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Abstract: We investigate entropy generation in unsteady three-dimensional axisymmetric MHD
nanofluid flow over a non-linearly stretching sheet. The flow is subject to thermal radiation and a
chemical reaction. The conservation equations were solved using the spectral quasi-linearization
method. The novelty of the work is in the study of entropy generation in three-dimensional
axisymmetric MHD nanofluid and the choice of the spectral quasilinearization method as the
solution method. The effects of Brownian motion and thermophoresis are also taken into account
when the nanofluid particle volume fraction on the boundary in passively controlled. The results
show that as the Hartman number increases, both the Nusselt number and the Sherwood number
decrease whereas the skin friction increases. It is further shown that an increase in the thermal
radiation parameter corresponds to a decrease in the Nusselt number. Moreover, entropy generation
increases with the physical parameters.

Keywords: Unsteady 3-D axisymmetric nanofluid; Entropy generation; Spectral quasi-linearization
method.

1. Introduction

The study of unsteady nanofluid flow, heat and mass transfer from a nonlinear stretching surface
has received considerable attention during the last few years because of several applications in
engineering processes, for instance, in materials manufacturing through extrusion, glass-fiber and
paper production. Similarly, unsteady mixed convection in boundary layer flows has received
attention with a large number of studies focusing on heat and mass transfer characteristics in
nanofluids, Dessie et al. [1]. Nanofluids have been shown to have increased thermal conductivity
and convective heat transfer performance compared to base fluids such as water and oils. The
notion of a nanofluid was introduced by Choi[2] when he proposed the suspension of nanoparticles
in a base fluid like water, oil and ethylene-glycol mixture. These common base fluids have lower
thermal conductivity which is increased when nanoparticles are added. The increase in the thermal
conductivity was explained by Buongiorno [3] in terms of the effect of particle Brownian motion
and thermophoresis. Nanofluids have many applications due to the unique chemical and physical
properties of the constituent nanoparticles. For instance, nanofluids have been used in applications
that require high-performance cooling systems such as hot rolling, glass fibre production, rubber and
the manufacture of metallic sheets [4].

Heat transfer due to free and mixed convection has many applications in, for example, electronic
cooling, heat exchangers etc. The study of axisymmetric MHD flow and heat transfer of power law
fluid along an unsteady radially stretching sheet was carried out by Ahmed et al.[5]. The conservation
equations were solved analytically and numerically. The study showed that the thermal boundary
layer thickness decreased with the Prandtl number and the unsteadiness parameter. Mohammadiun
et al.[6] derived an exact solution of axisymmetric stagnation-point flow and heat transfer along a
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stationary infinite circular cylinder of a steady viscous compressible fluid with constant heat flux.
The general self-similar solution was obtained with constant wall heat flux. The solutions of the
system were obtained for different Reynolds numbers, compressibility factors and Prandtl numbers.

Shankar et al. [7] studied heat and mass transfer in MHD boundary-layer flow of a nanofluid
along a stretching boundary with a non uniform heat source/sink. The system of equations were
solved numerically using the Keller-box method. The study of MHD effects in heat transfer has been
a subject of research due to its potential applications in many branches of science and technology. In
MHD flow the induced currents in the fluid generate forces which, in turn, modify the flow field.
Shahzad et al.[8], provided the exact solution for the MHD flow and heat transfer from a viscous
incompressible fluid and a nonlinear radially stretching sheet in a porous medium.

Thermal radiation is important in the flow of a fluid and consequently the effects of thermal
radiation on heat and mass transfer have been extensively studied. Ahmad et al.[9] considered
the effect of thermal radiation on steady MHD axisymmetric stagnation point flow of a viscous
incompressible micropolar fluid along a shrinking sheet. The system of equations were solved
numerically using an algorithm based on finite difference approximations. They found that the
thickness of the thermal boundary layer become thinner as the thermal radiation parameter increased.
The effect of melting heat transfer and second order slip in presence of the thermal radiation on
stagnation point flow was examined by Mabood et al. [10]. Singh et al. [11] analyzed unsteady MHD
flow of a viscous incompressible fluid over a permeable stretching sheet and took into account the
effect of thermal radiation.

In many practical applications mass transfer takes place by molecular diffusion of species in
homogeneous and heterogeneous chemical reactions, Sarada et al.[12]. The diffusive species can be
generated or absorbed in the fluid which can affect the properties and quality of finished products.
For this reasons a chemical reaction is of great practical importance to engineers and scientists.
Sarada et al. [12] analyzed the influence of a chemical reaction on unsteady MHD flow of a viscous
incompressible fluid past an infinite vertical porous plate with variable suction.

The study of the unsteady flow of a viscous incompressible fluid along a linear stretching with a
chemical reaction was investigated by Hunegnaw et al. [13]. They used a shooting technique and a
fourth-order Runge-Kutta integration scheme combined with Newton Raphson method to solve the
conservation equations. Barik [14] presented a study on the effects of a chemical reaction on unsteady
rotating MHD flow in a porous medium with a heat source.

An important factor to consider in heat transfer processes is that of entropy generation. Entropy
is a measure of the randomness or molecular disorder of a system. In accordance with the second
law of thermodynamics, the entropy of a system always increases during an irreversible process and
remains constant during a reversible process, that is, entropy generation (Ege;) is always positive for
an irreversible process or zero for reversible process. The performance of any engineering system is
degraded by irreversibility and entropy generation is a measure of the magnitude of the irreversibility
of the process.

Entropy generation is disregarded in most of the studies reviewed earlier. In the present work,
the mechanisms for generating entropy are connected to heat transfer, fluid friction irreversibility,
magnetic field and mass transfer. The pioneer work in the analysis of entropy generation was done
by Bejan [15]. Subsequently, entropy generation in MHD Casson nanofluid flow in the proximity
of a stagnation point was investigated by Qing et al.[16]. This study assumed the flow was
subject to thermal radiation and a chemical reaction. The findings suggested a positive correlation
between entropy generation and an increase in the Brinkman number, Reynold number, Hartman
number, and porosity. Rashidi et al.[17] considered entropy generation in nanofluid flow along
a permeable stretching sheet near the stagnation point with heat generation/absorption and a
convective boundary condition. Entropy generation was further studied by Rashidi et al.[18] for a
rotating disk submerged in a nanofluid. The study of entropy generation in nanofluids is a growing
area of research and recent studies have examined different source terms and flow geometries [19].


http://dx.doi.org/10.20944/preprints201703.0138.v1
http://dx.doi.org/10.3390/e19070168

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 March 2017 d0i:10.20944/preprints201703.0138.v1

30f22

Y, brar _
Dr+1 s =0

Figure 1. Physical configuration and coordinate system.

The spectral quasi-linearization method (SQLM) has not been previously used to solve equations
for three-dimensional axisymmetric MHD nanofluid flow. Further, to the authors’ knowledge,
entropy generation in this type of fluid flow has not been previously studied. The aim of the
study is to analyze thermo-diffusion effects in three-dimensional axisymmetric MHD nanofluid flow,
heat and mass transfer over a nonlinearly circular stretching sheet with thermal radiation and a
chemical reaction and entropy generation. The conservation equations are solved numerically using
the spectral quasi-linearization method (SQLM), [20]. The SQLM combines fast convergence with
accuracy. The method has been used in recent boundary layer flow and heat transfer studies such
as in [20,21]. In addition, we have used the nanofluid boundary condition suggested in Nield et
al.[22], namely that the nanoparticle mass flux at the wall vanishes. The results are shown to compare
favourably with published work, such as Mustafa et al. [23].

2. Formulation of the problem

Consider the unsteady three-dimensional MHD flow of an incompressible viscous flow of
nanofluid. A cylindrical coordinate system (7, 6, z) is used in this study. The velocity of the stretching
sheet is assumed to be nonlinear along the radial direction. It is assumed that the nanoparticle mass
flux at the wall is zero and the surface is stretching along the z direction, Ty, C, and 1, represent
the constant temperature, solutal concentration and nanoparticle concentration respectively at the
wall. In the ambient fluid, the temperature, solutal concentration and nanoparticle concentration
are denoted by Te, Coo and 9o, respectively (see Figure 1). The variable magnetic field intensity is
denoted by B(r, t) where t represents time. The magnetic field acts in the positive z-direction normal
to sheet. In this study, B(r, t) generalizes the magnetic field term provided previously in [7,8] to

Bor(nfl)/z
VI—At'

where By is the uniform magnetic field strength, n > 0 is the power-law index or stretching
parameter and A represents the unsteadiness parameter.

The equations for the conservation of mass, momentum, energy, and nanoparticle volume
fraction, under the usual boundary layer assumptions can be obtained [23,24] as

B(r,t) = ey
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where 1 and w represent the fluid velocity components in r and z directions respectively; vy, o
and py are the kinematic viscosity, electrical conductivity and the viscosity of the fluid, respectively;
af = kg/(pcp)s is the thermal diffusivity, ¢, is the heat capacity, Dy is the Brownian diffusion
coefficient, Dr is the thermophoretic diffusion coefficient; T = (pocp)s/(ocp) the ratio of effective
heat capacity of the nanoparticle material to heat capacity of the fluid; Dcr and D¢ are the Soret and
Dufour diffusivities, D; is the solutal diffusivity and R(r, t) is the chemical reaction.

The quantity g, represents the relative heat flux. Applying the Rosseland approximation [25], g,
can be expressed as

40* 9T
=73k 9z’ )

where ¢* is the Stephen- Boltzmann constant and K* the Rosseland mean spectral absorption
coefficient. If the temperature differences across the flow are small, such that T* maybe expanded
using Taylor series about Te,, then
T~ 4T3 T —3T2. (8)
Substituting Equation (8) in Equation (7), the relative heat flux becomes

160* T3, oT
T 3K* oz’ ©)

qr

To reduce the complexity of the mass equation, the chemical reaction R(r, t) must be a constant.
This condition holds if R(r, t) has the following form

ar"—1

R(?’,t) = Rol Yy

(10)

where Ry is constant and a > 0 is the stretching constant.
The boundary conditions considered in this work (see [23]) are
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where kr = ko\/1 — At is the thermal conductivity of the base fluid where ko is a constant. A
similarity solution of the energy equation can be obtained if the Biot number,

h v
S f
Bi = ko \ ar(n—1)" (12)

is a constant. This condition is satisfied if the heat transfer coefficient, hy, is proportional to

r("=1)/2 Thus, the heat transfer coefficient is expressed as iy = bor"=1/2 where by is a constant. The

Biot number can be written as Bi = hg, / (vf /a)/ko.
Equations (2)-(6) are transformed into ordinary differential equations by using the following
similarity variables (see[23])

_ a (n—l)/Z _ T*Too
1=\vaa =R

C - Co _ Yo

S(n) = Co— Co’ ¢(n) o (13)
The system of Equations (2)—(6) are transformed to
f///+ (n'2"3)ff// _ nf/2 - A(f, + ;Wf”> . Haf’ -0, (14)
(1 + Nr> Pire" - %79’ n ”T” 76/ + Nbg'6' + Ntg” + Nd S" =0, (15)
T A o (n+3) I "_
"o é ;) n+3 r, Nt o,
¢ 25c774)+ > Sc f¢ +Nb9 =0, (17)
subject to the boundary conditions
f(0)=0, f(0)=1and f'(e0) = O,
6'(0) = —Bi(1—0(0)), 6(c0) — 0,
S(0) =1, S(e0) — 0,
Nb¢'(0) + Nto'(0) = 0 and ¢(c0) — 0. (18)

The parameters in Equations (14)-(17) are given by
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where A is the unsteadiness parameter, Ha is the Hartman number, Pr is the Prandtl number, Nr
is the thermal radiation parameter, Nb is the Brownian motion parameter, Nt is the thermophoresis
parameter, Nd is the modified Dufour parameter, Sc is the Schmidt number, Ry is a constant and Ld
is the modified Soret parameter.

The skin friction coefficient C t the Nusselt number Nu, and the Sherwood number Sh, can be
expressed as

(i) Skin-fraction coefficient:

CrRe'/% = £7(0), (20)
where Re = “2()" jg Reynolds number.
(ii) Nusselt numbef:
rhyw
Nu=-———-, 21
k(T — Ta) @b

where h;, represents surface heat flux, which can obtain by

160*T3 ] (0T
’W‘[”*sw]<&L4 @

Equation (21) becomes as

—(1+N7)6'(0) = Re"Y?Nu (23)

(iii) The Sherwood number for solutal concentration equation is

_ rhm
M, -
where
oC
m——m(&Lw, (25)

where hy, is the surface mass flux. Equation (24) can be written as
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—¢/(0) = Re; /D gh, (26)

The mass flux is zero due to the nanoparticle boundary condition used, and for this reason, it is
not possible to define the Sherwood number for nanoparticle concentration at the wall.

3. Entropy generation analysis

Entropy generation is associated with a wastage of energy, hence minimization of entropy
production is a key design objective. Entropy generation analysis can be used as an effective tool
for identification of the causes of inefficiency in any system and offers scope for the improvement
in design of any device/ process. This analysis provides an insight into the efficiency of usage of
thermal energy in different industrial processes, and may, in principle be used for any type of energy
conservation system.

The limitation of global energy resources has driven the scientific community to reexamine
energy production systems, conversion and consumption, Arikoglu et. al [26]. From a theoretical
perspective, the second law of thermodynamics is utilized to study energy producing, converting
and consuming systems. The volumetric rate of local entropy generation for a nanofluid, with thermal
radiation and a magnetic field, can be expressed as (see [16,18,19];

~ e ~ ~ 2
= () + SR ) £ o 2 (3) - R D Gl

o)

15t part 274 part 3 part 4t part

In Equation (27), the entropy generation is stated in four parts. The first part is entropy
generation due to heat transfer irreversibility; the second part is the entropy generation due to the
viscous dissipation irreversibility; the third part is the entropy generation due to the applied magnetic
field irreversibility and the fourth part is due to the diffusive irreversibility.

We define the entropy generation number as the ratio of the local volumetric entropy generation
rate Eg,, to a characteristic rate of entropy generation Eo, that is,

Egen
Ey’

Ng = (28)

where

kf(Tw — Teo)?

Fo= TZr?

(29)

Using Equations (27)-(29), the non-dimensionless entropy generation can be written as

2
Br(H

+ =502+ —0' (e’ (1), (30)

where Re, N7, Br,Q),Ha, > are Reynolds number, thermal radiation parameter, Brinkman
number, dimensionless temperature difference, Hartman number and diffusive constant parameter,
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respectively. Some of these parameters are defined before. These numbers are expressed by the
following relations

puz, AT Ty —Te s _ RDpje

r=iar® T, T T, ks

. (31)

4. Method of solution

The quasilinearization method (QLM) is a generalization of the Newton-Raphson method, see
Bellman and Kalaba [27]. The derivation of the QLM is based on the linearization of the nonlinear
components of the governing equations using the Taylor series assuming that the difference between
the value of the unknown function is negligible between the current iteration (denoted by r + 1) and
the previous one (denoted by r). Applying the quasilinearization scheme to Equations (14)-(17), yields
the following iterative scheme

a0, fyiy +ar,fila +ag,fl a3 frin = Ry, (32)
bos0) 1 + 01,0, 1 + b2y0p1 + +b3 fri1 + ba,S)
+bsr 1 = Ro, (33)
C0rSyy1 +€1rSpiq + €2 Sr1 + €3 frin
+ ca, by 1 = Rs, (34)
dos¢) 1 +dirdy g +dopfrin +d3,0, 1 = Ry, (35)

subject to

fr41(0) =0, f711(0) =1, fl,1(c0) = 0,
4+1(0) = =Bi(1—6,11(0)), 6,11(c0) — 0,
S,41(0) =1, Syyq(c0) — 0,
Nb¢,.1(0) + Nt6],1(0) = 0, and ¢, 41(c0) — O, (36)
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where the coefficients in Equations(32)-(35) are obtained as

n+3
apr =1, a1, = ( )fr /L

3
ay, = —2nf, —A—Ha, a3, = (H) Y (37)

2
bp, =11 Nr 71
0 = + r,

3
by, = (” * > fr— 17 + Nbgl. + 2Nt6.,

n+3
bZ,rZOI b3,r:< ) )9;/

by, = Nd, bs, = Nbo, (38)
1 n+3 A
Cor = §/ Clr = < 2 )fi’ - E’?I Cor = _RO/
= (M52 )t car =14 9)
n+3 A
doy=1,d1, = ( > )Sc fr— ESC 1,
n+3 Nt
oy = (M52 )se 0t s = 3 40)

A Chebyshev pseudo-spectral method, [20] was used to solve Equatios.(32)-(35). The Chebyshev
interpolating polynomials defined by Equation(41) are used with Gauss-Lobatto points [28,29] to
define the unknown functions where

X = cos(%), i=01,.,N; —1<x>1. (41)

The variable N in Equation(41) is the number of collocation points used. A truncated domain
[0,L] is used to approximate the semi-infinite domain to facilitate computations. The parameter L
represents the boundary condition at infinity. In order to model the behaviour of the flow at infinity,
the parameter L should be a large number. The domain [0, L] is transformed into [—1,1] using the
linear transformation 7 = L(x; L

The spectral collocation method is used to construct a differentiation matrix to approximate the

derivative of unknown variables at the collocation points as a matrix vector product

drV
dn

(1) = }_ Djf(nk) = DFy,j =0,1,2,..., N, (42)
k=0

T
where D = 2D/L and F = [f(ﬂo),f(ljl),f(lh), ...,f(in)} represent the vector function at the
collocation points. The high order derivatives are given as powers of D such as

F¥) = DPE, (43)

where p is the order of the derivative. Spectral collocation is applied at r using the differentiation
matrix D in order to approximate derivatives of unknown functions in Equations(32)-(35) which
yields
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A f+A120 +A13S + A9 = Ry, (44)
Al,zf + A2/29 + A2/3S + A2,4¢ = Ry, (45)
A1,3f + A2,39 + A3[3S + A3,4¢ = Rg, (46)
A1’4f =+ A2/49 -+ A3/4S -+ A4/4¢ = R‘P (47)
Here
Ayq =ag,D°+ diag(al,)D2 + diag(ay,)D
+diag(az,)1,
Aip=0,A13=0,A14=0, (48)
A2,1 = diag (b3,1 ) I,
A;, = diag (bo,,)D2 + diag(by,,)D + diag(by, )1,
A2,3 = dlag (b4,r) Dz, A2/4 = dlag (b5,r) D, (49)
A1 = diag(cs3,)1, Az, = diag(cs,)D?,
Az =cy,D* + diag(c1,)D + (c2,r)Tand
Az, =0, (50)
A4’1 = diag (dZ,r) I, A4,2 = diag (dg,r) Dz,
A4,3 = 0, A4[4 = diag(dO,,)D + dlag (dl,r)Dr (51)
Ry = (n;?’)frf;’—n(fi)z, Ry = <n;3>5cfr¢;, (52)
Rs = (” “ZL 3> £,S, and Ry = <”J2r3> Sc £, (53)

where diag() represents diagonal matrices of order (N + 1) x (N+1), I'is an (N +1) x
(N + 1) identity matrix and £,0,S and ¢ are the values of functions f,6,S and ¢, respectively.
Equations(44)-(47) were solved as a matrix system using the SQLM scheme where the iteration is
started with initial approximate solutions obtained as

falo) = 1= expl-n), o) = (o5 )expln)

So(7) = exp(—7) and ‘
000 =~ (5 ) (125 )oxe () 64

The above equations can be expressed in matrix form as follows

A1 A Az Au| | En Ry
Ay Ap Ap Ay (O] _ Ry (55)
Az1 Az Az Axl| [ S Rs

Ay Ay Ay Ayl | P Ry
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Table 1. Different values of Nusselt number —6'(0) compared with those of Mustafa et al.[23]

n Nt Sc Pr Mustafa et al. Present

[23] results
05 01 20 5 1.9112911 1.91068095
0.5 1.2170065 1.21659065
0.7 0.9815765 0.98122822
1.0 05 5 5 1.6914582 1.69104675
10 1.4740787 1.47375172
20 1.2861370 1.28590965
25 05 20 0.7 0.6619164 0.66986678
5 1.4784288 1.47847763
7 1.5758736 1.57604858

Table 2. Computed values of Skin fraction coefficient, heat transfer coefficient and mass transfer
coefficient for Nb = 0.5, Nt = 0.5,Nd = 0.02,Ld = 0.02,Sc =7,Ry = 0.3,Bi = 0.2,

A  Ha Nr Pr f"(0) -6'(0) -5'(0)
n

1 —1.43922866 —0.16417529 —2.89107257
2 03 05 02 7 —1.70034047 —0.16661752 —3.16939593
4 —2.12897896 —0.16969131 —3.66539915
-0.5 —1.77701012 —0.17085800 —3.72686482
3 0 05 02 7 —1.87092985 —0.16944779 —3.54329048
0.5 —1.96353732 —0.16749470 —3.34434681
1.5 —2.17151786 —0.16755905 —3.37606776
3 03 25 02 7 —2.39114443 —0.16678981 —3.33136800
5 —2.86708560 —0.16495200 —3.23526081
1 —1.92657387 —0.16615306 —3.42533294
3 03 05 15 7 —1.92657387 —0.16464481 —3.42514164
2 —1.92657387 —0.16310964 —3.42504767
4 —1.92657387 —0.16585371 —3.42553409

w
o
W
e
&
=
N
ol

—1.92657387 —0.16708464 —3.42554096
—1.92657387 —0.16894896 —3.42668462

\O

Table 3. The effects of the Biot number on the maximum temperature

Maximum Change in maximum
Biot
temperature temperature %
number
0.1 0.1264
0.9 0.3401 169.07
2 0.5218 53.43
5 0.7377 41.38
10 0.853 15.63
50 0.9678 13.46

5. Results and Discussion

Entropy generation in the unsteady three-dimensional MHD nanofluid flow along a non-linear
stretching sheet taking into account the influence of thermal radiation and a chemical reaction
was investigated. The conservation equations were solved numerically using the spectral
quasilinearization method (SQLM). The SQLM has been used in a limited number of studies to solve
boundary layer flow, heat and mass transfer problems (see [30]). A comparison with previously
published results is shown in Table 1 when A = 0,Ha = 0,Nr = O,Nd = 0 and Ld = 0 (i.e.
in the absence of unsteadiness parameter, Hartman number, the thermal radiation number, Dufour
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Figure 2. Effect of the stretching parameter (1) on the radial velocity profile f'(i7) when A = 0.3, Ha =
0.5,Nr =02,Pr =7,Nb=0.5,Nt =0.5,Nd = 0.02,5c =7,Rg = 0.3,Ld = 0.02,8; = 0.2.

Figure 3. Effect of the stretching parameter (1) on the temperature profile 6(17) where A = 0.3, Ha =
0.5,Nr =0.2,Pr = 10,Nb = 0.5, Nt = 0.5,Nd = 0.02,5¢ = 7,Rp = 0.3, Ld = 0.02, 8; = 0.2.

parameter and Soret parameter, respectively, moreover, the equation of mass is not considered). These
results are comparable to those of Mustafa et al. [23] which validates this numerical method.

Below we present results that describe the impact and significance of various fluid and physical
parameters on the fluid properties, the skin friction coefficient, the heat and mass transfer coefficients.

Table 2 displays the computed skin friction, heat transfer and the mass transfer coefficients
which can be represented as f”(0),|—6'(0)|, and |—S'(0)|, respectively, for various values of n, A,
Ha, Nr and Pr. It is observed that the skin friction decreases as 7 increases whereas the heat transfer
coefficient and mass transfer increase with increasing n with other parameters fixed. It is also noted
that the skin friction reduces as A increases while the heat and mass transfer rates decrease. The skin
friction, heat and mass transfer rates vary inversely with Ha and appear to be independent of changes
in Nr whereas the heat transfer rate decreases with Nr. The same result also holds for the skin friction
and the mass transfer with respect to Pr. The heat transfer increases when Pr increases.

In Table 3 it is noted that for small values of the Biot number, small changes in the Biot number
correspond to a large changes in the maximum temperature. On the contrary, for large values of
the Biot number, a large change in the Biot number seems to not affect the maximum temperature
significantly.

The parameter n plays an important role in fluid flow. A fluid is called pseudoplastic fluid when
n < 1 and dilatant fluid when n > 1. A fluid is called a Newtonian fluid when n = 1. A fluid is
called shear-thining or shear-thickening according as n < 1 or n > 1. The effect of n on the fluid


http://dx.doi.org/10.20944/preprints201703.0138.v1
http://dx.doi.org/10.3390/e19070168

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 March 2017 d0i:10.20944/preprints201703.0138.v1

13 of 22

1 ————
—n=03
-=--n=1
0.8f —n= 2 f
) ---n= 4
___0.67 ‘\\
= '\
N \
@ N
04r '\
AR
VAN
ARN
0'27 \\ \\
~ O\
SN
0 \~‘-:‘
0 0.5 1 15

Figure 4. Effect of the stretching parameter (1) on the concentration profile S(#) for A = 0.3, Ha =
0.5,Nr =0.2,Pr =7,Nb=0.5,Nt =0.5,Nd = 0.02,5c =7,Rg = 0.3,Ld = 0.02, 8; = 0.2.

0.2

—A=-09

Figure 5. Effect of the unsteadiness parameter (A) on temperature profile 6(1) for n = 3,Ha =
0.5,Nr =02,Pr =7,Nb= 0.5, Nt =0.5Nd =0.02,5c =7,Rp = 0.3, Ld = 0.02, 3; = 0.2.

velocity, temperature and solutal concentration profiles, respectively are shown in Figures 2-4. Figure
2 illustrates the velocity profile (f') with the variation in the stretching sheet parameter with other
parameters fixed. The magnitude of the radial component of the velocity decreases with increasing
n. In contrast, n has a significant impact on 7 and the velocity components 1 and w, respectively).
Figure 3 shows that an increases in # leads to a decrease in the thickness of thermal boundary layer.
As a result, the temperature profiles decrease with increasing # and an increase in the heat transfer
rate from the sheet. Increasing # increases the deformation rate from the wall to the fluid. Figure 4
shows the effect of 1 on the solutal concentration profiles when the other parameters are fixed. It is
seen that increases in the non-linear stretching leads to a decrease in the solutal concentration profiles.

Figures 5 and 6 depict the effects of unsteadiness parameter A on the temperature and the solutal
concentration profiles, respectively. Two cases have been studied namely A < 0 and A > 0. From
Figure 5, it is observed that the temperature profiles increase with increasing values of A > 0. A
similar effect is observed for A < 0. It is also observed that as the distance from the stretching sheet
within the dynamic region increases, temperature decreases as unsteadiness parameter increases.
Physically when unsteadiness increases the sheet looses more heat which causes a decrease in the
temperature. Similar properties of solutal concentration profiles are seen in Figure 6. Figure 7 and
Figure 8 show the behavior of various values of the Hartman number on the velocity and temperature
profiles when the other physical parameters are fixed. Figure 7 shows that the dimensionless radial
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Figure 6. Effect of the unsteadiness parameter (A) on concentration profile S(17) when n = 3, Ha =
0.5,Nr =02,Pr =7,Nb=0.5,Nt =0.5,Nd = 0.02,5c =7,Rg = 0.3,Ld = 0.02,8; = 0.2.
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Figure 7. Effect of the Hartman number (Ha) on velocity profile f'() forn = 3,A = 0.3,Nr =
0.2,Pr =7,Nb=05,Nt = 0.5,Nd = 0.02,5c =7,Rg = 0.3,Ld = 0.02, ; = 0.2.
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Figure 8. Effect of the Hartman number (Ha) on temperature profile 6(7) whenn = 3, A = 0.3, Nr =
0.2,Pr=7,Nb=0.5,Nt =0.5Nd =0.02,5c =7,Ry = 0.3,Ld = 0.02, 3; = 0.2.

component of the velocity decreases as the Hartman number increases. This indicates that the Lorentz
force slows the motion of the fluid in the radial direction; consequently, the boundary layer thickness
increases as well. As a result velocity profile decreases as the Hartman number increase. Hence, the
magnetic field can be used to control the momentum boundary layer thickness. Figure 8 provides that
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Figure 9. Effect of the thermal radiation parameter (N7) on temperature profile 6(17) wheren = 3, A =
0.3,Ha =0.5,Pr=7,Nb =0.5,Nt =05 Nd =0.02,5c =7,Ry = 0.3,Ld = 0.02, 3; = 0.2.

Figure 10. Effect of the Prandtl number (Pr) on temperature profile 6(#) for n = 3,A = 0.3,Ha =
0.5,Nr =0.2,Nb = 0.5,Nt = 0.5,Nd = 0.02,5c = 7,Rp = 0.3, Ld = 0.02, 8; = 0.2.
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Figure 11. Effect of the thermophoresis parameter (Nt) on the temperature profile 8(y) forn =3, A =
0.3,Ha =05, Nr=02,Pr=7,Nb=0.5,Nd =0.02,5c =7,Ryp = 0.3,Ld = 0.02, 3; = 0.2.

the temperature profile increases with increase in the value of the Hartman number due to the effect of
transverse magnetic field in the fluid. It is also worth noting that the application of the magnetic field
affects the thermal boundary layer thickness positively since the thickness of the thermal boundary
increases in the presence of the magnetic field. Figure 9 shows the variation of the temperature


http://dx.doi.org/10.20944/preprints201703.0138.v1
http://dx.doi.org/10.3390/e19070168

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 March 2017 d0i:10.20944/preprints201703.0138.v1

16 of 22

1
—5Sc=4
---Sc=5
0.8t —sSc=7H
\ ---Sc=9
W
\!
0.6+ ‘\\
—~ Wy
£ \*
0 "\
0.4+ AR
Ay
\\\ \\
0.2/ N\t
* AY ~
“ ~
\\ ~
0 ‘“~__ ===
0 0.5 1 1.5

Figure 12. Effect of the Schmidt number (Sc) on concentration profile S(y) forn = 3, A = 0.3, Ha =
0.5,Nr =02,Pr =7,Nb=0.5,Nt =0.5,Ry = 0.3,5; = 0.2.

Figure 13. Effect of the Biot number (Bi) on temperature profile 6(1) for n = 3,A = 0.3,Ha =
0.5,Nr =0.2,Pr =7,Nb =0.5,Nt = 0.5,Nd = 0.02,5c =7,Rg = 0.3, Ld = 0.02.

profiles for different values of the thermal radiation parameter. The temperature profiles increases
with increased thermal radiation which is in line with physical observations regarding the impact of
increasing thermal radiation.

Figure 10 presents the influence of the Prandtl number on the temperature profile by fixing
values of other parameters. It is clear that as the Prandtl number increases, the temperature
profiles decrease. Smaller Prandtl numbers suggest a fluid with higher thermal conductivities hence
heat diffuses more rapidly from the heated surface than in the case of fluids with higher Prandtl
numbers. Figure 11 illustrates the variation of the temperature profiles with different values of the
thermophoresis parameter, Nt when the other parameter are fixed. It is observed the temperature
profile increases as the thermophoresis parameter increases because the thermal boundary layer
increases with increases in the thermophoresis parameter.

Figure 12 illustrates the influence of Schmidt number on the solutal concentration profile with
fixing the other parameters. It it clear that the solutal concentration profile decreases as the Schmidt
number increases.

Figure 13 depicts the influence of the Biot number Bi on the temperature profiles. The Biot
number can be perceived as the ratio of internal (conductive) resistance of solid to external (convective
resistance). Here we observe that an increase in the Biot number leads to enhanced temperature
profiles. An increase in the Biot number causes a stronger convection and this leads to higher
surface temperatures. Further, for sufficiently large values of the Biot number, the temperature profile
approaches its maximum value. Figure 14 shows that an increase in the power-law index leads
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Figure 14. Effect of the stretching parameter (1) on the nanofluid volume fraction profile ¢(17) when
A=03Ha=05Nr=02Pr=7Nb=05Nt=05Nd=0025 =7Ry=03,Ld =0.028; =
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Figure 15. Effect of the unsteadiness parameter (A) on nanofluid volume fraction profile ¢ () for n =
3,Ha =05 Nr=02Pr=7,Nb=05Nt=05Nd=0.025=7Ry=03Ld=0025 =02
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Figure 16. Effect of the thermophoresis parameter (Nt) on the nanofluid volume fraction profile ¢(#)
forn =3,A =0.3,Ha =05Nr=02,Pr=7,Nb=05Nd=0.02S =7 Ry=03,Ld =0.02,8; =
0.2.

to a reduction in the thickness of the nanoparticle concentration boundary layer thickness up to a
certain value of #. Beyond this critical distance, the opposite trend is observed. In Figure 15, we


http://dx.doi.org/10.20944/preprints201703.0138.v1
http://dx.doi.org/10.3390/e19070168

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 March 2017 d0i:10.20944/preprints201703.0138.v1

18 of 22

Figure 17. Effect of the Brownian motion parameter (Nb) on nanofluid volume fraction profile ¢(77)
whenn = 3,A = 03,Ha = 05,Nr = 02,Pr = 7,Nt = 0.5,Nd = 0.02,5¢c = 7,Rg = 0.3,Ld =

0.02, 8; = 0.2.
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Figure 18. Effect of the Schmidt number (Sc) on nanofluid volume fraction profile ¢(1) forn =3, A =
0.3,Ha =05, Nr=02,Pr=7,Nb=0.5Nt =0.5 Ry =0.3,5; =0.2.
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Figure 19. Effect of the Reynolds number Re on the entropy generation number N; when Nr =
02,Br=1,0=1Ha=05and X =0.5.

note a similar pattern of nanoparticle concentration profiles as in Figures 5 and 6. In Figure 16 we
note that the nanoparticle concentration profiles increase with the thermophoresis parameter. Similar
results are shown in Figure 17 for the Brownian motion parameter. In Figure 18, it is observed that
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Figure 20. Effect of Brinkman number Br on the entropy generation number N; when Re = 2, Nr =
02,Q=1,Ha=05and £ = 05.
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Figure 21. Effect of Hartman number Ha on the entropy generation number Ng when Re = 2, Nr =
02,Br=1,Q0=1and X =0.5.

increasing the Schmidt number reduces the nanoparticle concentration profile. The impact of the
Schmidt number Sc is inversely proportional to that of the Brownian diffusion coefficient. When Djp
is small the penetration depth of the nanoparticle concentration profiles becomes shorter. Thus, as the
Schmidt number increases the penetration depth becomes shorter. Moreover the increase in Sc leads
to decrease in both the concentration rate and the heat transfer rate.

It is interesting to note that Figures 19 - 23 suggest different ways of controlling the entropy
generation number. Figure 19 shows the effect of the Reynolds number on the entropy generation Ng.
It is observed that an increase in the Reynolds number leads to an increase in the entropy generation
number. This may be attributed to the fact that an increase in Re corresponds to an increase in random
eddies, vortices and flow fluctuation in the fluid which in turn increases the heat transfer rate. An
increase in heat transfer leads to an increase in the randomness of the system thereby leading to
an increase in Ng. The entropy generation number increases in the proximity of the sheet due to
a decrease in the fluid friction. Reducing the Reynolds number induces a reduction in the entropy
generation number.

Figure 20 shows the behavior of entropy generation number with varying values of Brinkman
number. The Brinkman number is a measure of the importance of heat produced by viscous
dissipation (viscous heating) relative to heat transported by molecular conduction (conductive heat
transfer). Increasing the Brinkman number causes an increase in the entropy generation number
in the vicinity of the sheet. Heat produced by viscous dissipation dominates over heat transported
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Figure 22. Effect of the Brinkman group parameter BrQ~! on the entropy generation number Ng
when Re =2,Nr =0.2,Br =1and £ = 0.5.
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Figure 23. Effect of Biot number Bi on the entropy generation number Ng when Re = 2,Nr =
02,Br=1,Ha=05Q=1and X =0.5.

by molecular conduction in the proximity of the sheet. In the vicinity of the sheet, significant heat
generation occurs within the layers of the moving fluid particles which in turn increases the entropy
generation number by enhancing the degree of disorder of the system. This effect gradually fades out
with the distance from the sheet.

The influence of the Hartman number on the entropy generation number is depicted in Figure
21. In close proximity to the sheet, an increase in the Hartman number corresponds to a noticeable
increase in the entropy generation number whereas far from the sheet the increase in the Hartman
number has rather negligible effect on the entropy generation number. This observed behavior of
the entropy generation number in response to the Hartman number is related to the increase in the
resistance of the fluid motion due to the increasing Hartman number and that causes higher heat
transfer rate which results in an increase on the entropy generation number. However, at far away
distance from the sheet the effect of Hartman number is insignificant causing the corresponding
insignificant entropy generation number.

Figure 22 displays the entropy generation number with changing values of the Brinkman group
of parameter (BrQ)~!). The increase in BrQ~! has a remarkable effect on the entropy generation
number in the proximity of the sheet. The increase in the entropy generation number around the
sheet due to the increase in BrQ~! can be related to a decrease in the fluid friction caused by
increasing BrQ~!. Moreover, Equation (31) suggests that the increase in BrQ}~! results in increase
in the sheet velocity which affects the fluid in the surroundings of the sheet and that explains, in part,
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the noticeable effect of BrQ~! on the entropy generation proximity of the sheet and the negligible
effect in the further region. Figure 23 demonstrates the relation between the Biot number and the
entropy generation number. With increasing Biot number the entropy generation number increases
prominently in the proximity of the sheet whereas the effect of the Biot number on the entropy
generation number is insignificant in the region far away from the sheet.

6. Conclusion

We have presented a mathematical formulation and analysis for the entropy generation rate in
an unsteady three dimensional axisymmetric MHD nanofluid flow over a non-linear stretching sheet
with thermal radiation and a chemical reaction. The importance of different physical parameters
on the entropy generation number are has been demonstrated and discussed in detail. From the
discussion, the following outcomes may be inferred;

1. The heat transfer rate increases with increasing sheet stretching.

2. An increase in the Reynolds number and the Brinkman number corresponds to a significant
increase in the entropy generation number. Therefore, it can be ascertained that viscous
dissipation effect on entropy generation is significant for a nanofluid flow with a high Reynolds
number.

3. An increase in the Biot and Hartman numbers corresponds to significant increase in entropy
generation number in the vicinity of the sheet surface. The significance of the Biot and Hartman
numbers gradually fades with distance from the sheet.

4. The entropy generation rate can be minimized by controlling the physical parameters.
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