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Abstract: Understanding the dynamics of Organic Carbon mineralization is fundamental in 
forecasting biosphere to atmosphere Net Carbon Ecosystem Exchange (NEE). With this perspective, 
we developed 3D-CMCC-PSM, a new version of the hybrid Process Based Model 3D-CMCC FEM 
where also heterotrophic respiration (Rh) is explicitly simulated. The aim was to quantify NEE as a 
forward problem, by subtracting Ecosystem Respiration (Reco) to Gross Primary Productivity (GPP). 
To do so, we developed a simplification of the Soil Carbon dynamics routine proposed in DNDC [1]. 
The method calculates decomposition as a function of soil moisture, temperature, state of the organic 
compartments, and relative abundance of microbial pools. Given the pulse dynamics of soil 
respiration, we introduced modifications in some of the principal constitutive relations involved in 
phenology and littering sub-routines. We quantified the model structure related uncertainty in NEE, 
by running our training simulations over 1000 random parameter-sets extracted from parameters 
distributions expected from literature. 3D-CMCC-PSM predictability was tested on independent time 
series for 6 Fluxnet sites. The model resulted in daily and monthly estimations highly consistent with 
the observed time series. It showed lower predictability in Mediterranean ecosystems, suggesting 
that it may need further improvements in addressing evapotranspiration and water dynamics. 
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1. Introduction 

Global concerns over increasing level of greenhouse gas concentration, particularly carbon 
dioxide (CO2), pushed research efforts to better investigate biogeochemical carbon (C) fluxes 
dynamics and patterns between atmosphere and biosphere, and to upscale C flux estimates from site-
specific to regional, continental and global scales. Increased atmospheric concentration of CO2, 
combined with increasing temperatures and size variations of ecosystem C pools, are responsible for 
year-to-year terrestrial ecosystems carbon flux perturbations, through the variation of both 
photosynthetic and respiration rates [2].  

In the last decades the Eddy Covariance (EC) technique provided long-term continuous 
measurements of Net carbon Ecosystem Exchange (NEE), water vapor and energy, within the global 
network of EC flux towers (FLUXNET) distributed over major terrestrial ecosystems. The availability 
of EC measure of NEE contributed to quantify and to determine seasonal and inter-annual variability 
of ecosystem C budgets at EC tower site-specific scale [3; 4; 5]. Observed NEE does not directly 
quantify the two major components of ecosystem C flux balance represented by ecosystem 
respiration (Reco) and gross primary productivity (GPP). Thus, flux partitioning algorithms have been 
developed to partition eddy covariance NEE into photosynthetic uptake and respiratory release [6; 
7]. At the same time, EC flux measurements provide key information for the parameterization, 
calibration and validation of process-based Forest Ecosystem Models (FEMs) contributing to large 
scale estimates of main ecosystem C pools.  

The implementation of both forest process-based models (PBMs) [8; 9; 10; 11; 12; 13] and 
Functional–Structural Tree Models (FSTMs) [14; 15; 16; 17], based on the widely used Light Use 
Efficiency (LUE) approach [18], strongly contributed to understand and up-scale at the regional scale 
the analysis of the main physiological processes supporting ecosystem's C uptake. Although most of 
forest ecosystem models provide reliable estimates of forest growth for major terrestrial ecosystems, 
due to the well-established LUE approach, major limitation for NEE estimates are related to the 
uncertainty in Reco estimation [19; 20]. In this purpose, the implementation of biogeochemical models 
of the C cycle based on the integration of soil respiration models and PBMs contributed to provide 
reliable NEE estimates [21; 22; 23]. Although soil respiration and soil organic matter (SOM) 
decomposition depend mainly on abiotic factors such as temperature and soil moisture [24; 25; 26], a 
key role is played by soil organic carbon (SOC) stock size and by the size of the microbial pools [27; 
28]. In this study, we developed the 3D-CMCC-PSM (3D-CMCC-Phenology and Soil Model), a new 
version of the hybrid Process-Based Model 3D-CMCC FEM proposed by Collalti et al. [29; 30], where 
also heterotrophic respiration (Rh) is explicitly simulated to dynamically quantify stock changes of 7 
different SOC pools mediated by the amount of active microbial C pools.  

The aim of this study was to: i) test the performance of the modified model version, comparing 
model NEE estimates against independent time series for 6 Fluxnet sites, representing different 
forests in different climatic areas, distributed over a wide latitudinal gradient amongst European EC 
sites; ii) quantify uncertainty associated to the model’s structure and parameterization. 

2. Materials and Methods 

2.1. Study Area and data 

Information about forest structure and total SOC at the beginning of the simulation was collected 
from literature (e.g. [31; 32]) and PIs information. Sites were chosen to represent 3 diverse Forest 
Ecosystems, dominated by different species composition from deciduous broadleaved, DBF (i.e. 
Fagus sylvatica L.), evergreen broadleaved, EBF (i.e. Quercus ilex L.), and evergreen needle leaved, 
ENF (i.e. Pinus sylvestris L. and Picea abies L.), representing the most common European forest species 
from Boreal to Mediterranean Ecoregions across Europe. Eddy Covariance data were collected from 
FLUXNET (http://www.fluxnet.ornl.gov/fluxnet). We used EC data from different time series from 
daily to annual, processed using the method described in [33]. Gross Primary Production (GPP) and 
Ecosystem Respiration (Reco) were partitioned using [6]. The sites have been chosen to represent a 
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climatic and longitudinal transect trough Europe, so that the model could be tested on different 
critical boundary conditions (Table 1).  
Table 1. Sites description and stand initialization data. 

 

2.2 Model description 

The 3D-CMCC FEM is a stand-scale process-based model (PBM) designed to simulate C and 
water cycle in natural and managed forest ecosystems (for a full description see [29; 30]). Several eco-
physiological processes are modeled within the model at species-specific level of representation and 
at a variable temporal scale of resolution (from daily to annual) depending on the process to simulate 
(Figure 1). Model outputs are generally represented at hectare scale while processes are simulated at 
different spatial scale from e.g. stomatal representation (e.g. stomatal conductance), canopy (e.g. 
canopy transpiration) and tree level (e.g. mortality) up to stand level representation (e.g. biomass 
stocks).  

Carbon assimilation is modeled for sun and shaded leaves [1] through the land use efficiency 
(LUE) approach [34] constrained by environmental and stand structural (e.g. tree age) scalars [35]. 
Autotrophic respiration (RA) is explicitly modeled in its components, growth and maintenance 
respiration (RG and RM, respectively). The first is computed as a fixed ratio of new growth tissues 
(30%) the latter is based on the nitrogen content in the biomass C pools i.e. stems, branches, leaves, 
fine and coarse roots, non-structural carbon (NSC), and fruits. Carbon allocation among the tree pools 
is controlled by species-specific parameters, phenological phase and environmental limiting factors 
(i.e. light and water availability). Water cycle is modeled considering the balance between ingoing 
(i.e. precipitation) and outgoing water (i.e. canopy transpiration and evaporation, soil evaporation 
and runoff). Input meteorological variables necessary to daily force the model are: global solar 
radiation (MJ m-2 day-1), maximum and minimum air temperature (°C), relative humidity (%), and 
daily cumulated precipitation (mm day-1). To be initialized model requires knowing stand structural 
characteristics such as: species composition, stand density, diameter at breast height (DBH), tree 
height and age. Soil initialization requires the estimation of Total Organic Carbon (TOC) in the 
different SOC pools, as described in the following section. 

 
Figure 1. 3D-CMCC version PSM main flowchart modified from Collalti et al., 2014. Red circled boxes 

represent the pools and variable introduced or modified by 3D-CMCC-PSM. 
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2.2. Model Improvements 

2.1.1. Soil Carbon Dynamics 

The most recent 3D-CMC FEM model version (v.5.1, [30]) lacks in representing SOC dynamics, 
preventing any estimation of NEE. With that perspective, we developed a simplified version of the 
method described in [1] to quantify, dynamically, changes of 7 different SOC pools mediated by the 
amount of active microbial C pool (Figure 2).  

 
Figure 1. Soil Carbon dynamics in 3D-CMCC-PSM. The three macro pools are highlited by red boxes (dead C 

pool) and blue box (live C pool, i.e. microbial). Blue filled boxes represent the processes simulated by the soil 

model. 

The litter C decomposed by microbial activity was partially mineralized as CO2, partly stored 
into microbial metabolic biomass (labile), partly in structural microbial biomass (resistant) as in [1] 
We assumed that microbial C efficiency was constant, and specific for each C substrate pool [34]. 
Microbial Biomass and clay content were the principal drivers in determining the C turnover. Humic 
pool (we use the term Humads, to be consistent with [1]) was divided into a more labile (labile 
Humads, which stands for Humic acid), an intermediate (resistant Humads, which stands for Fulvic 
acid) and a more resistant sub-pool (Humus, which stands for Humine). Humads too were 
decomposed, even though at very low rates, with respect to litter and biomass pools. Inert Organic 
Matter (IOM) was calculated following [36]. 

2.1.2. Deciduous Phenology 

Similarly to [30] the phenology scheme was constrained in 3 and 5 sub-phases respectively for 
evergreen and deciduous species (Table 2). These phases are driven by photoperiod, thermal sum, 
and maximum leaf biomass (resulting from maximum attainable Leaf Area Index, LAI, m2 m-2).  

3D-CMCC FEM represents leaves (sun and shaded) development indirectly as a by-product of 
alteration of class specific leaf biomass pool [37]. While the authors considered this approach a good 
generalization, it resulted in reducing model stability when accounting for emergent leaves 
respiration period in 3D-CMCC-FEM [30].  
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Table 2. Description of the different phenological phases for deciduous and evergreen species used in 3D-CMCC 

PSM. 

 
 
We based the new Non-Structural Carbon (NSC) injection function on the hypothesis that leaves 

primordia demand of NSC is higher during bud burst, and gets progressively lower when maturing. 
Idealistically the total NSC mass (Bୖ) injection into early shoots, leaves and fine roots could be 
represented by linear differential equation (ODE): ஔ୆౎ஔ୲ − Rୗ&୊&ୖ(t) ∙ Bୖ(t) = 0, (1)

where Rୗ&୊&ୖ(t) is the instantaneous proportion of NSC demand for shoots and foliage growth. We 
assumed that C request per leaf exponentially decreases with maturity, while the total demand is 
positively affected by the increasing number of leaf primordia. For simplicity, we assumed that the 
two components resulted in a linear function. Thus: ୖ౏&ూ&౎୆୆౐ = 1 = ׬ ୆బ∙୲୆୆౐ δt୲଴ , (2)

resolving the ODE by substituting	 Rୗ&୊&ୖ(t) it gives:  

ஔ୆౎ஔ୲ = ୆బ∙ୣమ౪శమ ాా౐మ൘ ∙ୣష౪మ ాా౐మൗ୆୆౐ ∙ ଶ୲୆୆౐మ , (3)

where	 BB୘ is the parameter used in [30] for Bud Burst days (representing the number of days for a 

complete leaf development), eଶ୲ାଶ ୆୆౐మൗ  is the biomass dependent and eି୶మ ୆୆౐మ⁄ 	 the maturity 
dependent factors (expressed in days). Graphically, the equation represents a skewed function of the 
amount of NSC allowed to be used by the trees of the specific class; the faster leaves reach maturity, 
the more daily specific allocation is allowed (Figure 3). 

 
Figure 3. Graphic representation of the C injection function. The axes represent respectively bud burst days 

(BBt), vegetative days (Vday), and the fraction of total NSC invested in leaves development. The shorter BBt, the 

highet the maximum NSC fraction. 

 
Reduction in foliage biomass during leaf-fall for deciduous forests was substituted by a new 

logistic function. If all leaves fall by the end of the senescence season, variation in LAI follows:  
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ப୐ப୲ = LAI(t) − Maxቆ0, ஑(୦,ୟ,ୱ୮)ଵାୣ౪షಊ(౪) ಋ(౪)൘ ቇ , (4)

α(t), β(t), γ(t) are the three parameters of the logistic function, and have a biological or physical 
meaning. In fact: 

۔ە
,α(hۓ a, sp) = LAI଴ାஔ୲(h, a, sp)β(s) = t଴(s) + ∆୲(ୱ)ଶγ(s) ≅ ∆୲(ୱ)୪୬(଴.ଵ)ି୪୬(ଵ଴(ஒ(ୱ)ି଴.ଵ))

 , (5)

where L଴ାஔ୲ stands for the LAI value at peak of green, t଴(s) is the first day of senescence (triggered 
by a species-specific day-length parameter), ∆t(s) is the length of the senescence period (days). The 
model calculates all these quantities using the same species-specific parameters used in the previous 
model version. The time derivative of the state of coloring and daily senescence, was calculated 
following [38] through: 

۔ە
Rୱୣ୬(t)ۓ = (T୑ୟ୶(s) − T(t)) ∙ ቀୈై(୲)ୈై(଴)ቁଶ∆t(s) = ∑ Rୱୣ୬(t)ୖ౏౛౤(୲)ழଢ଼ౙୖ౏౛౤(୲)ୀ଴

 , (6)

where TMax is a species-specific parameter representing the maximum temperature at which 
senescence processes is effective, D୐(0) the photoperiod of the first day of senescence, D୐(t) the 
photoperiod of the ith day of the year. 

2.1.3. Evergreen Phenology 

Evergreen canopy turnover was modified from [30]. 3D-CMCCFEM v.5.1 assumed that 
evergreen leaf turnover was constant throughout the year, and that annual leaf turnover was equal 
to leaf biomass produced the year before [30; 37]. To better represent leaf turnover dynamics, we 
developed a new framework where competition for light dynamically affected leaf turnover. We 
hypothesized that trees optimize leaf age distribution as if they are in competition for light, in light-
limited closed canopies. We used Tilman’s competition for one resource conceptual model [39]: 

۔ۖەۖ
ப୆౟(୲)ப୲ۓ B୧(t)ିଵ = f୧(R) − f୧(m୧)f୧(R) = 	 ୰౟∙ୖ(ୖା	 ୏౟)R୧∗ = ୫౟∙ଢ଼౟(୰౟ି୫౟)

  , (7)

(R୧∗) is the concentration in J m-2 d-1 of available resources (i.e. light) that a leaf requires to survive. r୧ 
is the max photosynthetic rate (gC m-2 d-1), m୧ is the competition independent loss rate (which we 
considered to be Maintenance Respiration, gC m-2 d-1), Y୧ Carbon yield. The R* is the key variable to 
evaluate a species (or in this case a generation of leaves) average survivorship (S*), quantified as f୧ିଵ(R୧∗). 
We assumed for hypothesis that:  

(1) Older leaves live in the shaded portions of the canopy, where light transmitted is reduced 
following Lambert Beer’s exponential decay equation;  

(2) An age dependent quasi exponential decay in leaf quantum yield efficiency;  
(3) Nitrogen withdrawal from plant segments with low productivity and transfer to new leaves 

of higher productivity. This would cause exponential reduction in Maintenance costs for old 
leaves; 

(4) Y୧  constancy may be valid within a single tree, as the conjunctive effect of reduction in 
respiration rate and quantum yield efficiency.  

Given these assumptions, it can be demonstrated that the survivorship rate S* of each generation of 
leaves (ܵܮܨܤ(݅)) at time t, is: 
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S୧∗(t) = ଵଶ tଶ − ଶ୆୊ై౏(౟)ାଵଶ t + BF୐ୗ(୧), (8)

Leaf turnover was mainly occurring in Spring and Fall. During the bud burst season new leaves 
took place in the sparse crown thinned throughout Fall and Winter, aiming to crowding equilibrium. 
No foliar re-sprouting was simulated in Fall, even though there are evidences of it for Quercus ilex 
[40]. Leaf biomass reduction was determined by linearly decreasing each Bi to the quantity predicted 
by the specific parabolic decay for the end of the year. 

2.1.4 Production of Fresh Organic Matter 

At a relatively fine temporal scale (i.e. daily time step) the variability of litter formation, and 
Fresh Organic Matter (FOM) production may be fundamental in better estimating Rh [41]. We 
estimated FOM daily deposition as a by-product of the phenology sub-model, without increasing the 
number of parameters involved. 

Leaves and fine root turnover were treated as processes happening in parallel, and following 
the same dynamics [42]. Wood turnover was not modified from [30]. Biomass coming from the 
aboveground deposition filled directly the Litter pool. Fresh incoming SOC was discretized in three 
sub-pools, representing metabolic very labile C (e.g. carbohydrates, proteins, nucleic acids and 
lipids), structural labile C (e.g. cellulose), and structural resistant C (e.g. lignin and complex 
secondary metabolites). The amount of fresh biomass entering each litter pool was estimated by the 
C:N ratio, as proposed by [1]: 

۔ۖۖەۖۖ
ۓ డడ௧ ௜ାଵܥ = ൫஼ே೗೟షభି஼ே೔షభ൯൫஼ே೔షభି஼ே೔శభషభ൯ ∙ ௟௧ܥ

డడ௧ ௜ܥ = డడ௧ ௟௧ܥ − డడ௧ ܥ௜ାଵܥ ௜ܰ < ܥ ௟ܰ௧ < ܥ ௜ܰାଵ
 , (9)

Where C୪୲ is the C included in litter and earlier belonging to one of the 5 different structural C 
compartments of the plant. Its relative C and N were distributed to the two litter sub pools with 
proximal C:N; the former, C୧ାଵ, was the one with higher recalcitrance. When CN୪୲ was higher than 
any litter sub pool, all the new C was added to the structural resistant pool; otherwise, if CN୪୲	 was 
lower than the CN of the metabolic pool, all its C and N were added to the very labile sub pool. Litter 
C dynamically move from a pool to another. Microbes absorbed and partially immobilized litter C in 
their biomass, and released it again in the soil, during the humification processes [43].  

2.1.5. Optimization  

We introduced a new calibration scheme to provide an optimized parameterization, and 
quantify uncertainty related to model’s structure and parameters. Calibration was performed on each 
site independently, using a training dataset composed by 3 years of EC daily NEE time-series (Table 
1). To sample the parameterization space (i.e. the realistic values of each physiological parameter of 
the species simulated in each site), we randomly extracted 1,000 parameter-set combinations from 
prior distributions. Prior distributions were assumed to be the same among individuals of the same 
species, different across species. We assumed each parameter to follow a truncated normal 
distribution, to avoid any possibility to have negative values (i.e. non-realistic). Average and variance 
were estimated by using values found in literature, as in [30]. We used the same averaged value as 
in [30] for those parameters whose observations in literature were less than 3 (i.e. not enough to 
calculate sample standard deviation). The optimization was performed by choosing the 
parameterization set maximizing the objective function QF through: 
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QF = ۈۉ
ۇ ∑ ∑∙ݏܾ݅݋ܻ∑−݉݅ݏܻ݅∙ݏܾ݅݋ܻ ݅݊݊݉݅ݏܻ݅
ඨ∑ܻݏܾ݅݋−൫∑ܻݏܾ݅݋൯2݊ ඨ∑ܻ݅݉݅ݏ−൫∑ܻ݅݉݅ݏ൯2݊ ۋی

ଶۊ
×	 ൤1 − ∑ ൫ܻݏܾ݅݋−തܻ൯2݊݅∑ ൫ܻ݉݅ݏܻ݅−ݏܾ݅݋൯2݊݅ ൨ , (10)

where YObs represents EC daily NEE, Ysim Modeled NEE for the same day. The first part of the RHS of 
the equation represents the square of the Pearson Correlation coefficient (R), the second the Nash-
Sutcliffe Efficiency index (NSE). 

2.1.6. Validation Analysis 

Results were compared to Eddy Covariance data both on long-term annual average (i.e. over the 
full series of all the available years, ~5years), then we evaluated how the model performed in the 
different seasons aggregating values for months of the same season. 

To evaluate the model efficiency, we calculated for daily, monthly, and seasonal: (1) R; (2) NSE; 
(3) Root mean square error (RMSE); and Mean Absolute Bias (MAB). Each statistic was considered 
differently informative [44] as summarized in Table 3. The model’s ability in representing observed 
anomalies was determined by analyzing inter annual (IAVs) and monthly (IMVs) variability 
following [45] and [30].  

 
Table 3. Statistics used for Model’s results validation against Eddy Covariance data. 

 

3. Results 

3.1. Evaluation of daily, seasonal, and annual NEE estimations 

To evaluate 3D-CMCC-PEM NEE predictions, we compared predicted (MD) daily and monthly 
NEE time series to EC daily data. The analyses were performed only on the test data (i.e. portions of 
the series which have not been used for calibration) to avoid any effect of overfitting. The model 
showed high correlations with observed EC data at all sites for both daily and monthly fluxes, apart 
from ITCpz site (Table 4). Excluding ITCpz, R ranged at all sites from 0.65 to 0.84 for daily and, 0.59 
to 0.97 for monthly scale. Beech dominated Deciduous Forests (DBF) performed better than Conifer 
species (ENF) and evergreen Mediterranean broadleaved forests (EBF). ENF and EBF in FRPue 
performed similarly on daily scale, for all the statistics used. However, ENF predictability 
significantly increased on monthly scale (R ranging between 0.92 and 0.97), while EBF performed 
worse (R 0.42 in ITCpz, and 0.59 in FRPue). RMSE on average was 1.92 gC m-2 d-1. MAE ranged 
between 0.96 and 1.78 gC m-2 d-1, and on average it decreased almost twice on monthly timescale. 
MAB showed similar behavior for DBF and ENF. It ranged between 0.39 and 0.56 gC m-2 d-1 (0.50 on 
average) for daily time series. Mediterranean forests resulted the ones with highest MAB, and showed 
no significant reduction when predictions were aggregated on monthly scale. Differently from the 
other simulations, even NSE just improved slightly for ITCpz, and even reduced for FRPue 
simulation.  
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Table 4. Daily and Monthly Validation statistics calculated on the test-set. As stated in Table 3, R and NSE are 

dimensional; RMSE and MAB are gC m-2 d-1. 

 
 

Daily results were aggregated in seasonal series to evaluate seasonal predictability. Seasonal 
aggregations showed that 3D-CMCC-PEM poorly performs in predicting seasonal fluxes. NSF was 
generally negative in Summer, with the exclusion of DEHai and FRPue. 3D-CMCC-PEM generally 
best reproduced NEE dynamics in Fall (R ranging between 0.22 and 0.89). ENF ecosystems showed 
consistently higher correlation in Spring predictions, with R of 0.65 and MAB of 0.62 gC m-2 d-1 on 
average. In the case of evergreen stands, 3D-CMCC-PEM consistently showed poor performance in 
Summer. Expectedly, DBF performed the worst in Winter (Table 4). NSE on average resulted positive 
only in Fall for both DBF and EBF, and Spring, for ENF stands.  

 
Table 5. Seasonal validation statistics calculated on the test-sets and aggregated by ecosystem type. As stated 

in Table 3 and 4, R and NSE are dimensional; RMSE and MAB are gC m-2 d-1. 

 
 

Taylor diagrams [46] showed that 3D-CMCC-PEM performance was generally satisfactory 
(Figure 4). Daily simulations resulted in all sites but ITCpz being within the ±1 normalized standard 
deviation region. Monthly scale predictions were more consistent with EC data, especially for BDF 
and ENF sites. It resulted in all 4 simulations falling within ±0.5 normalized standard deviation from 
the reference point, and R > 0.9 (Figure 2). Again, 3D-CMCC-PEM performed worst in EBF, with 
FRPue still inside ±1 normalized standard deviation region, and ITCpz falling outside the ±1.5 
normalized SD region. The consistently worse predictability in ITCpz and FRPue confirm a 
systematic weakness in 3D-CMCC to represent fluxes for these sites as already described in [30]. 
Model performance on annual scale showed a different pattern, mostly because of some sites 
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consistent biases in seasonal NEE, and the difference in NEE magnitude. Delay in Spring phenology, 
and the consistent underestimation of Summer NEE, resulted in significant underestimation and 
scarce predictability of ITCol annual NEE (R < 0.2). ITCPz and FRPue resulted among the sites with 
higher annual predictability, partly because of the low seasonal variance in NEE, partly because 
Winter and Spring bias tends to compensate each other.  

 
Figure 4. Taylor diagram representing 3D-CMCC-PSM performance in (a) daily, (b) monthly and (c) annual 

NEE estimation for the test-set. 

3.2. Anomalies and parameters related uncertainty 

Figure 5 shows uncertainty associated to random choice of parameters. Overall, uncertainty was 
expectedly higher in Summer and Fall. Such increase was particularly clear for deciduous forests, 
which not only showed wider NEE standard deviation, but also had optimal modeled NEE falling 
outside standard deviation area.  

 

 
Figure 5.  Model structure related uncertainty in estimating NEE (gC m-2 d-1 ) per DoY (Day of Year) by a 

random choice of parameters values from prior distributions. Data represent 300 1-year simulations from 

randomly extracted parameterization-sets. Average daily simulations (black line) and standard deviation (grey 

area). Red dotted line represents daily NEE simulation for the optimized parameterization set. 
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DBF sites showed also high uncertainty in estimating the first vegetative day, suggesting that a 
better representation of Winter dormancy effects on bud burst dates may significantly improve 
model’s predictability. Uncertainty was generally lower in Mediterranean sites, despite model’s 
performance was generally lower. 3D-CMCC-PSM uncertainty was generally low for ENF for most 
of the year, but was generally high when Temperature were higher. Higher uncertainty for warmer 
days was generally found in DBF sites too, suggesting that 3D-CMCC-PSM was expectedly sensitive 
to high Temperatures for both Photosynthesis [47] and Respiration [48], but these effects didn’t 
always compensate each other. 

NEE inter-annual variability was generally underestimated by the model. Nevertheless, 3D-
CMCC-PSM correctly reproduced 81% of the sign of the anomalies, and residuals difference in 
magnitude was usually less than 0.3 gC m-2 d-1. Highest difference in magnitude occurred in ITCol 
(difference in residuals higher than 0.5 gC m-2 d-1 in 5 years out of 12). Highest difference was shown 
in ITCpz, where the sign was correctly reproduced only once out of 8 years, and having more than 
1gC m-2 d-1 of residual difference. Inter-monthly variability (IMV) showed species-specific patterns. 
DBF had higher IMV mismatches in May and late Summer (i.e. August in DEHai, July in ITCol). 
Despite the average IMV was well represented for ENF, the model showed less IMV predictability 
mainly in Winter (e.g. November and January) and Summer (e.g. August). EBF showed the worst 
predictability of IMV average and variance, despite the reduced seasonality compared to the other 
sites (Figure 6).  

 

Figure 6. Inter monthly variability (MV) for the test time-series (gC m-2 month-1). Observed IMV in green 

boxes, simulated IMV in orange. 

4. Discussion 

The ideas brought by 3D-CMCC-PSM overall produced significant improvements in representing the 
net C cycle of the studied forest ecosystems. The aim of this study was not testing how better the 
model performed in estimating gross primary production (GPP), hence we didn’t provide a deep 
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comparison with the last version (i.e. 3D-CMCC-FEM v.5.1). However, we observed that 3D-CMCC-
PSM resulted in better estimation of GPP, especially for ENF IAVs and IMVs (data not showed).  

4.1. 3D-CMCC-PSM predictability in estimating NEE  

In general, the inclusion of a simplistic SOC routine resulted in a reliable estimation of daily and 
monthly NEE trends. While daily and monthly trends are consistent with EC data, seasonal patterns 
showed non-negligible misrepresentations, which resulted in negative NSE in most of the cases. This 
inconsistency may be driven by the strong seasonality in both Reco and GPP [49], which positively 
affects correlation between EC data and MD results.  

NEE trends during Summer and Fall were much more consistent with the measured ones, than 
Winter and Spring trends. During these seasons the biases appeared mostly affected by estimation of 
Reco. The scarcity of the model in representing EBF C fluxes was especially attributable to GPP 
predictions. 3D-CMCC-PSM and 3D-CMCC FEM inability in predicting GPP in ITCpz and FRPue 
sites, denoted the necessity to better represent the relations between Mediterranean forests and 
environmental factors [50; 51]. In FRPue the model well reproduced Spring, Summer and Fall NEE. 
On the other hand, it showed a bias of around 1gC m-2 d-1 in Winter, suggesting it was missing some 
particularly important seasonal processes. For example, evergreen phenology still didn’t consider 
secondary or continuous growth. Thus, species like Quercus ilex, which exhibit secondary gem 
sprout in Fall [40], have fresh leaves and mild temperatures to guarantee photosynthetic activity in 
Fall and Winter, partly explaining 3D-CMCC FEM and 3D-CMCC-PSM systematic underestimation. 

ITCpz showed the same pattern. However, differently from FRPue, it poorly performed also in 
early Spring and Summer, especially for GPP patterns. This misbehavior was expected, because of 
the physical characteristics of the site. In fact, 3D-CMCC FEM soil water dynamics routine was still 
simplistic, and to date, such other similar models, didn’t include any effect of water table dynamics. 
On the contrary, ITCpz is characterized with the presence of a shallow groundwater table, which 
seems to reduce water stress in early Summer [30]. 

Summer IMVs misrepresentation in DBF was probably affected by the assumption that LAI and 
photosynthetic capacity reach their maximum in early Summer, alongside. On the contrary, 
maximum photosynthetic capacity may be reached in late summer, and vary across the canopy. 
Without taking this into account, GPP could be overestimated up to 40% [52]. Notwithstanding, 
comparing model outputs with published works [53; 54] these defects are common also for other 
PBMs.  

Seasonal patterns showed that the model consistently misrepresented NEE in Winter, 
suggesting that Reco still needs to be improved. Especially for DBF sites (e.g. DEHai), Winter Reco is 
mostly driven by RH. RH is exponentially affected by soil temperatures and especially moisture [55], 
which are calculated by the model, and could be over-fluctuating in Winter. Moreover, EC data are 
prone to random noise [56], whose relative impact on performance metrics may be relatively larger. 

Interestingly, annual predictions suggested reasonably high performance of 3D-CMCC-PSM, 
despite these seasonal inconsistencies. This suggests that biases are usually consistent within a 
season, but have different sign across seasons (Figure 7), resulting in a compensating effect at coarser 
time scale. 
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Figure 7. Trends in daily NEE (units) per DoY (Day of Year) calculated from test-sets on a site level. Observed 

EC average trends (black dotted line) and standard deviation (gray area). Simulated average trends (red dotted 

line) and standard deviation (orange area). 

 
It was not always possible to individually validate the different components of respiration. 

However, the results of Reco comparison with EC data, the NPP:GPP consistency with literature [57; 
58; 59], showed that the new 3D-CMCC-FEM version was able to reproduce respiration processes 
well enough, especially on monthly timescale.  

Soil respiration seems to be overestimated during Summer, implying a systematic 
overestimation of NEE. This was especially true in ITCol. Since no significant pulse in FOM happened 
in that period, this misbehavior may be related to the use of the exponential relationship between 
respiration, moisture, and temperature [47].  

Lack of data to validate the SOC dynamics reduced the spectrum of speculations, which could 
be statistically analyzed. SOC didn’t change its quantity in ten years; this result was consistent with 
the theoretical stability of the SOC, an indicator which rarely change within 10 years if no strong 
disturbance event (e.g. land use change) have occurred [60]. Litter C was highly fluctuating within a 
year, but its quantity was stable if compared at the end of each year. This suggested that the model 
realistically represented litter turnover and decomposition, since residues were degraded into humus 
labile substances about within a year [61]. Microbial Biomass was highly variable, as expected. 
However, the magnitude of change was too broad throughout the simulations. These results may be 
related to the use of 5% as the initial active microbial biomass for each site, value that may be far from 
the equilibrium for different soils. Moreover, tradeoffs within microbial growth and between the 
environmental conditions may be scarcely represented. As a matter of fact, 3D-CMCC-PSM 
simulated the soil as having the same physical-chemical structure throughout the profile. This 
implied that microbes could find the same amount of C, O2, and living space, with no depth 
limitation. 

4.2. 3D-CMCC-PSM uncertainty in estimating NEE  
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We analyzed 300 random parameterization-sets per site to quantify model assumptions and 
uncertainty. The model showed different behavior in different sites, but expectedly consistent across 
species behaving in a similar functional way. These results may suggest that using functional traits 
combinations to provide physiological parameters, instead of fixed species-specific ones, may 
produce still reliable and more general predictions, particularly useful in case of larger spatial/ 
temporal simulations [62; 63; 64]. Using a species-level parameterization, in fact, may result in a too 
fine “resolution” because: (1) it would require excessive computational resources and a finely 
detailed parameterization, usually inaccessible on broad scale [65]; (2) the model’s rationale in 
predicting forest structure is mainly driven by competition for resources. However, there are not 
explicit tradeoffs, positive interactions between different tree cohorts, or intra-specific traits 
variability, which are fundamental to forecast forest ecosystem structure on long-run simulations 
[66]. Having fixed species-specific parameters throughout century would potentially result that only 
a very reduced amount of species would dominate the different cohorts on landscape to regional 
scale  

According to Figures 5 and 6, strong uncertainties still reside in timing for the different 
phenological phases. The biggest source of uncertainty in deciduous stands was driven by the 
amount of degree days needed to begin vegetative period. The use of a site-specific thermal sun 
(GDD) to activate vegetation period is widely used, but proven to be very site sensitive, and not very 
effective for a regional generalization [67]. On the other hand, the processes triggering bud-burst 
timing are still partly unknown. Moreover, those models proposing a process oriented promoter-
inhibition rationale are generally over complex and not prone to spatial generalization [68]. A 
possible solution in this context is to use remotely sensed data to train a latitudinal explicit regression, 
constraining GDD estimation.  

3D-CMCC-PSM showed high uncertainty also in catching the beginning of the senescence phase. 
The new phenological scheme didn’t reduce such uncertainty, since it was still using a photoperiod 
threshold as the senescence phase trigger [30]. Another strong source of uncertainty in Summer GPP 
may be held by the over simplicity of soil structure and thus of the soil water routine.  

As shown in [30], EC data are prone to high uncertainty. We focused on NEE fluxes to reduce 
the uncertainty cascade related to NEE partitioning. The next natural step will be reframing the model 
with a hierarchical Bayesian fashion, to quantify error propagation and parameters uncertainty from 
the posterior distribution [69]. 

Daily Reco estimation was affected by the cascade of uncertainties related to the calculation of RA 
and heterotrophic, calculated independently. RA routine may strongly be influenced by uncertainties 
in RM estimation, which often resulted in RA overestimation. The RM was in fact simulated by a set of 
empirical relations, which involve: (1) the use of a fixed non-acclimating Q10 factor, whose generality 
is known to be inaccurate [70]. Moreover, the rationale of Ryan’s RM calculation [71] is affected by 
uncertainty in estimating daily increment of N pools, generally estimated by forest ecosystem models 
as a fixed proportion of daily C increment. 

5. Conclusions 

Soil respiration has a key role in determining NEE in a deterministic   In general, this works showed 
how the inclusion of a simplistic Soil Carbon routine improved the allowed to predict trends and 
variability of NEE across the most diffuse European forest ecosystems. The modifications in the 
phenology scheme resulted in improvements in 3D-CMCC FEM uncertainty in Fall and Spring, but 
were still limited by the correct estimation of each phenological phase (e.g. bud burst timing, leaf 
senescence starting point and length). The use of an optimized parameter-set improved the model’s 
performance only for those sites where the bio-geophysical processes were correctly reproduced. As 
a matter of fact, we showed how Mediterranean terrestrial forests, which showed lacks in 
representing some biological and/or physical processes, performed significantly worse than the other 
sites, regardless the use of optimized parameters.  
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In conclusion, we think that 3D-CMCC-PSM reliably estimated NEE and Reco dynamic in a forest 
ecosystem, especially scaling up daily results to monthly NEE averages. We think that 3D-CMCC-
PSM is a solid basis to further explore the effects of soil structure on Carbon and Water dynamics, 
especially in Mediterranean systems, and be used as a tool for predicting forest growth and ecosystem 
services, and address questions related to future scenarios forecasting. 
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