Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 June 2017

Article
The Role of Respiration in Estimation of Net Carbon

Cycle: Coupling Soil Carbon Dynamics and Canopy
Turnover in a Novel Version of 3D-CMCC Forest
Ecosystem Model

Sergio Marconi'?*, Tommaso Chiti34, Angelo Nolé %, Riccardo Valentini?4, Alessio Collalti 26

1. School of Natural Resources and Environment, Institute of Food and Agricultural Sciences, University
of Florida (UFL), Gainesville, US: s.marconi@ufl.edu

2.  Foundation Euro-Mediterranean Center on Climate Change— Impacts on Agriculture, Forest and
Ecosystem Services (IAFES), 01100 Viterbo (VT), Italy;

3. University of Tuscia — Department for Innovation in Biological, Agro-Food and Forest Systems
(DIBAF), Viterbo, VT, Italy

4. Far Eastern Federal University (FEFU), Ajax St., Vladivostok, Russky Island, Russia

5. School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata,
Italy

6. CNR-ISAFOM National Research Council of Italy, Institute for Agriculture and Forestry Systems in
the Mediterranean, 87036, Rende, CS, Italy

*Correspondence: sergio.marconi@weecology.org; Tel.: +1-352-745-9685

Abstract: Understanding the dynamics of Organic Carbon mineralization is fundamental in
forecasting biosphere to atmosphere Net Carbon Ecosystem Exchange (NEE). With this perspective,
we developed 3D-CMCC-PSM, a new version of the hybrid Process Based Model 3D-CMCC FEM
where also heterotrophic respiration (Rn) is explicitly simulated. The aim was to quantify NEE as a
forward problem, by subtracting Ecosystem Respiration (Rec) to Gross Primary Productivity (GPP).
To do so, we developed a simplification of the Soil Carbon dynamics routine proposed in DNDC
[1]. The method calculates decomposition as a function of soil moisture, temperature, state of the
organic compartments, and relative abundance of microbial pools. Given the pulse dynamics of soil
respiration, we introduced modifications in some of the principal constitutive relations involved in
phenology and littering sub-routines. We quantified the model structure related uncertainty in NEE,
by running our training simulations over 1000 random parameter-sets extracted from parameters
distributions expected from literature. 3D-CMCC-PSM predictability was tested on independent
time series for 6 Fluxnet sites. The model resulted in daily and monthly estimations highly consistent
with the observed time series. It showed lower predictability in Mediterranean ecosystems,
suggesting that it may need further improvements in addressing evapotranspiration and water
dynamics.
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1. Introduction

Global concerns over increasing level of greenhouse gas concentration, particularly carbon
dioxide (COz), pushed research efforts to better investigate biogeochemical Carbon (C) fluxes
dynamics and patterns between atmosphere and biosphere, and to upscale C flux estimates from site-
specific to regional, continental and global scales. Increased atmospheric concentration of CO,
combined with increasing temperatures and size variations of ecosystem C pools, are responsible for
year-to-year terrestrial ecosystems carbon flux perturbations, through the variation of both
photosynthetic and respiration rates [2].
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In the last decades, the Eddy Covariance (EC) technique provided long-term continuous
measurements of Net Carbon Ecosystem Exchange (NEE), water vapor and energy, within the global
network of EC flux towers (FLUXNET) distributed over major terrestrial ecosystems. The availability
of EC measure of NEE contributed to quantify and to determine seasonal and inter-annual variability
of ecosystem C budgets at EC tower site-specific scale [3; 4; 5]. Observed NEE does not directly
quantify the two major components of ecosystem C flux balance represented by ecosystem
respiration (Reco) and gross primary productivity (GPP). Thus, flux partitioning algorithms have been
developed to partition eddy covariance NEE into photosynthetic uptake and respiratory release [6;
7]. At the same time, EC flux measurements provide key information for the parameterization,
calibration and validation of process-based Forest Ecosystem Models (FEMs) contributing to large
scale estimates of main ecosystem C pools.

The implementation of both forest process-based models (PBMs) [8; 9; 10; 11; 12; 13] and
Functional-Structural Tree Models (FSTMs) [14; 15; 16; 17], based on the widely used Light Use
Efficiency (LUE) approach [18], contributed to understand and up-scale the the main physiological
processes supporting ecosystem's C uptake. Although most of forest ecosystem models provide
reliable estimates of forest growth, limitation for NEE estimates are related to the uncertainty in Reco
estimation [19; 20]. Hence, the implementation of biogeochemical models integrating soil respiration
models and FSTMs is a great opportunity to reliably estimate NEE [21; 22; 23].

Although soil respiration and soil organic matter (SOM) decomposition depend mainly on
abiotic factors, such as temperature and soil moisture [24; 25; 26], a key role is played by soil organic
carbon (SOC) stock size, microbial pools [27; 28], and dynamics of SOC supply to soil with littering
[29]. Leaf and fine roots senescence is of primary importance in determining dynamics in
heterotrophic respiration [30; 31], and exhibits seasonal patterns and intra seasonal pulses [32; 33].
These pulses are mostly driven by phenological transitions through stages of dormancy, active
growth, and senescence. For example, supply of dead leaves in soil is strongly dependent to tree’s
leaffal strategy. This is also true when predicting tree respiration, which is directly related to their
growth and Nitrogen content, which depends on Spring phenology. Unfortunately, processes
involving budburst and senescence are still partly obscure. PBMs usually represent these processes
simplistically: these simplifications may lead terrestrial ecosystem models to overly result in biased
predictions [34; 35; 36].

For these reasons, we developed the 3D-CMCC-PSM (3D-CMCC-Phenology and Soil Model), a
new version of the hybrid Process-Based Model 3D-CMCC FEM proposed by Collalti et al. [37; 38],
where 1) Spring phenology was directly taking into account tradeoffs between growth and Non
Structural Carbon (NSC) demand; 2) phenological transitions and supply of Fresh Organic Matter
(FOM) to soil were more explicitly represented; and 3) heterotrophic respiration (Rn) was explicitly
simulated to dynamically quantify stock changes of 7 different SOC pools mediated by the amount
of active microbial C pools. The aim of this study was to: 1) test the performance of the modified
model version, comparing model NEE estimates against independent time series for 6 Fluxnet sites,
representing different forests in different climatic areas, distributed over a wide latitudinal gradient
amongst European EC sites; 2) quantify uncertainty associated to 3D-CMCC-PSM constitutive
relations structure and parameterization.

2. Materials and Methods

2.1. Study Area and data

Eddy Covariance data were collected from FLUXNET (http://www.fluxnet.ornl.gov/fluxnet).
We chose the 6 sites to represent a climatic and longitudinal transect through Europe (Figure 1), so
that the model could be tested on different critical boundary conditions (Table 1). We used EC data
from different time series from daily to annual, processed using the method described in [39]. Gross
Primary Production (GPP) and Ecosystem Respiration (Rec) were partitioned using [6]. Information
about forest structure and total SOC at the beginning of the simulation was collected from literature
(e.g. [40; 41]) and PIs information. Sites were chosen to represent 3 diverse Forest Ecosystems,
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dominated by different species composition from deciduous broadleaved, DBF (i.e. Fagus sylvatica
L.), evergreen broadleaved, EBF (i.e. Quercus ilex L.), and evergreen needle leaved, ENF (i.e. Pinus
sylvestris L. and Picea abies L.), representing the most common European forest species from Boreal to
Mediterranean Ecoregions across Europe.

Table 1. Sites description and stand initialization data. Mean Temperature (T) and Precipitation (prec.) are

annual averages collected at site.

Site name Coords Climate Species Mean T Mean Prec. MeanDBH Tree Height Stand age Stand Density
(Lat°/Lon® composition (°C) (mmyr™) (cm) (m) (years) (treesha ™)
Collelongo 41.8/13.5 Temperate Fagus sylvatica L. 6.3 1180 20.27 19.84 100 900
(ITCol) (DBF)
Hainich 51.0/10.4 Temperate Fagus sylvatica L. 8.3 720 30.8 23.1 120 334
(DEHai) (DBF)
Hyyti ala 61.8/24.2 Boreal Pinus sylvestris L. 3.8 709 103 6.5 39 1796
(FIHyy) (ENF)
Renon 46.5/11.4 Temperate Picea abies L. 4.7 809 16.98 11.32 50 767
(ITRen) (ENF)
Castelporziano 41.7/12.3 Mediterranean Quercus ilex L. 15.6 780 16 12.5 45 458
(ITCpz) (EBF)
Puechabon 43.7/3.6  Mediterranean Quercus ilex L. 13.5 883 7 6 59 6149
(FRPue) (EBF)

Figure 1. Location of the 6 Fluxnet sites used to evaluate 3D-CMCC-PSM.

2.2 Model description

The 3D-CMCC FEM is a stand-scale process-based model (PBM) designed to simulate C and
water cycle in natural and managed forest ecosystems (for a full description see [37; 38]). Several eco-
physiological processes were modeled at species-specific level, and at a variable temporal scale (from
daily to annual) depending on the process to simulate (Figure 2). Model outputs were generally
represented at hectare scale, while processes were simulated at different spatial scales from cellular
(e.g. stomatal conductance), to canopy (e.g. transpiration), to individual tree, up to stand level.

Carbon assimilation was modeled for sun and shaded leaves [1] using the LUE approach [42]:
potential C assimilation was constrained by environmental and stand structural (e.g. tree age) scalars
[43]. Autotrophic respiration (Ra) was explicitly modeled as the sum of growth and maintenance
respiration (Rc and Rw, respectively). The first was computed as a fixed ratio of new growth tissues
(30%) the latter was based on Nitrogen content in stems, branches, leaves, fine and coarse roots, non-
structural carbon (NSC), and fruits tree pools. Carbon allocation among these pools was controlled
by species-specific parameters, phenology, light and water availability. Water cycle was modeled
calculating the daily balance between precipitation, canopy transpiration, evaporation, soil
evaporation, and runoff. Meteorological variables used to force the model were: global solar radiation
(MJ m? day?), maximum and minimum air temperature (°C), relative humidity (%), and daily
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cumulated precipitation (mm day?). To be initialized model required knowing stand structural
characteristics such as: species composition, stand density, diameter at breast height (DBH), tree
height and age. Soil initialization required the estimation of Total Organic Carbon (TOC) in the
different SOC pools, as described in the following section.

[C. N, 02]

"
Soil pool

Figure 2. 3D-CMCC version PSM main flowchart modified from Collalti et al., 2014. Red circled boxes represent
the pools and variable introduced or modified by 3D-CMCC-PSM.

2.2. Model Improvements

2.2.1. Soil Carbon Dynamics

The most recent 3D-CMC FEM model version (v.5.1, [38]) lacks in representing SOC dynamics,
preventing any estimation of NEE. With that perspective, we developed a simplified version of the
method described in [1] to quantify, dynamically, changes of 7 different SOC pools mediated by the
amount of active microbial C pool (Figure 3).
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Figure 3. Soil Carbon dynamics in 3D-CMCC-PSM. The three macro pools are highlited by red boxes (dead C
pool) and blue box (live C pool, i.e. microbial). Blue filled boxes represent the processes simulated by the soil
model.

The litter C decomposed by microbial activity is partly mineralized as CO, partly stored into
microbial metabolic biomass (labile), partly in structural microbial biomass (resistant), partly
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transformed in other organic compounds [1]. SOC stability is also related to its chemical recalcitrance,
its accessibility, and interaction with clays [44]. We divided SOC in 7 pools to take these differences
into account. Humic pool (we use the term Humads, to be consistent with [1]) was divided into a
more labile (labile Humads, which stands for Humic acid), an intermediate (resistant Humads, which
stands for Fulvic acid) and a more resistant sub-pool (Humus, which stands for Humine).

We assumed that microbial C use efficiency was different for different pools, but constant within
each pool [42]. Microbial activity is strictly related to micro-environmental conditions too. Given
these premises we modeled C dynamics among soil pools using the following two partial differential
equations:

9% _

% = ¢,(t) - BC,(DB()

o : M)
o0 = BC(OB(t) —a B(t)

with aa% being the CO: efflux produced from a specific C pool decomposition, C,(t) is the amount
of new Carbon entering the specific soil pool, C,(t) the amount of Carbon in that C pool, B(t) the
microbial biomass competing for C(t). a and {3 respectively represented the microbial turnover and
SOM consumption factors. a was treated as a constant value, as in [1].

The consumption factor p was estimated as a function of both SOM stability and micro-
environmental conditions:

ﬁ(cpool) = Uur ﬂMﬂAkpool
ur = —0.014 T?+0.099 T + 0.02
Uy = —2.85 63+1.49 62+1.77 6 —0.03 @
up = 0.6 z %136(-0.02 clay,, + 0.03)

log(0.14 clayy;')
2.3026

Ha = Up +1

where pr represented the temperature factor, uy the moisture factor, u, the accessibility, kpoo
the recalcitrance; up a clay dependent depth factor [45]. The k,,,, factor was treated as a specific
parameter depending on each compartment’s biomass. T represented Temperature in Celsius
degrees, O stands for water moisture, z the mean depth of the soil, clayy, is the percentage of clays
in soil.

Humads were decomposed using the same rationale, but slower rates. Inert Organic Matter
(IOM) was calculated following [46].

2.2.2. Deciduous Phenology

Similarly to [38] the phenology scheme was constrained in 3 and 5 sub-phases respectively for
evergreen and deciduous species (Table 2). These phases were driven by photoperiod, thermal sum,
and maximum leaf biomass (resulting from maximum attainable Leaf Area Index, LAI, m? m-).

3D-CMCC FEM represents leaves development as a by-product of leaf biomass pool dynamics
[47]. Despite being a reasonable simplification, such method leaded to non-negligible excesses in
growth respiration and NSC consumption during budburst. Such unrealistic demand could
eventually consume all the available Carbon, causing the death of the tree. For this reason, we
proposed a modification of budburst phenology, to explicitly simulate the dynamic tradeoffs
between demand in NSC, increase in foliar biomass, and maturation of progressively self-sufficient
leaves.
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Table 2. Description of the different phenological phases for deciduous and evergreen species used in 3D-CMCC

PSM.
Deciduous Evergreen
Phase Trigger Phase Trigger
Bud Burst GDD threshold  Bud Burst GDD treshold
Leaf Development PeakLai/2 PeakLai Pipe Model
PeakLai Pipe Model Leaffall Daylength Treshold
Leaffall Daylength Treshold

Unvegetative Delpierre et al., 2012

We based the tradeoff function on the hypothesis that new leaves demand of NSC is higher
during budburst, and gets progressively lower when maturing [48]. Idealistically, the total NSC mass
(Br) demanded by maturing shoots and leaves could be represented by the linear differential
equation (ODE):

5B

s—tR — Rysc(®) *Br(t) = 0, (3)

where Rysc(t) is the instantaneous proportion of NSC demand. We assumed that C request per leaf
exponentially decreases with maturity, while the total demand increases by the increasing number
of leaf primordia. For simplicity, we assumed that the two components resulted in the linear
reduction of Rysc(t). Being a fraction, the maximum value of the integral of Rggrgr(t) is equal to 1.
Being the first vegetative day to, and the last day of Budburst (BBt) the last possible one to reach
complete leaf development, the domain of the function was [to, BBr]:

2 2t
8t = Ryscyax = T Rysc(B) = BB 4)

1= fBBTRNSCMAX't
—Jo BBt

resolving the ODE, and substituting Rsgrgr(t) it gives:

2t+2/ 2 2 2
e BBT“.o—t%/BBT

BBt /

®)

Br(t) = 2

where BBr is the parameter used in [38], e2t+2/ BBr” js the biomass dependent and e™**/BBT” the
maturity dependent factors (expressed in days). Graphically, the equation represents a skewed
function of the amount of NSC allowed to be used by the trees of the specific class; the faster the
leaves reach maturity, the more daily specific allocation is allowed (Figure 4).

Figure 4. Graphic representation of the C tradeoff function. The axes represent respectively bud burst days (BBt),
vegetative days (Veg_day), and the fraction of total NSC invested in leaves development (ONS C/ o¢)- The shorter
BBt, the highet the maximum NSC fraction.
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Another major modification we introduced involves Fall leaf yellowing and senescence. Falling
leaves contribute to half of annual litter production. Correctly estimate their timing have strong
impact on both GPP and Rh dynamics [33]. The 5.1 version of 3D-CMCC-FEM represents senescence
by linearly decreasing leaves biomass of a predefined fraction until their pool is emptied. However,
such method systematically overestimated leaf turnover at the beginning of the Leaffall phase, and
is poorly flexible in calculating its duration. For these reasons, linear loss of leaf Biomass was replaced
with a sigmoid function. Assuming for hypothesis that all leaves fall by the end of senescence season,
the sigmoid function was:

% = LAI(t) — Max (o, %) , (6)
t e P9%m

Where a(t), B(t), y(t) are three parameters with biological or physical meaning. In fact:

(a(h,a,sp) = LAlous(h,a,5p)
At(s)

B(s) = to(s) +—; , ?)
- At(s)
t y(s) = n(0.1)~In(10(8(s)—0.1))

where Ly,s stands for LAI value at peak of green, ty(s) is the first day of senescence (triggered by
a species-specific day-length parameter), At(s) is the length of the senescence period (days). At(s)
was calculated using [49], as a function of Temperature and photoperiod:

Rgen(t) = (Tyax(s) — T(D)) - (DDE((;)))Z

, ()

R )<Y,
At(s) = TpSn<Te Roen(®)

where Twmax is the maximum temperature at which senescence is effective, T(t) is daily average
Temperature, D (0) photoperiod at the first day of senescence, Dy (t) photoperiod at the it day of
the year.

2.2.3. Evergreen Phenology

Evergreen canopy turnover was modified from [38]. 3D-CMCCFEM v.5.1 assumes that
evergreen leaf turnover is constant throughout the year, and that annual leaf turnover is equal to leaf
biomass produced the year before [38; 47]. However, leaf turnover seems to be concentrated in
specific seasonal windows: 1) consistently to leaf emergence (Spring); and 2) approaching of
photosynthetic inefficient season (Fall) (Devi et al., 2013; Chabot et al., 1982; Nitta et al., 1997). For
this reason, this approach may affect the ability in estimating leaf biomass and GPP intra-annual
variability. To better represent leaf turnover dynamics, we developed a new framework where
competition for light dynamically affected leaves turnover. We assumed the canopy to be a
population of leaves optimized to intercept the highest amount of light. Since leaves cannot move
from their position in the canopy, they get partially shaded by new emergent leaves when aging.
Conceptually, leaves can be assumed to be in competition for one resource, light, and their turnover
can be predicted by using a competition for one resource scheme as in [50]:

a i —
2OB®) ™ = fR) — fi(my)
ri'R

ER) = o , )
« __MiYj
Ry = (ri—m;)

In thismodel, R and R;" are respectively the concentration of available light in J m2 d-! (i.e. resource
that leaves are competing for), and the light needed to survive in a progressively more shaded
canopy. r; is the max photosynthetic rate (gC m2 d-1), m; is the Maintenance Respiration in gC m?
d7, Y; Carbon yield.

We assumed for hypothesis that:
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(1) Older leaves live in the shaded portions of the canopy, where light transmitted is reduced
following Lambert Beer’s exponential decay equation. For this reason, we expect an
exponential reduction in absorbed photosynthetically active radiation (APAR);

(2) An age dependent quasi exponential decay in leaf quantum yield efficiency [51]. These
decays impact on the reduction of ry;

(3) Nitrogen content in older leaves is often lower than in young ones, because of its transfer
from portions of the crown with low productivity to portions more exposed to light [51].
Since Maintenance respiration is proportional to Nitrogen content, we expect an exponential
reduction in m;;

(4) Y; was assumed to be constant as in [52] because of the joint effect of reduction in respiration
rate and quantum yield efficiency.

We assumed that the three components of the Eq.9 may have the following shapes:

m= mg-e 't +mpy,
ri= (0g-e™ ta)-(Ag-e™t +24,), (10)
ki:const

where t is time, the independent variable. mg, oy, A, are MR, quantum yield and APAR at first day
of budburst, the second year of life. my,, oy, Ay, are the theoretical minima values of MR, quantum
yield and APAR to let a proportion of leaves survive in a non-shading context. k,, kg, kj are the
exponential parameters for the three functions.

Based on these hypotheses Eq 10. becomes:

(mo-e_k“'t +mm)-ki

(age~Ka't +am)-(}\0-e'kl't +)Lm)—(m0-e_k“'t +mm)

Ri* =

(11)

Assuming that k, =k, = k;, and that the denominator of Eq. 9 has to be greater than zero for the
leaves in the it generation to survive, R* is a sigmoid positive function.

Knowing R*, we can calculate the amount of live leaf biomass of the i generation (BFLsw) as the
inversion of R* (i.e. S{(t)). We simplified the theoretical model using the following function:

1

1 tz _ ZBFLS(i)+1
2

2

Si() = t + BFis), (12)

where t is the number of days since leaves of the i generation have emerged. According to this model
the theoretical maximum age of each generation (BFs¢)) should correspond to the year in which the
R* almost reaches its asymptote. We used Eq. 12 to quantify leaf turnover for each generation. About
60% of leaf turnover happened in early Spring, when new leaves emerged: the amount of biomass
lost every day was proportional to new leaf biomass production the same day. The rest of annual
turnover happened in Fall, when each leaf biomass generation was reduced of a constant value
calculated from Eq. 12. No foliar re-sprouting was simulated in Fall, even though there are evidences
of it for Quercus ilex [53]. Leaf biomass reduction was determined by linearly decreasing each Bi to
the quantity predicted by the specific parabolic decay for the end of the year.

2.2.4 Production of Fresh Organic Matter

At a relatively fine temporal scale (i.e. daily time step) timing of litter formation and FOM
production may be fundamental in correctly estimating Rh [54]. Littering for woody tissues followed
the rationale of BIOME-BGM family (Thornton et al. 2002). Partitioning of leaves and fine root
turnover followed [55]. FOM coming from any plant biomass pool to the soil was added to the Litter
pool. Litter pool was consisting of three sub-pools: metabolic very labile C, structural labile C, and
structural resistant C. FOM was divided into the three litter sub pools according to its original C:N
ratio, as in [1]:
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d _ (enyg™t-eni™h)
[at i+1 — (CNl-_l—CNi_,,l_l) it
a a 3 13
52 =50—5,Cie1 (13)

CN; < CNy < CNjyy

Where Cy; is the FOM entering litter from each structural C compartments of the plant. FOM C
and N were distributed to the litter sub pools with closest C:N. Cy,4, represents the pool with higher
recalcitrance. When CNy; was higher than any litter sub pool, all the new C was added to the
structural resistant pool; otherwise, if CN}; was lower than the CN of the metabolic pool, all its C
and N were added to the very labile sub pool. Litter C dynamically moved from a pool to another.
Microbes absorbed and partially immobilized litter C in their biomass, and released it again in the
soil, during the humification processes [56].

2.2.5. Optimization

We introduced a new calibration scheme to provide an optimized parameterization, and
quantify uncertainty related to the equations used in 3D-CMCC-PSM to simulate NEE, and choice of
a subset of 45 species-specific physiological parameters (Table S1). Calibration was performed on
each site independently, using a training dataset composed by 3 years of EC daily NEE time-series.
We chose 2000-02 for DEHai, 2001-03 for FIHyy, ITCpz, and FRPue; 2001-04 for ITCol; 2006-2008 for
ITRen. Because of the strong autocorrelation characterizing time-series, we didn’t randomly split our
dataset, and decided to use sub-time series of contiguous years [57]. We preferred to use the
beginning of each simulation for training, before the global recession following the Financial Crisis
of 2007-2008. We decided to do so to (1) facilitate comparison among different sites” simulations; (2)
have the calibration start when vegetation structure was known from literature, and (3) reduce the
risk for parameters to be fitted over a changing environment instead of eco-physiological properties.

To sample the parameterization space (the realistic values of each physiological parameter of the
species simulated in each site), we randomly extracted 1,000 parameter-set combinations from prior
distributions. Prior distributions were assumed to be the same among individuals of the same species,
different across species. We assumed each parameter to follow a truncated normal distribution, to
avoid any possibility to have non-realistic negative values. Average and variance were estimated by
using values found in literature, as in [38]. We used the same averaged value as in [38] for those
parameters whose observations in literature were less than 3, because we didn’t have enough
information to calculate sample standard deviation. The optimization was performed by choosing
the parameterization set maximizing the objective function QF through:

2

n yobs, Sim_—zy(i]bs'zyfim n(yobs _ysim)?
obsy? simy2 n(yobs_yob
Jz(v‘f’”)z &) jz(yf"")z e S
where YO represents EC daily NEE, Ys Modeled NEE for the same day, ¥°* the average EC daily

NEE over the train time series. The first part of the RHS of the equation represents the square of the
Pearson Correlation coefficient (R), the second the Nash-Sutcliffe Efficiency index (NSE).

2.2.6. Validation Analysis

Results were compared to Eddy Covariance data on long-term daily, monthly and annual
averages, over the full series of testing years (~5 years). For the validation, we used 2003-07 for DEHai,
2004-08 for FRPue and ITCpz, 2004-11 for FIHyy, 2005-12 for ITCol, 2009-11 for ITRen. Then we
evaluated how the model performed in the different seasons aggregating values for months of the
same season.
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To evaluate the model efficiency, we calculated daily, monthly, and seasonal: (1) R; (2) NSE; (3)
Root mean square error (RMSE); and (4) Mean Absolute Bias (MAB). Each statistic was considered
differently informative [58] as summarized in Table 3. The model’s ability in representing observed
anomalies was determined by analyzing inter annual variability (IAVs) following [59] and [38].

Table 3. Statistics used for Model’s results validation against Eddy Covariance data.

Statistics Formulation Use and ranges
» n(Txy) - {ZxHEy) Estimation of model’s measure of
Pearson Coefficient = 8 ) )
V [nEx2 - (502] [ nEy? - (2] correlation with EC data[0;1]
T, (vete — yem)? Estimation of model’s

Nash Sutcliffe efficiency  NSE=1-

o (vebe - 1)’ predictability [-=0;1]
0 o — )2 Estimation of model’s accura
Root Mean Square Error  RMSE = M > 1 ~
n gCnmi d’ [0; ]
Yump, — Y, 1 Estimation of model’s bias
Mean Absolute Bias ~ MAB = Z (' e ‘)ﬁ .
o(¥ec,) gCnt d"' [0; ]

3. Results

3.1. Evaluation of daily, seasonal, and annual NEE estimations

To evaluate 3D-CMCC-PSM NEE predictions, we compared predicted (MD) daily and monthly
NEE time series to EC daily data. The analyses were performed only on the test data (i.e. portions of
the series which have not been used for calibration) to avoid any effect of overfitting. The model
showed high correlations with observed EC data at all sites for both daily and monthly fluxes, apart
from ITCpz site (Table 4). Excluding ITCpz, R ranged at all sites from 0.65 to 0.84 for daily and, 0.59
to 0.97 for monthly scale. Beech dominated Deciduous Forests (DBF) performed better than Conifer
species (ENF) and evergreen Mediterranean broadleaved forests (EBF). ENF and EBF in FRPue
performed similarly on daily scale, for all the statistics used. However, ENF predictability
significantly increased on monthly scale (R ranging between 0.92 and 0.97), while EBF performed
worse (R 0.42 in ITCpz, and 0.59 in FRPue). RMSE on average was 1.92 gC m? d*. MAE ranged
between 0.96 and 1.78 gC m?2 d, and on average it decreased almost twice on monthly timescale.
MAB showed similar behavior for DBF and ENF. It ranged between 0.39 and 0.56 gC m- d-! (0.50 on
average) for daily time series. Mediterranean forests resulted the ones with highest MAB, and showed
no significant reduction when predictions were aggregated on monthly scale. Differently from the
other simulations, even NSE just improved slightly for ITCpz, and even reduced for FRPue
simulation.

Table 4. Daily and Monthly Validation statistics calculated on the test-set. As stated in Table 3, R and NSE are
dimensionless; RMSE and MAB are gC m?2d-.

DEHai ITCol FIHyy ITRen ITCpz FRPue Mean
Daily MEE
R 0.54 0.76 0.67 0.65 024 0.65 064
NSE 0.67 0.5 0.34 0.21 -0.26 0.35 0.3
RMSE 1.84 27 1.48 232 1.8 1.39 192
MAB 0.39 0.5 0.53 0.56 1.15 0.76 .65
Monthly NEE

R 093 092 0.96 0.97 042 0.59 0.8
NSE 0.81 0.76 09 0.87 012 0.2 .61
RMSE 1.15 1.58 0.45 072 1.24 1 1.02

MAB 0.28 0.32 0.21 0.24 1.25 0.86 0.53
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Daily results were aggregated in seasonal series to evaluate seasonal predictability. Daily NEE
were averaged to give a time series of mean seasonal NEE (gC m2 d-), one value per season, for the
duration of the test dataset. Seasonal aggregations showed that 3D-CMCC-PSM poorly performed in
predicting seasonal fluxes. NSE was generally negative in Summer, with the exclusion of DEHai and
FRPue. 3D-CMCC-PSM generally best reproduced NEE dynamics in Fall (R ranging between 0.22
and 0.89). ENF ecosystems showed consistently higher correlation in Spring predictions, with R of
0.65 and MAB of 0.62 gC m? d' on average. In the case of evergreen stands, 3D-CMCC-PSM
consistently showed poor performance in Summer. Expectedly, DBF performed the worst in Winter
(Table 4). NSE on average resulted positive only in Fall for both DBF and EBF, and Spring, for ENF
stands.

Table 5. Seasonal validation statistics calculated on the test-sets and aggregated by ecosystem type. As stated in
Table 3 and 4, R and NSE are dimensionless; RMSE and MAB are gC m? d-'. MAM stands for March, April, and
May. JJA stands for June, July, and August. SON stands for September, October, and November. DJF stands for
December, January, and February. DBF stands for Deciduous Broadleaf Forests, EBF for Evergreen Broadleaf

Forests, ENF for Evergreen Needle leaf Forests.

R NSE RMSE MAEBE
DBF
MAM 0.43 0.36 277 0.72
A 0.36 -0.02 296 117
SON 0.82 0.58 1.9 0.58
DJE 0.2 0.93 0.7 1.58
EBF
MAM 0.65 0.28 1.83 0.62
TTA 0.11 0.92 2.76 1.01
SON 0.51 0.03 1.56 0.74
DJE 0.38 -1.59 0.51 0.82
ENF
MAM 0.18 0.41 1.95 1.2
A 0.32 -0.34 1.58 1
SON 0.45 0.19 13 0.79
DJE 0.47 -6.13 1.45 14

We used Taylor diagrams [60] to graphically summarize how closely Daily, Monthly and
Annual NEE patterns matched EC observations (Figure 5). 3D-CMCC-PSM performance was
generally satisfactory. Daily simulations resulted in all sites but ITCpz being within the *1
normalized standard deviation region. Monthly scale predictions were more consistent with EC data,
especially for BDF and ENF sites. It resulted in all 4 simulations falling within 0.5 normalized
standard deviation from the reference point, and R > 0.9. Again, 3D-CMCC-PSM performed worst in
EBF, with FRPue still inside 1 normalized standard deviation region, and ITCpz falling outside the
+1.5 normalized SD region. The consistently worse predictability in ITCpz and FRPue confirm a
systematic weakness in 3D-CMCC to represent fluxes for these sites as already described in [38].
Model performance on annual scale showed a different pattern, mostly because of some sites
consistent biases in seasonal NEE, and the difference in NEE magnitude. Delay in Spring phenology,
and the consistent underestimation of Summer NEE, resulted in significant underestimation and
scarce predictability of ITCol annual NEE (R <0.2). ITCPz and FRPue resulted among the sites with
higher annual predictability, partly because of the low seasonal variance in NEE, partly because
Winter and Spring bias tends to compensate each other.
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Figure 5. Taylor diagram representing 3D-CMCC-PSM performance in (a) daily, (b) monthly and (c) annual NEE
estimation for the test-set. ITCol and DEHai represent DBF (red and green dots); ITRen and FIHyy ENF (blue
and turquoise). ITCpz and FRPue represent EBF (yellow and magenta dots). The closest a simulation lied to the
“Ref” point, the better 3D-CMCC-PSM represented NEE patterns. X and y- axes represent NEE standard
deviation (SD): the closest to 1, the better the performance. Simulations withR = 0.9, and difference in SD with
EC NEE less than 0.5 5 gC m? d-!' showed very good performance. Simulations with 0.75 < R < 0.9, and
difference in SD with EC NEE between 0.5 and 1 gC m?2 d! showed good performance. Simulations with 0.35 <
R <0.75, and difference in SD with EC NEE between 1 and 1.5 gC m2 d! showed sufficiently good performance.

3.2. Anomalies and parameters related uncertainty

Figure 6 shows uncertainty associated to random choice of parameters. Overall, uncertainty was
expectedly higher in Summer and Fall. Such increase was particularly clear for deciduous forests,
which not only showed wider NEE standard deviation, but also had optimal modeled NEE falling
outside standard deviation area.

DEHai FlHyy ITCpz

w w w

w | [To R w |

I I |
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Figure 6. Model structure related uncertainty in estimating NEE (gC m2 d') per DoS (Day of Simulation) by a

random choice of parameters values from prior distributions. Data represent 300 1-year simulations from
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randomly extracted parameterization-sets. Average daily simulations (black line) and standard deviation (grey
area). Red dotted line represents daily NEE simulation for the optimized parameterization set (Table S2). First

column represents DBF sites, the second ENF, the third EBF.

DBEF sites showed also high uncertainty in estimating the first vegetative day, suggesting that a better
representation of Winter dormancy effects on budburst dates may significantly improve model’s
predictability. Uncertainty was generally lower in Mediterranean sites, probably because model’s
performance was generally lower, and fitting parameters to data would have little effect on
performance. 3D-CMCC-PSM uncertainty was generally low for ENF for most of the year, but was
generally high when Temperature were higher. Higher uncertainty for warmer days was generally
found in DBF sites too, suggesting that 3D-CMCC-PSM was expectedly sensitive to high
Temperatures for both Photosynthesis [61] and Respiration [62]; because of such variability,
calibrating parameters on data resulted in a significant boost in model’s predictions.

NEE inter-annual variability was generally underestimated by the model. Nevertheless, 3D-
CMCC-PSM correctly reproduced 81% of the sign of the anomalies, and residuals difference in
magnitude was usually less than 0.3 gC m? d-'. Highest difference in magnitude occurred in ITCol
(difference in residuals higher than 0.5 gC m?2 d-1in 5 years out of 12). Highest difference was shown
in ITCpz, where the sign was correctly reproduced only once out of 8 years, and having more than
1gC m2 d~ of residual difference (Figure 7).
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Figure 7. Inter annual variability (IAV) for the test time-series (gC m?2 month?). Observed IAV in gray boxes,
simulated IAV in orange. First column represents DBF sites, the second ENF, the third EBF.

3.3. Comparison with the 5.1 version of 3D-CMCC-FEM

We compared the results of 3D-CMCC-FEM 5.1 [38] and 3D-CMCC-PSM for daily and monthly
GPP for ITRen, FRPue, DEHai and FIHyy. We used the same non-optimized parameterization set for
both versions. Except for FR-Pue, 3D-CMCC-PSM showed lower RMSE and higher R for daily GPP.
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Daily NSE too was generally higher in 3D-CMCC-PSM, except for FIHyy. Monthly aggregated
predictions were consistently outperforming those of 3D-CMCC-FEM 5.1 (Table 6).

Table 6. Comparison between 3D-CMCC-FEM 5.1 (5.1) and 3D-CMCC-PSM (PSM) versions, using the same
parameterization for 4 out of 6 sites (ITRen, FRPue, DEHai, FIHyy). As stated in Table 3, R and NSE are

dimensionless; RMSE is gC m? d-.. Bold values represent best performing version.

Version ITRen FRPue DEHai FIHyy Avg

Daily 5.1 0.81 0.82 0.92 0.91 0.87
R PSM 0.88 0.64 0.93 091 0.85
Monthly 5.1 0.95 0.64 0.97 0.96 0.89
R PSM 0.96 0.84 0.98 0.96 0.94
Daily 5.1 0.61 -0.54 0.84 0.87 0.45
NSE PSM 0.72 0.09 0.96 0.76 0.63
Monthly 5.1 0.91 -0.11 0.94 0.91 0.66
NSE PSM 0.91 0.56 0.98 0.92 0.84
Daily 5.1 2.09 1.52 1.85 1.56 1.76
RMSE PSM 1.59 1.96 1.91 1.57 1.76
Monthly 5.1 0.97 1.01 1.07 0.91 0.99
RMSE PSM 0.82 1.09 0.82 0.93 0.92

3.4. Daily and monthly Reco

We evaluated Reco by comparing modeled (MD) and observed (EC) daily and monthly time series.
Daily R ranged between 0.45 in ITCpz and 0.9 in FIHyy (Table 7) . RMSE was of 1.28 gC m?2 d' on
average, and MEB ranged between 0.43 and 1 gC m2 d-'. Most of the bias happened in summer, where
Reco was generally overestimated, especially in ITCol and ITCpz. NSE was positive in any case but
ITCpz. It was generally lower in DBF (0.32), and higher in FIHyy (0.60) and FRPue (0.57). Reco at
monthly timescale was strongly improved in predictability, especially for ITRen, whose R increased
to 0.67 and NSE to 0.84. Montlhy predictions showed improvements for the other simulations too,
improving R and NSE of about 0.07. Since most of the bias occurred in summer, monthly predictions
showed no dramatic improvements for neither RMSE nor MEB. The only exception was ITRen, whose
RMSE reduced of about 0.4 gC m2 d-, suggesting that daily Reco may be noisy.

Table 7. Daily and Monthly Validation statistics for Reco calculated on the test-set. As stated in Table 3, R and
NSE are dimensionless; RMSE and MAB are gC m2 d-.

DEHai ITCol FIHyy ITRen ITCpz FRPue Mean
Daily Reco
R 0.79 0.71 0.90 0.67 0.45 0.86 0.73
NSE 0.32 0.32 0.60 0.34 -0.43 0.57 0.29
RMSE 1.29 1.83 1.18 1.03 1.65 0.70 1.28
MEB 0.63 1.00 0.43 0.62 0.98 0.48 0.69
Monthly Reco

R 0.86 0.79 0.96 0.84 0.54 0.93 0.82
NSE 0.40 0.37 0.66 0.69 -0.40 0.67 0.40
RMSE 1.10 1.67 1.04 0.64 1.49 0.54 1.08

MEB 0.60 0.99 0.41 0.50 1.04 0.43 0.66
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4. Discussion

4.1. 3D-CMCC-PSM predictability in estimating NEE

In general, the inclusion of a simplistic SOC routine resulted in a reliable estimation of daily and
monthly NEE patterns. While daily and monthly patterns are consistent with EC data, seasonal
patterns showed non-negligible misrepresentations, which resulted in negative NSE in most of the
cases. This inconsistency may be driven by the strong seasonality in both Reco and GPP [63], which
positively affects correlation between EC data and MD results.

NEE patterns during Summer and Fall were much more consistent with measured ones, than
Winter and Spring patterns. During these seasons the biases appeared mostly affected by estimation
of Reco. The scarcity of the model in representing EBF C fluxes was especially attributable to GPP
predictions. 3D-CMCC-PSM and 3D-CMCC FEM inability in predicting GPP in ITCpz and FRPue
sites, denoted the necessity to better represent the relations between Mediterranean forests and
environmental factors [64; 65]. In FRPue the model well reproduced Spring, Summer and Fall NEE.
On the other hand, it showed a bias of around 1gC m2 d-' in Winter, suggesting it was missing some
particularly important seasonal processes. For example, evergreen phenology still didn’t consider
secondary or continuous growth. Thus, species like Quercus ilex, which exhibit secondary gem
sprout in Fall [53], have fresh leaves and mild temperatures to guarantee photosynthetic activity in
Fall and Winter, partly explaining 3D-CMCC FEM and 3D-CMCC-PSM systematic underestimation.

ITCpz showed the same pattern. However, differently from FRPue, it poorly performed also in
early Spring and Summer, especially for GPP patterns. This misbehavior was expected, because of
the physical characteristics of the site. In fact, 3D-CMCC FEM soil water dynamics routine was still
simplistic, and to date, such other similar models, didn’t include any effect of water table dynamics.
On the contrary, ITCpz is characterized with the presence of a shallow groundwater table, which
seems to reduce water stress in early Summer [38]. Moreover, we used average daily meteo data
collected from the Eddy Covariance stations, and initialized simulations using average structural
information found in literature. Uncertainty about those data was potentially high, and could have
dramatically affected 3D-CMCC-PSM results.

Summer NEE misrepresentation in DBF was probably affected by the assumption that LAI and
photosynthetic capacity reach their maximum in early Summer, alongside. On the contrary,
maximum photosynthetic capacity may be reached in late summer, and vary across the canopy.
Without taking this into account, GPP could be overestimated up to 40% [66]. Notwithstanding,
comparing model outputs with published works [67; 68] these defects are common also for other
PBM:s.

Seasonal patterns showed that the model consistently misrepresented NEE in Winter,
suggesting that Rec still needs to be improved. Especially for DBF sites (e.g. DEHai), Winter Reco was
mostly driven by RH. RH was exponentially affected by soil temperatures and especially moisture
[69], which are calculated by the model, and could be over-fluctuating in Winter. Moreover, EC data
are prone to random noise [70], whose relative impact on performance metrics may be relatively
larger.

Interestingly, annual predictions suggested reasonably high performance of 3D-CMCC-PSM,
despite these seasonal inconsistencies. This suggests that biases are usually consistent within a
season, but have different sign across seasons (Figure 8), resulting in a compensating effect at coarser
time scale.
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Figure 8. Patterns in daily NEE (gC m? d') per DoY (Day of Year) calculated from test-sets on a site level.
Observed EC average patterns (black dotted line) and standard deviation (gray area). Simulated average
patterns (red dotted line) and standard deviation (orange area). First column represents DBF sites, the second

ENF, the third EBF.

It was not always possible to individually validate the different components of respiration. Since
EC Reco was not measured but inferred, evaluation metrics should be interpreted as a general ability
of 3D-CMCC-PSM in predicting it. Despite daily Reco was noisy, 3D-CMCC-PSM could reproduce
respiration processes well enough, at least at monthly timescale.

NPP:GPP ranged between 0.37 and 0.62, and was consistent with literature [71; 72; 73]. It was
generally higher in DBF (0.49 in DEHai, 0.55 in ITCol), lower in EBF (0.38 in FRPue, 0.41 in ITCpz).
These results matched with those of [71] who showed that the ratio between NPP and GPP (CUE) is
generally 0.53, ranging from 0.23 to 0.83. CUE was relatively low in FIHyy, where Reco predictions
were overestimated: therefore, poor predictability was probably ascribable to excesses in RA.

Ecosystem respiration was overestimated during Summer, causing NEE systematic
overestimation at each simulation, especially in ITCol. Except for FRPue and ITCol, RA grew about
1 gC m2 d? higher than RH, suggesting that it may be the principal driver of biased Summer Reco
(Figure 9). This misbehavior may be related to the method used to estimate Maintenance Respiration,
an exponential relationship between respiration, moisture, and temperature [61].
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Figure 9. Patterns in daily Soil Respiration (SR) heterotrophic and autotrophic components (gC m-2 d-!). Patterns
per DoY (Day of Year) calculated from test-sets on a site level. Microbial respiration average patterns (black
dotted line) and standard deviation (gray area). Autotrophic roots respiration average patterns (red dotted line)

and standard deviation (orange area). First column represents DBF sites, the second ENF, the third EBF.

Lack of data to validate the SOC dynamics reduced the spectrum of speculations, which could
be statistically analyzed. SOC didn’t change its quantity in ten years; this result was consistent with
the theoretical stability of the SOC, an indicator which rarely change within 10 years if no strong
disturbance event (e.g. land use change) have occurred [74]. Litter C was highly fluctuating within a
year, but its quantity was stable if compared at the end of each year. This suggested that the model
realistically represented litter turnover and decomposition, since residues were degraded into humus
labile substances about within a year [75]. Microbial Biomass was highly variable, as expected.
However, the magnitude of change was too broad throughout the simulations. These results may be
related to the use of 5% as the initial active microbial biomass for each site, value that may be far from
the equilibrium for different soils. Moreover, tradeoffs within microbial growth and between the
environmental conditions may be scarcely represented. As a matter of fact, 3D-CMCC-PSM
simulated the soil as having the same physical-chemical structure throughout the profile. This
implied that microbes could find the same amount of C, O2, and living space, with no depth
limitation.

4.2. 3D-CMCC-PSM uncertainty in estimating NEE

We analyzed 300 random parameterization-sets per site to quantify model assumptions and
uncertainty. The model showed different behavior in different sites, but expectedly consistent across
species behaving in a similar functional way. These results may suggest that using functional traits
combinations to provide physiological parameters, instead of fixed species-specific ones, may
produce still reliable and more general predictions, particularly useful in case of larger spatial/
temporal simulations [76; 77; 78]. Using a species-level parameterization, in fact, may result in a too
fine “resolution” because: (1) it would require excessive computational resources and a finely
detailed parameterization, usually inaccessible on broad scale [79]; (2) the model’s rationale in
predicting forest structure is mainly driven by competition for resources. However, there are not
explicit tradeoffs, positive interactions between different tree cohorts, or intra-specific traits
variability, which are fundamental to forecast forest ecosystem structure on long-run simulations
[80]. Having fixed species-specific parameters throughout century would potentially result that only
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a very reduced amount of species would dominate the different cohorts on landscape to regional
scale

According to Figures 6 and 7, and 8 strong uncertainties still reside in timing for the different
phenological phases. The biggest source of uncertainty in deciduous stands was driven by the
amount of degree days needed to begin vegetative period. The use of a site-specific thermal sum
(GDD) to activate vegetation period is widely used, but proven to be very site sensitive, and not very
effective for a regional generalization [81]. On the other hand, the processes triggering bud-burst
timing are still partly unknown. Moreover, those models proposing a process oriented promoter-
inhibition rationale are generally over complex and not prone to spatial generalization [82]. A
possible solution in this context is to use remotely sensed data to train a latitudinal explicit regression,
constraining GDD estimation.

3D-CMCC-PSM showed high uncertainty also in catching the beginning of the senescence phase.
The new phenological scheme didn’t reduce such uncertainty, since it was still using a photoperiod
threshold as the senescence phase trigger [38]. Another strong source of uncertainty in Summer GPP
may be held by the over simplicity of soil structure and thus of the soil water routine.

As shown in [38], EC data are prone to high uncertainty. We focused on NEE fluxes to reduce
the uncertainty cascade related to NEE partitioning. The next natural step will be reframing the model
with a hierarchical Bayesian fashion, to quantify error propagation and parameters uncertainty from
the posterior distribution [83].

Daily Reo estimation was affected by the cascade of uncertainties related to the calculation of Ra
and heterotrophic, calculated independently. Ra routine may strongly be influenced by uncertainties
in Rm estimation, which often resulted in Ra overestimation. The Rm was in fact simulated by a set of
empirical relations, which involve: (1) the use of a fixed non-acclimating Q10 factor, whose generality
is known to be inaccurate [84]. Moreover, the rationale of Ryan’s Rm calculation [85] is affected by
uncertainty in estimating daily increment of N pools, generally estimated by forest ecosystem models
as a fixed proportion of daily C increment.

5. Conclusions

Soil respiration has a key role in determining NEE in a deterministic fashion [86]. In general, this
work showed how the inclusion of a simplistic Soil Carbon routine allowed to predict trends and
variability of NEE across the most diffuse European forest ecosystems. Modifications in the
phenology scheme produced slight improvements in predicting GPP. However, they were still
limited by the correct estimation of bud burst timing, leaf senescence starting point and duration. The
use of an optimized parameter-set improved the model’s performance only for those sites where the
bio-geophysical processes were correctly reproduced. As a matter of fact, we showed how
Mediterranean terrestrial forests, which showed lacks in representing some biological and/or
physical processes, performed significantly worse than the other sites, regardless the use of optimized
parameters.

In conclusion, we think that 3D-CMCC-PSM reliably estimated NEE and Reco dynamic in a forest
ecosystem, especially scaling up daily results to monthly NEE averages. We think that 3D-CMCC-
PSM is a solid basis to further explore the effects of soil structure on Carbon and Water dynamics,
especially in Mediterranean systems, and be used as a tool for predicting forest growth and ecosystem
services, and address questions related to future scenarios forecasting.
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