Article Improved Synthesis of Glucosyl Esters

Yu Chen 1,2, Huan Lu 2, Yanyu Chen 1 Wansheng Yu 2, Hui Dai 2 and Xianhua Pan 1,2,*

- ¹ School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Rd., Shanghai 201418, China; chenyu@sit.edu.cn (Y.C.); 156071203@mail.sit.edu.cn (Y.C.);
- ² Shanghai Research Institute of Fragrance and Flavor Industry, 480 Nanning Rd., Shanghai 200232, China; aijiudu@sina.com (H.L.); yu102658@126.com (W.Y.); ddai_hui@126.com (H.D.)
- * Correspondence: panxh@sit.edu.cn; Tel.: +86-21-5496-1786.

Abstract: An improved synthesis of glucosyl esters was reported here, avoiding the use of expensive Ag reagent as well as the hydrolysis of instable glucosyl bromide. Notably, -configuration product was exclusively obtained in good yield.

Keywords: glucosyl esters; glucosyl bromide; aromatic acids; aliphatic acids.

1. Introduction

Much more glycosyl esters have been investigated because of the biologically activity. Such as tuliposide-A and tuliposide-B, showed bacteriotoxic and fungitoxic effects [1]. Some of saturated fatty glycosyl esters were examined for antitumor activity [2]. In addition, glycosyl esters have also been applied for cosmetics, detergents, oral-care products and medical supplies as the flavor precursors.

The fact that a few of glycosyl esters have been found in nature, forced various synthetic methods to be developed. The Koenigs-Knorr reaction using glucosyl bromide with acid is the most attractive. Several publications disclosed the glucosylation of carboxylic acid promoted by Ag catalysts through Koenigs-Knorr reaction [1a, 3]. However, the expensive Ag catalysts (at least one equivalent) limited its application. Therefore, other alternative methods have been reported, involving the compounds such as orthoesters [4], trifluoroacetates [5], TMSET glycosides [6], glucosyl fluoride [7], instead of glucosyl bromide. In addition, the Mitsunobu protocol was also explored [8]. But the added-steps and the cost for the preparation of these compounds, low yield and low selectivity of the product as well as the harsh condition make the reaction challenging.

2. Results and Discussion

The formation of the glucosyl esters by condensation of acid with glucosyl bromide in inorganic base aqueous/DCM seemed to be a good choice [9]. In our research, however, we found low yield results for most of the substrates when the reaction ran on larger sacle (1 g). The impurity **4** (mixture) was formed during the condensation. The reason was found to be the hydrolysis of the glucosyl bromide **1** in the presence of H₂O. Herein, we describe the improved synthesis of this reaction and a series of glucosyl esters were prepared.

We started to study this reaction with benzoic acid **2a**, which was reacted with -glucosyl bromide **1** in the presence of Aliquat 336[®] (CAS: 63393-96-4) as the phase transfer catalyst (PTC). From Table 1, we could see that the reaction was influenced largely by the water. The more water exists, the more compound **4** forms (Table 1, entries 1–3). When only DCM was used as the solvent, product **3a** was obtained in high yield, with less than 5% impurity **4** (Table 1, entry 4). Considering 0.5 equiv of water would form by the reaction itself with K₂CO₃, 4A molecular sieve (4A MS) was added, which made the yield increased by 6% (Table 1, entry 5). It was found that K₂CO₃ was the best base after the comparison of the bases according to the yield and the cost (Table 1, entries 6-10). The reaction was completely suppressed when NaOH or Et₃N was used as the base with compound **1** recycled, probably because of the instability of PTC in stronger base (Table 1, entry 9) or the quite weaker basicity of Et₃N (Table 1, entry 10).

2 of 10

	Acto Br + HO	Ph base DCM/H ₂ O A£86 Aliquat 336 [®] 2a	$ \begin{array}{c} OAc \\ Accolution \\ Accolut$	ОАс -О ОН
Entry	Base	H ₂ O	3a ^b	4 ^b
1	K ₂ CO ₃	5 mL (278 mmol) ^c	35%	55%
2	K ₂ CO ₃	2.5 mL (139 mmol)	54%	35%
3	K ₂ CO ₃	0.5 mL (27.8 mmol)	78%	12%
4	K ₂ CO ₃	-	88%	4%
5	K ₂ CO ₃	_d	94%	trace
6	Na ₂ CO ₃	_d	80%	trace
7	NaHCO ₃	_d	69%	trace
8	Cs ₂ CO ₃	_d	90%	trace
9	NaOH	_d	NR	trace
10	Et ₃ N	_d	NR	trace

Table 1. The influence of water and the screening of base for the reaction of 1 with 2a^a

^aThe reaction was conducted with **1** (2.5 mmol), **2a** (5 mmol), base (5 mmol) and Aliquat 336 (0.25 mmol) in 35 mL DCM with or without H₂O. ^bIsolated yield. ^cAbout 115 equiv of H₂O to glucosyl bromide was used according to reference 9. ^d0.25 g 4A molecular sieve was added.

Notably, -configuration product was exclusively obtained through SN₂ substitution, compared with the known data [5–6, 10–11]. Unlike condensation product, the mixture of for impurity **4** was observed by ¹H NMR according to the known data [12], which implies that intermediate **5** might be involved (Scheme 1).

Scheme 1. mixture of compound 4 from intermediate 5.

Next, PTC and the solvents were screened. In Table 2, it seemed that the reaction did not happen without PTC. Only 10% mol PTC, such as TBAB (Tetrabutyl ammonium bromide), TEAB (Tetraethyl ammonium bromide), BTEAC (Benzyl triethyl ammonium chloride), CTMAB (Hexadecyl trimethyl ammonium bromide) compelled the reaction to give the product in high yield (Table 2, entries 1–5). After comparison of the solvents, DCM proved to be the best solvent (Table 2, entries 6–8).

Table 2. Screening of PTC and the solvent^a

A&&-	$ \begin{array}{c} $	K ₂ CO ₃ solvent/4A MS 10% mol PTC	$A_{ACO} \rightarrow O_{OAC} \rightarrow O_{O$
Entry	РТС	Solvent	3a ^b
1	TBAB	DCM	99%
2	TEAB	DCM	99%
3	BEAC	DCM	96%
4	CMAB	DCM	97%
5	-	DCM	NR
6	TEAB	THF	<10%
7	TEAB	CH ₃ CN	78%
8	TEAB	DMF	<10%

doi:10.20944/preprints201703.0203.v1

Peer-reviewed version available at Molecules 2017, 22, , 662; doi:10.3390/molecules2204066

3 of 10

^aThe reaction was conducted with **1** (2.5 mmol), **2a** (5 mmol), K₂CO₃ (5 mmol), PTC (0.25 mmol) and 0.25 g 4A MS in 35 mL solvent. ^bIsolated yield.

Then, various acids were chosen to testify this reaction (Table 3 and 4). Aromatic acids with substituent group at different position on benzene ring, gave the desired product in good to high yield. For example, electron-donating groups, such as methoxy, benzyloxy or methyl all could make the reaction happen smoothly (Table 3, entries 1–5). Electron-withdrawing group also produced the corresponding products in good yield (Table 3, entries 6–8). Specially, different halogen groups probably make the structure much diverse through some coupling reaction. Similarly, -naphtoic acid gave product **3j** quantitatively (Table 3, entry 9). From Table 3, it was shown that these groups could exist either at ortho-, meta-, or para-position on benzene ring. Besides, mono-, di- or trisubstituted groups all exhibited good activities. In the comparison experiment, yield decreased evidently when the reaction was conducted in the presence of water within the expectation (Table 3, entry 1, 3, 7 and 9).

Entry	Aromatic acids 2	Product 3	Yield [⊾] (%)
1	HO O OMe 2b	Action OAc OAc OAc OAc OAc OAc OAc OAc	95°
2	HO OMe O 2c	Action OAc OAc OAc OAc OAc OAc OAc OAc	98
3	HO OMe O 2d	Action OAc OAc OAc OAc OAc OAc OAc OAc OAc OAc	91°
4	OMe HO OMe OMe 2e	OAc Aco OAc OAc OAc OAc OAc OAc OAc OAc OAc OAc	80
5	HO O Me 2f	$A_{ACO} \longrightarrow O_{Ac} \longrightarrow $	96

Table 3. The reaction of glucosyl bromide 1 with aromatic acids^a

^aThe reaction was conducted with **1** (2.5 mmol), **2** (5 mmol), K₂CO₃ (5 mmol), TEAB (0.25 mmol) and 0.25 g 4A MS in 35 mL DCM. ^bIsolated yield. ^c28–54% of yields for these compounds were obtained when 5 mL H₂O was added in the reaction.

Not only aromatic acids, but aliphatic acids could be applied to the reaction. The results were listed in Table 4. Phenylacetic acid **2k**, 2,4,5-trifluoro-phenylacetic acid **2l** offered the product in no less than 95% yield (Table 4, entries 1–2). Good results were also acquired by using other aliphatic acids without benzene ring. For example, isobutyric acid **2m**, isovaleric acid **2n** gave the product in more than 90% yield respectively. Lower yield was obtained for pivalic acid **2o**, probably due to the steric hindrance (Table 4, entries 3–5). In addition, long chain glucosyl ester was prepared in good yield from acid **2q** (Table 4, entry 6). Satisfactorily, this reaction could be well extended to the aliphatic acids with olefin and cyclic section (Table 4, entries 7–11). For the same reason, the result was not good when water was added in the comparison sample (Table 4, entry 1, 4, 6 and 10).

Table 4. The reaction of glucosyl bromide 1 with aliphatic acids^a

5 of 10

^aThe reaction was conducted with **1** (2.5 mmol), **2** (5 mmol), K₂CO₃ (5 mmol), TEAB (0.25 mmol) and 0.25 g 4A MS in 35 mL DCM. ^bIsolated yield. ^c40–58% of yields for these compounds were obtained when 5 mL H₂O was added in the reaction.

It is noteworthy that one of the compounds was tried to be prepared on scale (**3a**, more than 100 g), and it was purified through simple manipulation, not by column chromatography. It seems that this method is possible to be applied in industrial manufacture due to the high yields generally. The scale-up synthesis of other compounds is now underway.

3. Materials and Methods

3.1. General Methods

¹H (400 MHz) and ¹³C (100 MHz) NMR spectra were recorded on a Bruker Avance 400 spectrometer in CDCl₃ using tetramethylsilane (TMS) as internal standards. J values were given in hertz. Mass spectra & High resolution mass spectra were recorded on a Finnigan MAT mass spectrometer.

3.2. General Procedure for the Synthesis of Compound 3

The mixture of glucosyl bromide **1** (1.03 g, 2.5 mmol), acid (5.0 mmol), K₂CO₃ (0.69 g, 5.0 mmol), TEAB (0.05 g, 0.25 mmol) and 4A MS (0.25 g) in 35 mL DCM was stirred 24–48 h at room temperature. After filtration, water was added to the mixture, and separation. The organic layer was washed with 25% K₂CO₃ aq., dried over MgSO₄ and concentrated in vacuo. The residue was purified via silica gel column chromatography using EtOAc/hexane (1:10 to 1:1) as eluent to yield the desired product **3**.

3.3. The Scale-up Synthesis of Compound 3a

7 of 10

The mixture of glucosyl bromide **1** (150.0 g, 0.36 mol), benzoic acid **2a** (89.0 g, 0.73 mol), K₂CO₃ (100.7 g, 0.73 mol), TEAB (7.5 g, 36 mmol) and 4A MS (36.0 g) in 5 L DCM was stirred 24 h at room temperature. After filtration, water was added to the mixture, and separation. The organic layer was washed with 25% K₂CO₃ aq., dried over MgSO₄ and concentrated in vacuo to obtain solid crude. This crude was purified in refluxed EtOH to give **3a** as a white solid after cooling down in 89% yield.

2,3,4,6-Tetra-O-acetyl-1-O-benzoyl- -**D-glucopyranosyl ester (3a).** ¹H NMR(CDCl₃, 400 MHz): = 1.99 (s, 3H), 2.04 (s, 3H), 2.05 (s, 3H), 2.07 (s, 3H), 3.93–3.97 (m, 1H), 4.14 (dd, J = 2.0, 12.8 Hz, 1H), 4.33 (dd, J = 4.4, 12.4 Hz, 1H), 5.18–5.23 (m, 1H), 5.34–5.37 (m, 2H), 5.93–5.95 (m, 1H) [13], 7.46 (t, J = 8.0 Hz, 1H), 7.61 (t, J = 7.2 Hz, 1H), 8.05 (dd, J = 1.2, 8.0 Hz, 2H); ¹³C NMR(CDCl₃, 100 MHz): = 20.45, 20.49, 20.51, 20.58, 61.4, 67.9, 70.1, 72.6, 72.7, 92.2 [14], 128.4, 128.6, 130.1, 133.9, 164.4, 169.3, 169.4, 170.0, 170.5; ESI-MS (m/z) 475 [M + Na]⁺; HRMS calcd for C₂₁H₂₄O₁₁ 452.1330, found 452.1321.

2,3,4,6-Tetra-O-acetyl-1-O-(2-methoxybenzoyl) -**D**-glucopyranosyl ester (**3b**). ¹H NMR(CDCl₃, 400 MHz): = 2.01 (s, 3H), 2.04 (s, 3H), 2.05 (s, 3H), 2.07 (s, 3H), 3.91 (s, 3H), 3.91–3.94 (m, 1H), 4.14 (dd, *J* = 2.0, 12.8 Hz, 1H), 4.33 (dd, *J* = 4.4, 12.4 Hz, 1H), 5.17–5.22 (m, 1H), 5.31–5.33 (m, 2H), 5.95–5.97 (m, 1H), 6.97–7.01 (m, 2H), 7.50–7.55 (m, 1H), 7.87 (dd, *J* = 1.6, 8.0 Hz, 2H); ¹³C NMR(CDCl₃, 100 MHz): = 20.44, 20.46 (20.5, 20.6, 55.7, (1.5, 67.8, 70.2, 72.6, 72.8, 01.8, 112.0, 117.4, 120.1, 122.4, 124.8, 1(0.1)

= 20.44, 20.46, 20.5, 20.6, 55.7, 61.5, 67.8, 70.2, 72.6, 72.8, 91.8, 112.0, 117.4, 120.1, 132.4, 134.8, 160.1, 163.2, 169.2, 169.3, 170.0, 170.4; ESI-MS (*m*/*z*) 505 [M + Na]⁺.

2,3,4,6-Tetra-O-acetyl-1-O-(3,4-dimethoxybenzoyl)- -D-glucopyranosyl ester (3c). ¹H NMR(CDCl₃, 400 MHz): = 1.99 (s, 3H), 2.04 (s, 3H), 2.06 (s, 3H), 2.08 (s, 3H), 3.94 (s, 3H), 3.95 (s, 3H), 3.96–3.98 (m, 1H), 4.14 (dd, J = 2.0, 12.4 Hz, 1H), 4.33 (dd, J = 4.4, 12.8 Hz, 1H), 5.18–5.23 (m, 1H), 5.34–5.36 (m, 2H), 5.88–5.90 (m, 1H), 6.91 (d, J = 8.4 Hz, 1H), 7.54 (d, J = 2.0 Hz, 1H), 7.70 (dd, J = 1.6, 8.0 Hz, 2H); ¹³C NMR(CDCl₃, 100 MHz): = 20.5, 20.6, 55.9, 56.0, 61.4, 67.9, 70.1, 72.5, 72.6, 92.2, 110.4, 112.2, 120.6, 124.5, 148.7, 153.8, 164.1, 169.3, 169.4, 170.0, 170.5; ESI-MS (m/z) 535 [M + Na]⁺.

2,3,4,6-Tetra-O-acetyl-1-O-(4-benzyloxy-3-methoxybenzoyl)- -D-glucopyranosyl ester (3d). ¹H NMR(CDCl₃, 400 MHz): = 1.98 (s, 3H), 2.04 (s, 3H), 2.05 (s, 3H), 2.07 (s, 3H), 3.92–3.96 (m, 1H), 3.94 (s, 3H), 4.14 (dd, J = 2.4, 12.4 Hz, 1H), 4.33 (dd, J = 4.4, 12.4 Hz, 1H), 5.17–5.21 (m, 1H), 5.2 (s, 3H), 5.33–5.35 (m, 2H), 5.87–5.89 (m, 1H), 6.91 (d, J = 8.8 Hz, 1H), 7.32–7.44 (m, 5H), 7.55 (d, J = 1.6 Hz, 1H), 7.62 (dd, J = 1.6, 8.4 Hz, 1H); ¹³C NMR(CDCl₃, 100 MHz): = 20.6, 20.7, 56.1, 61.5, 67.9, 70.2, 70.7, 72.5, 72.7, 92.2, 112.5, 112.7, 120.9, 124.3, 127.2, 128.1, 128.7, 136.1, 149.2, 152.9, 164.2, 169.3, 169.4, 170.0, 170.6; ESI-MS (m/z) 611 [M + Na]⁺.

2,3,4,6-Tetra-O-acetyl-1-O-(3,4,5-trimethoxybenzoyl)- -D-glucopyranosyl ester (3e). ¹H NMR(CDCl₃, 400 MHz): = 1.97 (s, 3H), 2.02 (s, 3H), 2.03 (s, 3H), 2.05 (s, 3H), 3.85–3.95 (m, 1H), 3.88 (s, 9H), 4.12 (d, *J* = 12.8 Hz, 1H), 4.32 (dd, *J* = 4.4, 12.8 Hz, 1H), 5.16–5.20 (m, 1H), 5.30–5.36 (m, 2H), 5.83–5.85 (m, 1H), 7.28 (s, 2H); ¹³C NMR(CDCl₃, 100 MHz): = 20.4, 20.5, 20.6, 56.2, 60.8, 61.4, 67.9, 70.2, 72.3, 72.6, 92.4, 107.3, 123.1, 142.9, 152.9, 164.0, 169.3, 169.4, 170.0, 170.5; ESI-MS (*m*/*z*) 565 [M + Na]⁺.

2,3,4,6-Tetra-O-acetyl-1-O-(2,5-dimethylbenzoyl)- -D-glucopyranosyl ester (3f). ¹H NMR(CDCl₃, 400 MHz): = 1.94 (s, 3H), 1.97 (s, 3H), 1.98 (s, 3H), 2.00 (s, 3H), 2.28 (s, 3H), 2.48 (s, 3H), 3.84–3.88 (m, 1H), 4.07 (dd, *J* = 2.4, 12.4 Hz, 1H), 4.26 (dd, *J* = 4.4, 12.4 Hz, 1H), 5.11–5.16 (m, 1H), 5.25–5.28 (m, 2H), 5.86–5.88 (m, 1H), 7.07 (d, *J* = 8.0 Hz, 1H), 7.18 (d, *J* = 8.0 Hz, 1H), 7.69 (s, 1H); ¹³C NMR(CDCl₃, 100 MHz): = 20.53, 20.56, 20.6, 20.7, 21.4, 21.5, 61.5, 67.9, 70.3, 72.7, 72.9, 91.9, 127.0, 131.7, 131.8, 133.9, 135.6, 138.4, 165.0, 169.3, 169.5, 170.2, 170.7; ESI-MS (*m*/*z*) 503 [M + Na]⁺.

2,3,4,6-Tetra-O-acetyl-1-O-(3-bromobenzoyl)- -D-glucopyranosyl ester (3g). ¹H NMR(CDCl₃, 400 MHz): = 2.00 (s, 3H), 2.05 (s, 3H), 2.06 (s, 3H), 2.08 (s, 3H), 3.92–3.97 (m, 1H), 4.14 (dd, *J* = 2.0, 12.8 Hz, 1H), 4.33 (dd, *J* = 4.4, 12.4 Hz, 1H), 5.17–5.22 (m, 1H), 5.33–5.35 (m, 2H), 5.92–5.94 (m, 1H), 7.35 (t, *J* = 8.0 Hz, 1H), 7.72–7.75 (m, 1H), 7.95–7.98 (m, 1H), 8.18 (t, *J* = 1.6 Hz, 1H); ¹³C NMR(CDCl₃, 100 MHz):

= 20.50, 20.53, 20.55, 20.6, 61.4, 67.8, 70.1, 72.5, 72.7, 92.5, 122.6, 128.6, 130.2, 130.4, 133.0, 136.9, 163.2, 169.3, 169.4, 170.0, 170.5; ESI-MS (*m*/*z*) 553 [M + Na]⁺.

8 of 10

2,3,4,6-Tetra-O-acetyl-1-O-(2-chloro-4-fluorobenzoyl)- -D-glucopyranosyl ester (3h). ¹H NMR(CDCl₃, 400 MHz): = 2.00 (s, 3H), 2.03 (s, 3H), 2.04 (s, 3H), 2.07 (s, 3H), 3.90–3.94 (m, 1H), 4.13 (dd, J = 2.0, 12.0 Hz, 1H), 4.32 (dd, J = 4.8, 12.4 Hz, 1H), 5.15–5.20 (m, 1H), 5.30–5.33 (m, 2H), 5.92–5.93 (m, 1H), 7.03–7.08 (m, 1H), 7.21 (dd, J = 6.8, 8.4 Hz, 1H), 7.97 (dd, J = 2.0, 6.0 Hz, 1H); ¹³C NMR(CDCl₃, 100 MHz): = 20.5, 20.6, 61.4, 67.7, 70.1, 72.6, 72.8, 92.3, 114.4 (d, J = 21.7 Hz), 119.0 (d, J = 24.5 Hz), 123.6 (d, J = 3.4 Hz), 134.5 (d, J = 9.9 Hz), 137.1 (d, J = 10.7 Hz), 161.8, 164.7 (d, J = 257.1 Hz), 169.2, 169.3, 170.0, 170.5; ESI-MS (m/z) 527 [M + Na]⁺; HRMS calcd for C₂₁H₂₂ClFO₁₁ 504.0808, found 504.0805.

2,3,4,6-Tetra-O-acetyl-1-O-(3-nitrobenzoyl)- -**D-glucopyranosyl ester (3i).** ¹H NMR(CDCl₃, 400 MHz): = 1.99 (s, 3H), 2.03 (s, 3H), 2.04 (s, 3H), 2.07 (s, 3H), 3.93–3.97 (m, 1H), 4.13 (dd, *J* = 2.0, 12.0 Hz, 1H), 4.31 (dd, *J* = 4.4, 12.8 Hz, 1H), 5.17–5.21 (m, 1H), 5.33–5.35 (m, 2H), 5.94–5.96 (m, 1H), 7.68 (t, *J* = 8.0 Hz, 1H), 8.32–8.35 (m, 1H), 8.44–8.46 (m, 1H), 8.86–8.87 (m, 1H); ¹³C NMR(CDCl₃, 100 MHz): = 20.4, 20.5, 20.6, 61.4, 67.8, 70.1, 72.3, 72.8, 92.8, 125.1, 128.2, 130.0, 130.2, 135.5, 148.3, 162.5, 169.2, 169.4, 170.0, 170.5; ESI-MS (*m*/*z*) 520 [M + Na]⁺.

2,3,4,6-Tetra-O-acetyl-1-O-(2-naphthoyl)- -D-glucopyranosyl ester (3j). ¹H NMR(CDCl₃, 400 MHz): = 1.99 (s, 3H), 2.01 (s, 3H), 2.07 (s, 3H), 2.08 (s, 3H), 3.97–4.00 (m, 1H), 4.16 (dd, *J* = 2.0, 12.8 Hz, 1H), 4.35 (dd, *J* = 4.4, 12.4 Hz, 1H), 5.24 (t, *J* = 9.6 Hz, 1H), 5.35–5.44 (m, 2H), 6.01 (d, *J* = 8.0 Hz, 1H), 7.55–7.59 (m, 1H), 7.60–7.64 (m, 1H), 7.88–7.91 (m, 2H), 7.98 (d, *J* = 7.2 Hz, 1H), 8.04 (dd, *J* = 2.0, 8.8 Hz, 1H), 8.63 (d, *J* = 0.8 Hz, 1H); ¹³C NMR(CDCl₃, 100 MHz): = 20.51, 20.56, 20.58, 20.6, 61.5, 67.9, 70.3, 72.7, 72.8, 92.4, 125.1, 125.6, 126.9, 127.8, 128.5, 128.8, 129.6, 132.2, 132.3, 135.9, 164.7, 169.4, 169.5, 170.1, 170.6; ESI-MS (*m*/*z*) 525 [M + Na]⁺.

2,3,4,6-Tetra-O-acetyl-1-O-(2-phenylacetyl)- -D-glucopyranosyl ester (3k). ¹H NMR(CDCl₃, 400 MHz): = 1.76 (s, 3H), 1.99 (s, 3H), 2.03 (s, 3H), 2.09 (s, 3H), 3.66 (s, 2H), 3.82–3.86 (m, 1H), 4.12 (dd, *J* = 2.0, 12.8 Hz, 1H), 4.30 (dd, *J* = 4.4, 12.4 Hz, 1H), 5.10–5.15 (m, 2H), 5.21 (t, *J* = 8.8 Hz, 1H), 5.69 (d, *J* = 7.6 Hz, 1H), 7.25–7.34 (m, 5H); ¹³C NMR(CDCl₃, 100 MHz): = 20.2, 20.5, 20.6, 41.1, 61.4, 67.7, 69.9, 72.6, 72.7, 91.8, 127.4, 128.7, 129.2, 132.9, 169.0, 169.3, 169.4, 170.0, 170.5; ESI-MS (*m*/*z*) 489 [M + Na]⁺; HRMS calcd for C₂₂H₂₆O₁₁ 466.1481, found 466.1477.

2,3,4,6-Tetra-O-acetyl-1-O-(2-(2,4,5-trifluorophenyl)acetyl)- -D-glucopyranosyl ester (31). ¹H NMR(CDCl₃, 400 MHz): = 1.99 (s, 3H), 2.01 (s, 3H), 2.03 (s, 3H), 2.09 (s, 3H), 3.67 (s, 2H), 3.82–3.87 (m, 1H), 4.12 (dd, J = 2.0, 12.8 Hz, 1H), 4.30 (dd, J = 4.4, 12.4 Hz, 1H), 5.10–5.15 (m, 2H), 5.25 (t, J = 8.8 Hz, 1H), 5.73 (d, J = 8.8 Hz, 1H), 6.91–6.98 (m, 1H), 7.07–7.13 (m, 1H); ¹³C NMR(CDCl₃, 100 MHz): = 20.2, 20.4, 20.6, 33.5 (d, J = 1.9 Hz), 61.3, 67.6, 70.0, 72.5, 72.7, 92.2, 105.5 (dd, J = 20.5, 27.5 Hz), 116.5 (d, J = 17.5 Hz), 119.0 (dd, J = 5.6, 19.0 Hz), 146.6 (dd, J = 12.7, 243.1 Hz), 149.5 (d, J = 251.5 Hz), 156.0 (dd, J = 10.4, 243.5 Hz), 167.9, 169.0, 169.3, 170.0, 170.5; ESI-MS (m/z) 543 [M + Na]⁺.

2,3,4,6-Tetra-O-acetyl-1-O-isobutyryl- -D-glucopyranosyl ester (3m). ¹H NMR(CDCl₃, 400 MHz): = 1.16 (d, *J* = 7.2 Hz, 3H), 1.17 (d, *J* = 7.2 Hz, 3H), 2.02 (s, 6H), 2.04 (s, 3H), 2.09 (s, 3H), 2.57–2.64 (m, 1H), 3.83–3.87 (m, 1H), 4.12 (dd, *J* = 2.0, 12.4 Hz, 1H), 4.30 (dd, *J* = 4.4, 12.8 Hz, 1H), 5.12–5.19 (m, 2H), 5.26 (t, *J* = 8.8 Hz, 1H), 5.72 (d, *J* = 8.4 Hz, 1H); ¹³C NMR(CDCl₃, 100 MHz): = 18.1, 18.7, 20.3, 20.4, 20.6, 33.7, 61.4, 67.8, 70.1, 72.6, 91.5, 169.0, 169.3, 169.9, 170.4, 174.9; ESI-MS (*m/z*) 441 [M + Na]⁺.

2,3,4,6-Tetra-O-acetyl-1-O-(3-methylbutanoyl)- -**D-glucopyranosyl ester (3n).** ¹H NMR(CDCl₃, 400 MHz): = 0.95 (d, *J* = 6.8 Hz, 6H), 2.02 (s, 6H), 2.04 (s, 3H), 2.08 (s, 3H), 2.10–2.12 (m, 1H), 2.25 (d, *J* = 6.4 Hz, 2H), 3.83–3.87 (m, 1H), 4.11 (dd, *J* = 2.0, 12.4 Hz, 1H), 4.30 (dd, *J* = 4.4, 12.8 Hz, 1H), 5.11–5.17 (m, 2H), 5.26 (t, *J* = 9.2 Hz, 1H), 5.74 (d, *J* = 8.4 Hz, 1H); ¹³C NMR(CDCl₃, 100 MHz): = 20.3, 20.4, 20.5, 22.0, 25.4, 42.9, 61.4, 67.7, 70.1, 72.5, 72.7, 91.3, 168.9, 169.2, 169.9, 170.3, 170.8; ESI-MS (*m*/*z*) 455 [M + Na]⁺.

2,3,4,6-Tetra-O-acetyl-1-O-pivaloyl- -D-glucopyranosyl ester (30). ¹H NMR(CDCl₃, 400 MHz): = 1.19 (s, 9H), 2.00 (s, 6H), 2.02 (s, 3H), 2.08 (s, 3H), 3.81–3.85 (m, 1H), 4.10 (dd, *J* = 2.4, 12.8 Hz, 1H), 4.29 (dd, *J* = 4.4, 12.0 Hz, 1H), 5.11–5.19 (m, 2H), 5.25 (t, *J* = 9.2 Hz, 1H), 5.66 (d, *J* = 8.8 Hz, 1H); ¹³C NMR(CDCl₃, 100 MHz): = 20.3, 20.47, 20.48, 20.6, 26.6, 38.7, 61.4, 67.9, 70.0, 72.5, 72.6, 91.7, 169.0, 169.3, 170.0, 170.5, 176.4; ESI-MS (*m*/*z*) 455 [M + Na]⁺.

9 of 10

2,3,4,6-Tetra-O-acetyl-1-O-dodecanoyl -D-glucopyranosyl ester (3p). ¹H NMR(CDCl₃, 400 MHz): = 0.88 (t, *J* = 9.2 Hz, 3H), 1.25–1.30 (m, 16H), 1.57–1.62 (m, 2H), 2.01 (s, 3H), 2.02 (s, 3H), 2.03 (s, 3H), 2.09 (s, 3H), 2.34–2.38 (m, 2H), 3.82–3.87 (m, 1H), 4.11 (dd, *J* = 2.0, 12.0 Hz, 1H), 4.30 (dd, *J* = 4.4, 12.0 Hz, 1H), 5.11–5.16 (m, 2H), 5.26 (t, *J* = 9.2 Hz, 1H), 5.73 (d, *J* = 8.4 Hz, 1H); ¹³C NMR(CDCl₃, 100 MHz): = 14.0, 20.42, 20.46, 20.58, 20.59, 22.6, 24.5, 28.8, 29.1, 29.2, 29.3, 29.5, 31.8, 33.9, 61.4, 67.8, 70.2, 72.6, 72.7, 91.5, 169.1, 169.4, 170.0, 170.5, 171.7; ESI-MS (*m*/z) 553 [M + Na]⁺.

2,3,4,6-Tetra-O-acetyl-1-O-((E)-2-methylpent-2-enoyl)- -D-glucopyranosyl ester (3q). ¹H NMR(CDCl₃, 400 MHz): = 1.05 (t, J = 8.0 Hz, 3H), 1.82 (s, 3H), 2.01 (s, 3H), 2.03 (s, 3H), 2.04 (s, 3H), 2.09 (s, 3H), 2.17–2.24 (m, 2H), 3.86–3.91 (m, 1H), 4.12 (dd, J = 2.0, 12.4 Hz, 1H), 4.31 (dd, J = 4.4, 12.4 Hz, 1H), 5.15 (t, J = 9.2 Hz, 1H), 5.21–5.32 (m, 2H), 5.75 (d, J = 8.0 Hz, 1H), 6.85 (dt, J = 1.2, 7.6 Hz, 1H); ¹³C NMR(CDCl₃, 100 MHz): = 11.9, 12.7, 20.43, 20.47, 20.48, 20.6, 22.1, 61.4, 67.9, 70.1, 72.5, 72.6, 91.9, 125.7, 147.2, 165.7, 169.1, 169.3, 170.0, 170.5; ESI-MS (m/z) 467 [M + Na]⁺, HRMS calcd for C₂₀H₂₈O₁₁ 444.1614, found 444.1618.

2,3,4,6-Tetra-O-acetyl-1-O-((E)-oct-2-enoyl)- -D-glucopyranosyl ester (3r). ¹H NMR(CDCl₃, 400 MHz): = 0.86 (t, *J* = 7.2 Hz, 3H), 1.22–1.28 (m, 4H), 1.39–1.47 (m, 2H), 1.98 (s, 3H), 1.99 (s, 3H), 2.00 (s, 3H), 2.05 (s, 3H), 2.16–2.21 (m, 2H), 3.83–3.87 (m, 1H), 4.08 (dd, *J* = 2.0, 12.4 Hz, 1H), 4.27 (dd, *J* = 4.4, 12.4 Hz, 1H), 5.10–5.18 (m, 2H), 5.25 (t, *J* = 9.2 Hz, 1H), 5.75 (d, *J* = 7.6 Hz, 1H), 5.76–5.80 (m, 1H), 7.01–7.09 (m, 1H); ¹³C NMR(CDCl₃, 100 MHz): = 13.8, 20.44, 20.48, 20.5, 20.6, 22.3, 27.4, 31.2, 32.3, 61.4, 67.8, 70.2, 72.6, 72.7, 91.6, 119.5, 153.1, 164.2, 169.2, 169.4, 170.0, 170.6; ESI-MS (*m/z*) 495 [M + Na]⁺.

2,3,4,6-Tetra-O-acetyl-1-O-((2E,6Z)-nona-2,6-dienoyl)- -D-glucopyranosyl ester (3s). ¹H NMR(CDCl₃, 400 MHz): = 0.96 (t, *J* = 8.0 Hz, 3H), 2.01 (s, 3H), 2.02 (s, 3H), 2.02–2.05 (m, 2H), 2.04 (s, 3H), 2.08 (s, 3H), 2.19–2.23 (m, 2H), 2.25–2.29 (m, 2H), 3.85–3.89 (m, 1H), 4.11 (dd, *J* = 2.0, 12.4 Hz, 1H), 4.30 (dd, *J* = 4.4, 12.4 Hz, 1H), 5.12–5.21 (m, 2H), 5.27 (t, *J* = 9.2 Hz, 1H), 5.27–5.32 (m, 1H), 5.78 (d, *J* = 8.0 Hz, 1H), 5.80–5.86 (m, 1H), 7.04–7.11 (m, 1H); ¹³C NMR(CDCl₃, 100 MHz): = 14.1, 20.4, 20.5, 20.6, 25.3, 32.4, 61.4, 67.8,70.2, 72.5, 72.7, 91.6, 120.0, 126.8, 133.0, 152.1, 164.0, 169.2, 169.3, 170.0, 170.5; ESI-MS (*m*/*z*) 507 [M + Na]⁺.

2,3,4,6-Tetra-O-acetyl-1-O-(cyclopropanecarbonyl)- -**D-glucopyranosyl ester (3t).** ¹H NMR(CDCl₃, 400 MHz): = 0.94–0.97 (m, 2H), 1.03–1.10 (m, 2H), 1.63–1.67 (m, 1H), 2.02 (s, 3H), 2.03 (s, 3H), 2.04 (s, 3H), 2.09 (s, 3H), 3.82–3.86 (m, 1H), 4.11 (dd, *J* = 2.0, 12.0 Hz, 1H), 4.30 (dd, *J* = 4.4, 12.4 Hz, 1H), 5.11–5.17 (m, 2H), 5.26 (t, *J* = 9.6 Hz, 1H), 5.72 (d, *J* = 8.0 Hz, 1H); ¹³C NMR(CDCl₃, 100 MHz): = 9.3, 12.7, 20.4, 20.6, 61.4, 67.7, 70.2, 72.5, 72.6, 91.5, 169.1, 169.3, 169.9, 170.4, 172.8; ESI-MS (*m*/*z*) 439 [M + Na]⁺.

2,3,4,6-Tetra-O-acetyl-1-O-(cyclohexanecarbonyl) -**D**-glucopyranosyl ester (3u). ¹H NMR(CDCl₃, 400 MHz): = 1.20–1.49 (m, 6H), 1.62–1.65 (m, 1H), 1.68–1.77 (m, 1H), 1.85–1.90 (m, 2H), 2.02 (s, 6H), 2.04 (s, 3H), 2.09 (s, 3H), 2.33–2.39 (m, 1H), 3.83–3.87 (m, 1H), 4.11 (dd, *J* = 2.0, 12.0 Hz, 1H), 4.30 (dd, *J* = 4.4, 12.4 Hz, 1H), 5.11–5.18 (m, 2H), 5.26 (t, *J* = 9.6 Hz, 1H), 5.72 (d, *J* = 8.4 Hz, 1H); ¹³C NMR(CDCl₃, 100 MHz): = 20.3, 20.4, 20.6, 24.9, 25.3, 25.5, 28.1, 28.7, 42.5, 61.4, 67.8, 70.1, 72.5, 72.6, 91.4, 169.1, 169.3, 170.0, 170.5, 173.8; ESI-MS (*m*/z) 481 [M + Na]⁺.

4. Conclusions

The formation of the glucosyl esters by condensation of acids with glucosyl bromide was developed on larger scale in DCM without water. A diverse array of glucosyl esters were prepared in good yields, which seemed that our reaction condition could be applied in a broad substrate scope. In addition, the scale-up preparation was also attempted.

Supplementary Materials: The following are available online at www.mdpi.com/link.

Acknowledgments: We thank for the cooperation from the colleagues of analytic department.

Author Contributions: Yu Chen and Xianhua Pan designed the experiments and wrote the paper. The experimental work was conducted by Huan Lu, Yanyu Chen and Wansheng Yu under the

10 of 10

supervision of Xianhua Pan who is the corresponding author. Hui Dai contributed part of the data analysis.

Conflicts of Interest: The authors declare no conflict of interest.

References

- (a) Nishikawa, Y.; Yoshimoto, K.; Kurono, G.; Michishita, K. *Chem. Pharm. Bull.* **1975**, *23*, 597–603;
 (b) Tschesche, R.; Kammerer, F. J.; Wulff, G. *Tetrahedron Lett.* **1968**, *9*, 701–706.
- 2. Nishikawa, Y.; Okabe, M.; Yoshimoto, K.; Kurono, G.; Fukuoka, F. *Chem. Pharm. Bull.* **1976**, 24, 387–393.
- (a) Cui, Y.; Xu, M.; Yao, W.; Mao, J. Carbohydr. Res. 2015, 407, 51–54; (b) Li, Z. J.; Xiao, G. Q.; Cai, M. S. Chin. Chem. Lett. 1992, 3, 711–712; (c) Kunz, H.; Wernig. P. New 1-O-alkenoic acid ester(s) of carbohydrate(s) - used as glycosyl donors in synthesis of glycoside(s) and saccharide(s). Patent: D.E. 4009634, 1990; CAN 116:6918.
- 4. Honma, K.; Hamada, A. Chem. Pharm. Bull. 1976, 24, 1165–1168.
- 5. Kobayashi, M.; Shimadate, T. Chem. Pharm. Bull. 1986, 34, 4069-4074.
- 6. Jansson, K.; Ahlfors, S.; Frejd, T.; Kihlberg, J.; Magnusson, G. J. Org. Chem. 1988, 53, 5629–5647.
- 7. Oyama, K.; Kondo, T. Synlett. **1999**, 1627–1629.
- (a) Smith, A. B.; Halc, K. J.; Rivero, R. A. *Tetrahedron Lett.* **1986**, 27, 5813–5816; (b) Binkowski, C.; Lequart, V.; Hapiot, F.; Tilloy, S.; Cecchelli, R.; Monflier, E.; Martin, P. *Carbohydr. Res.* **2005**, 340, 1461–1468.
- 9. Bliard, C.; Massiot, G.; Nazabadioko, S. Tetrahedron Lett. **1994**, *35*, 6107–6108.
- 10. Krishnamurty, H. G.; Dabholkar, K.; Maheshwari, N. Synth. Commun. 1987. 17. 1323–1329.
- 11. Please see NMR data of compound **3a** in **Supplementary Materials**
- 12. Cai, T.; Lu, D.; Tang, X.; Zhang, Y.; Landerholm, M.; Wang, P. J. Org. Chem. 2005. 70. 3518–3524.
- 13. Aomeric H shift for -configuration is located at Anomeric H shift for -configuration is located at = 6.57, please see reference 5.
- 14 Anomeric C shift for -configuration is located at = 92.3, please see reference 10.

© 2017 by the authors. Licensee *Preprints*, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).