2010 Mathematics Subject Classification. Primary 11B83; Secondary 05A15, 05A19, 11C08, 11C20, 11Y35, 15A09, 15B36, 33C05, 34A34.
 Key words and phrases. identity; inverse matrix; explicit formula; generating function; Chebyshev polynomials of the second kind; Catalan number; triangular matrix; classical hypergeometric function; integral representation. This paper was typeset using $\mathcal{A} \mathcal{M} \mathcal{S}$-LATEX.

