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Abstract: Oxidative and nitrosative stress are a common problem when manipulating gametes in 
vitro. In vitro development in mammalian embryos is highly affected by culture conditions, 
especially by reactive oxygen species (ROS) and reactive nitrogen species (RNS), because its 
absence or over production causes embryo arrest and changes in gene expression. Melatonin in 
gamete co-incubation during IVF has deleterious or positive effects depending on the concentration 
used in culture medium, demonstrating the delicate balance that must exist between antioxidant 
and pro-oxidant activity. Further research is needed to better understand the possible impact of 
melatonin on the different IVP steps in domestic animals, especially in seasonal breeds where this 
neuro-hormone system highly regulates its reproduction physiology. 
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1. Introduction 

1.1. Free radicals on reproduction (ROS/NOS) 

The protocols of in vitro maturation, fertilization and embryo culture in assisted reproductive 
techniques (ART) have been greatly improved during the last decade. However, only a few embryos 
produced by ARTs are capable to carry out development to full term. This is mainly due to the lack 
of optimal in vitro embryo production conditions that cannot mimic to the in vivo conditions which in 
turn leads to several differences between both types of embryos, increasing the levels of ROS or RNS 
[1], among others. Both free radicals are generated as sub-products in physiological processes where 
the oxygen consumption is produced in the electron transport chain in cellular respiration [2].  

There is a duality in the role of ROS and RNS. Physiological levels are needed in multiples 
process: ROS are necessary in human follicles to establish pregnancy [3], are potential markers in 
patients for predicting success of in vitro fertilization (IVF) [4], during the in vitro maturation of 
oocytes [5], in the resumption from diplotene arrest in oocytes [6], stimulating the release of 
intracellular Ca+2 in oocytes [7] or stimulating mitogen-activated protein kinase (MAPK) [8]. In 
sperm physiology, ROS participate in hyperactivation [9], sperm capacitation [10-14], through 
tyrosine phosphorylation [15]; and acrosome reaction [16].  
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On the other side, RNS are necessary for the development of large antral follicles [17, 18], 
stimulate meiotic maturation in oocytes [19, 20], in the ovulatory process [21], in early 
folliculogenesis up to maturation [22] and in preimplantation embryo development [23, 24]. Also, 
RNS participate in sperm capacitation [25-27] and acrosome reaction [28]. However, when there is an 
imbalance between pro-oxidants molecules due to the increase of ROS/RNS levels within cells 
and/or the reduction of the antioxidant defense mechanisms, the phenomena called oxidative or 
nitrosative stress is triggered [29, 30]. 

1.2. Oxidative stress 

Oxygen (O2) is an essential element for aerobic organisms for which oxidative metabolism 
represents the main energy source. Partial reduction of O2 results in ROS formation; these are 
molecules that contains one oxygen atom in their structure and possess at least one highly reactive 
unpaired electron in an outer orbital [31]. These molecules include two major groups: free radicals 
such as superoxide anion (•O2-) and hydroxyl radical (•OH); and molecules such as hydrogen 
peroxide (H2O2) [32]. The generation of •O2- is the initial step for the formation of ROS, which is 
generated by acceptance of an electron by O2, catalyzed by NADPH oxidase or xanthine oxidase. 
This radical can be converted in H2O2, by the action of superoxide dismutase (SOD), and then 
degraded to H2O and O2 by catalase or glutathione peroxidase [33]. Haber-Weiss reaction is the 
mechanism by which •OH is generated. This reaction can generate more toxic free radicals through 
the interaction between •O2- and H2O2 [29]. Fenton reaction also generates •OH and consists of two 
reactions using iron ions (Fe+3 and Fe+2) to generate this radical [29]. 

In pathological events, ROS has been involved in patients with endometriosis [34], in culture 
medium is negatively related with embryo implantation potential [35] or pregnancy [36], high levels 
of ROS are correlated with poor oocyte quality [37] and is associated with cell meiotic arrest [6]. 

We had investigate the induction of stress tolerance in bovine cumulus oocyte complexes 
(COCs) to generate oxidative stress resistance by incubation with H2O2 during the embryo 
production [38]. We observed that exposing COCs to low H2O2 levels could induce stress tolerance 
in these embryos, determined by embryo development, quality and gene expression pattern [39].  

1.3. Nitrosative stress 

Like ROS, RNS such as nitric oxide (NO) act as signaling molecules and modulate various 
aspects of reproduction physiology [40]; they influence and mediate the gametes and crucial 
reproductive processes such as sperm–oocyte interaction, implantation, and early embryo 
development [41]. Nitric oxide (NO) is generated either by a group of enzymes such as neuronal 
nitric oxide synthase (nNOS), endothelial nitric oxide synthase (eNOS) and inducible nitric oxide 
synthase (iNOS) [40, 42], or by non-enzymatic pathway from nitrite at low-pH under reducing 
conditions involving hydrogen peroxide and D-or L-arginine [40]. On the other hand, sustained high 
levels of RNS result in nitrosative stress and negative consequences for cells [40], leading to different 
pathologies [43]. The chemical reactivity of NO is rather low, but it reacts with •O2- yielding 
peroxynitrite (ONOO-) which is a potent oxidant that induces protein, lipid and DNA damage [44].  

We had investigated the stress tolerance induction in oocytes to generate nitrosative stress 
resistance by incubation with NO donors during in vitro embryo production in bovine. However, the 
incubation of the oocytes either with 3-morpholinosidnonimine (SIN-1) [45] or with sodium 
nitroprusside (SNP) [46] did not generate differences on embryo quality or resistance to nitrosative 
stress. 

Nowadays, scientific literature supports the administration of antioxidants compounds for 
counteracting oxidative and nitrosative stress in cells. Accordingly, we propose melatonin for its 
application on reproductive biotechnologies as is described below. 
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1.4. Melatonin 

Melatonin (N-acetyl-5-methoxytryptamine) is a multifunctional molecule secreted by the pineal 
gland in response to environmental changes in light levels [43, 47]. It plays an important role in 
circadian sleep regulation [48] and reproductive function in seasonally breeding animals [49-51]. The 
melatonin pattern influences endocrine effects of photoperiod that result in physiological alterations 
in reproduction [52], also regulating the complex embryo-fetal developmental processes [53]. In fact, 
the cold and dark winter periods in Norway, may suppress ovarian activity and estrus expression in 
the cow, showing higher reproductive performance in the summer months compared to the winter 
season [54], as we had observed a decrease on cleavage rates and in vitro blastocyst production 
during winter season in our geographic zone [55]. 

Melatonin is a potent free radical scavenger [48, 56], quenching ROS directly and preventing the 
depletion of endogenous antioxidant enzymes [57]. It up-regulates gene expression and activity of 
several antioxidant proteins [57-60], preserves optimal mitochondrial function and homeostasis 
against oxidative stress [61], and also melatonin metabolites exhibit powerful antioxidant capacity 
[44, 62-65]. Melatonin readily combines with superoxide and liberates NO avoiding peroxynitrite 
formation, a free radical even more harmful than NO [66], and also is described as a direct 
peroxynitrite scavenger [67]. Here we present a summary of the last 5 years of the effect of melatonin 
on gametes and the different steps of the in vitro production of mammalian embryos (Table 1, Figure 
1). 
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Table 1. Effect of melatonin on different steps of assisted reproductive techniques 1 
Specie Tissue Treatment Results Reference 

Porcine Oocytes 10-9 M during in vitro maturation 
Increases cleavage and blastocyst rate; and the total cell number of blastocyst. Also, it promotes the lipid 
metabolism, providing energy for oocyte maturation and embryo development. 

[68] 

Rat Animal Intraperitoneal injection of 20 mg/Kg for 4 weeks Increases testosterone hormone in blood serum and body weight. [69] 

Human Patient 
3 mg per day since the fifth day of one cycle in women with 
diminished ovarian reserve 

Increases the mean number of M-II oocytes, top-quality embryos with grade 1 and 2 [70] 

Mouse 
Spermatogonial 
stem cells 

10 mg/Kg for 2 weeks after busulfan treatment Relieves the loss and apoptosis in mouse testes. Also, it upregulates MnSOD [71] 

Mouse Oocytes 10-9 to 10-3 M after in vitro maturation Increases in vitro fertilization rate, reduces ROS and inhibits apoptosis [72] 
Bovine Zygotes 1 µM for 3 hours after insemination and  at 40°C Reduces ROS levels in embryos [73] 
Mouse Oocyte M-II 10-9 mol/L during vitrification/warming and PA Increases blastocyst rate after warming, compared with control group. [74] 

Bovine Sperm 10-3 M for 3 hours before in vitro fertilization 
Improves the plasma membrane and acrosome integrity, mitochondrial activity and it decreases intracellular 
ROS levels. Also, it increases the blastocyst rate and it decreases apoptosis rate. 

[75] 

Human Blastocyst 10-7 M in culture system in 3D (Encapsulation) Increases the survival time of encapsulated embryos. [76] 

Bovine Oocytes 10-6 or 10-9 M for 24 hours during in vitro maturation 
In cumulus cells, it up-regulates MnSOD and Cu-ZnSOD. Also, it decreases fragmentation. In oocytes, it 
decreases ROS levels. 

[77] 

Human Patient 3 mg for 14 days in patients with polycystic ovarian syndrome Enhances the oocyte and embryo quality [78] 

Bovine Embryos 
10-7 M melatonin for 24 hr prior to exposure to 250 µM Paraquat 
(herbicide) 

Decreases the incidence of apoptotic nuclei induced by Paraquat [79] 

Porcine Oocytes 
0.1 µM for 22-44h after endoplasmic reticulum stress during in vitro
maturation 

Improves oocyte maturation and cumulus cells expansion induced by endoplasmic reticulum stress [80] 

Bovine Oocytes 
Melatonin-loaded lipid-core nanocapsules at 10-6 M, 10-9 M and 10-12

M during in vitro maturation 
Enhances in vitro embryo production, decreases ROS levels and the apoptotic nuclei, upregulates GPX1 and 
SOD2 and downregulates CASP3 and BAX 

[81] 

Bovine Zygotes 
Melatonin-loaded lipid-core nanocapsules at 10-9 M during in vitro 
culture 

Increases the hatching rate and embryo cell number, decreases cell apoptosis and ROS levels. Also, it 
downregulates BAX, CASP3, and SHC1 genes, and upregulates CAT and SOD2. 

[82] 

Mouse Oocyte 10-7 M during in vitro maturation Improves the blastocyst rate and cell number of blastocysts [83] 
Mouse Sperm 10 mg/kg body weight for 7 days during cadmium exposure Reduces oxidative stress and inflammation induced by cadmium in male reproductive system [84] 
Mouse Sperm 0.125 mg/mL in freezing extender during cryopreservation Increases the progressive motility, decreases ROS levels and upregulates BCL-XL [85] 
Buffalo Oocytes 250 µM during in vitro maturation Improves fertilization rate [86] 

Bovine Oocytes 1 µM during in vitro maturation of aged oocytes 
Decreased the aberrant spindle organization, increases ATP production, increases the development of bovine 
oocytes and reduces apoptotic rate. Also, it downregulates BAX and CASP3 and increases BCL2. 

[87] 

Rabbit Morula 10-3 M prior in vitro culture, prior vitrification Promotes the blastocyst rate, it increases SOD activity and decreases LPO and NO levels. [88] 

Mouse 
Preantral 
follicles 

10 pM after vitrification, during culture Increases diameter of follicles and their survival. [89] 

Bovine 
Embryos 
produced by 
SCNT 

10-11 to 10-2 M during in vitro culture 
It increases the total cell number, ICM and the development of bovine SCNT embryos. Also, it suppress the 
expression of p53 and Bax, upregulates SOD1, Gpx4, BCL2L1 and SOX2. 

[90] 
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Human Sperm 
0.01 mM in freezing extender before cryopreservation of sperm 
from infertile men 

Increases motility and viability, decreases ROS and MDA levels [91] 

Porcine Oocyte 10-7 M during in vitro maturation under heat stress 
Improve polar body and blastocyst rate impaired by heat stress. Also it preserves normal levels of steroid 
hormone, reduces ROS, enhances GSH production and inhibits apoptosis. 

[92] 

Porcine 
Oocyte and 
embryos 

25 ng/mL during in vitro maturation and culture. Increases blastocyst rate and decrease apoptotic nuclei in embryos. [93] 

Bovine Sperm 1000 nmol Increases higher wobbler coefficient, decreases sperm with intact acrosome and viable spermatozoa with ROS [94] 
Rabbit Embryos 10-9 to 10-3 M during in vitro culture Increases in vitro development and improves the hatching rate [95] 

Bovine Zygotes 10-7 M during in vitro culture 
Promotes the cleavage and blastocyst rate, accelerates the development of in vitro embryos and improves the 
quality of blastocysts. 

[96] 

Bovine Zygotes 10-7 M for 2 days at the beginning of the in vitro culture Increases the blastocysts and hatched blastocysts rate [97] 

Bovine Zygotes 
10-9 M for after 2 days of pre-culture and for the remaining 6 days of 
culture 

Increases the blastocysts and hatched blastocysts rate [97] 

Bovine GV oocytes 10-9 or 10-7 M during in vitro maturation 
Improves the embryo development and the total cell number after in vitro fertilization. Also, it upregulates 
genes associated during in vitro maturation: GDF9, MARF1 and DNMT1α. 

[98] 

Human Animal 6 mg for 45 days 
Increases the antioxidant capacity in seminal plasma, reduces the oxidative damage caused in sperm DNA, 
Also, it increases the quality of embryos 

[99] 

Mouse 2-cell embryos 10 µM during in vitro culture Improves the quality and developmental rate of embryos. Also, it can prevent the cell death. [100] 
Rat Sperm 10mg/kg weekly for 8 weeks Improves sperm motility [101] 
Mouse Embryos 10-12 M during in vitro culture of embryos produced by SCNT Increases the embryo development [102] 
Ovine Blastocysts 10-9 M during thawing after cryopreservation Improves the embryo development after postwarming culture [103] 
Human Patient 3 mg/day for 2 weeks Increases the fertilization rate I the second cycle and improves the fertilization and good quality embryos rate. [104] 
Deer Animal Subcutaneous implantation of 40 mg Elevates the serum FSH and LH levels, increases number of corpora luteal and the number of embryos [105] 
Human Oocytes 10 µmol/L during in vitro maturation Increases the preimplantation and pregnancy rate [106] 

Sheep Animal Subcutaneous implantation of 40 or 80 mg 
Increases corpus luteal, the number of recovered embryos, the pregnancy and birth rates, and the lambs born 
per embryo 

[107] 

Porcine 
Donor cell and 
embryos 

10-10 M in the medium for donor cell and 10-9 M during in vitro 
culture of embryos produced by SCNT 

Increases the proliferation of fetal fibroblasts, blastocysts rate, reduces the apoptotic nuclei. Also, it 
upregulates BCL2L1 and downregulates BAX and p53. 

[108] 

Mouse Oocytes 10 to 100m nM during in vitro maturation Increases the expansion, maturation, fertilization and blastocyst rate in a dose dependent manner. [109] 
Bovine Oocytes 10-12 to 10-3 M during in vitro maturation under heat stress Increases blastocyst rate of embryos submitted to heat stress [110] 

Murine 
Pronuclear 
embryos 

10-7 M during in vitro culture 
Promotes embryo development, blastocyst rate, hatching rate and blastocyst cell number. Also, it improves 
the pregnancy rate. Even more, upregulates SOD and BCL2 and downregulates CAS3 and p53. 

[111] 

Ovine Animal Subcutaneous implant of 18 mg Increases viability and pregnancy rate of undernourished ewes [112] 
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Figure 1. Melatonin application in different steps on gametes and in vitro embryo production and its 
effects. 

2. Melatonin modulates oxidative stress on gametes and in vitro embryo production 
(IVP).   

The ability of melatonin to pass the biological barriers due to its amphiphilic nature makes it an 
effective antioxidant for protecting macromolecules against ROS [65, 113]. In mammalian oocytes, 
melatonin can prevents the damage generated by hypochlorous acid (HOCl) on spindle microtubule 
and chromosome alteration in metaphase-II mouse oocytes [114], it can upregulates MnSOD [77, 
115] and Cu-ZnSOD transcripts in cumulus cells [77], it decreases ROS levels in oocytes [77], it can 
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suppress Bax protein expression and decreases Bax/Bcl-2 ratio in ovaries [115], prevents DNA 
damage [116] and decreases nuclear fragmentation in cumulus cells [77]. In human, long term 
treatments with melatonin reduce ovarian aging, increasing litter size, pool of follicles and telomere 
length [115]. Melatonin can protect the oocyte against the inhibitory effect of oxidative stress 
generated by H2O2 [116], leading to an increase on in vitro maturation rate [117], reducing the 
oxidative damage in oocytes during in vitro maturation and decreasing mitochondrial activity [117]. 
The mechanism by which melatonin promotes oocyte maturation is not clear, but it is believed to be 
mediated via melatonin membrane receptors, as the melatonin receptor agonist (IIK7) [98].  

In follicular fluid, patients have shown an improvement in the fertilization and pregnancy rates 
after melatonin treatment [116] and melatonin levels are associated with oocyte quantity and quality 
[115, 118]. Also, melatonin improves progesterone production by corpus luteum in infertile women 
with luteal phase defect [119].  

Spermatozoa are sensitive to oxidative stress, leading to apoptosis like process. Melatonin can 
decrease mitochondrial ROS production when sperm are exposed to oxidative stress [120], being a 
powerful antioxidant and anti-apoptotic agent in ejaculated human spermatozoa by inhibition of 
caspase-3 and caspase-9 activities [91, 120, 121]. Even more, melatonin can prevent mitochondrial 
ROS formation under basal conditions and at early time point upon oxidative stress induced by 
H2O2 exposure [122], increasing MnSOD expression [71], preventing DNA fragmentation [121] and 
therefore improving sperm quality [122]. As well as,  melatonin supplementation of semen 
extenders increases sperm motility, viability, decreases ROS levels and lipid peroxidation [91], 
increasing sperm quality after the freezing-thawing processes [123]. This antioxidant compound can 
protect from testicular injury induced by oxidative stress after cadmium (Cd) exposure [84]. Also, 
melatonin helps to protect sperm from ROS induced by cell sorting, a widely used technique for in 
vitro fertilization or artificial insemination [123].  

Our experience during supplementation of IVF medium with melatonin shows that this 
antioxidant has a dual effect over sperm function and embryo development in bovine [94]: lower 
concentrations (10 nM) modulates sperm quality by inducing changes on sperm motility increasing 
Wobbler coefficient. On the other hand, high melatonin concentration during sperm incubation 
(1000 nM) induced a decrease on viable sperm with intact acrosomes, induced high DNA 
fragmentation and high DNA oxidation than control, as a pro-oxidant. Accordingly, high melatonin 
concentrations in IVF (1000 nM) generated a decrease on blastocyst production but without affecting 
the embryo quality. During embryo culture, cells are exposed to higher oxygen concentrations, 
resulting in increased ROS production. Melatonin supplementation has a beneficial effect on in vitro 
fertilization in human patients [104, 116], improving blastocyst formation rate and decreasing DNA 
fragmentation of blastomeres [93].  

Cryopreservation is a highly stressful process that reduces significantly the embryo 
developmental potential. Melatonin added to culture medium increases the cleavage and blastocyst 
rates [88, 124], increases hatching rate [103], increases the total cell number (TCN) [103] and 
improves trophectoderm (TE) and inner cell mass (ICM) ratio in vitrified embryos [124]. Also, 
melatonin reduces the apoptotic index [103, 124], promotes the activation of antioxidant enzymes 
like GST and SOD [88], decreases the level of oxidative substrates [88] and ameliorates the reduction 
of expression of important genes related in early embryo development, like NANOG and POU5F1 
[88].  

The evidence is clear that melatonin is involved in the protection against oxidative stress by 
scavenging free radicals, inducing the activity of antioxidant enzymes and preventing the induction 
of the mitochondrial pathway of apoptosis, improving gamete and embryo quality both in human 
and domestic animals during ART. 

3. Potential use of melatonin against nitrosative stress during ART 

Melatonin has been described to reduce nitrosative/oxidative stress in many different tissues 
and organelles [65], supporting its protective effect against drugs, toxins, metals and herbicides 
[125]. Melatonin acts on the NO/NOS system by reducing peroxynitrite formation in the brain in the 
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first steps of the ischemic cascade, influencing the NO/NOS pathway and reducing oxidative and 
nitrosative stress [42]. During acute renal failure high levels of NO are produced by iNOS due to 
ROS/RNS activation, but it can be counteracted with melatonin as strong antioxidant and iNOS 
inhibitor agent as well as a scavenger of peroxynitrite, attenuating lipid peroxidation and protein 
oxidation in the kidneys [126]. Similarly, melatonin administration counteracted iNOS activation 
and mitochondrial damage in the liver during sepsis [127]. Melatonin preserves fetal growth in rats 
by protecting against ischemia/reperfusion-induced oxidative/nitrosative stress by preventing the 
oxidative damage in placental DNA and mitochondria [61]. Also, neuroprotective effect of 
melatonin is described by counteracting i-mtNOS induction, oxidative stress, and mitochondrial 
dysfunction [128]. 

Melatonin has shown to be protective for gamete handling in vitro. Proposed function of 
melatonin in the Graafian follicle are inhibiting the activity of the pro-oxidative enzyme nitric oxide 
synthase (NOS) [51]. Melatonin delays ovarian aging by multiple mechanisms including antioxidant 
action, reducing declines in oocyte quantity and quality in mice [129]. Accordingly, melatonin could 
be useful against nitrosative stress due to in vitro maturation of the oocytes. 

A beneficial effect on male fertility is described for human and domestic animals: this 
compound induces a significant decrease on intracellular NO in human sperm, increasing sperm 
motility and viability [43]. Also, NO is one of the factors that changes during the annual 
reproductive cycle of the male adult buffalo: NO is mainly present in the caput epididymis during 
short photoperiods coinciding with maximum gonadal activity [130]. According to this, and 
considering the influence of melatonin on seasonal reproduction in these animals we can suggest the 
potential use of melatonin to modulate NO levels to increase buffalo fertility or in other seasonal 
breeders, both during semen storage or IVF.  

On the other hand, ART can induce vascular dysfunction and arterial hypertension related to 
epigenetic alterations of the regulation of the eNOS gene; however this can be prevented by addition 
of melatonin during in vitro culture of embryos which doubled the success rate of IVF, prevented 
eNOS demethylation and normalized NO plasma concentration [131].  

Melatonin has been found to protect the fetus and placenta from oxidative stress due to ROS 
and RNS [51]. On this way, melatonin could be a useful clinical treatment to increase or maintain 
umbilical blood flow by NO-dependent mechanisms in complicated pregnancy [66], as after embryo 
transfer of in vitro produced embryos (ET/IVP) in domestic animals. 

Despite that more specific researches about melatonin effect against nitrosative stress in 
reproductive biotechnologies are scarce; melatonin has demonstrated direct and indirect beneficial 
effect against ROS. Therefore, considering that ROS can generate RNS, we can deduct that melatonin 
could have a protective action over nitrosative stress during gamete and embryo handling in the 
laboratory as it had been demonstrated in other tissues.  

There is a long list of studies that support the use of melatonin against oxidative stress, however 
much remains to be investigated regarding the role that melatonin might have on nitrosative stress 
during in vitro manipulation and cryopreservation of gametes and embryos. 

4. Conclusions 

This review summarizes the experimental data published in literature about melatonin and its 
potential use against ROS/NOS as a powerful antioxidant for improving gamete and embryo quality 
in domestic animals.  
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